1
|
Recalde A, Abdul-Nabi J, Junker P, van der Does C, Elsässer J, van Wolferen M, Albers SV. The use of thermostable fluorescent proteins for live imaging in Sulfolobus acidocaldarius. Front Microbiol 2024; 15:1445186. [PMID: 39314874 PMCID: PMC11416942 DOI: 10.3389/fmicb.2024.1445186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/19/2024] [Indexed: 09/25/2024] Open
Abstract
Introduction Among hyperthermophilic organisms, in vivo protein localization is challenging due to the high growth temperatures that can disrupt proper folding and function of mostly mesophilic-derived fluorescent proteins. While protein localization in the thermophilic model archaeon S. acidocaldarius has been achieved using antibodies with fluorescent probes in fixed cells, the use of thermostable fluorescent proteins for live imaging in thermophilic archaea has so far been unsuccessful. Given the significance of live protein localization in the field of archaeal cell biology, we aimed to identify fluorescent proteins for use in S. acidocaldarius. Methods We expressed various previously published and optimized thermostable fluorescent proteins along with fusion proteins of interest and analyzed the cells using flow cytometry and (thermo-) fluorescent microscopy. Results Of the tested proteins, thermal green protein (TGP) exhibited the brightest fluorescence when expressed in Sulfolobus cells. By optimizing the linker between TGP and a protein of interest, we could additionally successfully fuse proteins with minimal loss of fluorescence. TGP-CdvB and TGP-PCNA1 fusions displayed localization patterns consistent with previous immunolocalization experiments. Discussion These initial results in live protein localization in S. acidocaldarius at high temperatures, combined with recent advancements in thermomicroscopy, open new avenues in the field of archaeal cell biology. This progress finally enables localization experiments in thermophilic archaea, which have so far been limited to mesophilic organisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sonja-Verena Albers
- Molecular Biology of Archaea, Faculty of Biology, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
2
|
Hurtig F, Burgers TC, Cezanne A, Jiang X, Mol FN, Traparić J, Pulschen AA, Nierhaus T, Tarrason-Risa G, Harker-Kirschneck L, Löwe J, Šarić A, Vlijm R, Baum B. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. SCIENCE ADVANCES 2023; 9:eade5224. [PMID: 36921039 PMCID: PMC10017037 DOI: 10.1126/sciadv.ade5224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/14/2023] [Indexed: 05/13/2023]
Abstract
ESCRT-III family proteins form composite polymers that deform and cut membrane tubes in the context of a wide range of cell biological processes across the tree of life. In reconstituted systems, sequential changes in the composition of ESCRT-III polymers induced by the AAA-adenosine triphosphatase Vps4 have been shown to remodel membranes. However, it is not known how composite ESCRT-III polymers are organized and remodeled in space and time in a cellular context. Taking advantage of the relative simplicity of the ESCRT-III-dependent division system in Sulfolobus acidocaldarius, one of the closest experimentally tractable prokaryotic relatives of eukaryotes, we use super-resolution microscopy, electron microscopy, and computational modeling to show how CdvB/CdvB1/CdvB2 proteins form a precisely patterned composite ESCRT-III division ring, which undergoes stepwise Vps4-dependent disassembly and contracts to cut cells into two. These observations lead us to suggest sequential changes in a patterned composite polymer as a general mechanism of ESCRT-III-dependent membrane remodeling.
Collapse
Affiliation(s)
- Fredrik Hurtig
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Thomas C. Q. Burgers
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Alice Cezanne
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Xiuyun Jiang
- Laboratory of Soft Matter Physics, The Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Frank N. Mol
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Jovan Traparić
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Tim Nierhaus
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Lena Harker-Kirschneck
- University College London, Institute for the Physics of Living Systems, WC1E 6BT London, UK
| | - Jan Löwe
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Rifka Vlijm
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
3
|
van Wolferen M, Pulschen AA, Baum B, Gribaldo S, Albers SV. The cell biology of archaea. Nat Microbiol 2022; 7:1744-1755. [PMID: 36253512 PMCID: PMC7613921 DOI: 10.1038/s41564-022-01215-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/25/2022] [Indexed: 12/15/2022]
Abstract
The past decade has revealed the diversity and ubiquity of archaea in nature, with a growing number of studies highlighting their importance in ecology, biotechnology and even human health. Myriad lineages have been discovered, which expanded the phylogenetic breadth of archaea and revealed their central role in the evolutionary origins of eukaryotes. These discoveries, coupled with advances that enable the culturing and live imaging of archaeal cells under extreme environments, have underpinned a better understanding of their biology. In this Review we focus on the shape, internal organization and surface structures that are characteristic of archaeal cells as well as membrane remodelling, cell growth and division. We also highlight some of the technical challenges faced and discuss how new and improved technologies will help address many of the key unanswered questions.
Collapse
Affiliation(s)
- Marleen van Wolferen
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | | | - Buzz Baum
- Division of Cell Biology, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Simonetta Gribaldo
- Evolutionary Biology of the Microbial Cell Unit, CNRS UMR2001, Department of Microbiology, Institute Pasteur, Paris, France.
| | - Sonja-Verena Albers
- Molecular Biology of Archaea, Institute of Biology II, Faculty of Biology, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
4
|
Sasaki S, Yamagishi A, Yoshimura Y, Enya K, Miyakawa A, Ohno S, Fujita K, Usui T, Limaye S. In situ bio/chemical characterization of Venus cloud particles using Life-signature Detection Microscope for Venus (Venus LDM). Can J Microbiol 2022; 68:413-425. [PMID: 35235433 DOI: 10.1139/cjm-2021-0140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Much of the information about the size and shape of aerosols forming haze and the cloud layer of Venus is obtained from indirect inferences from nephelometers on probes and from analysis of the variation of polarization with the phase angle and the glory feature from images of Venus. Microscopic imaging of Venus' aerosols has been advocated recently. Direct measurements from a fluorescence microscope can provide information on the morphology, density, and biochemical characteristics of the particles; thus, the fluorescence microscope is attractive for the in situ particle characterization of Venus' cloud layer. Fluorescence imaging of Venus' cloud particles presents several challenges due to the sulfuric acid composition and the corrosive effects. In this article, we identify the challenges and describe our approach to overcoming them for a fluorescence microscope based on an in situ bio/chemical and physical characterization instrument for use in the clouds of Venus from a suitable aerial platform. We report that a pH adjustment using alkali was effective for obtaining fluorescence images, and that fluorescence attenuation was observed after the adjustment, even when the acidophile suspension in the concentrated sulfuric acid was used as a sample.
Collapse
Affiliation(s)
- Satoshi Sasaki
- Tokyo University of Technology, 13097, Hachioji, Japan, 192-0914;
| | - Akihiko Yamagishi
- Tokyo University of Pharmacy and Life Sciences, 13115, Hachioji, Tokyo, Japan;
| | | | - Keigo Enya
- JAXA, 13557, Sagamihara, Kanagawa, Japan;
| | - Atsuo Miyakawa
- Tokyo University of Pharmacy and Life Sciences, 13115, Hachioji, Tokyo, Japan;
| | - Sohsuke Ohno
- Chiba Institute of Technology, 12829, Chiba, Chiba, Japan;
| | | | | | - Sanjay Limaye
- University of Wisconsin-Madison, 5228, Madison, Wisconsin, United States;
| |
Collapse
|
5
|
Lestini R, Collien Y, Olivier D, Olivier N, Myllykallio H. BrdU Incorporation and Labeling of Nascent DNA to Investigate Archaeal Replication Using Super-Resolution Imaging. Methods Mol Biol 2022; 2522:419-434. [PMID: 36125768 DOI: 10.1007/978-1-0716-2445-6_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The labeling and specific detection of nascent DNA by the incorporation of thymidine analogs provide crucial information about DNA replication dynamics without requiring the intracellular expression of fluorescent proteins. After cell fixation and permeabilization, specific detection of thymidine analogs by antibodies can be performed using super-resolution imaging techniques. Here we describe a protocol to label nascent DNA using 5'-bromo-2'-deoxyuridine (BrdU) in Haloferax volcanii cells and generate super-resolved images of neo-synthesized DNA foci either by 3D Structured illumination microscopy (3D-SIM) or Stochastic Optical Reconstruction Microscopy (STORM).
Collapse
Affiliation(s)
- Roxane Lestini
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645-INSERM U1182, IP Paris, Palaiseau, Cedex, France.
| | - Yoann Collien
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645-INSERM U1182, IP Paris, Palaiseau, Cedex, France
| | - Debora Olivier
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645-INSERM U1182, IP Paris, Palaiseau, Cedex, France
| | - Nicolas Olivier
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645-INSERM U1182, IP Paris, Palaiseau, Cedex, France
| | - Hannu Myllykallio
- Laboratoire d'Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645-INSERM U1182, IP Paris, Palaiseau, Cedex, France
| |
Collapse
|
6
|
Turkowyd B, Schreiber S, Wörtz J, Segal ES, Mevarech M, Duggin IG, Marchfelder A, Endesfelder U. Establishing Live-Cell Single-Molecule Localization Microscopy Imaging and Single-Particle Tracking in the Archaeon Haloferax volcanii. Front Microbiol 2020; 11:583010. [PMID: 33329447 PMCID: PMC7714787 DOI: 10.3389/fmicb.2020.583010] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/16/2020] [Indexed: 01/30/2023] Open
Abstract
In recent years, fluorescence microscopy techniques for the localization and tracking of single molecules in living cells have become well-established and are indispensable tools for the investigation of cellular biology and in vivo biochemistry of many bacterial and eukaryotic organisms. Nevertheless, these techniques are still not established for imaging archaea. Their establishment as a standard tool for the study of archaea will be a decisive milestone for the exploration of this branch of life and its unique biology. Here, we have developed a reliable protocol for the study of the archaeon Haloferax volcanii. We have generated an autofluorescence-free H. volcanii strain, evaluated several fluorescent proteins for their suitability to serve as single-molecule fluorescence markers and codon-optimized them to work under optimal H. volcanii cultivation conditions. We found that two of them, Dendra2Hfx and PAmCherry1Hfx, provide state-of-the-art single-molecule imaging. Our strategy is quantitative and allows dual-color imaging of two targets in the same field of view (FOV) as well as DNA co-staining. We present the first single-molecule localization microscopy (SMLM) images of the subcellular organization and dynamics of two crucial intracellular proteins in living H. volcanii cells, FtsZ1, which shows complex structures in the cell division ring, and RNA polymerase, which localizes around the periphery of the cellular DNA. This work should provide incentive to develop SMLM strategies for other archaeal organisms in the near future.
Collapse
Affiliation(s)
- Bartosz Turkowyd
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | | | - Julia Wörtz
- Department of Biology II, Ulm University, Ulm, Germany
| | - Ella Shtifman Segal
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Moshe Mevarech
- Department of Molecular Microbiology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Iain G. Duggin
- The ithree Institute, University of Technology Sydney, Ultimo, NSW, Australia
| | | | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
- Department of Physics, Mellon College of Science, Carnegie-Mellon University, Pittsburgh, PA, United States
| |
Collapse
|
7
|
Tarrason Risa G, Hurtig F, Bray S, Hafner AE, Harker-Kirschneck L, Faull P, Davis C, Papatziamou D, Mutavchiev DR, Fan C, Meneguello L, Arashiro Pulschen A, Dey G, Culley S, Kilkenny M, Souza DP, Pellegrini L, de Bruin RAM, Henriques R, Snijders AP, Šarić A, Lindås AC, Robinson NP, Baum B. The proteasome controls ESCRT-III-mediated cell division in an archaeon. Science 2020; 369:eaaz2532. [PMID: 32764038 PMCID: PMC7116001 DOI: 10.1126/science.aaz2532] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 03/30/2020] [Accepted: 06/11/2020] [Indexed: 12/28/2022]
Abstract
Sulfolobus acidocaldarius is the closest experimentally tractable archaeal relative of eukaryotes and, despite lacking obvious cyclin-dependent kinase and cyclin homologs, has an ordered eukaryote-like cell cycle with distinct phases of DNA replication and division. Here, in exploring the mechanism of cell division in S. acidocaldarius, we identify a role for the archaeal proteasome in regulating the transition from the end of one cell cycle to the beginning of the next. Further, we identify the archaeal ESCRT-III homolog, CdvB, as a key target of the proteasome and show that its degradation triggers division by allowing constriction of the CdvB1:CdvB2 ESCRT-III division ring. These findings offer a minimal mechanism for ESCRT-III-mediated membrane remodeling and point to a conserved role for the proteasome in eukaryotic and archaeal cell cycle control.
Collapse
Affiliation(s)
- Gabriel Tarrason Risa
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK
| | - Fredrik Hurtig
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sian Bray
- Biochemistry Department, University of Cambridge, Cambridge, UK
| | - Anne E Hafner
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK
- Institute for the Physics of Living Systems, UCL, London, UK
- Department of Physics and Astronomy, UCL, London, UK
| | - Lena Harker-Kirschneck
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK
- Institute for the Physics of Living Systems, UCL, London, UK
- Department of Physics and Astronomy, UCL, London, UK
| | - Peter Faull
- Proteomics Platform, The Francis Crick Institute, London, UK
| | - Colin Davis
- Proteomics Platform, The Francis Crick Institute, London, UK
| | - Dimitra Papatziamou
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK
| | - Delyan R Mutavchiev
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK
| | - Catherine Fan
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK
| | - Leticia Meneguello
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK
| | | | - Gautam Dey
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK
| | - Siân Culley
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK
| | - Mairi Kilkenny
- Biochemistry Department, University of Cambridge, Cambridge, UK
| | - Diorge P Souza
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK
| | - Luca Pellegrini
- Biochemistry Department, University of Cambridge, Cambridge, UK
| | - Robertus A M de Bruin
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK
| | - Ricardo Henriques
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK
| | | | - Anđela Šarić
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK
- Institute for the Physics of Living Systems, UCL, London, UK
- Department of Physics and Astronomy, UCL, London, UK
| | - Ann-Christin Lindås
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Nicholas P Robinson
- Faculty of Health and Medicine, Division of Biomedical and Life Sciences, Lancaster University, Lancaster, UK.
| | - Buzz Baum
- MRC-Laboratory for Molecular Cell Biology, University College London (UCL), London, UK.
- Institute for the Physics of Living Systems, UCL, London, UK
| |
Collapse
|
8
|
Cell Structure Changes in the Hyperthermophilic Crenarchaeon Sulfolobus islandicus Lacking the S-Layer. mBio 2019; 10:mBio.01589-19. [PMID: 31455649 PMCID: PMC6712394 DOI: 10.1128/mbio.01589-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The S-layer is considered to be the sole component of the cell wall in Sulfolobales, a taxonomic group within the Crenarchaeota whose cellular features have been suggested to have a close relationship to the last archaea-eukaryote common ancestor. In this study, we genetically dissect how the two previously characterized S-layer genes as well as a newly identified S-layer-associated protein-encoding gene contribute to the S-layer architecture in Sulfolobus. We provide genetic evidence for the first time showing that the slaA gene is a key cell morphology determinant and may play a role in Sulfolobus cell division or/and cell fusion. Rediscovery of the ancient evolutionary relationship between archaea and eukaryotes has revitalized interest in archaeal cell biology. Key to the understanding of archaeal cells is the surface layer (S-layer), which is commonly found in Archaea but whose in vivo function is unknown. Here, we investigate the architecture and cellular roles of the S-layer in the hyperthermophilic crenarchaeon Sulfolobus islandicus. Electron micrographs of mutant cells lacking slaA or both slaA and slaB confirm the absence of the outermost layer (SlaA), whereas cells with intact or partially or completely detached SlaA are observed for the ΔslaB mutant. We experimentally identify a novel S-layer-associated protein, M164_1049, which does not functionally replace its homolog SlaB but likely assists SlaB to stabilize SlaA. Mutants deficient in the SlaA outer layer form large cell aggregates, and individual cell size varies, increasing significantly up to six times the diameter of wild-type cells. We show that the ΔslaA mutant cells exhibit more sensitivity to hyperosmotic stress but are not reduced to wild-type cell size. The ΔslaA mutant contains aberrant chromosome copy numbers not seen in wild-type cells, in which the cell cycle is tightly regulated. Together, these data suggest that the lack of SlaA results in either cell fusion or irregularities in cell division. Our studies show the key physiological and cellular functions of the S-layer in this archaeal cell.
Collapse
|
9
|
Kramm K, Endesfelder U, Grohmann D. A Single-Molecule View of Archaeal Transcription. J Mol Biol 2019; 431:4116-4131. [PMID: 31207238 DOI: 10.1016/j.jmb.2019.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/27/2019] [Accepted: 06/06/2019] [Indexed: 01/03/2023]
Abstract
The discovery of the archaeal domain of life is tightly connected to an in-depth analysis of the prokaryotic RNA world. In addition to Carl Woese's approach to use the sequence of the 16S rRNA gene as phylogenetic marker, the finding of Karl Stetter and Wolfram Zillig that archaeal RNA polymerases (RNAPs) were nothing like the bacterial RNAP but are more complex enzymes that resemble the eukaryotic RNAPII was one of the key findings supporting the idea that archaea constitute the third major branch on the tree of life. This breakthrough in transcriptional research 40years ago paved the way for in-depth studies of the transcription machinery in archaea. However, although the archaeal RNAP and the basal transcription factors that fine-tune the activity of the RNAP during the transcription cycle are long known, we still lack information concerning the architecture and dynamics of archaeal transcription complexes. In this context, single-molecule measurements were instrumental as they provided crucial insights into the process of transcription initiation, the architecture of the initiation complex and the dynamics of mobile elements of the RNAP. In this review, we discuss single-molecule approaches suitable to examine molecular mechanisms of transcription and highlight findings that shaped our understanding of the archaeal transcription apparatus. We furthermore explore the possibilities and challenges of next-generation single-molecule techniques, for example, super-resolution microscopy and single-molecule tracking, and ask whether these approaches will ultimately allow us to investigate archaeal transcription in vivo.
Collapse
Affiliation(s)
- Kevin Kramm
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany
| | - Ulrike Endesfelder
- Department of Systems and Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch-Str. 16, 35043 Marburg, Germany
| | - Dina Grohmann
- Institute of Biochemistry, Genetics and Microbiology, University of Regensburg, Universitätsstraße 31, 93053 Regensburg, Germany.
| |
Collapse
|
10
|
Delpech F, Collien Y, Mahou P, Beaurepaire E, Myllykallio H, Lestini R. Snapshots of archaeal DNA replication and repair in living cells using super-resolution imaging. Nucleic Acids Res 2018; 46:10757-10770. [PMID: 30212908 PMCID: PMC6237752 DOI: 10.1093/nar/gky829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 09/03/2018] [Accepted: 09/07/2018] [Indexed: 12/17/2022] Open
Abstract
Using the haloarchaeon Haloferax volcanii as a model, we developed nascent DNA labeling and the functional GFP-labeled single-stranded binding protein RPA2 as novel tools to gain new insight into DNA replication and repair in live haloarchaeal cells. Our quantitative fluorescence microscopy data revealed that RPA2 forms distinct replication structures that dynamically responded to replication stress and DNA damaging agents. The number of the RPA2 foci per cell followed a probabilistic Poisson distribution, implying hitherto unnoticed stochastic cell-to-cell variation in haloarchaeal DNA replication and repair processes. The size range of haloarchaeal replication structures is very similar to those observed earlier in eukaryotic cells. The improved lateral resolution of 3D-SIM fluorescence microscopy allowed proposing that inhibition of DNA synthesis results in localized replication foci clustering and facilitated observation of RPA2 complexes brought about by chemical agents creating DNA double-strand breaks. Altogether our in vivo observations are compatible with earlier in vitro studies on archaeal single-stranded DNA binding proteins. Our work thus underlines the great potential of live cell imaging for unraveling the dynamic nature of transient molecular interactions that underpin fundamental molecular processes in the Third domain of life.
Collapse
Affiliation(s)
- Floriane Delpech
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645 – INSERM U1182, 91128 Palaiseau Cedex, France
| | - Yoann Collien
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645 – INSERM U1182, 91128 Palaiseau Cedex, France
| | - Pierre Mahou
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645 – INSERM U1182, 91128 Palaiseau Cedex, France
| | - Emmanuel Beaurepaire
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645 – INSERM U1182, 91128 Palaiseau Cedex, France
| | - Hannu Myllykallio
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645 – INSERM U1182, 91128 Palaiseau Cedex, France
| | - Roxane Lestini
- Laboratoire d’Optique et Biosciences, Ecole Polytechnique, CNRS UMR7645 – INSERM U1182, 91128 Palaiseau Cedex, France
| |
Collapse
|
11
|
Archaeal DNA polymerases: new frontiers in DNA replication and repair. Emerg Top Life Sci 2018; 2:503-516. [PMID: 33525823 DOI: 10.1042/etls20180015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 09/27/2018] [Accepted: 10/08/2018] [Indexed: 11/17/2022]
Abstract
Archaeal DNA polymerases have long been studied due to their superior properties for DNA amplification in the polymerase chain reaction and DNA sequencing technologies. However, a full comprehension of their functions, recruitment and regulation as part of the replisome during genome replication and DNA repair lags behind well-established bacterial and eukaryotic model systems. The archaea are evolutionarily very broad, but many studies in the major model systems of both Crenarchaeota and Euryarchaeota are starting to yield significant increases in understanding of the functions of DNA polymerases in the respective phyla. Recent advances in biochemical approaches and in archaeal genetic models allowing knockout and epitope tagging have led to significant increases in our understanding, including DNA polymerase roles in Okazaki fragment maturation on the lagging strand, towards reconstitution of the replisome itself. Furthermore, poorly characterised DNA polymerase paralogues are finding roles in DNA repair and CRISPR immunity. This review attempts to provide a current update on the roles of archaeal DNA polymerases in both DNA replication and repair, addressing significant questions that remain for this field.
Collapse
|
12
|
Bisson-Filho AW, Zheng J, Garner E. Archaeal imaging: leading the hunt for new discoveries. Mol Biol Cell 2018; 29:1675-1681. [PMID: 30001185 PMCID: PMC6080714 DOI: 10.1091/mbc.e17-10-0603] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 05/15/2018] [Accepted: 05/22/2018] [Indexed: 12/20/2022] Open
Abstract
Since the identification of the archaeal domain in the mid-1970s, we have collected a great deal of metagenomic, biochemical, and structural information from archaeal species. However, there is still little known about how archaeal cells organize their internal cellular components in space and time. In contrast, live-cell imaging has allowed bacterial and eukaryotic cell biologists to learn a lot about biological processes by observing the motions of cells, the dynamics of their internal organelles, and even the motions of single molecules. The explosion of knowledge gained via live-cell imaging in prokaryotes and eukaryotes has motivated an ever-improving set of imaging technologies that could allow analogous explorations into archaeal biology. Furthermore, previous studies of essential biological processes in prokaryotic and eukaryotic organisms give methodological roadmaps for the investigation of similar processes in archaea. In this perspective, we highlight a few fundamental cellular processes in archaea, reviewing our current state of understanding about each, and compare how imaging approaches helped to advance the study of similar processes in bacteria and eukaryotes.
Collapse
Affiliation(s)
| | | | - Ethan Garner
- Molecular and Cellular Biology, Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA 02138
| |
Collapse
|
13
|
Repar J, Warnecke T. Non-Random Inversion Landscapes in Prokaryotic Genomes Are Shaped by Heterogeneous Selection Pressures. Mol Biol Evol 2018; 34:1902-1911. [PMID: 28407093 PMCID: PMC5850607 DOI: 10.1093/molbev/msx127] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Inversions are a major contributor to structural genome evolution in prokaryotes. Here, using a novel alignment-based method, we systematically compare 1,651 bacterial and 98 archaeal genomes to show that inversion landscapes are frequently biased toward (symmetric) inversions around the origin–terminus axis. However, symmetric inversion bias is not a universal feature of prokaryotic genome evolution but varies considerably across clades. At the extremes, inversion landscapes in Bacillus–Clostridium and Actinobacteria are dominated by symmetric inversions, while there is little or no systematic bias favoring symmetric rearrangements in archaea with a single origin of replication. Within clades, we find strong but clade-specific relationships between symmetric inversion bias and different features of adaptive genome architecture, including the distance of essential genes to the origin of replication and the preferential localization of genes on the leading strand. We suggest that heterogeneous selection pressures have converged to produce similar patterns of structural genome evolution across prokaryotes.
Collapse
Affiliation(s)
- Jelena Repar
- Molecular Systems Group, MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences, Molecular Systems Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Tobias Warnecke
- Molecular Systems Group, MRC London Institute of Medical Sciences (LMS), London, United Kingdom.,Institute of Clinical Sciences, Molecular Systems Group, Institute of Clinical Sciences (ICS), Faculty of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
14
|
Formation of a Viral Replication Focus in Sulfolobus Cells Infected by the Rudivirus Sulfolobus islandicus Rod-Shaped Virus 2. J Virol 2017; 91:JVI.00486-17. [PMID: 28424282 DOI: 10.1128/jvi.00486-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/11/2017] [Indexed: 01/05/2023] Open
Abstract
Viral factories are compartmentalized centers for viral replication and assembly in infected eukaryotic cells. Here, we report the formation of a replication focus by prototypical archaeal Sulfolobus islandicus rod-shaped virus 2 (SIRV2) in the model archaeon Sulfolobus This rod-shaped virus belongs to the viral family Rudiviridae, carrying linear double-stranded DNA (dsDNA) genomes, which are very common in geothermal environments. We demonstrate that SIRV2 DNA synthesis is confined to a focus near the periphery of infected cells. Moreover, viral and cellular replication proteins are recruited to, and concentrated in, the viral replication focus. Furthermore, we show that of the four host DNA polymerases (DNA polymerase I [Dpo1] to Dpo4), only Dpo1 participates in viral DNA synthesis. This constitutes the first report of the formation of a viral replication focus in archaeal cells, suggesting that organization of viral replication in foci is a widespread strategy employed by viruses of the three domains of life.IMPORTANCE The organization of viral replication in foci or viral factories has been mostly described for different eukaryotic viruses and for several bacteriophages. This work constitutes the first report of the formation of a viral replication center by a virus infecting members of the Archaea domain.
Collapse
|
15
|
Identification and characterization of a heterotrimeric archaeal DNA polymerase holoenzyme. Nat Commun 2017; 8:15075. [PMID: 28462924 PMCID: PMC5418573 DOI: 10.1038/ncomms15075] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/27/2017] [Indexed: 11/26/2022] Open
Abstract
Since their initial characterization over 30 years ago, it has been believed that the archaeal B-family DNA polymerases are single-subunit enzymes. This contrasts with the multi-subunit B-family replicative polymerases of eukaryotes. Here we reveal that the highly studied PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts. Two small subunits, PBP1 and PBP2, associate with distinct surfaces of the larger catalytic subunit and influence the enzymatic properties of the DNA polymerase. Thus, multi-subunit replicative DNA polymerase holoenzymes are present in all three domains of life. We reveal the architecture of the assembly by a combination of cross-linking coupled with mass spectrometry, X-ray crystallography and single-particle electron microscopy. The small subunits stabilize the holoenzyme assembly and the acidic tail of one small subunit mitigates the ability of the enzyme to perform strand-displacement synthesis, with important implications for lagging strand DNA synthesis. The current model for B-family DNA polymerases in archaea is one of single-subunit enzymes in contrast to the multi-subunit complexes in eukaryotes. Here the authors show that PolB1 from Sulfolobus solfataricus exists as a heterotrimeric complex in cell extracts.
Collapse
|
16
|
Ausiannikava D, Allers T. Diversity of DNA Replication in the Archaea. Genes (Basel) 2017; 8:genes8020056. [PMID: 28146124 PMCID: PMC5333045 DOI: 10.3390/genes8020056] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/20/2017] [Indexed: 02/07/2023] Open
Abstract
DNA replication is arguably the most fundamental biological process. On account of their shared evolutionary ancestry, the replication machinery found in archaea is similar to that found in eukaryotes. DNA replication is initiated at origins and is highly conserved in eukaryotes, but our limited understanding of archaea has uncovered a wide diversity of replication initiation mechanisms. Archaeal origins are sequence-based, as in bacteria, but are bound by initiator proteins that share homology with the eukaryotic origin recognition complex subunit Orc1 and helicase loader Cdc6). Unlike bacteria, archaea may have multiple origins per chromosome and multiple Orc1/Cdc6 initiator proteins. There is no consensus on how these archaeal origins are recognised—some are bound by a single Orc1/Cdc6 protein while others require a multi- Orc1/Cdc6 complex. Many archaeal genomes consist of multiple parts—the main chromosome plus several megaplasmids—and in polyploid species these parts are present in multiple copies. This poses a challenge to the regulation of DNA replication. However, one archaeal species (Haloferax volcanii) can survive without replication origins; instead, it uses homologous recombination as an alternative mechanism of initiation. This diversity in DNA replication initiation is all the more remarkable for having been discovered in only three groups of archaea where in vivo studies are possible.
Collapse
Affiliation(s)
- Darya Ausiannikava
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;.
| | - Thorsten Allers
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK;.
| |
Collapse
|
17
|
Xu Y, Gristwood T, Hodgson B, Trinidad JC, Albers SV, Bell SD. Archaeal orthologs of Cdc45 and GINS form a stable complex that stimulates the helicase activity of MCM. Proc Natl Acad Sci U S A 2016; 113:13390-13395. [PMID: 27821767 PMCID: PMC5127375 DOI: 10.1073/pnas.1613825113] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The regulated recruitment of Cdc45 and GINS is key to activating the eukaryotic MCM(2-7) replicative helicase. We demonstrate that the homohexameric archaeal MCM helicase associates with orthologs of GINS and Cdc45 in vivo and in vitro. Association of these factors with MCM robustly stimulates the MCM helicase activity. In contrast to the situation in eukaryotes, archaeal Cdc45 and GINS form an extremely stable complex before binding MCM. Further, the archaeal GINS•Cdc45 complex contains two copies of Cdc45. Our analyses give insight into the function and evolution of the conserved core of the archaeal/eukaryotic replisome.
Collapse
Affiliation(s)
- Yuli Xu
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405
- Biology Department, Indiana University, Bloomington, IN 47405
| | - Tamzin Gristwood
- Sir William Dunn School of Pathology, Oxford OX13RE, United Kingdom
| | - Ben Hodgson
- Sir William Dunn School of Pathology, Oxford OX13RE, United Kingdom
| | | | - Sonja-Verena Albers
- Max Planck Institute für terrestrische Mikrobiologie, D-35043 Marburg, Germany
| | - Stephen D Bell
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, IN 47405;
- Biology Department, Indiana University, Bloomington, IN 47405
| |
Collapse
|
18
|
Abstract
Knowledge of the chromosome biology of archaeal species has grown considerably in the last 15 years, since the publication of the first full archaeal genome sequences. A number of model organisms have been studied, revealing a striking variety of mechanisms and modes of genome duplication and segregation. While clear sequence relationships between archaeal and eukaryotic replication proteins are well known, some archaea also seem to possess organizational parameters for replication and segregation that reveal further striking parallels to eukaryotes.
Collapse
Affiliation(s)
- Rachel Y Samson
- Molecular and Cellular Biochemistry Department, Indiana University, Bloomington, Ind., USA
| | | |
Collapse
|
19
|
Tatout C, Evans DE, Vanrobays E, Probst AV, Graumann K. The plant LINC complex at the nuclear envelope. Chromosome Res 2015; 22:241-52. [PMID: 24801343 DOI: 10.1007/s10577-014-9419-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Significant advances in understanding the plant nuclear envelope have been made over the past few years; indeed, knowledge of the protein network at the nuclear envelope is rapidly growing. One such network, the linker of nucleoskeleton and cytoskeleton (LINC) complex, is known in animals to connect chromatin to the cytoskeleton through the nuclear envelope. The LINC complex is made of Sad1/Unc84 (SUN) and Klarsicht/Anc1/Syne1 homology (KASH) proteins which have been recently characterized in plants. SUN proteins are located within the inner nuclear membrane, while the KASH proteins are included into the outer nuclear membrane. SUN and KASH domains interact and bridge the two nuclear membranes. In Arabidopsis, KASH proteins also interact with the tryptophan-proline-proline (WPP) domain-interacting tail-anchored protein 1 (WIT1), associated with the nuclear pore complex and with myosin XI-i which directly interacts with the actin cytoskeleton. Although evidence for a plant LINC complex connecting the nucleus to the cytoskeleton is growing, its interaction with chromatin is still unknown, but knowledge gained from animal models strongly suggests its existence in plants. Possible functions of the plant LINC complex in cell division, nuclear shape, and chromatin organization are discussed.
Collapse
Affiliation(s)
- Christophe Tatout
- Genetic reproduction and Development (GReD), UMR CNRS 6293 - Clermont Université - INSERM U 1103, 24 avenue des Landais, BP80026, 63171, Aubière CEDEX, France,
| | | | | | | | | |
Collapse
|
20
|
Meyer BH, Albers SV. AglB, catalyzing the oligosaccharyl transferase step of the archaeal N-glycosylation process, is essential in the thermoacidophilic crenarchaeon Sulfolobus acidocaldarius. Microbiologyopen 2014; 3:531-43. [PMID: 24916761 PMCID: PMC4287180 DOI: 10.1002/mbo3.185] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/01/2014] [Accepted: 05/15/2014] [Indexed: 11/10/2022] Open
Abstract
Sulfolobus acidocaldarius, a thermo-acidophilic crenarchaeon which grows optimally at 76°C and pH 3, exhibits an astonishing high number of N-glycans linked to the surface (S-) layer proteins. The S-layer proteins as well as other surface-exposed proteins are modified via N-glycosylation, in which the oligosaccharyl transferase AglB catalyzes the final step of the transfer of the glycan tree to the nascent protein. In this study, we demonstrated that AglB is essential for the viability of S. acidocaldarius. Different deletion approaches, that is, markerless in-frame deletion as well as a marker insertion were unsuccessful to create an aglB deletion mutant. Only the integration of a second aglB gene copy allowed the successful deletion of the original aglB.
Collapse
Affiliation(s)
| | - Sonja-Verena Albers
- Correspondence S. V. Albers, Molecular Biology of Archaea, Max-Planck Institute for terrestrial Microbiology, Karl-von-Frisch-Strasse 10, 35043 Marburg. Tel: +496421178426;, Fax: +496421178429;, E-mail:
| |
Collapse
|
21
|
Abstract
Growth and proliferation of all cell types require intricate regulation and coordination of chromosome replication, genome segregation, cell division and the systems that determine cell shape. Recent findings have provided insight into the cell cycle of archaea, including the multiple-origin mode of DNA replication, the initial characterization of a genome segregation machinery and the discovery of a novel cell division system. The first archaeal cytoskeletal protein, crenactin, was also recently described and shown to function in cell shape determination. Here, we outline the current understanding of the archaeal cell cycle and cytoskeleton, with an emphasis on species in the genus Sulfolobus, and consider the major outstanding questions in the field.
Collapse
Affiliation(s)
- Ann-Christin Lindås
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Svante Arrhenius väg 20C, SE-106 91, Stockholm, Sweden
| | | |
Collapse
|
22
|
Bauer RJ, Graham BW, Trakselis MA. Novel interaction of the bacterial-Like DnaG primase with the MCM helicase in archaea. J Mol Biol 2013; 425:1259-73. [PMID: 23357171 DOI: 10.1016/j.jmb.2013.01.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 01/16/2013] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
Abstract
DNA priming and unwinding activities are coupled within bacterial primosome complexes to initiate synthesis on the lagging strand during DNA replication. Archaeal organisms contain conserved primase genes homologous to both the bacterial DnaG and archaeo-eukaryotic primase families. The inclusion of multiple DNA primases within a whole domain of organisms complicates the assignment of the metabolic roles of each. In support of a functional bacterial-like DnaG primase participating in archaeal DNA replication, we have detected an interaction of Sulfolobus solfataricus DnaG (SsoDnaG) with the replicative S. solfataricus minichromosome maintenance (SsoMCM) helicase on DNA. The interaction site has been mapped to the N-terminal tier of SsoMCM analogous to bacterial primosome complexes. Mutagenesis within the metal binding site of SsoDnaG verifies a functional homology with bacterial DnaG that perturbs priming activity and DNA binding. The complex of SsoDnaG with SsoMCM stimulates the ATPase activity of SsoMCM but leaves the priming activity of SsoDnaG unchanged. Competition for binding DNA between SsoDnaG and SsoMCM can reduce the unwinding ability. Fluorescent gel shift experiments were used to quantify the binding of the ternary SsoMCM-DNA-SsoDnaG complex. This direct interaction of a bacterial-like primase with a eukaryotic-like helicase suggests that formation of a unique but homologous archaeal primosome complex is possible but may require other components to stimulate activities. Identification of this archaeal primosome complex broadly impacts evolutionary relationships of DNA replication.
Collapse
Affiliation(s)
- Robert J Bauer
- Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, 801 Chevron, Pittsburgh, PA 15260, USA
| | | | | |
Collapse
|