1
|
F R, L L, C C, B F, C H, D H, S BV, J L C, J C, S B, I C. The nucleolin antagonist N6L and paclitaxel combination treatment could be a new promising therapeutic strategy for pancreatic ductal adenocarcinoma therapy. Eur J Pharmacol 2025; 991:177310. [PMID: 39870230 DOI: 10.1016/j.ejphar.2025.177310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025]
Abstract
Pancreatic cancer (PCa) is one of the most devastating cancers with few clinical signs and no truly effective therapy. In recent years, our team has demonstrated that nucleolin antagonists such as N6L could be a therapeutic alternative for this disease. In order to study a possible clinic development of N6L (multivalent pseudopeptide), we undertook to study the effect of combination of N6L with chemotherapies classically used for PCa on the survival of pancreatic cancer cells. Thus, the combined effect of N6L with either gemcitabine, FOLFOX and paclitaxel (PTX) on the survival of PANC-1, Mia-PaCa-2 and BxPC3 was studied and shown additive effect. In addition, analysis of the data by Combenefit software indicates that there are synergistic effects between N6L and the 3 chemotherapy molecules tested with more sensitive effects with the N6L-PTX combination. This result was confirmed by associating N6L and paclitaxel on porous calcium carbonate particles loaded with cyclodextrin (CD) encapsulating PTX and carrying N6L at their surface. Porous calcium carbonate particles present highly benefits for biological purposes because of their large surface area and their high stability in neutral media. As for CD, it presents the advantage of owing hydrophilic exterior and a less polar cavity in the center. We have then combined the advantageous features of both porous and negatively charged surfaces of calcium carbonate (CaCO3) particles and host molecules CD for developing carrier enabling all at once the loading of PTX (hydrophobic drug) and N6L (cationic drug). This association generates water-soluble particles capable of targeting via N6L and delivering paclitaxel to tumor cells.
Collapse
Affiliation(s)
- Raineri F
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France
| | - Larue L
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320, Thiais, France
| | - Cojocaru C
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France
| | - Ferrara B
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France
| | - Houppe C
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France
| | - Habert D
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France
| | - Bourgoin-Voillard S
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France; Univ. Grenoble Alpes, Laboratory of Fundamental and Applied Bioenergetics/Prométhée Proteomic Platform, UGA-Inserm U1055-CHUGA, Grenoble, France
| | - Cohen J L
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France; AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Centre D'investigation Clinique Biotherapie, F-94010, Creteil, France
| | - Courty J
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France; AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Centre D'investigation Clinique Biotherapie, F-94010, Creteil, France
| | - Belbekhouche S
- Université Paris Est Creteil, CNRS, Institut Chimie et Matériaux Paris Est, UMR 7182, 2 Rue Henri Dunant, 94320, Thiais, France.
| | - Cascone I
- Université Paris-Est, Immunorégulation et Biothérapie, INSERM U955, Hôpital Henri Mondor, 94010, Créteil, France; AP-HP, Groupe Hospitalo-universitaire Chenevier Mondor, Centre D'investigation Clinique Biotherapie, F-94010, Creteil, France.
| |
Collapse
|
2
|
Naveed A, Umer R, Fatemah A, Naveed R. Nucleolin a Central Player in Host Virus Interactions and its Role in Viral Progeny Production. Mol Biotechnol 2025:10.1007/s12033-025-01372-1. [PMID: 39821823 DOI: 10.1007/s12033-025-01372-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/04/2025] [Indexed: 01/19/2025]
Abstract
Nucleolin (NCL) is a prevalent and widely distributed nucleolar protein in cells. While primarily located in the nucleolus, NCL is also found within the nucleoplasm, cytoplasm, and even on the cell surface. NCL's unique nature arises from its multifaceted roles and extensive interactions with various proteins. The structural stability of NCL is reliant on protease inhibitors, particularly in proliferating cells, indicating its essential role in cellular maintenance. This review is centered on elucidating the structure of NCL, its significance in host-viral interactions, and its various contributions to viral progeny production. This work is to enhance the scientific community's understanding of NCL functionality and its implications for viral infection processes. NCL is highlighted as a crucial host protein that viruses frequently target, exploiting it to support their own life cycles and establish infections. Understanding these interactions is key to identifying NCL's role in viral pathogenesis and its potential as a therapeutic target. Our current knowledge, alongside extensive scientific literature, underscores the critical role of host proteins like NCL in both viral infections and other diseases. As a target for viral exploitation, NCL supports viral replication and survival, making it a promising candidate for therapeutic intervention. By delving deeper into the intricacies of NCL-viral protein interactions, researchers may uncover effective antiviral mechanisms. This review aspires to inspire further research into NCL's role in viral infections and promote advancements in antiviral therapeutic development.
Collapse
Affiliation(s)
- Ahsan Naveed
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA.
| | - Rumaisa Umer
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
| | - Ayzal Fatemah
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska, Lincoln, USA
- Albert B Chandler Hospital, University of Kentucky, Lexington, Fayette, USA
| | - Rabia Naveed
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
3
|
Huang J, Fu X, Qiu F, Liang Z, Cao C, Wang Z, Chen H, Yue S, Xie D, Liang Y, Lu A, Liang C. Discovery of a Natural Ent-Kaurene Diterpenoid Oridonin as an E3 Ligase Recruiter for PROTACs. J Am Chem Soc 2025; 147:1920-1937. [PMID: 39736140 DOI: 10.1021/jacs.4c14650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
PROTACs have emerged as a therapeutic modality for the targeted degradation of proteins of interest (POIs). Central to PROTAC technology are the E3 ligase recruiters, yet only a few of them have been identified due to the lack of ligandable pockets in ligases, especially among single-subunit ligases. We propose that binders of partner proteins of single-subunit ligases could be repurposed as new ligase recruiters. MDM2 is a single-subunit ligase overexpressed in tumors. Nucleolin (NCL) is an MDM2 partner protein that displays a similar tumor-specific overexpression pattern and nuclear-cytoplasmic shuttling role to MDM2. Furthermore, NCL is selectively translocated on the tumor cell surface, where it acts as an internalization receptor for its binders. We reveal that the NCL-binding Oridonin (Ori), a natural ent-kaurene diterpenoid, is capable of recruiting MDM2 by employing NCL as a molecular bridge. We design Ori-based PROTACs for modulating oncogenic POIs, including BRD4 and EGFR. These PROTACs direct the assembly of MDM2-NCL-PROTAC-POI complexes to induce proteasomal degradation of POIs and tumor shrinkage. In addition to its role as a ligase engaged by PROTACs, MDM2, along with its homologue MDMX, plays a nonredundant function in inhibiting p53 activity. Dual inhibition of MDM2/X is proposed as a promising antitumor strategy. We demonstrate that Ori also recruits MDMX in an NCL-dependent manner. Ori-based homo-PROTACs induce MDM2/X dual degradation and attenuate tumor progression. Our findings prove the feasibility of repurposing the binders of ligase partner proteins as new ligase recruiters in PROTACs and highlight the potential of Ori as an MDM2/X recruiter.
Collapse
Affiliation(s)
- Jie Huang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Xuekun Fu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Fang Qiu
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Zhijian Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chunhao Cao
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Zhuqian Wang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Hongzhen Chen
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Siran Yue
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Duoli Xie
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
| | - Yiying Liang
- Shenzhen LingGene Biotech Co., Ltd., Shenzhen 518055, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou 510006, China
- Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Chao Liang
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong SAR 999077, China
- State Key Laboratory of Proteomics, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 100850, China
| |
Collapse
|
4
|
Steinkellner H, Madritsch S, Kluge M, Seipel T, Sarne V, Huber A, Schosserer M, Oberle R, Neuhaus W, Beribisky AV, Laccone F. RNA Sequencing and Weighted Gene Co-Expression Network Analysis Highlight DNA Replication and Key Genes in Nucleolin-Depleted Hepatoblastoma Cells. Genes (Basel) 2024; 15:1514. [PMID: 39766782 PMCID: PMC11675179 DOI: 10.3390/genes15121514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND/OBJECTIVES Nucleolin is a major component of the nucleolus and is involved in various aspects of ribosome biogenesis. However, it is also implicated in non-nucleolar functions such as cell cycle regulation and proliferation, linking it to various pathologic processes. The aim of this study was to use differential gene expression analysis and Weighted Gene Co-expression Network analysis (WGCNA) to identify nucleolin-related regulatory pathways and possible key genes as novel therapeutic targets for cancer, viral infections and other diseases. METHODS We used two different siRNAs to downregulate the expression of nucleolin in a human hepatoblastoma (HepG2) cell line. We carried out RNA-sequencing (RNA-Seq), performed enrichment analysis of the pathways of the differentially expressed genes (DEGs) and identified protein-protein interaction (PPI) networks. RESULTS Both siRNAs showed high knockdown efficiency in HepG2 cells, resulting in the disruption of the nucleolar architecture and the downregulation of rRNA gene expression, both downstream hallmarks of a loss of nucleolin function. RNA-Seq identified 44 robust DEGs in both siRNA cell models. The enrichment analysis of the pathways of the downregulated genes confirmed the essential role of nucleolin in DNA replication and cell cycle processes. In addition, we identified seven hub genes linked to NCL: MCM6, MCM3, FEN1, MYBL2, MSH6, CDC6 and RBM14; all are known to be implicated in DNA replication, cell cycle progression and oncogenesis. CONCLUSIONS Our findings demonstrate the functional consequences of nucleolin depletion in HepG2 and confirm the importance of nucleolin in DNA replication and cell cycle processes. These data will further enhance our understanding of the molecular and pathologic mechanisms of nucleolin and provide new therapeutic perspectives in disease.
Collapse
Affiliation(s)
- Hannes Steinkellner
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria (A.H.); (A.V.B.); (F.L.)
| | - Silvia Madritsch
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria (A.H.); (A.V.B.); (F.L.)
| | - Mara Kluge
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria (A.H.); (A.V.B.); (F.L.)
| | - Teresa Seipel
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria (A.H.); (A.V.B.); (F.L.)
| | - Victoria Sarne
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria (A.H.); (A.V.B.); (F.L.)
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, 1090 Vienna, Austria
| | - Anna Huber
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria (A.H.); (A.V.B.); (F.L.)
- Vienna Doctoral School of Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, 1090 Vienna, Austria
| | - Markus Schosserer
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria (A.H.); (A.V.B.); (F.L.)
| | - Raimund Oberle
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry and Pathobiochemistry, Medical University of Vienna, 1090 Vienna, Austria
| | - Winfried Neuhaus
- Competence Unit Molecular Diagnostics, Center Health and Bioresources, AIT-Austrian Institute of Technology GmbH, 1210 Vienna, Austria;
- Department of Medicine, Faculty of Medicine and Dentistry, Danube Private University, 3500 Krems an der Donau, Austria
| | - Alexander V. Beribisky
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria (A.H.); (A.V.B.); (F.L.)
| | - Franco Laccone
- Center for Pathobiochemistry and Genetics, Institute of Medical Genetics, Medical University of Vienna, 1090 Vienna, Austria (A.H.); (A.V.B.); (F.L.)
| |
Collapse
|
5
|
Huang WC, Hsu KW, Peng PH, Zeng WT, Gu TJ, Lin LJ, Hsieh MT, Lee DY, Chang GD. Application of Reducible Covalent Capture Purification for Resolving Persulfidome and Nucleolin S-Sulfhydration. Anal Chem 2024; 96:14186-14196. [PMID: 39171919 DOI: 10.1021/acs.analchem.4c02717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Protein S-sulfhydration involves the regulation of various protein functions, and resolving the S-sulfhydrated proteome (persulfidome) allows for a deeper exploration of various redox regulations. Therefore, we designed a reducible covalent capture method for isolating S-sulfhydrated proteins, which can analyze the persulfidome in biological samples and monitor specific S-sulfhydrated proteins. In this study, we applied this method to reveal the S-sulfhydration levels of proteins, including 3-phosphoglyceraldehyde dehydrogenase, NFκB/p65, and nucleolin. Furthermore, this technique can be used to enrich S-sulfhydrated peptides, aiding in the determination of protein S-sulfhydration modification sites. Finally, we observed that the S-sulfhydration and oxidation of nucleolin on the C543 residue correlate with its nuclear translocation, downstream regulation of p53, Bcl-xL, and Bcl-2 RNA levels and protein expression, as well as the protective function against oxidative stress. Therefore, this method may facilitate the understanding of the regulation of protein function by redox perturbation.
Collapse
Affiliation(s)
- Wei-Chieh Huang
- Graduate Institute of Biochemical Sciences, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| | - Kai-Wen Hsu
- Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
- Institute of Translational Medicine and New Drug Development, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Pei-Hua Peng
- Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Wan-Ting Zeng
- Graduate Institute of Integrated Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Ting-Jia Gu
- Graduate Institute of Integrated Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Li-Jie Lin
- Drug Development Center, Program for Cancer Biology and Drug Discovery, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
- Research Center for Cancer Biology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
- The Ph.D. program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Min-Tsang Hsieh
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
- Drug Development Center, China Medical University, Taichung 406040, Taiwan
- Chinese Medicinal Research and Development Center, China Medical University Hospital, Taichung 40447, Taiwan
| | - Der-Yen Lee
- Graduate Institute of Integrated Medicine, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Geen-Dong Chang
- Graduate Institute of Biochemical Sciences, National Taiwan University, No.1, Section 4, Roosevelt Road, Taipei 106, Taiwan
| |
Collapse
|
6
|
Xu L, Ma W, Huo X, Luo J, Li R, Zhu X, Kong X, Zhao K, Jin Y, Zhang M, Li X, Wang L, Han W, Yu D. New insights into the function and mechanisms of piRNA PMLCPIR in promoting PM 2.5-induced lung cancer. J Adv Res 2024:S2090-1232(24)00372-2. [PMID: 39187236 DOI: 10.1016/j.jare.2024.08.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024] Open
Abstract
INTRODUCTION Extensive studies have established the correlation between long-term PM2.5 exposure and lung cancer, yet the mechanisms underlying this association remain poorly understood. PIWI-interacting RNAs (piRNAs), a novel category of small non-coding RNAs, serve important roles in various diseases. However, their biological function and mechanism in PM2.5-induced lung cancer have not been thoroughly investigated. OBJECTIVES We aimed to explore the oncogenic role of piRNA in lung cancer induced by PM2.5 exposure, as well as the underlying mechanisms. METHODS We conducted a PM2.5-induced human lung epithelial cell malignant transformation model. Human samples were used to further verify the finding. In vitro proliferation, migration, and invasion assays were performed to study the function of piRNA. RNA-sequencing was used to elucidate the the mechanisms of how piRNA mediates cell functions. PiRNA pull-down and computational docking analysis were conducted to identify proteins that binding to piRNA. In vivo experiments were used to explore whether inhibition of PMLCPIR could have a therapeutic effect on lung cancer. RESULTS We identified a new up-regulated piRNA, termed PM2.5-induced lung cancer up-regulation piRNA (PMLCPIR), which promotes the proliferation of PM2.5-transformed cells and lung cancer cells. RNA sequencing revealed ITGB1 as a downstream target of PMLCPIR. Importantly, PMLCPIR binds to nucleolin (NCL) and increases the expression of its target gene, ITGB1, thereby activating PI3K/AKT signaling. The inhibition of PMLCPIR could promote apoptosis in lung cancer cells and enhance their chemosensitivity to anti-tumor drugs. CONCLUSION We systematically identified the alterations of piRNA expression profiles in the PM2.5-induced malignant transformation model. Then, PMLCPIR was recognized as a novel oncogenic piRNA in PM2.5-induced lung cancer. Mechanically, PMLCPIR binds to NCL, enhancing ITGB1 expression and activating the ontogenetic PI3K/AKT signaling, potentially contributing to lung cancer progression. This study provides novel insights into the revelation of a new epigenetic regulator in PM2.5-induced lung cancer.
Collapse
Affiliation(s)
- Lin Xu
- Key Laboratory of Materal & Fetal Medicine of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China; School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoyu Huo
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Ruoxi Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiaoxiao Zhu
- School of Public Health, Qingdao University, Qingdao, China
| | - Xiangbin Kong
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Meihua Zhang
- Key Laboratory of Materal & Fetal Medicine of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China
| | - Xianshu Li
- Key Laboratory of Materal & Fetal Medicine of National Health Commission of China, Maternal and Child Health Care Hospital of Shandong Province Affiliated to Qingdao University, Jinan, China
| | - Ling Wang
- Clinical Laboratory, Children's Hospital Affiliated to Shandong University, Jinan, China.
| | - Wei Han
- Department of Pulmonary and Critical Care Medicine, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
7
|
Deb A, Nagpal S, Yadav RK, Thakur H, Nair D, Krishnan V, Vrati S. Japanese encephalitis virus NS5 protein interacts with nucleolin to enhance the virus replication. J Virol 2024; 98:e0085824. [PMID: 39078257 PMCID: PMC11334521 DOI: 10.1128/jvi.00858-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 06/29/2024] [Indexed: 07/31/2024] Open
Abstract
Japanese encephalitis virus (JEV) is an arthropod-borne, plus-strand flavivirus causing viral encephalitis in humans with a high case fatality rate. The JEV non-structural protein 5 (NS5) with the RNA-dependent RNA polymerase activity interacts with the viral and host proteins to constitute the replication complex. We have identified the multifunctional protein Nucleolin (NCL) as one of the several NS5-interacting host proteins. We demonstrate the interaction and colocalization of JEV NS5 with NCL in the virus-infected HeLa cells. The siRNA-mediated knockdown of NCL indicated that it was required for efficient viral replication. Importantly, JEV grew to higher titers in cells over-expressing exogenous NCL, demonstrating its pro-viral role. We demonstrated that NS5 interacted with the RRM and GAR domains of NCL. We show that the NCL-binding aptamer AS1411 containing the G-quadruplex (GQ) structure and the GQ ligand BRACO-19 caused significant inhibition of JEV replication. The antiviral effect of AS1411 and BRACO-19 could be overcome in HeLa cells by the overexpression of exogenous NCL. We demonstrated that the synthetic RNAs derived from the 3'-NCR of JEV genomic RNA containing the GQ sequence could bind NCL in vitro. The replication complex binding to the 3'-NCR is required for the viral RNA synthesis. It is likely that NCL present in the replication complex destabilizes the GQ structures in the genomic RNA, thus facilitating the movement of the replication complex resulting in efficient virus replication.IMPORTANCEJapanese encephalitis virus (JEV) is endemic in most parts of South-East Asia and the Western Pacific region, causing epidemics of encephalitis with a high case fatality rate. While a tissue culture-derived JEV vaccine is available, no antiviral therapy exists. The JEV NS5 protein has RNA-dependent RNA polymerase activity. Together with several host and viral proteins, it constitutes the replication complex necessary for virus replication. Understanding the interaction of NS5 with the host proteins could help design novel antivirals. We identified Nucleolin (NCL) as a crucial host protein interactor of JEV NS5 having a pro-viral role in virus replication. The NS5-interacting NCL binds to the G-quadruplex (GQ) structure sequence in the 3'-NCR of JEV RNA. This may smoothen the movement of the replication complex along the genomic RNA, thereby facilitating the virus replication. This study is the first report on how NCL, a host protein, helps in JEV replication through GQ-binding.
Collapse
Affiliation(s)
- Arundhati Deb
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Shilpi Nagpal
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Rajnesh Kumari Yadav
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Harsh Thakur
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Deepak Nair
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Vengadesan Krishnan
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Sudhanshu Vrati
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| |
Collapse
|
8
|
Shin CH, Rossi M, Anerillas C, Martindale JL, Yang X, Ji E, Pal A, Munk R, Yang JH, Tsitsipatis D, Mazan-Mamczarz K, Abdelmohsen K, Gorospe M. Increased ANKRD1 Levels in Early Senescence Mediated by RBMS1-Elicited ANKRD1 mRNA Stabilization. Mol Cell Biol 2024; 44:194-208. [PMID: 38769646 PMCID: PMC11123458 DOI: 10.1080/10985549.2024.2350540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024] Open
Abstract
Cellular senescence is a dynamic biological process triggered by sublethal cell damage and driven by specific changes in gene expression programs. We recently identified ANKRD1 (ankyrin repeat domain 1) as a protein strongly elevated after triggering senescence in fibroblasts. Here, we set out to investigate the mechanisms driving the elevated production of ANKRD1 in the early stages of senescence. Our results indicated that the rise in ANKRD1 levels after triggering senescence using etoposide (Eto) was the result of moderate increases in transcription and translation, and robust mRNA stabilization. Antisense oligomer (ASO) pulldown followed by mass spectrometry revealed a specific interaction of the RNA-binding protein RBMS1 with ANKRD1 mRNA that was confirmed by ribonucleoprotein immunoprecipitation analysis. RBMS1 abundance decreased in the nucleus and increased in the cytoplasm during Eto-induced senescence; in agreement with the hypothesis that RBMS1 may participate in post-transcriptional stabilization of ANKRD1 mRNA, silencing RBMS1 reduced, while overexpressing RBMS1 enhanced ANKRD1 mRNA half-life after Eto treatment. A segment proximal to the ANKRD1 coding region was identified as binding RBMS1 and conferring RBMS1-dependent increased expression of a heterologous reporter. We propose that RBMS1 increases expression of ANKRD1 during the early stages of senescence by stabilizing ANKRD1 mRNA.
Collapse
Affiliation(s)
- Chang Hoon Shin
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jennifer L. Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Xiaoling Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Eunbyul Ji
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Apala Pal
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Krystyna Mazan-Mamczarz
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Wu ZH, Wang YX, Song JJ, Zhao LQ, Zhai YJ, Liu YF, Guo WJ. LncRNA SNHG26 promotes gastric cancer progression and metastasis by inducing c-Myc protein translation and an energy metabolism positive feedback loop. Cell Death Dis 2024; 15:236. [PMID: 38553452 PMCID: PMC10980773 DOI: 10.1038/s41419-024-06607-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 04/02/2024]
Abstract
Metastasis is a bottleneck in cancer treatment. Studies have shown the pivotal roles of long noncoding RNAs (lncRNAs) in regulating cancer metastasis; however, our understanding of lncRNAs in gastric cancer (GC) remains limited. RNA-seq was performed on metastasis-inclined GC tissues to uncover metastasis-associated lncRNAs, revealing upregulated small nucleolar RNA host gene 26 (SNHG26) expression, which predicted poor GC patient prognosis. Functional experiments revealed that SNHG26 promoted cellular epithelial-mesenchymal transition and proliferation in vitro and in vivo. Mechanistically, SNHG26 was found to interact with nucleolin (NCL), thereby modulating c-Myc expression by increasing its translation, and in turn promoting energy metabolism via hexokinase 2 (HK2), which facilitates GC malignancy. The increase in energy metabolism supplies sufficient energy to promote c-Myc translation and expression, forming a positive feedback loop. In addition, metabolic and translation inhibitors can block this loop, thus inhibiting cell proliferation and mobility, indicating potential therapeutic prospects in GC.
Collapse
Affiliation(s)
- Zhen-Hua Wu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Xuan Wang
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Jun-Jiao Song
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai, 200032, China
| | - Li-Qin Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yu-Jia Zhai
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yan-Fang Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai, 200032, China
| | - Wei-Jian Guo
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
10
|
Zareie AR, Verma SC. Nucleolin Regulates the Expression of Kaposi's Sarcoma-Associated Herpesvirus' Latency-Associated Nuclear Antigen through G-Quadruplexes in the mRNA. Viruses 2023; 15:2438. [PMID: 38140679 PMCID: PMC10747643 DOI: 10.3390/v15122438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/08/2023] [Accepted: 12/13/2023] [Indexed: 12/24/2023] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) establishes life-long latent infection and is linked to several human malignancies. Latency-associated nuclear antigen (LANA) is highly expressed during latency, and is responsible for the replication and maintenance of the viral genome. The expression of LANA is regulated at transcriptional/translational levels through multiple mechanisms, including the secondary structures in the mRNA sequence. LANA mRNA has multiple G-quadruplexes (G4s) that are bound by multiple proteins to stabilize/destabilize these secondary structures for regulating LANA. In this manuscript, we demonstrate the role of Nucleolin (NCL) in regulating LANA expression through its interaction with G-quadruplexes of LANA mRNA. This interaction reduced LANA's protein expression through the sequestration of mRNA into the nucleus, demonstrated by the colocalization of G4-carrying mRNA with NCL. Furthermore, the downregulation of NCL, by way of a short hairpin, showed an increase in LANA translation following an alteration in the levels of LANA mRNA in the cytoplasm. Overall, the data presented in this manuscript showed that G-quadruplexes-mediated translational control could be regulated by NCL, which can be exploited for controlling KSHV latency.
Collapse
Affiliation(s)
| | - Subhash C. Verma
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, 1664 N Virginia Street, Reno, NV 89557, USA;
| |
Collapse
|
11
|
Custer SK, Gilson T, Astroski JW, Nanguneri SR, Iurillo AM, Androphy EJ. COPI coatomer subunit α-COP interacts with the RNA binding protein Nucleolin via a C-terminal dilysine motif. Hum Mol Genet 2023; 32:3263-3275. [PMID: 37658769 PMCID: PMC10656708 DOI: 10.1093/hmg/ddad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 08/07/2023] [Accepted: 08/30/2023] [Indexed: 09/05/2023] Open
Abstract
The COPI coatomer subunit α-COP has been shown to co-precipitate mRNA in multiple settings, but it was unclear whether the interaction with mRNA was direct or mediated by interaction with an adapter protein. The COPI complex often interacts with proteins via C-terminal dilysine domains. A search for candidate RNA binding proteins with C-terminal dilysine motifs yielded Nucleolin, which terminates in a KKxKxx sequence. This protein was an especially intriguing candidate as it has been identified as an interacting partner for Survival Motor Neuron protein (SMN). Loss of SMN causes the neurodegenerative disease Spinal Muscular Atrophy. We have previously shown that SMN and α-COP interact and co-migrate in axons, and that overexpression of α-COP reduced phenotypic severity in cell culture and animal models of SMA. We show here that in an mRNA independent manner, endogenous Nucleolin co-precipitates endogenous α-COP and ε-COP but not β-COP which may reflect an interaction with the so-called B-subcomplex rather a complete COPI heptamer. The ability of Nucleolin to bind to α-COP requires the presence of the C-terminal KKxKxx domain of Nucleolin. Furthermore, we have generated a point mutant in the WD40 domain of α-COP which eliminates its ability to co-precipitate Nucleolin but does not interfere with precipitation of partners mediated by non-KKxKxx motifs such as the kainate receptor subunit 2. We propose that via interaction between the C-terminal dilysine motif of Nucleolin and the WD40 domain of α-COP, Nucleolin acts an adaptor to allow α-COP to interact with a population of mRNA.
Collapse
Affiliation(s)
- Sara K Custer
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Timra Gilson
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Jacob W Astroski
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Siddarth R Nanguneri
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| | - Alyssa M Iurillo
- Indiana University School of Medicine, 340 West 10 St, Indianapolis, IN 46202, United States
| | - Elliot J Androphy
- Dermatology, Indiana University School of Medicine, 545 Barnhill Drive, Emerson Hall 139, Indianapolis, IN 46202, United States
| |
Collapse
|
12
|
Falzarano MS, Mietto M, Fortunato F, Farnè M, Martini F, Ala P, Selvatici R, Muntoni F, Ferlini A. mRNA in situ hybridization exhibits unbalanced nuclear/cytoplasmic dystrophin transcript repartition in Duchenne myogenic cells and skeletal muscle biopsies. Sci Rep 2023; 13:15942. [PMID: 37743371 PMCID: PMC10518324 DOI: 10.1038/s41598-023-43134-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023] Open
Abstract
To gain insight on dystrophin (DMD) gene transcription dynamics and spatial localization, we assayed the DMD mRNA amount and defined its compartmentalization in myoblasts, myotubes, and skeletal muscle biopsies of Duchenne muscular dystrophy (DMD) patients. Using droplet digital PCR, Real-time PCR, and RNAscope in situ hybridization, we showed that the DMD transcript amount is extremely reduced in both DMD patients' cells and muscle biopsies and that mutation-related differences occur. We also found that, compared to controls, DMD transcript is dramatically reduced in the cytoplasm, as up to 90% of it is localized in nuclei, preferentially at the perinuclear region. Using RNA/protein colocalization experiments, we showed that about 40% of nuclear DMD mRNA is localized in the nucleoli in both control and DMD myogenic cells. Our results clearly show that mutant DMD mRNA quantity is strongly reduced in the patients' myogenic cells and muscle biopsies. Furthermore, mutant DMD mRNA compartmentalization is spatially unbalanced due to a shift in its localization towards the nuclei. This abnormal transcript repartition contributes to the poor abundance and availability of the dystrophin messenger in cytoplasm. This novel finding also has important repercussions for RNA-targeted therapies.
Collapse
Affiliation(s)
- Maria Sofia Falzarano
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Martina Mietto
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Fernanda Fortunato
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Marianna Farnè
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Pierpaolo Ala
- Dubowitz Neuromuscular Centre and National Institute for Health Research, Great Ormond Street Institute of Child Health, Biomedical Research Centre, University College London, London, UK
| | - Rita Selvatici
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre and National Institute for Health Research, Great Ormond Street Institute of Child Health, Biomedical Research Centre, University College London, London, UK
| | - Alessandra Ferlini
- Department of Medical Sciences, Unit of Medical Genetics, University of Ferrara, Ferrara, Italy.
- Dubowitz Neuromuscular Centre and National Institute for Health Research, Great Ormond Street Institute of Child Health, Biomedical Research Centre, University College London, London, UK.
| |
Collapse
|
13
|
Liu Y, Hu B, Pei X, Li J, Qi D, Xu Y, Ou H, Wu Y, Xue L, Huang JH, Wu E, Hu X. A Non-G-Quadruplex DNA Aptamer Targeting NCL for Diagnosis and Therapy in Bladder Cancer. Adv Healthc Mater 2023; 12:e2300791. [PMID: 37262080 PMCID: PMC11469069 DOI: 10.1002/adhm.202300791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Indexed: 06/03/2023]
Abstract
Bladder cancer (BC) is a highly aggressive malignant tumor affecting the urinary system, characterized by metastasis and a poor prognosis that often leads to limited therapeutic success. This study aims to develop a novel DNA aptamer for the diagnosis and treatment of BC using a tissue-based systematic evolution of ligands by an exponential enrichment (SELEX) process. By using SELEX, this work successfully generates a new aptamer named TB-5, which demonstrates a remarkable and specific affinity for nucleolin (NCL) in BC tissues and displays marked biocompatibility both in vitro and in vivo. Additionally, this work shows that NCL is a reliable tissue-specific biomarker in BC. Moreover, according to circular dichroism spectroscopy, TB-5 forms a non-G-quadruplex structure, distinguishing it from the current NCL-targeting aptamer AS1411, and exhibits a distinct binding region on NCL compared to AS1411. Notably, this study further reveals that TB-5 activates NCL function by promoting autophagy and suppressing the migration and invasion of BC cells, which occurs by disrupting mRNA transcription processes. These findings highlight the critical role of NCL in the pathological examination of BC and warrant more comprehensive investigations on anti-NCL aptamers in BC imaging and treatment.
Collapse
Affiliation(s)
- Yunyi Liu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Bei Hu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Xiaming Pei
- Department of UrologyHunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine. ChangshaHunan410013China
| | - Juan Li
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Dan Qi
- Department of Neurosurgery and Neuroscience InstituteBaylor Scott & White HealthTempleTX76508USA
| | - Yuxi Xu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Hailong Ou
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Yatao Wu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
| | - Lei Xue
- Department of PathologyHunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine. ChangshaHunan410013China
| | - Jason H. Huang
- Department of Neurosurgery and Neuroscience InstituteBaylor Scott & White HealthTempleTX76508USA
- Department of Medical EducationTexas A&M University School of MedicineCollege StationTX77843USA
| | - Erxi Wu
- Department of Neurosurgery and Neuroscience InstituteBaylor Scott & White HealthTempleTX76508USA
- Department of Medical EducationTexas A&M University School of MedicineCollege StationTX77843USA
- Department of Pharmaceutical SciencesTexas A&M University School of PharmacyCollege StationTX77843USA
- LIVESTRONG Cancer Institutes and Department of OncologyDell Medical SchoolThe University of Texas at AustinAustinTX78712USA
| | - Xiaoxiao Hu
- State Key Laboratory of Chemo/Biosensing and ChemometricsCollege of BiologyMolecular Science and Biomedicine Laboratory and Aptamer Engineering Center of Hunan ProvinceHunan UniversityChangshaHunan410082China
- Research Institute of Hunan University in ChongqingChongqing401120China
- Shenzhen Research InstituteHunan UniversityShenzhenGuangdong518000China
- Hunan Yonghe‐sun Biotechnology Co. Ltd.ChangshaHunan410082China
| |
Collapse
|
14
|
Hildebrandt RP, Moss KR, Janusz-Kaminska A, Knudson LA, Denes LT, Saxena T, Boggupalli DP, Li Z, Lin K, Bassell GJ, Wang ET. Muscleblind-like proteins use modular domains to localize RNAs by riding kinesins and docking to membranes. Nat Commun 2023; 14:3427. [PMID: 37296096 PMCID: PMC10256740 DOI: 10.1038/s41467-023-38923-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
RNA binding proteins (RBPs) act as critical facilitators of spatially regulated gene expression. Muscleblind-like (MBNL) proteins, implicated in myotonic dystrophy and cancer, localize RNAs to myoblast membranes and neurites through unknown mechanisms. We find that MBNL forms motile and anchored granules in neurons and myoblasts, and selectively associates with kinesins Kif1bα and Kif1c through its zinc finger (ZnF) domains. Other RBPs with similar ZnFs associate with these kinesins, implicating a motor-RBP specificity code. MBNL and kinesin perturbation leads to widespread mRNA mis-localization, including depletion of Nucleolin transcripts from neurites. Live cell imaging and fractionation reveal that the unstructured carboxy-terminal tail of MBNL1 allows for anchoring at membranes. An approach, termed RBP Module Recruitment and Imaging (RBP-MRI), reconstitutes kinesin- and membrane-recruitment functions using MBNL-MS2 coat protein fusions. Our findings decouple kinesin association, RNA binding, and membrane anchoring functions of MBNL while establishing general strategies for studying multi-functional, modular domains of RBPs.
Collapse
Affiliation(s)
- Ryan P Hildebrandt
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kathryn R Moss
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Luke A Knudson
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Lance T Denes
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Tanvi Saxena
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Devi Prasad Boggupalli
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Zhuangyue Li
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Kun Lin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA
| | - Gary J Bassell
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, USA.
| | - Eric T Wang
- Department of Molecular Genetics & Microbiology, Center for Neurogenetics, Genetics Institute, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
15
|
Azman MS, Alard EL, Dodel M, Capraro F, Faraway R, Dermit M, Fan W, Chakraborty A, Ule J, Mardakheh FK. An ERK1/2-driven RNA-binding switch in nucleolin drives ribosome biogenesis and pancreatic tumorigenesis downstream of RAS oncogene. EMBO J 2023; 42:e110902. [PMID: 37039106 PMCID: PMC10233377 DOI: 10.15252/embj.2022110902] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/14/2023] [Accepted: 03/12/2023] [Indexed: 04/12/2023] Open
Abstract
Oncogenic RAS signaling reprograms gene expression through both transcriptional and post-transcriptional mechanisms. While transcriptional regulation downstream of RAS is relatively well characterized, how RAS post-transcriptionally modulates gene expression to promote malignancy remains largely unclear. Using quantitative RNA interactome capture analysis, we here reveal that oncogenic RAS signaling reshapes the RNA-bound proteomic landscape of pancreatic cancer cells, with a network of nuclear proteins centered around nucleolin displaying enhanced RNA-binding activity. We show that nucleolin is phosphorylated downstream of RAS, which increases its binding to pre-ribosomal RNA (rRNA), boosts rRNA production, and promotes ribosome biogenesis. This nucleolin-dependent enhancement of ribosome biogenesis is crucial for RAS-induced pancreatic cancer cell proliferation and can be targeted therapeutically to inhibit tumor growth. Our results reveal that oncogenic RAS signaling drives ribosome biogenesis by regulating the RNA-binding activity of nucleolin and highlight a crucial role for this mechanism in RAS-mediated tumorigenesis.
Collapse
Affiliation(s)
- Muhammad S Azman
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Emilie L Alard
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Federica Capraro
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - Rupert Faraway
- The Francis Crick InstituteLondonUK
- Dementia Research InstituteKing's College LondonLondonUK
| | - Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Wanling Fan
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Alina Chakraborty
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Jernej Ule
- The Francis Crick InstituteLondonUK
- Dementia Research InstituteKing's College LondonLondonUK
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
16
|
Kiliszek A, Rypniewski W, Błaszczyk L. Exploring structural determinants and the role of nucleolin in formation of the long-range interactions between untranslated regions of p53 mRNA. RNA (NEW YORK, N.Y.) 2023; 29:630-643. [PMID: 36653114 PMCID: PMC10158990 DOI: 10.1261/rna.079378.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/02/2023] [Indexed: 05/06/2023]
Abstract
p53 protein is a key regulator of cellular homeostasis by coordinating the framework of antiproliferative pathways as a response to various stress factors. Although the main mechanism of stress-dependent induction of p53 protein relies on post-translational modifications influencing its stability and activity, a growing amount of evidence suggests that complex regulation of p53 expression occurs also at the mRNA level. This study explores structural determinants of long-range RNA-RNA interactions in p53 mRNA, crucial for stress-dependent regulation of p53 protein translation. We demonstrate that the 8-nt bulge motif plays a key structural role in base-pairing of complementary sequences from the 5' and 3' untranslated regions of p53 mRNA. We also show that one of the p53 translation regulators, nucleolin, displays an RNA chaperone activity and facilitates the association of sequences involved in the formation of long-range interactions in p53 mRNA. Nucleolin promotes base-pairing of complementary sequences through the bulge motif, because mutations of this region reduce or inhibit pairing while compensatory mutations restore this interaction. Mutational analysis of nucleolin reveals that all four RNA recognition motifs are indispensable for optimal RNA chaperone activity of nucleolin. These observations help to decipher the unique mechanism of p53 protein translation regulation pointing to bulge motif and nucleolin as the critical factors during intramolecular RNA-RNA recognition in p53 mRNA.
Collapse
Affiliation(s)
- Agnieszka Kiliszek
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Wojciech Rypniewski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| | - Leszek Błaszczyk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznań, Poland
| |
Collapse
|
17
|
Lee J, Kang H. Nucleolin Regulates Pulmonary Artery Smooth Muscle Cell Proliferation under Hypoxia by Modulating miRNA Expression. Cells 2023; 12:cells12050817. [PMID: 36899956 PMCID: PMC10000680 DOI: 10.3390/cells12050817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
Hypoxia induces the abnormal proliferation of vascular smooth muscle cells (VSMCs), resulting in the pathogenesis of various vascular diseases. RNA-binding proteins (RBPs) are involved in a wide range of biological processes, including cell proliferation and responses to hypoxia. In this study, we observed that the RBP nucleolin (NCL) was downregulated by histone deacetylation in response to hypoxia. We evaluated its regulatory effects on miRNA expression under hypoxic conditions in pulmonary artery smooth muscle cells (PASMCs). miRNAs associated with NCL were assessed using RNA immunoprecipitation in PASMCs and small RNA sequencing. The expression of a set of miRNAs was increased by NCL but reduced by hypoxia-induced downregulation of NCL. The downregulation of miR-24-3p and miR-409-3p promoted PASMC proliferation under hypoxic conditions. These results clearly demonstrate the significance of NCL-miRNA interactions in the regulation of hypoxia-induced PASMC proliferation and provide insight into the therapeutic value of RBPs for vascular diseases.
Collapse
Affiliation(s)
- Jihui Lee
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Hara Kang
- Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea
- Institute for New Drug Development, Incheon National University, Incheon 22012, Republic of Korea
- Correspondence: ; Tel.: +82-32-835-8238; Fax: +82-32-835-0763
| |
Collapse
|
18
|
Serine 970 of RNA helicase MOV10 is phosphorylated and controls unfolding activity and fate of mRNAs targeted for AGO2-mediated silencing. J Biol Chem 2023; 299:104577. [PMID: 36871759 PMCID: PMC10070924 DOI: 10.1016/j.jbc.2023.104577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/24/2023] [Accepted: 02/25/2023] [Indexed: 03/07/2023] Open
Abstract
MOV10 is an RNA helicase that is required for organismal development and is highly expressed in postnatal brain. MOV10 was identified as an AGO2 associated protein that is also necessary for AGO2-mediated silencing. AGO2 is the primary effector of the miRNA pathway. MOV10 has been shown to be ubiquitinated, leading to its degradation and release from bound mRNAs but no other post-translational modifications with functional implications have been described. Using mass spectrometry, we show that MOV10 is phosphorylated in cells at the C-terminus, specifically at serine 970 (S970). Substitution of S970 to phospho-mimic aspartic acid (S970D) blocked unfolding of an RNA G-quadruplex, similar to when the helicase domain was mutated (K531A). In contrast, the alanine substitution (S970A) of MOV10 unfolded the model RNA G-quadruplex. To examine its role in cells, our RNA-seq analysis showed that the expression of S970D causes decreased expression of MOV10 enhanced Cross-Linking Immunoprecipitation (eCLIP) targets compared to WT. Introduction of S970A had an intermediate effect, suggesting that S970 was protective of mRNAs. In whole cell extracts, MOV10 and its substitutions bound AGO2 comparably; however, knockdown of AGO2 abrogated the S970D-induced mRNA degradation. Thus, MOV10 activity protects mRNA from AGO2; phosphorylation of S970 restricts this activity resulting in AGO2-mediated mRNA degradation. S970 is positioned C-terminal to the defined MOV10-AGO2 interaction site and is proximal to a disordered region that likely modulates AGO2 interaction with target mRNAs upon phosphorylation. In summary, we provide evidence for a model whereby MOV10 phosphorylation facilitates AGO2 association with the 3'UTR of translating mRNAs that leads to their degradation.
Collapse
|
19
|
Zhu J, Huang S, Li Y, Xu J, Chen R, Guo M, Qian X, Li T, Tian Z, Jin H, Huang C. NF-κB1 p50 stabilizes HIF-1α protein through suppression of ATG7-dependent autophagy. Cell Death Dis 2022; 13:1076. [PMID: 36575197 PMCID: PMC9794792 DOI: 10.1038/s41419-022-05521-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 12/28/2022]
Abstract
The function and underlying mechanisms of p50 in the regulation of protein expression is much less studied because of its lacking of transactivation domain. In this study, we discovered a novel function of p50 in its stabilization of hypoxia-inducible factor 1α (HIF-1α) protein under the condition of cells exposed to arsenic exposure. In p50-deficient (p50-/-) cells, the HIF-1α protein expression was impaired upon arsenic exposure, and such defect could be rescued by reconstitutional expression of p50. Mechanistic study revealed that the inhibition of autophagy-related gene 7 (ATG7)-dependent autophagy was in charge of p50-mediated HIF-1α protein stabilization following arsenic exposure. Moreover, p50 deletion promoted nucleolin (NCL) protein translation to enhance ATG7 mRNA transcription via directly binding transcription factor Sp1 mRNA and increase its stability. We further discovered that p50-mediated miR-494 upregulation gave rise to the inhibition of p50-mediated NCL translation by interacting with its 3'-UTR. These novel findings provide a great insight into the understanding of biomedical significance of p50 protein in arsenite-associated disease development and therapy.
Collapse
Affiliation(s)
- Junlan Zhu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
- Precision Medicine Laboratory, Beilun People's Hospital, Beilun Branch of the First Affiliated Hospital, School of Medicine, Zhejiang University, 315800, Ningbo, Zhejiang, China
| | - Shirui Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Yang Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Jiheng Xu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Ruifan Chen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Mengxin Guo
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Xiaohui Qian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Tengda Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Zhongxian Tian
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Honglei Jin
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China
| | - Chuanshu Huang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, 325035, Wenzhou, Zhejiang, China.
| |
Collapse
|
20
|
San A, Palmieri D, Saxena A, Singh S. In silico study predicts a key role of RNA-binding domains 3 and 4 in nucleolin-miRNA interactions. Proteins 2022; 90:1837-1850. [PMID: 35514080 DOI: 10.1002/prot.26355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 04/07/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2023]
Abstract
RNA binding proteins (RBPs) regulate many important cellular processes through their interactions with RNA molecules. RBPs are critical for posttranscriptional mechanisms keeping gene regulation in a fine equilibrium. Conversely, dysregulation of RBPs and RNA metabolism pathways is an established hallmark of tumorigenesis. Human nucleolin (NCL) is a multifunctional RBP that interacts with different types of RNA molecules, in part through its four RNA binding domains (RBDs). Particularly, NCL interacts directly with microRNAs (miRNAs) and is involved in their aberrant processing linked with many cancers, including breast cancer. Nonetheless, molecular details of the NCL-miRNA interaction remain obscure. In this study, we used an in silico approach to characterize how NCL targets miRNAs and whether this specificity is imposed by a definite RBD-interface. Here, we present structural models of NCL-RBDs and miRNAs, as well as predict scenarios of NCL-miRNA interactions generated using docking algorithms. Our study suggests a predominant role of NCL RBDs 3 and 4 (RBD3-4) in miRNA binding. We provide detailed analyses of specific motifs/residues at the NCL-substrate interface in both these RBDs and miRNAs. Finally, we propose that the evolutionary emergence of more than two RBDs in NCL in higher organisms coincides with its additional role/s in miRNA processing. Our study shows that RBD3-4 display sequence/structural determinants to specifically recognize miRNA precursor molecules. Moreover, the insights from this study can ultimately support the design of novel antineoplastic drugs aimed at regulating NCL-dependent biological pathways with a causal role in tumorigenesis.
Collapse
Affiliation(s)
- Avdar San
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- The Biochemistry PhD Program, The Graduate Center of the City University of New York, New York, New York, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Anjana Saxena
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- The Biochemistry PhD Program, The Graduate Center of the City University of New York, New York, New York, USA
| | - Shaneen Singh
- Department of Biology, Brooklyn College, The City University of New York, Brooklyn, New York, USA
- The Biochemistry PhD Program, The Graduate Center of the City University of New York, New York, New York, USA
| |
Collapse
|
21
|
Bellone ML, Fiengo L, Cerchia C, Cotugno R, Bader A, Lavecchia A, De Tommasi N, Piaz FD. Impairment of Nucleolin Activity and Phosphorylation by a Trachylobane Diterpene from Psiadia punctulata in Cancer Cells. Int J Mol Sci 2022; 23:ijms231911390. [PMID: 36232690 PMCID: PMC9570042 DOI: 10.3390/ijms231911390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
Human nucleolin (hNcl) is a multifunctional protein involved in the progression of various cancers and plays a key role in other pathologies. Therefore, there is still unsatisfied demand for hNcl modulators. Recently, we demonstrated that the plant ent-kaurane diterpene oridonin inhibits hNcl but, unfortunately, this compound is quite toxic for healthy cells. Trachylobane diterpene 6,19-dihydroxy-ent-trachiloban-17-oic acid (compound 12) extracted from Psiadia punctulata (DC.) Vatke (Asteraceae) emerged as a ligand of hNcl from a cellular thermal shift assay (CETSA)-based screening of a small library of diterpenes. Effective interaction between this compound and the protein was demonstrated to occur both in vitro and inside two different types of cancer cells. Based on the experimental and computational data, a model of the hNcl/compound 12 complex was built. Because of this binding, hNcl mRNA chaperone activity was significantly reduced, and the level of phosphorylation of the protein was affected. At the biological level, cancer cell incubation with compound 12 produced a cell cycle block in the subG0/G1 phase and induced early apoptosis, whereas no cytotoxicity towards healthy cells was observed. Overall, these results suggested that 6,19-dihydroxy-ent-trachiloban-17-oic could represent a selective antitumoral agent and a promising lead for designing innovative hNcl inhibitors also usable for therapeutic purposes.
Collapse
Affiliation(s)
- Maria Laura Bellone
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Lorenzo Fiengo
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Carmen Cerchia
- “Drug Discovery” Laboratory, Department of Pharmacy, University of Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Roberta Cotugno
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Ammar Bader
- Department of Pharmacognosy, Faculty of Pharmacy, Umm Al-Qura University, Mecca 21995, Saudi Arabia
| | - Antonio Lavecchia
- “Drug Discovery” Laboratory, Department of Pharmacy, University of Napoli “Federico II”, Via D. Montesano, 49, 80131 Napoli, Italy
| | - Nunziatina De Tommasi
- Department of Pharmacy, University of Salerno, Via Giovanni Paolo II, 84084 Fisciano, Italy
| | - Fabrizio Dal Piaz
- Department of Medicine, Surgery and Dentistry, University of Salerno, Via S. Allende, 84081 Baronissi, Italy
- Correspondence:
| |
Collapse
|
22
|
Lee TA, Han H, Polash A, Cho SK, Lee JW, Ra EA, Lee E, Park A, Kang S, Choi JL, Kim JH, Lee JE, Min KW, Yang SW, Hafner M, Lee I, Yoon JH, Lee S, Park B. The nucleolus is the site for inflammatory RNA decay during infection. Nat Commun 2022; 13:5203. [PMID: 36057640 PMCID: PMC9440930 DOI: 10.1038/s41467-022-32856-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 08/16/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammatory cytokines are key signaling molecules that can promote an immune response, thus their RNA turnover must be tightly controlled during infection. Most studies investigate the RNA decay pathways in the cytosol or nucleoplasm but never focused on the nucleolus. Although this organelle has well-studied roles in ribosome biogenesis and cellular stress sensing, the mechanism of RNA decay within the nucleolus is not completely understood. Here, we report that the nucleolus is an essential site of inflammatory pre-mRNA instability during infection. RNA-sequencing analysis reveals that not only do inflammatory genes have higher intronic read densities compared with non-inflammatory genes, but their pre-mRNAs are highly enriched in nucleoli during infection. Notably, nucleolin (NCL) acts as a guide factor for recruiting cytosine or uracil (C/U)-rich sequence-containing inflammatory pre-mRNAs and the Rrp6-exosome complex to the nucleolus through a physical interaction, thereby enabling targeted RNA delivery to Rrp6-exosomes and subsequent degradation. Consequently, Ncl depletion causes aberrant hyperinflammation, resulting in a severe lethality in response to LPS. Importantly, the dynamics of NCL post-translational modifications determine its functional activity in phases of LPS. This process represents a nucleolus-dependent pathway for maintaining inflammatory gene expression integrity and immunological homeostasis during infection. The nucleolus is the traditional site for ribosomal RNA biogenesis. Here, the authors find that the nucleolus is a site of inflammatory pre-mRNA turnover and elucidated how immune homeostasis can be maintained by controlling inflammatory gene expression.
Collapse
Affiliation(s)
- Taeyun A Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Heonjong Han
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.,Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, South Korea
| | - Ahsan Polash
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Seok Keun Cho
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ji Won Lee
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, South Korea
| | - Eun A Ra
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Eunhye Lee
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Areum Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Sujin Kang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Junhee L Choi
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Ji Hyun Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea
| | - Ji Eun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea.,Samsung Genome Institute (SGI), Samsung Medical Center, Seoul, South Korea
| | - Kyung-Won Min
- Department of Biology, College of Natural Sciences, Gangneung-Wonju National University, Gangneung, South Korea.,Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA
| | - Seong Wook Yang
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Markus Hafner
- Laboratory of Muscle Stem Cells and Gene Regulation, National Institute for Arthritis and Musculoskeletal and Skin Disease, National Institutes of Health, Bethesda, MD, USA
| | - Insuk Lee
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea
| | - Je-Hyun Yoon
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC, USA.
| | - Sungwook Lee
- Division of Tumor Immunology, Research Institute, National Cancer Center, Goyang, South Korea.
| | - Boyoun Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, South Korea.
| |
Collapse
|
23
|
An Y, Chen ZS, Chan H, Ngo J. Molecular insights into the interaction of CAG trinucleotide RNA repeats with nucleolin and its implication in polyglutamine diseases. Nucleic Acids Res 2022; 50:7655-7668. [PMID: 35776134 PMCID: PMC9303306 DOI: 10.1093/nar/gkac532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/08/2022] [Accepted: 06/08/2022] [Indexed: 11/13/2022] Open
Abstract
Polyglutamine (polyQ) diseases are a type of inherited neurodegenerative disorders caused by cytosine-adenine-guanine (CAG) trinucleotide expansion within the coding region of the disease-associated genes. We previously demonstrated that a pathogenic interaction between expanded CAG RNA and the nucleolin (NCL) protein triggers the nucleolar stress and neuronal cell death in polyQ diseases. However, mechanisms behind the molecular interaction remain unknown. Here, we report a 1.45 Å crystal structure of the r(CAG)5 oligo that comprises a full A'-form helical turn with widened grooves. Based on this structure, we simulated a model of r(CAG)5 RNA complexed with the RNA recognition motif 2 (RRM2) of NCL and identified NCL residues that are critical for its binding to CAG RNA. Combined with in vitro and in vivo site-directed mutagenesis studies, our model reveals that CAG RNA binds to NCL sites that are not important for other cellular functions like gene expression and rRNA synthesis regulation, indicating that toxic CAG RNA interferes with NCL functions by sequestering it. Accordingly, an NCL mutant that is aberrant in CAG RNA-binding could rescue RNA-induced cytotoxicity effectively. Taken together, our study provides new molecular insights into the pathogenic mechanism of polyQ diseases mediated by NCL-CAG RNA interaction.
Collapse
Affiliation(s)
- Ying An
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Zhefan S Chen
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Ho Yin Edwin Chan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| | - Jacky Chi Ki Ngo
- School of Life Sciences, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Center for Soybean Research of the State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
- Center for Novel Biomaterials, The Chinese University of Hong Kong, Shatin N.T., Hong Kong SAR, China
| |
Collapse
|
24
|
Liu X, Mei W, Padmanaban V, Alwaseem H, Molina H, Passarelli MC, Tavora B, Tavazoie SF. A pro-metastatic tRNA fragment drives Nucleolin oligomerization and stabilization of its bound metabolic mRNAs. Mol Cell 2022; 82:2604-2617.e8. [PMID: 35654044 PMCID: PMC9444141 DOI: 10.1016/j.molcel.2022.05.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 01/09/2023]
Abstract
Stress-induced cleavage of transfer RNAs (tRNAs) into tRNA-derived fragments (tRFs) occurs across organisms from yeast to humans; yet, its mechanistic underpinnings and pathological consequences remain poorly defined. Small RNA profiling revealed increased abundance of a cysteine tRNA fragment (5'-tRFCys) during breast cancer metastatic progression. 5'-tRFCys was required for efficient breast cancer metastatic lung colonization and cancer cell survival. We identified Nucleolin as the direct binding partner of 5'-tRFCys. 5'-tRFCys promoted the oligomerization of Nucleolin and its bound metabolic transcripts Mthfd1l and Pafah1b1 into a higher-order transcript stabilizing ribonucleoprotein complex, which protected these transcripts from exonucleolytic degradation. Consistent with this, Mthfd1l and Pafah1b1 mediated pro-metastatic and metabolic effects downstream of 5'-tRFCys-impacting folate, one-carbon, and phosphatidylcholine metabolism. Our findings reveal that a tRF can promote oligomerization of an RNA-binding protein into a transcript stabilizing ribonucleoprotein complex, thereby driving specific metabolic pathways underlying cancer progression.
Collapse
Affiliation(s)
- Xuhang Liu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Veena Padmanaban
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Hanan Alwaseem
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Henrik Molina
- Proteomics Resource Center, The Rockefeller University, New York, NY 10065, USA
| | - Maria C Passarelli
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Bernardo Tavora
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
25
|
Dash S, Trainor PA. Nucleolin loss of function leads to aberrant Fibroblast Growth Factor signaling and craniofacial anomalies. Development 2022; 149:dev200349. [PMID: 35762670 PMCID: PMC9270975 DOI: 10.1242/dev.200349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 04/25/2022] [Indexed: 11/23/2022]
Abstract
Ribosomal RNA (rRNA) transcription and ribosome biogenesis are global processes required for growth and proliferation of all cells, yet perturbation of these processes in vertebrates leads to tissue-specific defects termed ribosomopathies. Mutations in rRNA transcription and processing proteins often lead to craniofacial anomalies; however, the cellular and molecular reasons for these defects are poorly understood. Therefore, we examined the function of the most abundant nucleolar phosphoprotein, Nucleolin (Ncl), in vertebrate development. ncl mutant (ncl-/-) zebrafish present with craniofacial anomalies such as mandibulofacial hypoplasia. We observed that ncl-/- mutants exhibited decreased rRNA synthesis and p53-dependent apoptosis, consistent with a role in ribosome biogenesis. However, we found that Nucleolin also performs functions not associated with ribosome biogenesis. We discovered that the half-life of fgf8a mRNA was reduced in ncl-/- mutants, which perturbed Fgf signaling, resulting in misregulated Sox9a-mediated chondrogenesis and Runx2-mediated osteogenesis. Consistent with this model, exogenous FGF8 treatment significantly rescued the cranioskeletal phenotype in ncl-/- zebrafish, suggesting that Nucleolin regulates osteochondroprogenitor differentiation. Our work has therefore uncovered tissue-specific functions for Nucleolin in rRNA transcription and post-transcriptional regulation of growth factor signaling during embryonic craniofacial development.
Collapse
Affiliation(s)
- Soma Dash
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Paul A. Trainor
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
26
|
Tonello F, Massimino ML, Peggion C. Nucleolin: a cell portal for viruses, bacteria, and toxins. Cell Mol Life Sci 2022; 79:271. [PMID: 35503380 PMCID: PMC9064852 DOI: 10.1007/s00018-022-04300-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/18/2022]
Abstract
The main localization of nucleolin is the nucleolus, but this protein is present in multiple subcellular sites, and it is unconventionally secreted. On the cell surface, nucleolin acts as a receptor for various viruses, some bacteria, and some toxins. Aim of this review is to discuss the characteristics that make nucleolin able to act as receptor or co-receptor of so many and different pathogens. The important features that emerge are its multivalence, and its role as a bridge between the cell surface and the nucleus. Multiple domains, short linear motifs and post-translational modifications confer and modulate nucleolin ability to interact with nucleic acids, with proteins, but also with carbohydrates and lipids. This modular multivalence allows nucleolin to participate in different types of biomolecular condensates and to move to various subcellular locations, where it can act as a kind of molecular glue. It moves from the nucleus to the cell surface and can accompany particles in the reverse direction, from the cell surface into the nucleus, which is the destination of several pathogens to manipulate the cell in their favour.
Collapse
Affiliation(s)
- Fiorella Tonello
- CNR of Italy, Neuroscience Institute, viale G. Colombo 3, 35131, Padua, Italy.
| | | | - Caterina Peggion
- Department of Biomedical Sciences, University of Padua, Via Ugo Bassi, 58/B, 35131, Padua, Italy
| |
Collapse
|
27
|
OUP accepted manuscript. Nutr Rev 2022; 80:1974-1984. [DOI: 10.1093/nutrit/nuac011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
28
|
Xu L, Chen W, Chen J, Jin Y, Ma W, Qi G, Sun X, Luo J, Li C, Zhao K, Zheng Y, Yu D. PIWI-interacting RNA-23210 protects against acetaminophen-induced liver injury by targeting HNF1A and HNF4A. Biochem Pharmacol 2021; 197:114897. [PMID: 34968487 DOI: 10.1016/j.bcp.2021.114897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 11/19/2022]
Abstract
Acetaminophen (APAP) overdose is one of the leading causes of acute liver failure in the US and other developed countries, the molecular mechanisms of APAP-induced hepatotoxicity remain speculative. PIWI-interacting RNAs (piRNAs), a novel class of small non-coding RNAs, have been identified as epigenetic regulators of transposon silencing, mRNA deadenylation, and elimination. However, the functional role of piRNAs in APAP-induced liver injury remains unclear. In the current study, the piRNA profiles were constructed in HepaRG cells after APAP exposure, and the roles of piR-23210 in regulating nuclear receptors (NRs) expression, metabolizing enzymes expression, and consequently APAP-induced liver injury were systematically investigated. As a result, 57 upregulated piRNAs were identified after APAP exposure, indicating the stress-response characteristic of piRNA molecules. Subsequent in vitro and in vivo experiments proved that piR-23210 is a novel self-protective molecule that targets HNF1A and HNF4A transcripts by interacting with RNA binding protein Nucleolin (NCL), suppresses downstream CYPs (CYP2E1, CYP3A4, and CYP1A2) expression, and protects against APAP-induced liver injury. In conclusion, our findings provided new mechanistic clues revealing potential protective role of a piRNA against the hepatoxicity of APAP.
Collapse
Affiliation(s)
- Lin Xu
- School of Public Health, Qingdao University, Qingdao, China
| | - Wendi Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Jing Chen
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuan Jin
- School of Public Health, Qingdao University, Qingdao, China
| | - Wanli Ma
- School of Public Health, Qingdao University, Qingdao, China
| | - Guangshuai Qi
- School of Public Health, Qingdao University, Qingdao, China
| | - Xueying Sun
- School of Public Health, Qingdao University, Qingdao, China
| | - Jiao Luo
- School of Public Health, Qingdao University, Qingdao, China
| | - Chuanhai Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Kunming Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Dianke Yu
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
29
|
Gabanella F, Barbato C, Fiore M, Petrella C, de Vincentiis M, Greco A, Minni A, Corbi N, Passananti C, Di Certo MG. Fine-Tuning of mTOR mRNA and Nucleolin Complexes by SMN. Cells 2021; 10:3015. [PMID: 34831238 PMCID: PMC8616268 DOI: 10.3390/cells10113015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/28/2021] [Accepted: 11/02/2021] [Indexed: 11/17/2022] Open
Abstract
Increasing evidence points to the Survival Motor Neuron (SMN) protein as a key determinant of translation pathway. Besides its role in RNA processing and sorting, several works support a critical implication of SMN in ribosome biogenesis. We previously showed that SMN binds ribosomal proteins (RPs) as well as their encoding transcripts, ensuring an appropriate level of locally synthesized RPs. SMN impacts the translation machinery in both neural and non-neural cells, in agreement with the concept that SMN is an essential protein in all cell types. Here, we further assessed the relationship between SMN and translation-related factors in immortalized human fibroblasts. We focused on SMN-nucleolin interaction, keeping in mind that nucleolin is an RNA-binding protein, highly abundant within the nucleolus, that exhibits a central role in ribosomes production. Nucleolin may also affects translation network by binding the mammalian target of rapamycin (mTOR) mRNA and promoting its local synthesis. In this regard, for the first time we provided evidence that SMN protein itself associates with mTOR transcript. Collectively, we found that: (1) SMN coexists with nucleolin-mTOR mRNA complexes at subcellular level; (2) SMN deficiency impairs nucleolar compartmentalization of nucleolin, and (3) this event correlates with the nuclear retention of mTOR mRNA. These findings suggest that SMN may regulate not only structural components of translation machinery, but also their upstream regulating factors.
Collapse
Affiliation(s)
- Francesca Gabanella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291-00161 Rome, Italy; (N.C.); (C.P.)
| | - Christian Barbato
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| | - Marco Fiore
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| | - Carla Petrella
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| | - Marco de Vincentiis
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (M.d.V.); (A.G.); (A.M.)
| | - Antonio Greco
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (M.d.V.); (A.G.); (A.M.)
| | - Antonio Minni
- Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (M.d.V.); (A.G.); (A.M.)
| | - Nicoletta Corbi
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291-00161 Rome, Italy; (N.C.); (C.P.)
| | - Claudio Passananti
- CNR-Institute of Molecular Biology and Pathology, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 291-00161 Rome, Italy; (N.C.); (C.P.)
| | - Maria Grazia Di Certo
- CNR-Institute of Biochemistry and Cell Biology, Department of Sense Organs, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.B.); (M.F.); (C.P.)
| |
Collapse
|
30
|
Wang L, Li J, Zhou H, Zhang W, Gao J, Zheng P. A novel lncRNA Discn fine-tunes replication protein A (RPA) availability to promote genomic stability. Nat Commun 2021; 12:5572. [PMID: 34552092 PMCID: PMC8458541 DOI: 10.1038/s41467-021-25827-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
RPA is a master regulator of DNA metabolism and RPA availability acts as a rate-limiting factor. While numerous studies focused on the post-translational regulations of RPA for its functions, little is known regarding how RPA availability is controlled. Here we identify a novel lncRNA Discn as the guardian of RPA availability in stem cells. Discn is induced upon genotoxic stress and binds to neucleolin (NCL) in the nucleolus. This prevents NCL from translocation into nucleoplasm and avoids undesirable NCL-mediated RPA sequestration. Thus, Discn-NCL-RPA pathway preserves a sufficient RPA pool for DNA replication stress response and repair. Discn loss causes massive genome instability in mouse embryonic stem cells and neural stem/progenigor cells. Mice depleted of Discn display newborn death and brain dysfunctions due to DNA damage accumulation and associated inflammatory reactions. Our findings uncover a key regulator of DNA metabolism and provide new clue to understand the chemoresistance in cancer treatment.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Jingzheng Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Hu Zhou
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Weidao Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China
| | - Jing Gao
- Department of Analytical Chemistry and CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, 650223, China.
- Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
31
|
Yan Y, Narayan A, Cho S, Cheng Z, Liu JO, Zhu H, Wang G, Wharram B, Lisok A, Brummet M, Saeki H, Huang T, Gabrielson K, Gabrielson E, Cope L, Kanaan YM, Afsari A, Naab T, Yfantis HG, Ambs S, Pomper MG, Sukumar S, Merino VF. CRYβB2 enhances tumorigenesis through upregulation of nucleolin in triple negative breast cancer. Oncogene 2021; 40:5752-5763. [PMID: 34341513 PMCID: PMC10064491 DOI: 10.1038/s41388-021-01975-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 07/13/2021] [Accepted: 07/21/2021] [Indexed: 12/13/2022]
Abstract
Expression of β-crystallin B2 (CRYβB2) is elevated in African American (AA) breast tumors. The underlying mechanisms of CRYβB2-induced malignancy and the association of CRYβB2 protein expression with survival have not yet been described. Here, we report that the expression of CRYβB2 in breast cancer cells increases stemness, growth, and metastasis. Transcriptomics data revealed that CRYβB2 upregulates genes that are functionally associated with unfolded protein response, oxidative phosphorylation, and DNA repair, while down-regulating genes related to apoptosis. CRYβB2 in tumors promotes de-differentiation, an increase in mesenchymal markers and cancer-associated fibroblasts, and enlargement of nucleoli. Proteome microarrays identified a direct interaction between CRYβB2 and the nucleolar protein, nucleolin. CRYβB2 induces nucleolin, leading to the activation of AKT and EGFR signaling. CRISPR studies revealed a dependency on nucleolin for the pro-tumorigenic effects of CRYβB2. Triple-negative breast cancer (TNBC) xenografts with upregulated CRYβB2 are distinctively sensitive to the nucleolin aptamer, AS-1411. Lastly, in AA patients, higher levels of nucleolar CRYβB2 in primary TNBC correlates with decreased survival. In summary, CRYβB2 is upregulated in breast tumors of AA patients and induces oncogenic alterations consistent with an aggressive cancer phenotype. CRYβB2 increases sensitivity to nucleolin inhibitors and may promote breast cancer disparity.
Collapse
Affiliation(s)
- Yu Yan
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Athira Narayan
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soonweng Cho
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhiqiang Cheng
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun O Liu
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Heng Zhu
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guannan Wang
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Bryan Wharram
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ala Lisok
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mary Brummet
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Harumi Saeki
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kathleen Gabrielson
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Edward Gabrielson
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yasmine M Kanaan
- Department of Microbiology, College of Medicine, Howard University, Washington, DC, USA
| | - Ali Afsari
- Department of Pathology, College of Medicine, Howard University, Washington, DC, USA
| | - Tammey Naab
- Department of Pathology, College of Medicine, Howard University, Washington, DC, USA
| | - Harris G Yfantis
- Pathology and Laboratory Medicine, Baltimore Veterans Affairs Medical Center, Baltimore, MD, USA
| | - Stefan Ambs
- Molecular Epidemiology Section, Laboratory of Human Carcinogenesis, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Martin G Pomper
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Saraswati Sukumar
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Vanessa F Merino
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
32
|
Fortuna TR, Kour S, Anderson EN, Ward C, Rajasundaram D, Donnelly CJ, Hermann A, Wyne H, Shewmaker F, Pandey UB. DDX17 is involved in DNA damage repair and modifies FUS toxicity in an RGG-domain dependent manner. Acta Neuropathol 2021; 142:515-536. [PMID: 34061233 DOI: 10.1007/s00401-021-02333-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 05/07/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022]
Abstract
Mutations in the RNA binding protein, Fused in Sarcoma (FUS), lead to amyotrophic lateral sclerosis (ALS), the most frequent form of motor neuron disease. Cytoplasmic aggregation and defective DNA repair machinery are etiologically linked to mutant FUS-associated ALS. Although FUS is involved in numerous aspects of RNA processing, little is understood about the pathophysiological mechanisms of mutant FUS. Here, we employed RNA-sequencing technology in Drosophila brains expressing FUS to identify significantly altered genes and pathways involved in FUS-mediated neurodegeneration. We observed the expression levels of DEAD-Box Helicase 17 (DDX17) to be significantly downregulated in response to mutant FUS in Drosophila and human cell lines. Mutant FUS recruits nuclear DDX17 into cytoplasmic stress granules and physically interacts with DDX17 through the RGG1 domain of FUS. Ectopic expression of DDX17 reduces cytoplasmic mislocalization and sequestration of mutant FUS into cytoplasmic stress granules. We identified DDX17 as a novel regulator of the DNA damage response pathway whose upregulation repairs defective DNA damage repair machinery caused by mutant neuronal FUS ALS. In addition, we show DDX17 is a novel modifier of FUS-mediated neurodegeneration in vivo. Our findings indicate DDX17 is downregulated in response to mutant FUS, and restoration of DDX17 levels suppresses FUS-mediated neuropathogenesis and toxicity in vivo.
Collapse
|
33
|
Munk R, Anerillas C, Rossi M, Tsitsipatis D, Martindale JL, Herman AB, Yang JH, Roberts JA, Varma VR, Pandey PR, Thambisetty M, Gorospe M, Abdelmohsen K. Acid ceramidase promotes senescent cell survival. Aging (Albany NY) 2021; 13:15750-15769. [PMID: 34102611 PMCID: PMC8266329 DOI: 10.18632/aging.203170] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 05/18/2021] [Indexed: 01/18/2023]
Abstract
Cellular senescence is linked to chronic age-related diseases including atherosclerosis, diabetes, and neurodegeneration. Compared to proliferating cells, senescent cells express distinct subsets of proteins. In this study, we used cultured human diploid fibroblasts rendered senescent through replicative exhaustion or ionizing radiation to identify proteins differentially expressed during senescence. We identified acid ceramidase (ASAH1), a lysosomal enzyme that cleaves ceramide into sphingosine and fatty acid, as being highly elevated in senescent cells. This increase in ASAH1 levels in senescent cells was associated with a rise in the levels of ASAH1 mRNA and a robust increase in ASAH1 protein stability. Furthermore, silencing ASAH1 in pre-senescent fibroblasts decreased the levels of senescence proteins p16, p21, and p53, and reduced the activity of the senescence-associated β-galactosidase. Interestingly, depletion of ASAH1 in pre-senescent cells sensitized these cells to the senolytics Dasatinib and Quercetin (D+Q). Together, our study indicates that ASAH1 promotes senescence, protects senescent cells, and confers resistance against senolytic drugs. Given that inhibiting ASAH1 sensitizes cells towards senolysis, this enzyme represents an attractive therapeutic target in interventions aimed at eliminating senescent cells.
Collapse
Affiliation(s)
- Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Carlos Anerillas
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Martina Rossi
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Dimitrios Tsitsipatis
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jennifer L Martindale
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Allison B Herman
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jen-Hao Yang
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Jackson A Roberts
- Laboratory of Behavioral Neuroscience, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Vijay R Varma
- Laboratory of Behavioral Neuroscience, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Poonam R Pandey
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
34
|
Kozani PS, Kozani PS, Malik MT. AS1411-functionalized delivery nanosystems for targeted cancer therapy. EXPLORATION OF MEDICINE 2021; 2:146-166. [PMID: 34723284 PMCID: PMC8555908 DOI: 10.37349/emed.2021.00039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Accepted: 03/27/2021] [Indexed: 12/12/2022] Open
Abstract
Nucleolin (NCL) is a multifunctional nucleolar phosphoprotein harboring critical roles in cells such as cell proliferation, survival, and growth. The dysregulation and overexpression of NCL are related to various pathologic and oncological indications. These characteristics of NCL make it an ideal target for the treatment of various cancers. AS1411 is a synthetic quadruplex-forming nuclease-resistant DNA oligonucleotide aptamer which shows a considerably high affinity for NCL, therefore, being capable of inducing growth inhibition in a variety of tumor cells. The high affinity and specificity of AS1411 towards NCL make it a suitable targeting tool, which can be used for the functionalization of therapeutic payloaddelivery nanosystems to selectively target tumor cells. This review explores the advances in NCL-targeting cancer therapy through AS1411-functionalized delivery nanosystems for the selective delivery of a broad spectrum of therapeutic agents.
Collapse
Affiliation(s)
- Pooria Safarzadeh Kozani
- Carlos Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115/111, Iran
| | - Pouya Safarzadeh Kozani
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
- Student Research Committee, Medical Biotechnology Research Center, School of Nursing, Midwifery, and Paramedicine, Guilan University of Medical Sciences, Rasht 41446/66949, Iran
| | - Mohammad Tariq Malik
- Departments of Microbiology and Immunology, Regenerative Medicine, and Stem Cell Biology, University of Louisville, Louisville, KY 40202, USA
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
35
|
Cruz C, Pedro AQ, Carvalho J, Santos T, Talhada D, Paiva A, Queiroz JA, Andrade M, Pinto M, Montenegro L, Delgado L, Pereira P. Nucleolin as a potential biomarker for canine malignant neoplasia. Res Vet Sci 2021; 135:297-303. [PMID: 33077166 DOI: 10.1016/j.rvsc.2020.10.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 10/02/2020] [Accepted: 10/07/2020] [Indexed: 01/03/2023]
Abstract
Human nucleolin (NCL) is a multifunctional protein that is involved in diverse pathological processes. Recent evidences have shown that NCL is markedly overexpressed on the surface of most human cancer cells when compared to normal cells, being overexpressed in several malignant cells. Based on the exposed, the purpose of this pilot study is to investigate the expression pattern of NCL in canine malignant neoplasia and control groups. NCL expression at both messenger RNA and protein levels in the subcellular fractions were respectively detected by RT-PCR and western blotting, allowing to infer the NCL positivity rate in canine neoplasia. The identity of NCL amplicons obtained by RT-PCR was confirmed by Sanger sequencing and found to correspond to Canis lupus familiaris. Using flow cytometry, the blood cells expressing NCL from canine neoplasms were also identified using several cell surface markers and their levels quantified. These results showed that NCL expressed in lymphocytes, monocytes and neutrophils in dogs with malignant neoplasia is higher (> 50%) when compared with the control group. We found an increased expression of surface and cytoplasmic NCL in canine malignant neoplasia group, while nuclear NCL is predominantly found in the control group. Overall, this study discloses and identifies for the first time the presence of NCL in canine blood.
Collapse
Affiliation(s)
- Carla Cruz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| | - Augusto Q Pedro
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Josué Carvalho
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Tiago Santos
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Daniela Talhada
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | - Artur Paiva
- Unidade de Gestão Operacional em Citometria, Centro Hospitalar e Universitário de Coimbra (CHUC), Portugal; Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, University of Coimbra, Coimbra, Portugal; Instituto Politécnico de Coimbra, ESTESC-Coimbra Health School, Ciências Biomédicas Laboratoriais, Portugal
| | - João A Queiroz
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal
| | | | | | | | - Leonor Delgado
- Pathology Department, INNO Serviços Especializados em Veterinária, Braga, Portugal; Cancer Research Group, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde (IINFACTS), Instituto Universitário de Ciências da Saúde (IUCS), CESPU, Gandra, Portugal
| | - Patrícia Pereira
- CICS-UBI - Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, Av. Infante D. Henrique, 6200-506 Covilhã, Portugal.
| |
Collapse
|
36
|
Das S, De S, Sengupta S. Post-transcriptional regulation of MMP2 mRNA by its interaction with miR-20a and Nucleolin in breast cancer cell lines. Mol Biol Rep 2021; 48:2315-2324. [PMID: 33788053 DOI: 10.1007/s11033-021-06261-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/03/2021] [Indexed: 11/25/2022]
Abstract
Matrix-metalloproteinase-2 (MMP2) is a foremost MMP, governing invasion of breast cancer cells during metastasis. miR-20a was reported to induce mesenchymal to epithelial transition in MDA-MB-231 cells and its endogenous expression varies directly with invasiveness of breast cancer cells. The inverse and direct correlation of invasiveness with miR-20a and Nucleolin respectively led us to study the post-transcriptional regulation of MMP2 by miR-20a and mRNA stabilizing protein, Nucleolin. Thus, understanding the mechanism of its regulation will enable modification of the invasion potential. MMP2 was found to be higher in MDA-MB-231 than MCF-7 cells both at RNA and protein levels. RNA-protein co-immunoprecipitation assay with Argonaute 2 revealed that MMP2 undergoes miRNA-mediated post-transcriptional regulation. miR-20a decreased MMP2 expression as well as its enzymatic activity as found by zymogram assay. Reporter assay showed that miR-20a directly binds to its putative binding site in MMP2 3'-UTR as per in silico prediction. miR-20a additionally impeded MMP2 mRNA stability, and binding of stabilizing trans-factor Nucleolin to its 3'-UTR was confirmed by RNA-protein co-immunoprecipitation assay. Partial down-regulation of Nucleolin by Si-RNA resulted in the downregulation of MMP2 and Nucleolin over-expression rescued the inhibitory effect of miR-20a on MMP2 expression. Delineating the mechanism of post-transcriptional regulation of MMP2, two of its potent regulators, miR-20a and Nucleolin were identified. It was established for the first time that MMP2 is a direct target of miR-20a. The results also elucidated that Nucleolin binds to MMP2 3' UTR and its abundance affects MMP2 expression.
Collapse
Affiliation(s)
- Sayantani Das
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Soumasree De
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India
| | - Sumita Sengupta
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92 A.P.C. Road, Kolkata, 700009, India.
| |
Collapse
|
37
|
Lin Q, Ma X, Hu S, Li R, Wei X, Han B, Ma Y, Liu P, Pang Y. Overexpression of Nucleolin is a Potential Prognostic Marker in Endometrial Carcinoma. Cancer Manag Res 2021; 13:1955-1965. [PMID: 33658856 PMCID: PMC7920503 DOI: 10.2147/cmar.s294035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/05/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Nucleolin (NCL) is a multifunctional protein with oncogenic properties. NCL expression levels have been linked to the outcomes of various malignancies, but the clinical value of NCL in patients with endometrial carcinoma (EC) remains unclear. Here, the expression of NCL in EC tissues and its associations with patient outcomes were assessed. Patients and Methods Data on NCL mRNA expression in EC and adjacent nonneoplastic tissues from The Cancer Genome Atlas (TCGA) were analyzed. In addition, NCL protein expression in 82 endometroid endometrial adenocarcinoma tissues and 15 non-malignant tissues was detected by immunohistochemistry. Results Elevated NCL expression was markedly correlated with serous endometrial carcinoma (P<0.001), advanced stage (P=0.029), and grade 3 (P<0.001). High NCL levels were associated with poorer overall survival (OS) and disease-free survival (DFS) compared with intermediate or low NCL levels (OS: P=0.001, DFS: P=0.006). The multivariate Cox proportional hazards model showed that NCL expression was an independent poor prognostic factor for DFS (HR=1.282, CI=1.027–1.601, P=0.028). A similar correlation between high expression levels of NCL and unfavorable DFS was found in endometrioid endometrial adenocarcinoma (HR=1.411, CI=1.083–1.840, P=0.011). Positive extra-nuclear NCL expression (HR=3.377, 95% CI=1.029–11.186, P=0.046) and low nuclear NCL expression (HR=0.233, 95% CI=0.068–0.796, P=0.020) were independent prognostic factors for DFS in endometrioid endometrial adenocarcinoma. Conclusion Heterotopic NCL is a potential prognostic biomarker for EC. Inhibiting the distribution of NCL from the nucleus to the cytoplasm and membrane may be a promising therapeutic strategy to improve outcomes in patients with EC with high NCL expression.
Collapse
Affiliation(s)
- Qianhan Lin
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, 250012, Shandong, People's Republic of China
| | - Xiaoxue Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, 250012, Shandong, People's Republic of China
| | - Shunxue Hu
- Department of Pathology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Rui Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, 250012, Shandong, People's Republic of China
| | - Xuan Wei
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, 250012, Shandong, People's Republic of China
| | - Bing Han
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Yanhui Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China
| | - Peishu Liu
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, 250012, Shandong, People's Republic of China.,Shandong Engineering Laboratory for Urogynecology, Jinan, 250012, Shandong, People's Republic of China
| | - Yingxin Pang
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, 250012, Shandong, People's Republic of China.,Key Laboratory of Gynecologic Oncology of Shandong Province, Jinan, 250012, Shandong, People's Republic of China.,Shandong Engineering Laboratory for Urogynecology, Jinan, 250012, Shandong, People's Republic of China
| |
Collapse
|
38
|
Cancer Stem Cells and Nucleolin as Drivers of Carcinogenesis. Pharmaceuticals (Basel) 2021; 14:ph14010060. [PMID: 33451077 PMCID: PMC7828541 DOI: 10.3390/ph14010060] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 02/06/2023] Open
Abstract
Cancer, one of the most mortal diseases worldwide, is characterized by the gain of specific features and cellular heterogeneity. Clonal evolution is an established theory to explain heterogeneity, but the discovery of cancer stem cells expanded the concept to include the hierarchical growth and plasticity of cancer cells. The activation of epithelial-to-mesenchymal transition and its molecular players are widely correlated with the presence of cancer stem cells in tumors. Moreover, the acquisition of certain oncological features may be partially attributed to alterations in the levels, location or function of nucleolin, a multifunctional protein involved in several cellular processes. This review aims at integrating the established hallmarks of cancer with the plasticity of cancer cells as an emerging hallmark; responsible for tumor heterogeneity; therapy resistance and relapse. The discussion will contextualize the involvement of nucleolin in the establishment of cancer hallmarks and its application as a marker protein for targeted anticancer therapies
Collapse
|
39
|
Dagar S, Pushpa K, Pathak D, Samaddar S, Saxena A, Banerjee S, Mylavarapu SVS. Nucleolin regulates 14-3-3ζ mRNA and promotes cofilin phosphorylation to induce tunneling nanotube formation. FASEB J 2021; 35:e21199. [PMID: 33222276 DOI: 10.1096/fj.202001152r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 10/19/2020] [Accepted: 11/02/2020] [Indexed: 12/17/2023]
Abstract
Tunneling nanotubes (TNTs) mediate intercellular communication between animal cells in health and disease, but the mechanisms of their biogenesis and function are poorly understood. Here we report that the RNA-binding protein (RBP) nucleolin, which interacts with the known TNT-inducing protein MSec, is essential for TNT formation in mammalian cells. Nucleolin, through its RNA-binding domains (RBDs), binds to and maintains the cytosolic levels of 14-3-3ζ mRNA, and is, therefore, required for TNT formation. A specific region of the 3'-untranslated region (UTR) of the 14-3-3ζ mRNA is likely to be involved in its regulation by nucleolin. Functional complementation experiments suggest that nucleolin and 14-3-3ζ form a linear signaling axis that promotes the phosphorylation and inactivation of the F-actin depolymerization factor cofilin to induce TNT formation. MSec also similarly inactivates cofilin, but potentiates TNT formation independent of the nucleolin-14-3-3ζ axis, despite biochemically interacting with both proteins. We show that 14-3-3ζ and nucleolin are required for the formation of TNTs between primary mouse neurons and astrocytes and in multiple other mammalian cell types. We also report that the Caenorhabditis elegans orthologs of 14-3-3ζ and MSec regulate the size and architecture of the TNT-like cellular protrusions of the distal tip cell (DTC), the germline stem cell niche in the gonad. Our study demonstrates a novel and potentially conserved mRNA-guided mechanism of TNT formation through the maintenance of cellular 14-3-3ζ mRNA levels by the RBP nucleolin.
Collapse
Affiliation(s)
- Sunayana Dagar
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
- Affiliated to the Kalinga Institute of Industrial Technology, Bhubaneswar, India
| | - Kumari Pushpa
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | - Diksha Pathak
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
| | | | - Anjana Saxena
- Biology Department, Brooklyn College AND Biology and Biochemistry Programs, Graduate Center, CUNY, New York, NY, USA
| | | | - Sivaram V S Mylavarapu
- Laboratory of Cellular Dynamics, Regional Centre for Biotechnology, NCR Biotech Science Cluster, Faridabad, India
- Affiliated to the Kalinga Institute of Industrial Technology, Bhubaneswar, India
| |
Collapse
|
40
|
Kang D, Zuo W, Wu Q, Zhu Q, Liu P. Inhibition of Specificity Protein 1 Is Involved in Phloretin-Induced Suppression of Prostate Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1358674. [PMID: 32851058 PMCID: PMC7439178 DOI: 10.1155/2020/1358674] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/05/2020] [Accepted: 07/07/2020] [Indexed: 02/03/2023]
Abstract
Phloretin is a flavonoid existed in various plants and has been reported to possess anticarcinogenic activity. However, the anticancer mechanism of phloretin in prostate cancer (PCa) remains unclear. Here, our in vitro and in vivo experimental data demonstrate that phloretin inhibits the phosphorylation and the activation of EGFR and then inhibits its downstream PI3K/AKT and MEK/ERK1/2 pathways in PCa cells. Inhibition of these two pathways further decreases expression of Sp1 by inhibiting Sp1 gene transcription, induces degradation of Sp1 protein by inhibiting GSK3β phosphorylation, suppresses nucleolin-enhanced translation of Sp1 mRNA by inhibiting nucleolin phosphorylation, and directly inactivates transcription activity of Sp1. Inhibition of Sp1 subsequently decreases the expression of Sp3/4, VEGF, and Survivin and then upregulates apoptosis-related proteins and downregulates cell cycle-related proteins in PCa cells. Finally, phloretin treatment in PCa cells induces cell growth inhibition and apoptosis, suggesting that phloretin may be an effective therapy compound in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Dan Kang
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Wenren Zuo
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Qingxin Wu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Qingyi Zhu
- Central Laboratory, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Ping Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
41
|
Ryu J, Lee C. Regulatory Nucleotide Sequence Signals for Expression of the Genes Encoding Ribosomal Proteins. Front Genet 2020; 11:501. [PMID: 32655613 PMCID: PMC7326009 DOI: 10.3389/fgene.2020.00501] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/23/2020] [Indexed: 11/13/2022] Open
Abstract
Ribosomal proteins (RPs) are essential components that translate genetic information from mRNA templates into proteins. Their expressional dysregulation adversely affects the survival and growth of human cells. Nevertheless, little is known about the nucleotide sequences regulating the expression of RPs. Genome-wide associations for expression level of 70 RP genes were conducted across expression stages. Eighteen expression regulatory quantitative trait loci (erQTLs) were identified for protein abundances of 21 RPs (P < 1 × 10-5), but not for their mRNA expression and ribosome occupancy (P > 1 × 10-5). These erQTLs for protein abundance (pQTLs) were all trans-acting. Three of the pQTLs were associated with the expression of long noncoding RNAs (lncRNAs). Target genes of these lncRNAs may produce ribosomal components or may control the metabolic cues for ribosome synthesis. mRNAs of the RP genes extensively interact with miRNAs. The protein-specific erQTLs may become engendered by intensive miRNA controls at the translational stage, which in turn can produce RPs efficient in handling instantaneous cell requirements. This study suggests that the expression levels of RPs may be greatly influenced by trans-acting regulation, presumably via interference of miRNAs and target genes of lncRNAs. Further studies are warranted to examine the molecular functions of pQTLs presented in this study and to understand the underlying regulatory mechanisms of gene expression of RPs.
Collapse
Affiliation(s)
- Jihye Ryu
- School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| | - Chaeyoung Lee
- School of Systems Biomedical Science, Soongsil University, Seoul, South Korea
| |
Collapse
|
42
|
Sheetz T, Mills J, Tessari A, Pawlikowski M, Braddom AE, Posid T, Zynger DL, James C, Embrione V, Parbhoo K, Foray C, Coppola V, Croce CM, Palmieri D. NCL Inhibition Exerts Antineoplastic Effects against Prostate Cancer Cells by Modulating Oncogenic MicroRNAs. Cancers (Basel) 2020; 12:1861. [PMID: 32664322 PMCID: PMC7408652 DOI: 10.3390/cancers12071861] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 11/16/2022] Open
Abstract
Prostate cancer (PCa) is the most frequently diagnosed cancer in men and second most common cause of cancer-related deaths in the United States. Androgen deprivation therapy (ADT) is only temporarily effective for advanced-stage PCa, as the disease inevitably progresses to castration-resistant prostate cancer (CRPC). The protein nucleolin (NCL) is overexpressed in several types of human tumors where it is also mislocalized to the cell surface. We previously reported the identification of a single-chain fragment variable (scFv) immuno-agent that is able to bind NCL on the surface of breast cancer cells and inhibit proliferation both in vitro and in vivo. In the present study, we evaluated whether NCL could be a valid therapeutic target for PCa, utilizing DU145, PC3 (CRPC), and LNCaP (androgen-sensitive) cell lines. First, we interrogated the publicly available databases and noted that higher NCL mRNA levels are associated with higher Gleason Scores as well as with recurrent and metastatic tumors. Then, using our anti-NCL scFv, we demonstrated that NCL is expressed on the surface of all three tested cell lines and that NCL inhibition results in reduced proliferation and migration. We also measured the inhibitory effect of NCL targeting on the biogenesis of oncogenic microRNAs such as miR-21, -221 and -222, which was cell context dependent. Taken together, our data provide evidence that NCL targeting inhibits the key hallmarks of malignancy in PCa cells and may provide a novel therapeutic option for patients with advanced-stage PCa.
Collapse
Affiliation(s)
- Tyler Sheetz
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Joseph Mills
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Anna Tessari
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Megan Pawlikowski
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Ashley E. Braddom
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Tasha Posid
- Department of Urology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Debra L. Zynger
- Department of Pathology, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA;
| | - Cindy James
- Mass Spectroscopy and Proteomics Facility, The Ohio State University, Columbus, OH 43210, USA;
| | - Valerio Embrione
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kareesma Parbhoo
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Claudia Foray
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Carlo M. Croce
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Dario Palmieri
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (T.S.); (J.M.); (A.T.); (M.P.); (A.E.B.); (V.E.); (K.P.); (C.F.); (V.C.); (C.M.C.)
- Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
43
|
Li S, Zhang J, Miao Y, Guo W, Feng G, Feng Y, Zhang C, Wu H, Zeng M. Stabilization and delivery of bioavailable nanosized iron by fish sperm DNA. Food Funct 2020; 11:6240-6250. [PMID: 32596698 DOI: 10.1039/d0fo00703j] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Nanosized iron is a promising candidate as an iron fortificant due to its good solubility and bioavailability. Here, ferric hydrolysis in the presence of salmon/herring sperm DNA yielded irregularly shaped, highly negatively charged DNA-stabilized ferric oxyhydroxide nanoparticles (DNA-FeONPs) aggregated from 2-4 nm primary spherical monomers, in which phosphodioxy groups of the DNA backbone served as the iron-nucleation sites with high molecular weight (>500 bp), double-stranded winding, and acidic environmental pH disfavoring DNA's iron-loading capacity. The calcein fluorescence-quenching kinetics of polarized Caco-2 cells revealed the involvement of divalent transporter 1, macropinocytosis and nucleolin-mediated endocytosis in intestinal iron absorption from DNA-FeONPs with low molecular weight (<500 bp) favoring the performance of DNA in aiding iron absorption. In anemic rats, dietary DNA-FeONPs showed >80% relative iron bioavailability compared to FeSO4 as per hemoglobin regeneration efficiencies and delivered intestinally available nanosized iron, as determined by luminal iron speciation analysis. Overall, fish sperm DNA is promising in stabilizing and delivering bioavailable nanosized iron.
Collapse
Affiliation(s)
- Shiyang Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Savulescu AF, Stoychev S, Mamputha S, Mhlanga MM. Biochemical Pulldown of mRNAs and Long Noncoding RNAs from Cellular Lysates Coupled with Mass Spectrometry to Identify Protein Binding Partners. Bio Protoc 2020; 10:e3639. [PMID: 33659310 PMCID: PMC7842719 DOI: 10.21769/bioprotoc.3639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 11/02/2022] Open
Abstract
RNA binding proteins (RBPs) interact with cellular mRNAs, controlling various steps throughout the lifetime of these transcripts, including transcription, cellular transport, subcellular localization, translation and degradation. In addition to binding mRNA transcripts, a growing number of RBPs are shown to bind long noncoding RNAs (lncRNAs), controlling key cellular processes, including gene expression and translation of proteins. Current methodologies aimed at identifying and characterizing protein binding partners of specific RNAs of interest typically rely on tagging of the RNA with affinity aptamers, using in vitro transcribed RNA or immobilized oligonucleotides to capture RNA-protein complexes under native conditions. These assays are coupled with mass spectrometry or Western Blot analysis to identify or/and confirm interacting proteins. Here, we describe an alternative approach to identify protein binding partners of mRNAs and large long noncoding RNAs. This approach relies on biochemical pulldown of specific target RNAs and interacting protein partners from cellular lysates coupled with mass spectrometry to identify novel interacting proteins. By using 24-48 ~20 mer biotinylated DNA probes that hybridize to the target RNA, the method ensures high specificity and minimal off target binding. This approach is reproducible and fast and serves as a base for discovery studies to identify proteins that bind to RNAs of interest.
Collapse
Affiliation(s)
- Anca F. Savulescu
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stoyan Stoychev
- Biomedical Research Unit, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Sipho Mamputha
- Biomedical Research Unit, Council for Scientific and Industrial Research, Pretoria, South Africa
| | - Musa M. Mhlanga
- Division of Chemical, Systems & Synthetic Biology, Institute for Infectious Disease & Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Instituto de Medicina Molecular, Faculdade de Medicina Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
45
|
Nucleolin represses transcription of the androgen receptor gene through a G-quadruplex. Oncotarget 2020; 11:1758-1776. [PMID: 32477465 PMCID: PMC7233804 DOI: 10.18632/oncotarget.27589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 04/14/2020] [Indexed: 02/03/2023] Open
Abstract
The androgen receptor (AR) is a major driver of prostate cancer development and progression. Men who develop advanced prostate cancer often have long-term cancer control when treated with androgen-deprivation therapies (ADT). Still, their disease inevitably becomes resistant to ADT and progresses to castration-resistant prostate cancer (CRPC). ADT involves potent competitive AR antagonists and androgen synthesis inhibitors. Resistance to these types of treatments emerges, primarily through the maintenance of AR signaling by ligand-independent activation mechanisms. There is a need to find better ways to block AR to overcome CRPC. In the findings reported here, we demonstrate that the nuclear scaffold protein, nucleolin (NCL), suppresses the expression of AR. NCL binds to a G-rich region in the AR promoter that forms a G-quadruplex (G4) structure. Binding of NCL to this G4-element is required for NCL to suppress AR expression, specifically in AR-expressing tumor cells. Compounds that stabilize G4 structures require NCL to associate with the G4-element of the AR promoter in order to decrease AR expression. A newly discovered G4 compound that suppresses AR expression demonstrates selective killing of AR-expressing tumor cells, including CRPC lines. Our findings raise the significant possibility that G4-stabilizing drugs can be used to increase NCL transcriptional repressor activity to block AR expression in prostate cancer. Our studies contribute to a clearer understanding of the mechanisms that control AR expression, which could be exploited to overcome CRPC.
Collapse
|
46
|
Masuzawa T, Oyoshi T. Roles of the RGG Domain and RNA Recognition Motif of Nucleolin in G-Quadruplex Stabilization. ACS OMEGA 2020; 5:5202-5208. [PMID: 32201808 PMCID: PMC7081427 DOI: 10.1021/acsomega.9b04221] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/20/2020] [Indexed: 05/14/2023]
Abstract
G-quadruplexes have important biologic functions that are regulated by G-quadruplex-binding proteins. In particular, G-quadruplex structures are folded or unfolded by their binding proteins and affect transcription and other biologic functions. Here, we investigated the effect of the RNA recognition motif (RRM) and arginine-glycine-glycine repeat (RGG) domain of nucleolin on G-quadruplex formation. Our findings indicate that Phe in the RGG domain of nucleolin is responsible for G-quadruplex binding and folding. Moreover, the RRM of nucleolin potentially binds to a guanine-rich single strand and folds the G-quadruplex with a 5'-terminal and 3'-terminal single strand containing guanine. Our findings contribute to our understanding of how the RRM and RGG domains contribute to G-quadruplex folding and unfolding.
Collapse
Affiliation(s)
- Tatsuki Masuzawa
- Department of Chemistry,
Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takanori Oyoshi
- Department of Chemistry,
Graduate School of Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
47
|
Falconi M, Giangrossi M, Zabaleta ME, Wang J, Gambini V, Tilio M, Bencardino D, Occhipinti S, Belletti B, Laudadio E, Galeazzi R, Marchini C, Amici A. A novel 3'-tRNA Glu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin. FASEB J 2019; 33:13228-13240. [PMID: 31560576 DOI: 10.1096/fj.201900382rr] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 08/19/2019] [Indexed: 12/17/2022]
Abstract
tRNA-derived fragments (tRFs) have been defined as a novel class of small noncoding RNAs. tRFs have been reported to be deregulated in cancer, but their biologic function remains to be fully understood. We have identified a new tRF (named tRF3E), derived from mature tRNAGlu, that is specifically expressed in healthy mammary glands but not in breast cancer (BC). Consistently, tRF3E levels significantly decrease in the blood of patients with epidermal growth factor receptor 2 (HER2)-positive BC reflecting tumor status (control > early cancer > metastatic cancer). tRF3E down-regulation was recapitulated in Δ16HER2 transgenic mice, representing a BC preclinical model. Pulldown assays, used to search for proteins capable to selectively bind tRF3E, have shown that this tRF specifically interacts with nucleolin (NCL), an RNA-binding protein overexpressed in BC and able to repress the translation of p53 mRNA. The binding properties of NCL-tRF3E complex, predicted in silico and analyzed by EMSA assays, are congruent with a competitive displacement of p53 mRNA by tRF3E, leading to an increased p53 expression and consequently to a modulation of cancer cell growth. Here, we provide evidence that tRF3E plays an important role in the pathogenesis of BC displaying tumor-suppressor functions through a NCL-mediated mechanism.-Falconi, M., Giangrossi, M., Elexpuru Zabaleta, M., Wang, J., Gambini, V., Tilio, M., Bencardino, D., Occhipinti, S., Belletti, B., Laudadio, E., Galeazzi, R., Marchini, C., Amici, A. A novel 3'-tRNAGlu-derived fragment acts as a tumor suppressor in breast cancer by targeting nucleolin.
Collapse
Affiliation(s)
- Maurizio Falconi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Mara Giangrossi
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | | | - Junbiao Wang
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Valentina Gambini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Martina Tilio
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Daniela Bencardino
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Sergio Occhipinti
- Department of Molecular Biotechnology and Health Sciences, Center for Experimental Research and Medical Studies, University of Torino, Torino, Italy
| | - Barbara Belletti
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), National Cancer Institute, Aviano, Italy
| | - Emiliano Laudadio
- Dipartimento Scienze e Ingegneria della Materia, dell'Ambiente ed Urbanistica, Università Politecnica delle Marche, Ancona, Italy
| | - Roberta Galeazzi
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Cristina Marchini
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Augusto Amici
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| |
Collapse
|
48
|
Variants in BMP7 and BMP15 3'- UTRs Associated with Reproductive Traits in a Large White Pig Population. Animals (Basel) 2019; 9:ani9110905. [PMID: 31683967 PMCID: PMC6912256 DOI: 10.3390/ani9110905] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 10/04/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023] Open
Abstract
Bone morphogenetic protein 7 (BMP7) and BMP15, which encode members of the BMP family, have been identified by whole-genome resequencing as breeding-related genes that overlap with a known quantitative trait locus for reproductive traits. In this study, we investigated the effects of variants at the BMP7 and BMP15 gene loci on sow reproductive traits. We isolated 669 and 1213 bp sequences of the 3’-untranslated region (3’-UTR) of the porcine BMP7 and BMP15 genes, respectively, and detected several RNA regulatory elements, such as miRNA response elements and AU-rich elements. Pooled DNA sequencing identified two novel point mutations (viz., BMP7 c.1569A>G and BMP15 c.2366G>A) in the 3’-UTR. Association analysis showed that the c.1569A>G polymorphism was associated with the litter weight trait in a Large White pig population. Furthermore, analysis of the combined genetic effects revealed that AA/GA and AG/GG were the favorable combined genotypes for the total number of piglets born (TNB) and the total number of piglets born alive (NBA), whereas. Together, our findings confirm that BMP7 and BMP15 are candidate genes for porcine reproductive performance.
Collapse
|
49
|
Abstract
Nucleolin is an RNA binding protein that is involved in many post-transcriptional regulation steps of messenger RNAs in addition to its nucleolar role in ribosomal RNA transcription and assembly in pre-ribosomes. Acetylated nucleolin was found to be associated with nuclear speckles and to co-localize with the splicing factor SC35. Previous nuclear pull down of nucleolin identified several splicing components and factors involved in RNA polymerase II transcription associated with nucleolin. In this report, we show that these splicing components are specifics of the pre-catalytic A and B spliceosomes, while proteins recruited in the Bact, C and P complexes are absent from the nucleolin interacting proteins. Furthermore, we show that acetylated nucleolin co-localized with P-SF3B1, a marker of co-transcriptional active spliceosomes. P-SF3B1 complexes can be pulled down with nucleolin specific antibodies. Interestingly, the alternative splicing of Fibronectin at the IIICS and EDB sites was affected by nucleolin depletion. These data are consistent with a model where nucleolin could be a factor bridging RNA polymerase II transcription and assembly of pre-catalytic spliceosome similarly to its function in the co-transcriptional maturation of pre-rRNA.
Collapse
|
50
|
Martins RP, Malbert-Colas L, Lista MJ, Daskalogianni C, Apcher S, Pla M, Findakly S, Blondel M, Fåhraeus R. Nuclear processing of nascent transcripts determines synthesis of full-length proteins and antigenic peptides. Nucleic Acids Res 2019; 47:3086-3100. [PMID: 30624716 PMCID: PMC6451098 DOI: 10.1093/nar/gky1296] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/23/2018] [Accepted: 12/18/2018] [Indexed: 01/19/2023] Open
Abstract
Peptides presented on major histocompatibility (MHC) class I molecules form an essential part of the immune system's capacity to detect virus-infected or transformed cells. Earlier works have shown that pioneer translation peptides (PTPs) for the MHC class I pathway are as efficiently produced from introns as from exons, or from mRNAs targeted for the nonsense-mediated decay pathway. The production of PTPs is a target for viral immune evasion but the underlying molecular mechanisms that govern this non-canonical translation are unknown. Here, we have used different approaches to show how events taking place on the nascent transcript control the synthesis of PTPs and full-length proteins. By controlling the subcellular interaction between the G-quadruplex structure (G4) of a gly-ala encoding mRNA and nucleolin (NCL) and by interfering with mRNA maturation using multiple approaches, we demonstrate that antigenic peptides derive from a nuclear non-canonical translation event that is independently regulated from the synthesis of full-length proteins. Moreover, we show that G4 are exploited to control mRNA localization and translation by distinguishable mechanisms that are targets for viral immune evasion.
Collapse
Affiliation(s)
| | | | - María José Lista
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Chrysoula Daskalogianni
- Université Paris 7, Inserm, UMR 1162, Paris, France
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Sebastien Apcher
- Institut Gustave Roussy, Université Paris Sud, UMR 1015, Villejuif, France
| | - Marika Pla
- Université Paris 7, IUH, Inserm, UMR-S-1131, Paris, France
| | | | - Marc Blondel
- Université de Brest, Inserm, EFS, UMR 1078, GGB, F-29200 Brest, France
| | - Robin Fåhraeus
- Université Paris 7, Inserm, UMR 1162, Paris, France
- ICCVS, University of Gdańsk, Science, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
- Department of Medical Biosciences, Umeå University, Umeå, Sweden
- RECAMO, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| |
Collapse
|