1
|
Liu Y, Liu F, Li Y, Li Y, Feng Y, Zhao J, Zhou C, Li C, Shen J, Zhang Y. LncRNA Anxa10-203 enhances Mc1r mRNA stability to promote neuropathic pain by recruiting DHX30 in the trigeminal ganglion. J Headache Pain 2024; 25:28. [PMID: 38433184 PMCID: PMC10910797 DOI: 10.1186/s10194-024-01733-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
BACKGROUND Trigeminal nerve injury is one of the most serious complications in oral clinics, and the subsequent chronic orofacial pain is a consumptive disease. Increasing evidence demonstrates long non-coding RNAs (lncRNAs) play an important role in the pathological process of neuropathic pain. This study aims to explore the function and mechanism of LncRNA Anxa10-203 in the development of orofacial neuropathic pain. METHODS A mouse model of orofacial neuropathic pain was established by chronic constriction injury of the infraorbital nerve (CCI-ION). The Von Frey test was applied to evaluate hypersensitivity of mice. RT-qPCR and/or Western Blot were performed to analyze the expression of Anxa10-203, DHX30, and MC1R. Cellular localization of target genes was verified by immunofluorescence and RNA fluorescence in situ hybridization. RNA pull-down and RNA immunoprecipitation were used to detect the interaction between the target molecules. Electrophysiology was employed to assess the intrinsic excitability of TG neurons (TGNs) in vitro. RESULTS Anxa10-203 was upregulated in the TG of CCI-ION mice, and knockdown of Anxa10-203 relieved neuropathic pain. Structurally, Anxa10-203 was located in the cytoplasm of TGNs. Mechanistically, Mc1r expression was positively correlated with Anxa10-203 and was identified as the functional target of Anxa10-203. Besides, Anxa10-203 recruited RNA binding protein DHX30 and formed the Anxa10-203/DHX30 complex to enhance the stability of Mc1r mRNA, resulting in the upregulation of MC1R, which contributed to the enhancement of the intrinsic activity of TGNs in vitro and orofacial neuropathic pain in vivo. CONCLUSIONS LncRNA Anxa10-203 in the TG played an important role in orofacial neuropathic pain and mediated mechanical allodynia in CCI-ION mice by binding with DHX30 to upregulate MC1R expression.
Collapse
Affiliation(s)
- YaJing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Fei Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - YiKe Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - YueLing Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - YuHeng Feng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - JiaShuo Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - ChunJie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - JieFei Shen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - YanYan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, National Center for Stomatology, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- Department of Prosthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
El Hage K, Babault N, Maciejak O, Desforges B, Craveur P, Steiner E, Rengifo-Gonzalez JC, Henrie H, Clement MJ, Joshi V, Bouhss A, Wang L, Bauvais C, Pastré D. Targeting RNA:protein interactions with an integrative approach leads to the identification of potent YBX1 inhibitors. eLife 2023; 12:e80387. [PMID: 36651723 PMCID: PMC9928419 DOI: 10.7554/elife.80387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 01/17/2023] [Indexed: 01/19/2023] Open
Abstract
RNA-protein interactions (RPIs) are promising targets for developing new molecules of therapeutic interest. Nevertheless, challenges arise from the lack of methods and feedback between computational and experimental techniques during the drug discovery process. Here, we tackle these challenges by developing a drug screening approach that integrates chemical, structural and cellular data from both advanced computational techniques and a method to score RPIs in cells for the development of small RPI inhibitors; and we demonstrate its robustness by targeting Y-box binding protein 1 (YB-1), a messenger RNA-binding protein involved in cancer progression and resistance to chemotherapy. This approach led to the identification of 22 hits validated by molecular dynamics (MD) simulations and nuclear magnetic resonance (NMR) spectroscopy of which 11 were found to significantly interfere with the binding of messenger RNA (mRNA) to YB-1 in cells. One of our leads is an FDA-approved poly(ADP-ribose) polymerase 1 (PARP-1) inhibitor. This work shows the potential of our integrative approach and paves the way for the rational development of RPI inhibitors.
Collapse
Affiliation(s)
- Krystel El Hage
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | | | - Olek Maciejak
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Bénédicte Desforges
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | | | - Emilie Steiner
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Juan Carlos Rengifo-Gonzalez
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Hélène Henrie
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Marie-Jeanne Clement
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Vandana Joshi
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Ahmed Bouhss
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | - Liya Wang
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| | | | - David Pastré
- Université Paris-Saclay, INSERM U1204, Univ Evry, Structure-Activité des Biomolécules Normales et Pathologiques (SABNP)EvryFrance
| |
Collapse
|
3
|
Tingey M, Schnell SJ, Yu W, Saredy J, Junod S, Patel D, Alkurdi AA, Yang W. Technologies Enabling Single-Molecule Super-Resolution Imaging of mRNA. Cells 2022; 11:3079. [PMID: 36231040 PMCID: PMC9564294 DOI: 10.3390/cells11193079] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
The transient nature of RNA has rendered it one of the more difficult biological targets for imaging. This difficulty stems both from the physical properties of RNA as well as the temporal constraints associated therewith. These concerns are further complicated by the difficulty in imaging endogenous RNA within a cell that has been transfected with a target sequence. These concerns, combined with traditional concerns associated with super-resolution light microscopy has made the imaging of this critical target difficult. Recent advances have provided researchers the tools to image endogenous RNA in live cells at both the cellular and single-molecule level. Here, we review techniques used for labeling and imaging RNA with special emphases on various labeling methods and a virtual 3D super-resolution imaging technique.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Weidong Yang
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
4
|
George J, Mittal S, Kadamberi IP, Pradeep S, Chaluvally-Raghavan P. Optimized proximity ligation assay (PLA) for detection of RNA-protein complex interactions in cell lines. STAR Protoc 2022; 3:101340. [PMID: 35620072 PMCID: PMC9127197 DOI: 10.1016/j.xpro.2022.101340] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Conventional proximity ligation assay (PLA) suffers from target specificity issues that curtail their accuracy on interpreting proximal interactions in cell biology. Here, we present a reliable and sensitive approach by including a fluorochrome-labeled mRNA fragment along with biotin-labeled RNA probe and a target-specific antibody, which were used to generate proximal ligation signals through linear connectors in intact cells. This protocol will be particularly useful for studying the proximal interactions between RNA binding proteins (RBPs) and their target mRNAs in cells. For complete details on the use and execution of this protocol, please refer to George et al. (2021). FXR1 binds to the AU-rich elements (ARE) within cMYC 3′UTR Use of fluorescence-labeled mRNA improves the specificity of PLA reaction Linear connectors linked to the probes produce high levels of PLA signals
Collapse
|
5
|
Zon G. Recent advances in aptamer applications for analytical biochemistry. Anal Biochem 2022; 644:113894. [PMID: 32763306 PMCID: PMC7403853 DOI: 10.1016/j.ab.2020.113894] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/24/2020] [Accepted: 07/27/2020] [Indexed: 12/15/2022]
Abstract
Aptamers are typically defined as relatively short (20-60 nucleotides) single-stranded DNA or RNA molecules that bind with high affinity and specificity to various types of targets. Aptamers are frequently referred to as "synthetic antibodies" but are easier to obtain, less expensive to produce, and in several ways more versatile than antibodies. The beginnings of aptamers date back to 1990, and since then there has been a continual increase in aptamer publications. The intent of the present account was to focus on recent original research publications, i.e., those appearing in 2019 through April 2020, when this account was written. A Google Scholar search of this recent literature was performed for relevance-ranking of articles. New methods for selection of aptamers were not included. Nine categories of applications were organized and representative examples of each are given. Finally, an outlook is offered focusing on "faster, better, cheaper" application performance factors as key drivers for future innovations in aptamer applications.
Collapse
|
6
|
Sarkar A. Biosensing, Characterization of Biosensors, and Improved Drug Delivery Approaches Using Atomic Force Microscopy: A Review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2021.798928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Since its invention, atomic force microscopy (AFM) has come forth as a powerful member of the “scanning probe microscopy” (SPM) family and an unparallel platform for high-resolution imaging and characterization for inorganic and organic samples, especially biomolecules, biosensors, proteins, DNA, and live cells. AFM characterizes any sample by measuring interaction force between the AFM cantilever tip (the probe) and the sample surface, and it is advantageous over other SPM and electron micron microscopy techniques as it can visualize and characterize samples in liquid, ambient air, and vacuum. Therefore, it permits visualization of three-dimensional surface profiles of biological specimens in the near-physiological environment without sacrificing their native structures and functions and without using laborious sample preparation protocols such as freeze-drying, staining, metal coating, staining, or labeling. Biosensors are devices comprising a biological or biologically extracted material (assimilated in a physicochemical transducer) that are utilized to yield electronic signal proportional to the specific analyte concentration. These devices utilize particular biochemical reactions moderated by isolated tissues, enzymes, organelles, and immune system for detecting chemical compounds via thermal, optical, or electrical signals. Other than performing high-resolution imaging and nanomechanical characterization (e.g., determining Young’s modulus, adhesion, and deformation) of biosensors, AFM cantilever (with a ligand functionalized tip) can be transformed into a biosensor (microcantilever-based biosensors) to probe interactions with a particular receptors of choice on live cells at a single-molecule level (using AFM-based single-molecule force spectroscopy techniques) and determine interaction forces and binding kinetics of ligand receptor interactions. Targeted drug delivery systems or vehicles composed of nanoparticles are crucial in novel therapeutics. These systems leverage the idea of targeted delivery of the drug to the desired locations to reduce side effects. AFM is becoming an extremely useful tool in figuring out the topographical and nanomechanical properties of these nanoparticles and other drug delivery carriers. AFM also helps determine binding probabilities and interaction forces of these drug delivery carriers with the targeted receptors and choose the better agent for drug delivery vehicle by introducing competitive binding. In this review, we summarize contributions made by us and other researchers so far that showcase AFM as biosensors, to characterize other sensors, to improve drug delivery approaches, and to discuss future possibilities.
Collapse
|
7
|
Rosenblum SL, Lorenz DA, Garner AL. A live-cell assay for the detection of pre-microRNA-protein interactions. RSC Chem Biol 2021; 2:241-247. [PMID: 33817642 PMCID: PMC8006716 DOI: 10.1039/d0cb00055h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 11/26/2020] [Indexed: 12/12/2022] Open
Abstract
Recent efforts in genome-wide sequencing and proteomics have revealed the fundamental roles that RNA-binding proteins (RBPs) play in the life cycle and function of coding and non-coding RNAs. While these methodologies provide a systems-level view of the networking of RNA and proteins, approaches to enable the cellular validation of discovered interactions are lacking. Leveraging the power of bioorthogonal chemistry- and split-luciferase-based assay technologies, we have devised a conceptually new assay for the live-cell detection of RNA-protein interactions (RPIs), RNA interaction with Protein-mediated Complementation Assay, or RiPCA. As proof-of-concept, we utilized the interaction of the pre-microRNA, pre-let-7, with its binding partner, Lin28. Using this system, we have demonstrated the selective detection of the pre-let-7-Lin28 RPI in both the cytoplasm and nucleus. Furthermore, we determined that this technology can be used to discern relative affinities for specific sequences as well as of individual RNA binding domains. Thus, RiPCA has the potential to serve as a useful tool in supporting the investigation of cellular RPIs.
Collapse
Affiliation(s)
- Sydney L Rosenblum
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , USA .
| | - Daniel A Lorenz
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , USA .
| | - Amanda L Garner
- Program in Chemical Biology , University of Michigan , 210 Washtenaw Avenue , Ann Arbor , Michigan 48109 , USA .
- Department of Medicinal Chemistry , College of Pharmacy , University of Michigan , 428 Church Street , Ann Arbor , Michigan 48109 , USA
| |
Collapse
|
8
|
Li D, Li X, Shen B, Li P, Chen Y, Ding S, Chen W. Aptamer recognition and proximity-induced entropy-driven circuit for enzyme-free and rapid amplified detection of platelet-derived growth factor-BB. Anal Chim Acta 2019; 1092:102-107. [PMID: 31708022 DOI: 10.1016/j.aca.2019.09.046] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/01/2019] [Accepted: 09/04/2019] [Indexed: 12/25/2022]
Abstract
Platelet-derived growth factor-BB (PDGF-BB) is currently used as a biomarker protein for cancer early diagnosis and clinical treatment. Herein, we reported a robust and enzyme-free strategy based on aptamer recognition and proximity-induced entropy-driven circuits (AR-PEDC) for homogeneous and rapid detection of platelet-derived growth factor BB (PDGF-BB) without any washing steps or thermocycling. The proximity probes specifically recognize target protein to form the completed trigger (CT). Then, the CT reacts with three-strand complex to form intermediate, which subsequently binds to fuel strand to release reporter strand, assistant strand and the CT. The revised proximity probes exhibit significantly improved signal-to-background ratio and faster association rate. Moreover, target protein/proximity probes interaction can specifically initiate entropy-driven circuits, thus providing immense signal amplification for ultrasensitive detection of PDGF-BB with low detection limit of 9.6 pM. The practical ability of the developed strategy is demonstrated by detection of PDGF-BB in human serum with satisfactory results. In addition, this method is flexible and can be conveniently extended to a variety of targets by simply substituting the target specific sequence. Thus, this strategy presents a rapid, low background and versatile amplification mechanism for the detection of protein biomarkers and offers a promising alternative platform for clinical diagnosis.
Collapse
Affiliation(s)
- Dandan Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Xinmin Li
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Bo Shen
- Department of Laboratory Medicine, Chongqing Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Pu Li
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yuanjiao Chen
- Department of Laboratory Medicine, Fengjie Country Traditional Chinese Medicine Hospital, Chongqing, Chongqing, 400016, China
| | - Shijia Ding
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weixian Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
9
|
Blanchard EL, Argyropoulou D, Zurla C, Bhosle SM, Vanover D, Santangelo PJ. Quantification and Localization of Protein-RNA Interactions in Patient-Derived Archival Tumor Tissue. Cancer Res 2019; 79:5418-5431. [PMID: 31481502 DOI: 10.1158/0008-5472.can-19-1094] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/24/2019] [Accepted: 08/27/2019] [Indexed: 12/22/2022]
Abstract
Abnormal post-transcriptional regulation induced by alterations of mRNA-protein interactions is critical during tumorigenesis and cancer progression and is a hallmark of cancer cells. A more thorough understanding is needed to develop treatments and foresee outcomes. Cellular and mouse tumor models are insufficient for vigorous investigation as they lack consistency and translatability to humans. Moreover, to date, studies in human tumor tissue are predominately limited to expression analysis of proteins and mRNA, which do not necessarily provide information about the frequency of mRNA-protein interactions. Here, we demonstrate novel optimization of a method that is based on FISH and proximity ligation techniques to quantify mRNA interactions with RNA-binding proteins relevant for tumorigenesis and cancer progression in archival patient-derived tumor tissue. This method was validated for multiple mRNA-protein pairs in several cellular models and in multiple types of archival human tumor samples. Furthermore, this approach allowed high-throughput analysis of mRNA-protein interactions across a wide range of tumor types and stages through tumor microarrays. This method is quantitative, specific, and sensitive for detecting interactions and their localization at both the individual cell and whole-tissue scales with single interaction sensitivity. This work presents an important tool in investigating post-transcriptional regulation in cancer on a high-throughput scale, with great potential for translatability into any applications where mRNA-protein interactions are of interest. SIGNIFICANCE: This work presents an approach to sensitively, specifically, and quantitatively detect and localize native mRNA and protein interactions for analysis of abnormal post-transcriptional regulation in patient-derived archival tumor samples.
Collapse
Affiliation(s)
- Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Danae Argyropoulou
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Sushma M Bhosle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| |
Collapse
|
10
|
Xie Y, Perrino BA. Quantitative in situ proximity ligation assays examining protein interactions and phosphorylation during smooth muscle contractions. Anal Biochem 2019; 577:1-13. [PMID: 30981700 DOI: 10.1016/j.ab.2019.04.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/21/2019] [Accepted: 04/10/2019] [Indexed: 12/26/2022]
Abstract
Antibody-based in situ proximity ligation assays (isPLA) have the potential to study protein phosphorylation and protein interactions with spatial resolution in intact tissues. However, the application of isPLA at the tissue level is limited by a lack of appropriate positive and negative controls and the difficulty in accounting for changes in tissue shape. Here we demonstrate a set of experimental and computational approaches using gastric fundus smooth muscles to improve the validity of quantitative isPLA. Appropriate positive and negative biological controls and PLA technical controls were selected to ensure experimental rigor. To account for changes in morphology between relaxed and contracted smooth muscles, target PLA spots were normalized to smooth muscle myosin light chain 20 PLA spots or the cellular cross-sectional areas. We describe the computational steps necessary to filter out false-positive improperly sized spots and set the thresholds for counting true positive PLA spots to quantify the PLA signals. We tested our approach by examining protein phosphorylation and protein interactions in smooth muscle myofilament Ca2+ sensitization pathways from resting and contracted gastric fundus smooth muscles. In conclusion, our tissue-level isPLA method enables unbiased quantitation of protein phosphorylation and protein-protein interactions in intact smooth muscle tissues, suggesting the potential for quantitative isPLA applications in other types of intact tissues.
Collapse
Affiliation(s)
- Yeming Xie
- Department of Physiology and Cell Biology, University of Nevada Reno, School of Medicine, MS 0352, 1664 N Virginia St, Reno, NV, 89557, USA
| | - Brian A Perrino
- Department of Physiology and Cell Biology, University of Nevada Reno, School of Medicine, MS 0352, 1664 N Virginia St, Reno, NV, 89557, USA.
| |
Collapse
|
11
|
Blanchard EL, Loomis KH, Bhosle SM, Vanover D, Baumhof P, Pitard B, Zurla C, Santangelo PJ. Proximity Ligation Assays for In Situ Detection of Innate Immune Activation: Focus on In Vitro-Transcribed mRNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 14:52-66. [PMID: 30579042 PMCID: PMC6304375 DOI: 10.1016/j.omtn.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/08/2018] [Accepted: 11/09/2018] [Indexed: 01/04/2023]
Abstract
The characterization of innate immune activation is crucial for vaccine and therapeutic development, including RNA-based vaccines, a promising approach. Current measurement methods quantify type I interferon and inflammatory cytokine production, but they do not allow for the isolation of individual pathways, do not provide kinetic activation or spatial information within tissues, and cannot be translated into clinical studies. Here we demonstrated the use of proximity ligation assays (PLAs) to detect pattern recognition receptor (PRR) activation in cells and in tissue samples. First, we validated PLA's sensitivity and specificity using well-characterized soluble agonists. Next, we characterized PRR activation from in vitro-transcribed (IVT) mRNAs, as well as the effect of sequence and base modifications in vitro. Finally, we established the measurement of PRR activation in tissue sections via PLA upon IVT mRNA intramuscular (i.m.) injection in mice. Overall, our results indicate that PLA is a valuable, versatile, and sensitive tool to monitor PRR activation for vaccine, adjuvant, and therapeutic screening.
Collapse
Affiliation(s)
- Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | - Kristin H Loomis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | - Sushma M Bhosle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | | | - Bruno Pitard
- In-Cell-Art, 21 rue de la Noue Bras de Fer, 44200 Nantes, France
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Building, Atlanta, GA 30332, USA.
| |
Collapse
|
12
|
Loomis KH, Lindsay KE, Zurla C, Bhosle SM, Vanover DA, Blanchard EL, Kirschman JL, Bellamkonda RV, Santangelo PJ. In Vitro Transcribed mRNA Vaccines with Programmable Stimulation of Innate Immunity. Bioconjug Chem 2018; 29:3072-3083. [PMID: 30067354 DOI: 10.1021/acs.bioconjchem.8b00443] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vitro transcribed (IVT) mRNA is an appealing platform for next generation vaccines, as it can be manufactured rapidly at large scale to meet emerging pathogens. However, its performance as a robust vaccine is strengthened by supplemental immune stimulation, which is typically provided by adjuvant formulations that facilitate delivery and stimulate immune responses. Here, we present a strategy for increasing translation of a model IVT mRNA vaccine while simultaneously modulating its immune-stimulatory properties in a programmable fashion, without relying on delivery vehicle formulations. Substitution of uridine with the modified base N1-methylpseudouridine reduces the intrinsic immune stimulation of the IVT mRNA and enhances antigen translation. Tethering adjuvants to naked IVT mRNA through antisense nucleotides boosts the immunostimulatory properties of adjuvants in vitro, without impairing transgene production or adjuvant activity. In vivo, intramuscular injection of tethered IVT mRNA-TLR7 agonists leads to enhanced local immune responses, and to antigen-specific cell-mediated and humoral responses. We believe this system represents a potential platform compatible with any adjuvant of interest to enable specific programmable stimulation of immune responses.
Collapse
Affiliation(s)
- Kristin H Loomis
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Kevin E Lindsay
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Sushma M Bhosle
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Daryll A Vanover
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Emmeline L Blanchard
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Jonathan L Kirschman
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Ravi V Bellamkonda
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Krone Engineering Biosystems Building, 950 Atlantic Drive , Atlanta , Georgia 30332 , United States
| |
Collapse
|
13
|
Unifying in vitro and in vivo IVT mRNA expression discrepancies in skeletal muscle via mechanotransduction. Biomaterials 2018; 159:189-203. [PMID: 29331806 DOI: 10.1016/j.biomaterials.2018.01.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 12/30/2017] [Accepted: 01/06/2018] [Indexed: 12/23/2022]
Abstract
The translational efficiency of an in vitro transcribed (IVT) mRNA was measured upon delivery to primary skeletal muscle cells and to a mouse model system, towards the development of a predictive in vitro assay for the screening and validation of intramuscular mRNA-based vaccines. When IVT mRNA was delivered either naked or complexed with novel aminoglycoside-based delivery vehicles, significant differences in protein expression in vitro and in vivo were observed. We hypothesized that this previously anticipated discrepancy was due to differences in the mechanism of IVT mRNA endosomal entry and release following delivery. To address this, IVT mRNA was fluorescently labeled prior to delivery, to visualize its distribution. Colocalization with endosomal markers indicated that different entry pathways were utilized in vivo and in vitro, depending on the delivery vehicle, resulting in variations in protein expression levels. Since extracellular matrix stiffness (ECM) influences mRNA entry, trafficking and release, the effect of mechanotransduction on mRNA expression was investigated in vitro upon delivery of IVT mRNA alone, and complexed with delivery vehicles to skeletal muscle cells grown on ∼10 kPa hydrogels. This in vitro hydrogel model more accurately recapitulated the results obtained in vivo upon IM injection, indicating that this approach may assist in the characterization of mRNA based vaccines.
Collapse
|
14
|
Abstract
The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to the emergence of entirely new research fields, and to dramatic progress in our understanding of gene expression regulation.
Collapse
Affiliation(s)
- Caroline Medioni
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France
| | - Florence Besse
- Université Côte d'Azur, CNRS, Inserm, iBV, Parc Valrose, 06100, Nice, France.
| |
Collapse
|
15
|
Ibragimov AN, Kozlov EN, Kurbidaeva AS, Ryabichko SS, Shidlovskii YV. Current technics for visualizing RNA in a cell. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417100040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Kirschman JL, Bhosle S, Vanover D, Blanchard EL, Loomis KH, Zurla C, Murray K, Lam BC, Santangelo PJ. Characterizing exogenous mRNA delivery, trafficking, cytoplasmic release and RNA-protein correlations at the level of single cells. Nucleic Acids Res 2017; 45:e113. [PMID: 28449134 PMCID: PMC5499550 DOI: 10.1093/nar/gkx290] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/06/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022] Open
Abstract
The use of synthetic messenger ribonucleic acid (mRNA) to express specific proteins is a highly promising therapeutic and vaccine approach that avoids many safety issues associated with viral or DNA-based systems. However, in order to optimize mRNA designs and delivery, technology advancements are required to study fundamental mechanisms of mRNA uptake and localization at the single-cell and tissue level. Here, we present a single RNA sensitive fluorescent labeling method which allows us to label and visualize synthetic mRNA without significantly affecting function. This approach enabled single cell characterization of mRNA uptake and release kinetics from endocytic compartments, the measurement of mRNA/protein correlations, and motivated the investigation of mRNA induced cellular stress, all important mechanisms influencing protein production. In addition, we demonstrated this approach can facilitate near-infrared imaging of mRNA localization in vivo and in ex-vivo tissue sections, which will facilitate mRNA trafficking studies in pre-clinical models. Overall, we demonstrate the ability to study fundamental mechanisms necessary to optimize delivery and therapeutic strategies, in order to design the next generation of novel mRNA therapeutics and vaccines.
Collapse
Affiliation(s)
- Jonathan L. Kirschman
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Sushma Bhosle
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Emmeline L. Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Kristin H. Loomis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Kathryn Murray
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Blaine C. Lam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| | - Philip J. Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, UA Whitaker Building, 313 Ferst Drive, Atlanta, GA 30332, USA
| |
Collapse
|
17
|
Burke K, Antilla KA, Tirrell DA. A Fluorescence in Situ Hybridization Method To Quantify mRNA Translation by Visualizing Ribosome-mRNA Interactions in Single Cells. ACS CENTRAL SCIENCE 2017; 3:425-433. [PMID: 28573204 PMCID: PMC5445550 DOI: 10.1021/acscentsci.7b00048] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Indexed: 05/11/2023]
Abstract
Single-molecule fluorescence in situ hybridization (smFISH) is a simple and widely used method to measure mRNA transcript abundance and localization in single cells. A comparable single-molecule in situ method to measure mRNA translation would enable a more complete understanding of gene regulation. Here we describe a fluorescence assay to detect ribosome interactions with mRNA (FLARIM). The method adapts smFISH to visualize and characterize translation of single molecules of mRNA in fixed cells. To visualize ribosome-mRNA interactions, we use pairs of oligonucleotide probes that bind separately to ribosomes (via rRNA) and to the mRNA of interest, and that produce strong fluorescence signals via the hybridization chain reaction (HCR) when the probes are in close proximity. FLARIM does not require genetic manipulation, is applicable to practically any endogenous mRNA transcript, and provides both spatial and temporal information. We demonstrate that FLARIM is sensitive to changes in ribosome association with mRNA upon inhibition of global translation with puromycin. We also show that FLARIM detects changes in ribosome association with an mRNA whose translation is upregulated in response to increased concentrations of iron.
Collapse
|
18
|
A Novel Method to Quantify RNA-Protein Interactions In Situ Using FMTRIP and Proximity Ligation. Methods Mol Biol 2017; 1468:155-70. [PMID: 27662876 DOI: 10.1007/978-1-4939-4035-6_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
RNA binding proteins (RBP) and small RNAs regulate the editing, localization, stabilization, translation, and degradation of ribonucleic acids (RNAs) through their interactions with specific cis-acting elements within target RNAs. Here, we describe a novel method to detect protein-mRNA interactions, which combines FLAG-peptide modified, multiply-labeled tetravalent RNA imaging probes (FMTRIPs) with proximity ligation (PLA), and rolling circle amplification (RCA). This assay detects native RNA in a sequence specific and single RNA sensitive manner, and PLA allows for the quantification and localization of protein-mRNA interactions with single-interaction sensitivity.
Collapse
|
19
|
Zhang W, Xie M, Shu MD, Steitz JA, DiMaio D. A proximity-dependent assay for specific RNA-protein interactions in intact cells. RNA (NEW YORK, N.Y.) 2016; 22:1785-1792. [PMID: 27659050 PMCID: PMC5066630 DOI: 10.1261/rna.058248.116] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/25/2016] [Indexed: 05/05/2023]
Abstract
The proximity ligation assay (PLA) is an immune staining method that detects protein-protein interactions in fixed cells. We describe here RNA-PLA, a simple adaptation of this technology that allows the detection of specific RNA-protein interactions in fixed cells by using a DNA oligonucleotide that hybridizes to a target RNA in combination with an antibody that recognizes the protein bound to the target RNA. Stable and transient RNA-protein interactions can be readily detected by generation of a fluorescent signal in discrete compartments in intact fixed cells with high specificity. We demonstrate that this approach requires the colocalization of the binding protein and its RNA target in the same cellular compartment, use of an oligonucleotide complementary to the target RNA, and the presence of a binding site for the protein in the target RNA.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520-8005, USA
| | - Mingyi Xie
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
| | - Mei-Di Shu
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
| | - Joan A Steitz
- Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
- Yale Cancer Center, New Haven, Connecticut 06520-8028, USA
| | - Daniel DiMaio
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut 06520-8005, USA
- Department of Molecular Biophysics and Biochemistry, Yale University School of Medicine, New Haven, Connecticut 06520-208024, USA
- Yale Cancer Center, New Haven, Connecticut 06520-8028, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, Connecticut 06520-208040, USA
| |
Collapse
|
20
|
Jazurek M, Ciesiolka A, Starega-Roslan J, Bilinska K, Krzyzosiak WJ. Identifying proteins that bind to specific RNAs - focus on simple repeat expansion diseases. Nucleic Acids Res 2016; 44:9050-9070. [PMID: 27625393 PMCID: PMC5100574 DOI: 10.1093/nar/gkw803] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/01/2016] [Indexed: 12/11/2022] Open
Abstract
RNA–protein complexes play a central role in the regulation of fundamental cellular processes, such as mRNA splicing, localization, translation and degradation. The misregulation of these interactions can cause a variety of human diseases, including cancer and neurodegenerative disorders. Recently, many strategies have been developed to comprehensively analyze these complex and highly dynamic RNA–protein networks. Extensive efforts have been made to purify in vivo-assembled RNA–protein complexes. In this review, we focused on commonly used RNA-centric approaches that involve mass spectrometry, which are powerful tools for identifying proteins bound to a given RNA. We present various RNA capture strategies that primarily depend on whether the RNA of interest is modified. Moreover, we briefly discuss the advantages and limitations of in vitro and in vivo approaches. Furthermore, we describe recent advances in quantitative proteomics as well as the methods that are most commonly used to validate robust mass spectrometry data. Finally, we present approaches that have successfully identified expanded repeat-binding proteins, which present abnormal RNA–protein interactions that result in the development of many neurological diseases.
Collapse
Affiliation(s)
- Magdalena Jazurek
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Adam Ciesiolka
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Julia Starega-Roslan
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Katarzyna Bilinska
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| | - Wlodzimierz J Krzyzosiak
- Department of Molecular Biomedicine, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704 Poznan, Poland
| |
Collapse
|
21
|
Wen G, Ju H. Enhanced Photoelectrochemical Proximity Assay for Highly Selective Protein Detection in Biological Matrixes. Anal Chem 2016; 88:8339-45. [DOI: 10.1021/acs.analchem.6b02740] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Guangming Wen
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
- School
of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, P.R. China
| | - Huangxian Ju
- State
Key Laboratory of Analytical Chemistry for Life Science, School of
Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P.R. China
| |
Collapse
|
22
|
Tong QH, Tao T, Xie LQ, Lu HJ. ELISA–PLA: A novel hybrid platform for the rapid, highly sensitive and specific quantification of proteins and post-translational modifications. Biosens Bioelectron 2016; 80:385-391. [DOI: 10.1016/j.bios.2016.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Revised: 01/20/2016] [Accepted: 02/02/2016] [Indexed: 12/01/2022]
|
23
|
Alonas E, Vanover D, Blanchard E, Zurla C, Santangelo PJ. Imaging viral RNA using multiply labeled tetravalent RNA imaging probes in live cells. Methods 2016; 98:91-98. [PMID: 26875782 DOI: 10.1016/j.ymeth.2016.02.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/09/2016] [Accepted: 02/11/2016] [Indexed: 01/05/2023] Open
Abstract
Viruses represent an important class of pathogens that have had an enormous impact on the health of the human race. They are extraordinarily diverse; viral particles can range in size from ∼80nm to ∼10μm in length, and contain genomes with RNA or DNA strands. Regardless of their genome type, RNA species are frequently generated as a part of their replication process, and for viruses with RNA genomes, their loading into the virion represents a critical step in the creation of infectious particles. RNA imaging tools represent a powerful approach to gain insight into fundamental viral processes, including virus entry, replication, and virion assembly. Imaging viral processes in live cells is critical due to both the heterogeneity of these processes on a per cell basis, and the inherent dynamics of these processes. There are a number of methods for labeling RNA in live cells; we'll introduce the myriad of methods and then focus on one approach for labeling viral RNA, using multiply-labeled tetravalent RNA imaging probes (MTRIPs), which do not require engineering of the target RNAs. We feel this approach is advantageous given many viral genomes may not tolerate large nucleotide insertions into their sequences.
Collapse
Affiliation(s)
- Eric Alonas
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States
| | - Daryll Vanover
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States
| | - Emmeline Blanchard
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States
| | - Chiara Zurla
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States
| | - Philip J Santangelo
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, United States.
| |
Collapse
|
24
|
Karamouzis MV, Dalagiorgou G, Georgopoulou U, Nonni A, Kontos M, Papavassiliou AG. HER-3 targeting alters the dimerization pattern of ErbB protein family members in breast carcinomas. Oncotarget 2016; 7:5576-5597. [PMID: 26716646 PMCID: PMC4868707 DOI: 10.18632/oncotarget.6762] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/22/2015] [Indexed: 01/06/2023] Open
Abstract
Breast carcinogenesis is a multi-step process in which membrane receptor tyrosine kinases are crucial participants. Lots of research has been done on epidermal growth factor receptor (EGFR) and HER-2 with important clinical results. However, breast cancer patients present intrinsic or acquired resistance to available HER-2-directed therapies, mainly due to HER-3. Using new techniques, such as proximity ligation assay, herein we evaluate the dimerization pattern of HER-3 and the importance of context-dependent dimer formation between HER-3 and other HER protein family members. Additionally, we show that the efficacy of novel HER-3 targeting agents can be better predicted in certain breast cancer patient sub-groups based on the dimerization pattern of HER protein family members. Moreover, this model was also evaluated and reproduced in human paraffin-embedded breast cancer tissues.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Georgia Dalagiorgou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Urania Georgopoulou
- Laboratory of Molecular Virology, Hellenic Pasteur Institute, 11521 Athens, Greece
| | - Afroditi Nonni
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis Kontos
- Department of Propaedeutic Surgery, Medical School, National and Kapodistrian University of Athens, 'Laikon' General Hospital, 11527 Athens, Greece
| | - Athanasios G Papavassiliou
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
25
|
Zurla C, Jung J, Santangelo PJ. Can we observe changes in mRNA "state"? Overview of methods to study mRNA interactions with regulatory proteins relevant in cancer related processes. Analyst 2016; 141:548-62. [PMID: 26605378 PMCID: PMC4701657 DOI: 10.1039/c5an01959a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RNA binding proteins (RBP) regulate the editing, localization, stabilization, translation, and degradation of ribonucleic acids (RNA) through their interactions with specific cis-acting elements within target RNAs. Post-transcriptional regulatory mechanisms are directly involved in the control of the immune response and stress response and their alterations play a crucial role in cancer related processes. In this review, we discuss mRNAs and RNA binding proteins relevant to tumorigenesis, current methodologies for detecting RNA interactions, and last, we describe a novel method to detect such interactions, which combines peptide modified, RNA imaging probes (FMTRIPs) with proximity ligation (PLA) and rolling circle amplification (RCA). This assay detects native RNA in a sequence specific and single RNA sensitive manner, and PLA allows for the quantification and localization of protein-mRNA interactions with single-interaction sensitivity in situ.
Collapse
Affiliation(s)
- C Zurla
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Blgd, Atlanta, GA 30332, USA.
| | - J Jung
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Blgd, Atlanta, GA 30332, USA.
| | - P J Santangelo
- Wallace H Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 313 Ferst Drive, UA Whitaker Blgd, Atlanta, GA 30332, USA.
| |
Collapse
|
26
|
Warford A. In situ hybridisation: Technologies and their application to understanding disease. ACTA ACUST UNITED AC 2015; 50:37-48. [PMID: 26797255 DOI: 10.1016/j.proghi.2015.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/17/2015] [Accepted: 12/22/2015] [Indexed: 12/23/2022]
Abstract
In situ hybridisation (ISH) is unique amongst molecular analysis methods in providing for the precise microscopic localisation of genes, mRNA and microRNA in metaphase spreads, cell and tissue preparations. The method is well established as a tool to guide appropriate therapeutic intervention in breast, gastric and lung cancer. With the description of ultrasensitive ISH technologies for low copy mRNA demonstration and the relative ease by which microRNA can be visualised, the applications for research and diagnostic purposes is set to increase dramatically. In this review ISH is considered with emphasis on recent technological developments and surveyed for present and future applications in the context of the demonstration of genes, mRNA and microRNA in health and disease.
Collapse
Affiliation(s)
- Anthony Warford
- University of Westminster, 115 New Cavendish Street, London W1W 6UW, United Kingdom.
| |
Collapse
|
27
|
Loomis KH, Kirschman JL, Bhosle S, Bellamkonda RV, Santangelo PJ. Strategies for modulating innate immune activation and protein production of in vitro transcribed mRNAs. J Mater Chem B 2015; 4:1619-1632. [PMID: 32263015 DOI: 10.1039/c5tb01753j] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthetic mRNA has recently shown great potential as a tool for genetic introduction of proteins. Its utility as a gene carrier has been demonstrated in several studies for both the introduction of therapeutic proteins and subunit vaccines. At one point, synthetic mRNA was believed to be too immunogenic and labile for pharmaceutical purposes. However, the development of several strategies have enabled mRNA technology to overcome these challenges, including incorporation of modified nucleotides, codon optimization of the coding region, incorporation of untranslated regions into the mRNA, and the use of delivery vehicles. While these approaches have been shown to enhance performance of some mRNA constructs, gene-to-gene variation and low efficiency of mRNA protein production are still significant hurdles. Further mechanistic understanding of how these strategies affect protein production and innate immune activation is needed for the widespread adoption for both therapeutic and vaccine applications. This review highlights key studies involved in the development of strategies employed to increase protein expression and control the immunogenicity of synthetic mRNA. Areas in the literature where improved understanding is needed will also be discussed.
Collapse
Affiliation(s)
- Kristin H Loomis
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, USA.
| | | | | | | | | |
Collapse
|
28
|
Xie M, Zhang W, Shu MD, Xu A, Lenis DA, DiMaio D, Steitz JA. The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3' ends. Genes Dev 2015. [PMID: 26220997 PMCID: PMC4526738 DOI: 10.1101/gad.266973.115] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this study, Xie et al. identify a novel Integrator cleavage step in a noncanonical microRNA (miRNA) biogenesis pathway. They found that this cleavage step occurs at the 3′ ends of HVS pre-miRNAs, which is regulated by a specific 3′ end processing signal, the miRNA 3′ box. The findings here provide further insight into the structure and function of the Integrator complex. Herpesvirus saimiri (HVS) is an oncogenic γ-herpesvirus that produces microRNAs (miRNAs) by cotranscription of precursor miRNA (pre-miRNA) hairpins immediately downstream from viral small nuclear RNAs (snRNA). The host cell Integrator complex, which recognizes the snRNA 3′ end processing signal (3′ box), generates the 5′ ends of HVS pre-miRNA hairpins. Here, we identify a novel 3′ box-like sequence (miRNA 3′ box) downstream from HVS pre-miRNAs that is essential for miRNA biogenesis. In vivo knockdown and rescue experiments confirmed that the 3′ end processing of HVS pre-miRNAs also depends on Integrator activity. Interaction between Integrator and HVS primary miRNA (pri-miRNA) substrates that contain only the miRNA 3′ box was confirmed by coimmunoprecipitation and an in situ proximity ligation assay (PLA) that we developed to localize specific transient RNA–protein interactions inside cells. Surprisingly, in contrast to snRNA 3′ end processing, HVS pre-miRNA 3′ end processing by Integrator can be uncoupled from transcription, enabling new approaches to study Integrator enzymology.
Collapse
Affiliation(s)
- Mingyi Xie
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Wei Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Mei-Di Shu
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Acer Xu
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Diana A Lenis
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York 11794, USA
| | - Daniel DiMaio
- Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | - Joan A Steitz
- Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA; Department of Molecular Biophysics and Biochemistry, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
29
|
Koos B, Kamali-Moghaddam M, David L, Sobrinho-Simões M, Dimberg A, Nilsson M, Wählby C, Söderberg O. Next-Generation Pathology—Surveillance of Tumor Microecology. J Mol Biol 2015; 427:2013-22. [DOI: 10.1016/j.jmb.2015.02.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 02/18/2015] [Accepted: 02/18/2015] [Indexed: 11/30/2022]
|
30
|
Greenwood C, Ruff D, Kirvell S, Johnson G, Dhillon HS, Bustin SA. Proximity assays for sensitive quantification of proteins. BIOMOLECULAR DETECTION AND QUANTIFICATION 2015; 4:10-6. [PMID: 27077033 PMCID: PMC4822221 DOI: 10.1016/j.bdq.2015.04.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 12/22/2022]
Abstract
Proximity assays are immunohistochemical tools that utilise two or more DNA-tagged aptamers or antibodies binding in close proximity to the same protein or protein complex. Amplification by PCR or isothermal methods and hybridisation of a labelled probe to its DNA target generates a signal that enables sensitive and robust detection of proteins, protein modifications or protein-protein interactions. Assays can be carried out in homogeneous or solid phase formats and in situ assays can visualise single protein molecules or complexes with high spatial accuracy. These properties highlight the potential of proximity assays in research, diagnostic, pharmacological and many other applications that require sensitive, specific and accurate assessments of protein expression.
Collapse
Affiliation(s)
- Christina Greenwood
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - David Ruff
- Fluidigm Corporation, South San Francisco, CA 94080, USA
| | - Sara Kirvell
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Gemma Johnson
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Harvinder S Dhillon
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| | - Stephen A Bustin
- Postgraduate Medical Institute, Faculty of Medical Science, Anglia Ruskin University, Chelmsford, Essex CM1 1SQ, UK
| |
Collapse
|
31
|
Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 2015. [PMID: 25879861 DOI: 10.1186/s12896-12015-10131-12892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2023] Open
Abstract
BACKGROUND The ability to selectively alter genomic DNA sequences in vivo is a powerful tool for basic and applied research. The CRISPR/Cas9 system precisely mutates DNA sequences in a number of organisms. Here, the CRISPR/Cas9 system is shown to be effective in soybean by knocking-out a green fluorescent protein (GFP) transgene and modifying nine endogenous loci. RESULTS Targeted DNA mutations were detected in 95% of 88 hairy-root transgenic events analyzed. Bi-allelic mutations were detected in events transformed with eight of the nine targeting vectors. Small deletions were the most common type of mutation produced, although SNPs and short insertions were also observed. Homoeologous genes were successfully targeted singly and together, demonstrating that CRISPR/Cas9 can both selectively, and generally, target members of gene families. Somatic embryo cultures were also modified to enable the production of plants with heritable mutations, with the frequency of DNA modifications increasing with culture time. A novel cloning strategy and vector system based on In-Fusion® cloning was developed to simplify the production of CRISPR/Cas9 targeting vectors, which should be applicable for targeting any gene in any organism. CONCLUSIONS The CRISPR/Cas9 is a simple, efficient, and highly specific genome editing tool in soybean. Although some vectors are more efficient than others, it is possible to edit duplicated genes relatively easily. The vectors and methods developed here will be useful for the application of CRISPR/Cas9 to soybean and other plant species.
Collapse
Affiliation(s)
- Thomas B Jacobs
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, 30602, USA.
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.
- Present address: Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA.
| | - Peter R LaFayette
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| | - Wayne A Parrott
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, 30602, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
32
|
Jacobs TB, LaFayette PR, Schmitz RJ, Parrott WA. Targeted genome modifications in soybean with CRISPR/Cas9. BMC Biotechnol 2015; 15:16. [PMID: 25879861 PMCID: PMC4365529 DOI: 10.1186/s12896-015-0131-2] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/27/2015] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The ability to selectively alter genomic DNA sequences in vivo is a powerful tool for basic and applied research. The CRISPR/Cas9 system precisely mutates DNA sequences in a number of organisms. Here, the CRISPR/Cas9 system is shown to be effective in soybean by knocking-out a green fluorescent protein (GFP) transgene and modifying nine endogenous loci. RESULTS Targeted DNA mutations were detected in 95% of 88 hairy-root transgenic events analyzed. Bi-allelic mutations were detected in events transformed with eight of the nine targeting vectors. Small deletions were the most common type of mutation produced, although SNPs and short insertions were also observed. Homoeologous genes were successfully targeted singly and together, demonstrating that CRISPR/Cas9 can both selectively, and generally, target members of gene families. Somatic embryo cultures were also modified to enable the production of plants with heritable mutations, with the frequency of DNA modifications increasing with culture time. A novel cloning strategy and vector system based on In-Fusion® cloning was developed to simplify the production of CRISPR/Cas9 targeting vectors, which should be applicable for targeting any gene in any organism. CONCLUSIONS The CRISPR/Cas9 is a simple, efficient, and highly specific genome editing tool in soybean. Although some vectors are more efficient than others, it is possible to edit duplicated genes relatively easily. The vectors and methods developed here will be useful for the application of CRISPR/Cas9 to soybean and other plant species.
Collapse
Affiliation(s)
- Thomas B Jacobs
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, 30602, USA.
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.
- Present address: Boyce Thompson Institute for Plant Research, Ithaca, NY, 14853, USA.
| | - Peter R LaFayette
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA, 30602, USA.
| | - Wayne A Parrott
- Institute for Plant Breeding, Genetics and Genomics, University of Georgia, Athens, Georgia, 30602, USA.
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, 30602, USA.
- Center for Applied Genetic Technologies, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
33
|
Technologies to probe functions and mechanisms of long noncoding RNAs. Nat Struct Mol Biol 2015; 22:29-35. [DOI: 10.1038/nsmb.2921] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/22/2014] [Indexed: 12/20/2022]
|
34
|
Wigington CP, Jung J, Rye EA, Belauret SL, Philpot AM, Feng Y, Santangelo PJ, Corbett AH. Post-transcriptional regulation of programmed cell death 4 (PDCD4) mRNA by the RNA-binding proteins human antigen R (HuR) and T-cell intracellular antigen 1 (TIA1). J Biol Chem 2014; 290:3468-87. [PMID: 25519906 DOI: 10.1074/jbc.m114.631937] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Post-transcriptional processing of mRNA transcripts plays a critical role in establishing the gene expression profile of a cell. Such processing events are mediated by a host of factors, including RNA-binding proteins and microRNAs. A number of critical cellular pathways are subject to regulation at multiple levels that allow fine-tuning of key biological responses. Programmed cell death 4 (PDCD4) is a tumor suppressor and an important modulator of mRNA translation that is regulated by a number of mechanisms, most notably as a target of the oncomiR, miR-21. Here, we provide evidence for post-transcriptional regulation of PDCD4 by the RNA-binding proteins, HuR and TIA1. Complementary approaches reveal binding of both HuR and TIA1 to the PDCD4 transcript. Consistent with a model where RNA-binding proteins modulate the PDCD4 transcript, knockdown of HuR and/or TIA1 results in a significant decrease in steady-state PDCD4 mRNA and protein levels. However, fractionation experiments suggest that the mode of regulation of the PDCD4 transcript likely differs in the cytoplasm and the nucleus as the pool of PDCD4 mRNA present in the cytoplasm is more stable than the nuclear pool of PDCD4 transcript. We observe a competitive mode of binding between HuR and TIA1 on the PDCD4 transcript in the cytoplasm, suggesting that these two factors dynamically interact with one another as well as the PDCD4 transcript to maintain tight control of PDCD4 levels. Overall, this study reveals an additional set of regulatory interactions that modulate the expression of PDCD4, a key pro-apoptotic factor, and also reveals new insights into how HuR and TIA1 functions are integrated to achieve such regulation.
Collapse
Affiliation(s)
- Callie P Wigington
- From the Department of Biochemistry and Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Jeenah Jung
- the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University, Atlanta, Georgia 30332
| | - Emily A Rye
- From the Department of Biochemistry and Graduate Program in Biochemistry, Cell and Developmental Biology, Emory University, Atlanta, Georgia 30322
| | - Sara L Belauret
- the School of Biology, Georgia Institute of Technology, Atlanta, Georgia 30322
| | - Akahne M Philpot
- From the Department of Biochemistry and the Summer Scholars Research Program, Winship Cancer Institute, Atlanta, Georgia 30332, and
| | - Yue Feng
- the Department of Pharmacology, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Philip J Santangelo
- the Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, and Emory University, Atlanta, Georgia 30332
| | | |
Collapse
|
35
|
Noton SL, Aljabr W, Hiscox JA, Matthews DA, Fearns R. Factors affecting de novo RNA synthesis and back-priming by the respiratory syncytial virus polymerase. Virology 2014; 462-463:318-27. [PMID: 25010481 DOI: 10.1016/j.virol.2014.05.032] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 05/20/2014] [Accepted: 05/30/2014] [Indexed: 01/15/2023]
Abstract
Respiratory syncytial virus RNA dependent RNA polymerase (RdRp) initiates RNA synthesis from the leader (le) and trailer-complement (trc) promoters. The RdRp can also add nucleotides to the 3' end of the trc promoter by back-priming, but there is no evidence this occurs at the le promoter in infected cells. We examined how environmental factors and RNA sequence affect de novo RNA synthesis versus back-priming using an in vitro assay. We found that replacing Mg(2+) with Mn(2+) in the reaction buffer increased de novo initiation relative to back-priming, and different lengths of trc sequence were required for the two activities. Experiments with le RNA showed that back-priming occurred with this sequence in vitro, but less efficiently than with trc RNA. These findings indicate that during infection, the RdRp is governed between de novo RNA synthesis and back-priming by RNA sequence and environment, including a factor missing from the in vitro assay.
Collapse
Affiliation(s)
- Sarah L Noton
- Department of Microbiology, Boston University Medical Campus, 72 East Concord Street, Boston, MA 02118, USA.
| | - Waleed Aljabr
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK.
| | - Julian A Hiscox
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK; NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, ic2 Building, Liverpool L3 5RF, UK.
| | - David A Matthews
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK.
| | - Rachel Fearns
- Department of Microbiology, Boston University Medical Campus, 72 East Concord Street, Boston, MA 02118, USA.
| |
Collapse
|
36
|
Structural analysis of respiratory syncytial virus reveals the position of M2-1 between the matrix protein and the ribonucleoprotein complex. J Virol 2014; 88:7602-17. [PMID: 24760890 DOI: 10.1128/jvi.00256-14] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Respiratory syncytial virus (RSV), a member of the Paramyxoviridae family of nonsegmented, negative-sense, single-stranded RNA genome viruses, is a leading cause of lower respiratory tract infections in infants, young children, and the elderly or immunocompromised. There are many open questions regarding the processes that regulate human RSV (hRSV) assembly and budding. Here, using cryo-electron tomography, we identified virus particles that were spherical, filamentous, and asymmetric in structure, all within the same virus preparation. The three particle morphologies maintained a similar organization of the surface glycoproteins, matrix protein (M), M2-1, and the ribonucleoprotein (RNP). RNP filaments were traced in three dimensions (3D), and their total length was calculated. The measurements revealed the inclusion of multiple full-length genome copies per particle. RNP was associated with the membrane whenever the M layer was present. The amount of M coverage ranged from 24% to 86% in the different morphologies. Using fluorescence light microscopy (fLM), direct stochastic optical reconstruction microscopy (dSTORM), and a proximity ligation assay (PLA), we provide evidence illustrating that M2-1 is located between RNP and M in isolated viral particles. In addition, regular spacing of the M2-1 densities was resolved when hRSV viruses were imaged using Zernike phase contrast (ZPC) cryo-electron tomography. Our studies provide a more complete characterization of the hRSV virion structure and substantiation that M and M2-1 regulate virus organization. IMPORTANCE hRSV is a leading cause of lower respiratory tract infections in infants and young children as well as elderly or immunocompromised individuals. We used cryo-electron tomography and Zernike phase contrast cryo-electron tomography to visualize populations of purified hRSV in 3D. We observed the three distinct morphologies, spherical, filamentous, and asymmetric, which maintained comparable organizational profiles. Depending on the virus morphology examined, the amount of M ranged from 24% to 86%. We complemented the cryo-imaging studies with fluorescence microscopy, dSTORM, and a proximity ligation assay to provide additional evidence that M2-1 is incorporated into viral particles and is positioned between M and RNP. The results highlight the impact of M and M2-1 on the regulation of hRSV organization.
Collapse
|
37
|
Ren K, Wu J, Yan F, Ju H. Ratiometric electrochemical proximity assay for sensitive one-step protein detection. Sci Rep 2014; 4:4360. [PMID: 24618513 PMCID: PMC3950580 DOI: 10.1038/srep04360] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 02/25/2014] [Indexed: 11/17/2022] Open
Abstract
This work proposes the concept of ratiometric electrochemical proximity assay (REPA), which can be used for one-step, highly sensitive and selective detection of protein. The assay strategy was achieved on a sensing interface that was formed by hybridization of methylene blue (MB)-labeled antibody-DNA probe (MB-DNA1-Ab1) with ferrocene (Fc)-labeled DNA capture probe (Fc-P) modified gold electrode. On the interface the target protein could trigger the formation of immunocomplex between MB-DNA1-Ab1 and detection antibody-DNA probe (Ab2-DNA2) and subsequently the proximity hybridization of DNA1-DNA2, which led to the departure of MB-DNA1-Ab1 from the interface. The remained Fc-P could form a hairpin structure to take Fc group to electrode surface. Therefore, the recognition of target protein to Ab1 and Ab2 resulted in both the "signal-off" of MB and the "signal-on" of Fc for dual-signal electrochemical ratiometric readout. The proposed REPA could be carried out in one-step with 40-min duration and showed a wide detection range from 0.05 to 100 ng/mL with pg/mL limit of detection, displaying great potential for convenient point-of-care testing and commercial application.
Collapse
Affiliation(s)
- Kewei Ren
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, P.R. China
- These authors contributed equally to this work
| | - Jie Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, P.R. China
- These authors contributed equally to this work
| | - Feng Yan
- Jiangsu Institute of Cancer Prevention and Cure, Nanjing 210009, P.R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, Department of Chemistry, Nanjing University, Nanjing 210093, P.R. China
| |
Collapse
|
38
|
Characterization of mRNA-cytoskeleton interactions in situ using FMTRIP and proximity ligation. PLoS One 2013; 8:e74598. [PMID: 24040294 PMCID: PMC3770708 DOI: 10.1371/journal.pone.0074598] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 08/04/2013] [Indexed: 12/23/2022] Open
Abstract
Many studies have demonstrated an association between the cytoskeleton and mRNA, as well as the asymmetric distribution of mRNA granules within the cell in response to various signaling events. It is likely that the extensive cytoskeletal network directs mRNA transport and localization, with different cytoskeletal elements having their own specific roles. In order to understand the spatiotemporal changes in the interactions between the mRNA and the cytoskeleton as a response to a stimulus, a technique that can visualize and quantify these changes across a population of cells while capturing cell-to-cell variations is required. Here, we demonstrate a method for imaging and quantifying mRNA-cytoskeleton interactions on a per cell basis with single-interaction sensitivity. Using a proximity ligation assay with flag-tagged multiply-labeled tetravalent RNA imaging probes (FMTRIP), we quantified interactions between mRNAs and β-tubulin, vimentin, or filamentous actin (F-actin) for two different mRNAs, poly(A) + and β-actin mRNA, in two different cell types, A549 cells and human dermal fibroblasts (HDF). We found that the mRNAs interacted predominantly with F-actin (>50% in HDF, >20% in A549 cells), compared to β-tubulin (<5%) and vimentin (11-13%). This likely reflects differences in mRNA management by the two cell types. We then quantified changes in these interactions in response to two perturbations, F-actin depolymerization and arsenite-induced oxidative stress, both of which alter either the cytoskeleton itself and mRNA localization. Both perturbations led to a decrease in poly(A) + mRNA interactions with F-actin and an increase in the interactions with microtubules, in a time dependent manner.
Collapse
|
39
|
Zhang H, Li F, Dever B, Wang C, Li XF, Le XC. Assembling DNA through affinity binding to achieve ultrasensitive protein detection. Angew Chem Int Ed Engl 2013; 52:10698-705. [PMID: 24038633 DOI: 10.1002/anie.201210022] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2012] [Revised: 03/17/2013] [Indexed: 11/06/2022]
Abstract
Recent advances in DNA assembly and affinity binding have enabled exciting developments of nanosensors and ultrasensitive assays for specific proteins. These sensors and assays share three main attractive features: 1) the detection of proteins can be accomplished by the detection of amplifiable DNA, thereby dramatically enhancing the sensitivity; 2) assembly of DNA is triggered by affinity binding of two or more probes to a single target molecule, thereby resulting in increased specificity; and 3) the assay is conducted in solution with no need for separation, thus making the assay attractive for potential point-of-care applications. We illustrate here the principle of assembling DNA through affinity binding, and we highlight novel applications to the detection of proteins.
Collapse
Affiliation(s)
- Hongquan Zhang
- Department of Laboratory Medicine and Pathology and Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G3 (Canada) http://www.ualberta.ca/∼xcle
| | | | | | | | | | | |
Collapse
|
40
|
Protein biomarker validation via proximity ligation assays. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1844:933-9. [PMID: 23933049 DOI: 10.1016/j.bbapap.2013.07.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 07/15/2013] [Accepted: 07/29/2013] [Indexed: 11/24/2022]
Abstract
The ability to detect minute amounts of specific proteins or protein modifications in blood as biomarkers for a plethora of human pathological conditions holds great promise for future medicine. Despite a large number of plausible candidate protein biomarkers published annually, the translation to clinical use is impeded by factors such as the required size of the initial studies, and limitations of the technologies used. The proximity ligation assay (PLA) is a versatile molecular tool that has the potential to address some obstacles, both in validation of biomarkers previously discovered using other techniques, and for future routine clinical diagnostic needs. The enhanced specificity of PLA extends the opportunities for large-scale, high-performance analyses of proteins. Besides advantages in the form of minimal sample consumption and an extended dynamic range, the PLA technique allows flexible assay reconfiguration. The technology can be adapted for detecting protein complexes, proximity between proteins in extracellular vesicles or in circulating tumor cells, and to address multiple post-translational modifications in the same protein molecule. We discuss herein requirements for biomarker validation, and how PLA may play an increasing role in this regard. We describe some recent developments of the technology, including proximity extension assays, the use of recombinant affinity reagents suitable for use in proximity assays, and the potential for single cell proteomics. This article is part of a Special Issue entitled: Biomarkers: A Proteomic Challenge.
Collapse
|
41
|
Analysis of protein interactions in situ by proximity ligation assays. Curr Top Microbiol Immunol 2013; 377:111-26. [PMID: 23921974 DOI: 10.1007/82_2013_334] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The fate of the cell is governed by interactions among proteins, nucleic acids, and other biomolecules. It is vital to look at these interactions in a cellular environment if we want to increase our understanding of cellular processes. Herein we will describe how the in situ proximity ligation assay (in situ PLA) can be used to visualize protein interactions in fixed cells and tissues. In situ PLA is a novel technique that uses DNA, together with DNA modifying processes such as ligation, cleavage, and polymerization, as tools to create surrogate markers for protein interactions of interest. Different in situ PLA designs make it possible not only to detect protein-protein interactions but also post-translational modifications and interactions of proteins with nucleic acids. Flexibility in DNA probe design and the multitude of different DNA modifying enzymes provide the basis for modifications of the method to make it suitable to use in many applications. Furthermore, examples of how in situ PLA can be combined with other methods for a comprehensive view of the cellular activity status are discussed.
Collapse
|