1
|
Heydarifard Z, Zadheidar S, Kalantari S, Nejati A, Achak F, Salimi V, Mokhtari‐Azad T, Shafiei‐Jandaghi NZ. Evaluation of Lytic and Persistent Human Adenovirus Infections in Tonsil Tissue of Children With Tonsillar Hypertrophy: A Matched Case-Control Study. Laryngoscope Investig Otolaryngol 2025; 10:e70113. [PMID: 40291574 PMCID: PMC12023410 DOI: 10.1002/lio2.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/29/2025] [Accepted: 02/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background Tonsillar hypertrophy is a common condition in children, and human adenoviruses (HAdVs) may contribute to its development. However, the mechanisms underlying HAdVs' persistence in tonsils remain unclear. This study investigates the role of HAdVs in tonsillar hypertrophy. Methods In a case-control study, oropharyngeal swabs and tonsillar tissues were collected from 50 children with and without tonsillar hypertrophy. HAdV viral load, mRNA expression, and virus shedding were considered to differentiate lytic and persistent infections. Results HAdV genomes were detected in 32% of hypertrophic tissues, exclusively HAdV-C, with no presence in controls. Viral loads varied, peaking in children under 5 years old, ranging from 4 ×10 3 to 1.9 ×10 6 copies/g, with a median of 2.6 ×10 4 copies/g. Predominantly, infections were persistent (81%), with a smaller number of lytic or reactive cases. Conclusion The study supports and extends previous findings regarding HAdV-C persistence in tonsillar tissues and its potential contribution to hypertrophy, with viral loads tending to decrease with age. These findings contribute to the growing body of evidence on HAdVs' role in tonsillar hypertrophy, reinforcing the importance of persistent infections in the tonsils.
Collapse
Affiliation(s)
- Zahra Heydarifard
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
- Hepatitis Research Center, Department of Virology, School of MedicineLorestan University of Medical SciencesKhorramabadIran
| | - Sevrin Zadheidar
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Shirin Kalantari
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Ahmad Nejati
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Farshid Achak
- Department of Otolaryngology, Marvasti HospitalTehran University of Medical SciencesTehranIran
| | - Vahid Salimi
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | - Talat Mokhtari‐Azad
- Virology Department, School of Public HealthTehran University of Medical SciencesTehranIran
| | | |
Collapse
|
2
|
Ausserhofer P, Kiss I, Witte A, Klein R. Anti-Adenoviral Effect of Human Argonaute 2 Alone and in Combination with Artificial microRNAs. Cells 2024; 13:1117. [PMID: 38994969 PMCID: PMC11240694 DOI: 10.3390/cells13131117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/15/2024] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
During infection, adenoviruses inhibit the cellular RNA interference (RNAi) machinery by saturating the RNA-induced silencing complex (RISC) of the host cells with large amounts of virus-derived microRNAs (mivaRNAs) that bind to the key component of the complex, Argonaute 2 (AGO2). In the present study, we investigated AGO2 as a prominent player at the intersection between human adenovirus 5 (HAdV-5) and host cells because of its ability to interfere with the HAdV-5 life cycle. First, the ectopic expression of AGO2 had a detrimental effect on the ability of the virus to replicate. In addition, in silico and in vitro analyses suggested that endogenous microRNAs (miRNAs), particularly hsa-miR-7-5p, have similar effects. This miRNA was found to be able to target the HAdV-5 DNA polymerase mRNA. The inhibitory effect became more pronounced upon overexpression of AGO2, likely due to elevated AGO2 levels, which abolished the competition between cellular miRNAs and mivaRNAs for RISC incorporation. Collectively, our data suggest that endogenous miRNAs would be capable of significantly inhibiting viral replication if adenoviruses had not developed a mechanism to counteract this function. Eventually, AGO2 overexpression-mediated relief of the RISC-saturating action of mivaRNAs strongly enhanced the effectiveness of artificial miRNAs (amiRNAs) directed against the HAdV-5 preterminal protein (pTP) mRNA, suggesting a substantial benefit of co-expressing amiRNAs and AGO2 in RNAi-based strategies for the therapeutic inhibition of adenoviruses.
Collapse
Affiliation(s)
- Philipp Ausserhofer
- Institute of Biotechnology, IMC University of Applied Sciences Krems, Piaristengasse 1, 3500 Krems, Austria; (P.A.)
| | - Izabella Kiss
- Institute of Biotechnology, IMC University of Applied Sciences Krems, Piaristengasse 1, 3500 Krems, Austria; (P.A.)
- Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Angela Witte
- Department of Microbiology, Immunobiology and Genetics, Max Perutz Labs, University of Vienna, Dr. Bohr-Gasse 9, 1090 Vienna, Austria
| | - Reinhard Klein
- Institute of Biotechnology, IMC University of Applied Sciences Krems, Piaristengasse 1, 3500 Krems, Austria; (P.A.)
| |
Collapse
|
3
|
Brachtlova T, Li J, van der Meulen-Muileman IH, Sluiter F, von Meijenfeldt W, Witte I, Massaar S, van den Oever R, de Vrij J, van Beusechem VW. Quantitative Virus-Associated RNA Detection to Monitor Oncolytic Adenovirus Replication. Int J Mol Sci 2024; 25:6551. [PMID: 38928259 PMCID: PMC11203762 DOI: 10.3390/ijms25126551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Oncolytic adenoviruses are in development as immunotherapeutic agents for solid tumors. Their efficacy is in part dependent on their ability to replicate in tumors. It is, however, difficult to obtain evidence for intratumoral oncolytic adenovirus replication if direct access to the tumor is not possible. Detection of systemic adenovirus DNA, which is sometimes used as a proxy, has limited value because it does not distinguish between the product of intratumoral replication and injected virus that did not replicate. Therefore, we investigated if detection of virus-associated RNA (VA RNA) by RT-qPCR on liquid biopsies could be used as an alternative. We found that VA RNA is expressed in adenovirus-infected cells in a replication-dependent manner and is secreted by these cells in association with extracellular vesicles. This allowed VA RNA detection in the peripheral blood of a preclinical in vivo model carrying adenovirus-injected human tumors and on liquid biopsies from a human clinical trial. Our results confirm that VA RNA detection in liquid biopsies can be used for minimally invasive assessment of oncolytic adenovirus replication in solid tumors in vivo.
Collapse
Affiliation(s)
- Tereza Brachtlova
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
- ORCA Therapeutics BV, 5223 DE ‘s-Hertogenbosch, The Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| | - Jing Li
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Ida H. van der Meulen-Muileman
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Femke Sluiter
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
| | - Willem von Meijenfeldt
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
| | - Isabella Witte
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
| | - Sanne Massaar
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
| | | | - Jeroen de Vrij
- Department of Neurosurgery, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- ExoVectory BV, Biopartner 2 Building, 2333 CH Leiden, The Netherlands
| | - Victor W. van Beusechem
- Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands; (T.B.); (J.L.)
- ORCA Therapeutics BV, 5223 DE ‘s-Hertogenbosch, The Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Immunology, Amsterdam Institute for Infection and Immunity, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
4
|
Diggins NL, Hancock MH. Viral miRNA regulation of host gene expression. Semin Cell Dev Biol 2023; 146:2-19. [PMID: 36463091 PMCID: PMC10101914 DOI: 10.1016/j.semcdb.2022.11.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
Viruses have evolved a multitude of mechanisms to combat barriers to productive infection in the host cell. Virally-encoded miRNAs are one such means to regulate host gene expression in ways that benefit the virus lifecycle. miRNAs are small non-coding RNAs that regulate protein expression but do not trigger the adaptive immune response, making them powerful tools encoded by viruses to regulate cellular processes. Diverse viruses encode for miRNAs but little sequence homology exists between miRNAs of different viral species. Despite this, common cellular pathways are targeted for regulation, including apoptosis, immune evasion, cell growth and differentiation. Herein we will highlight the viruses that encode miRNAs and provide mechanistic insight into how viral miRNAs aid in lytic and latent infection by targeting common cellular processes. We also highlight how viral miRNAs can mimic host cell miRNAs as well as how viral miRNAs have evolved to regulate host miRNA expression. These studies dispel the myth that viral miRNAs are subtle regulators of gene expression, and highlight the critical importance of viral miRNAs to the virus lifecycle.
Collapse
Affiliation(s)
- Nicole L Diggins
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA
| | - Meaghan H Hancock
- Vaccine and Gene Therapy Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
5
|
Zhang J, Zhu Y, Zhou Y, Gao F, Qiu X, Li J, Yuan H, Jin W, Lin W. Pediatric adenovirus pneumonia: clinical practice and current treatment. Front Med (Lausanne) 2023; 10:1207568. [PMID: 37476615 PMCID: PMC10354292 DOI: 10.3389/fmed.2023.1207568] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023] Open
Abstract
Adenovirus pneumonia is common in pediatric upper respiratory tract infection, which is comparatively easy to develop into severe cases and has a high mortality rate with many influential sequelae. As for pathogenesis, adenoviruses can directly damage target cells and activate the immune response to varying degrees. Early clinical recognition depends on patients' symptoms and laboratory tests, including those under 2 years old, dyspnea with systemic toxic symptoms, atelectasis or emphysema in CT image, decreased leukocytes, and significantly increased C-reaction protein (CRP) and procalcitonin (PCT), indicating the possibility of severe cases. Until now, there is no specific drug for adenovirus pneumonia, so in clinical practice, current treatment comprises antiviral drugs, respiratory support and bronchoscopy, immunomodulatory therapy, and blood purification. Additionally, post-infectious bronchiolitis obliterans (PIBO), hemophagocytic syndrome, and death should be carefully noted. Independent risk factors associated with the development of PIBO are invasive mechanical ventilation, intravenous steroid use, duration of fever, and male gender. Meanwhile, hypoxemia, hypercapnia, invasive mechanical ventilation, and low serum albumin levels are related to death. Among these, viral load and serological identification are not only "gold standard" for adenovirus pneumonia, but are also related to the severity and prognosis. Here, we discuss the progress of pathogenesis, early recognition, therapy, and risk factors for poor outcomes regarding severe pediatric adenovirus pneumonia.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Wei Lin
- Department of Pediatrics, The Second School of Medicine, The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
6
|
Scholz J, Weil PP, Pembaur D, Koukou G, Aydin M, Hauert D, Postberg J, Kreppel F, Hagedorn C. An Adenoviral Vector as a Versatile Tool for Delivery and Expression of miRNAs. Viruses 2022; 14:1952. [PMID: 36146759 PMCID: PMC9504453 DOI: 10.3390/v14091952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Only two decades after discovering miRNAs, our understanding of the functional effects of deregulated miRNAs in the development of diseases, particularly cancer, has been rapidly evolving. These observations and functional studies provide the basis for developing miRNA-based diagnostic markers or new therapeutic strategies. Adenoviral (Ad) vectors belong to the most frequently used vector types in gene therapy and are suitable for strong short-term transgene expression in a variety of cells. Here, we report the set-up and functionality of an Ad-based miRNA vector platform that can be employed to deliver and express a high level of miRNAs efficiently. This vector platform allows fast and efficient vector production to high titers and the expression of pri-miRNA precursors under the control of a polymerase II promoter. In contrast to non-viral miRNA delivery systems, this Ad-based miRNA vector platform allows accurate dosing of the delivered miRNAs. Using a two-vector model, we showed that Ad-driven miRNA expression was sufficient in down-regulating the expression of an overexpressed and highly stable protein. Additional data corroborated the downregulation of multiple endogenous target RNAs using the system presented here. Additionally, we report some unanticipated synergistic effects on the transduction efficiencies in vitro when cells were consecutively transduced with two different Ad-vectors. This effect might be taken into consideration for protocols using two or more different Ad vectors simultaneously.
Collapse
Affiliation(s)
- Jonas Scholz
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Patrick Philipp Weil
- Centre for Biomedical Education & Research (ZBAF), Clinical Molecular Genetics and Epigenetics, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany
| | - Daniel Pembaur
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Georgia Koukou
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Malik Aydin
- Laboratory of Experimental Pediatric Pneumology and Allergology, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58448 Witten, Germany
| | - Dorota Hauert
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Jan Postberg
- Centre for Biomedical Education & Research (ZBAF), Clinical Molecular Genetics and Epigenetics, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448 Witten, Germany
| | - Florian Kreppel
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| | - Claudia Hagedorn
- Chair for Biochemistry and Molecular Medicine, Center for Biomedical Education and Research, School of Life Sciences (ZBAF), Faculty of Health, Witten/Herdecke University, 58453 Witten, Germany
| |
Collapse
|
7
|
Li Z, Gao J, Xiang X, Deng J, Gao D, Sheng X. Viral long non-coding RNA regulates virus life-cycle and pathogenicity. Mol Biol Rep 2022; 49:6693-6700. [PMID: 35301646 PMCID: PMC8929458 DOI: 10.1007/s11033-022-07268-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/20/2022] [Accepted: 02/15/2022] [Indexed: 11/28/2022]
Abstract
Viral infection is still a serious global health problem that kills hundreds of thousands of people annually. Understanding the mechanism by which virus replicates, packages, and infects the host cells can provide new strategies to control viral infection. Long non-coding RNAs (lncRNAs) have been identified as critical regulators involved in viral infection process and antiviral response. A lot of host lncRNAs have been identified and shown to be involved in antiviral immune response during viral infection. However, our knowledge about lncRNAs expressed by viruses is still at its infancy. LncRNAs expressed by viruses are involved in the whole viral life cycle, including promoting genome replication, regulating gene expression, involvement in genome packaging, assembling new viruses and releasing virions to the host cells. Furthermore, they enhance the pathogenicity of viral infections by down-regulating the host cell's antiviral immune response and maintain the viral latency through a refined procedure of genome integration. This review focuses on the regulatory roles of viral lncRNA in the life-cycle and pathogenicity of viruses. It gives an insight into the viral lncRNAs that can be utilized as therapeutic targets against viral diseases, and future researches aimed to identify and explore new viral lncRNAs and the mechanisms of their involvement in viral infection is encouraged.
Collapse
Affiliation(s)
- Zeyu Li
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Jiaqin Gao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Xinyu Xiang
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Jiajun Deng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Di Gao
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China
| | - Xiumei Sheng
- Department of Biochemistry and Molecular Biology, Jiangsu University School of Medicine, 301 Xuefu Road, 212013, Zhenjiang, Jiangsu, China.
| |
Collapse
|
8
|
Characterization of Viral miRNAs during Adenovirus 14 Infection and Their Differential Expression in the Emergent Strain Adenovirus 14p1. Viruses 2022; 14:v14050898. [PMID: 35632641 PMCID: PMC9145648 DOI: 10.3390/v14050898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 02/04/2023] Open
Abstract
Human adenoviruses (HAdV) express either one or two virus-associated RNAs (VA RNAI or VA RNAII). The structure of VA RNA resembles human precursor microRNAs (pre-miRNA), and, like human pre-miRNA, VA RNA can be processed by DICER into small RNAs that resemble human miRNA. VA RNA-derived miRNA (mivaRNA) can mimic human miRNA post-transcriptional gene repression by binding to complementary sequences in the 3′ UTR of host mRNA. HAdV14 is a member of the B2 subspecies of species B adenovirus, and the emergent strain HAdV14p1 is associated with severe respiratory illness that can lead to acute respiratory distress syndrome. Utilizing small RNA sequencing, we identified four main mivaRNAs generated from the HAdV14/p1 VA RNA gene, two from each of the 5′ and 3′ regions of the terminal stem. There were temporal expression changes in the abundance of 5′ and 3′ mivaRNAs, with 3′ mivaRNAs more highly expressed early in infection and 5′ mivaRNAs more highly expressed later in infection. In addition, there are differences in expression between the emergent and reference strains, with HAdV14 expressing more mivaRNAs early during infection and HAdV14p1 having higher expression later during infection. HAdV14/p1 mivaRNAs were also shown to repress gene expression in a luciferase gene reporter system. Our results raise the question as to whether differential expression of mivaRNAs during HAdV14p1 infection could play a role in the increased pathogenesis associated with the emergent strain.
Collapse
|
9
|
Structural Insights into Human Adenovirus Type 4 Virus-Associated RNA I. Int J Mol Sci 2022; 23:ijms23063103. [PMID: 35328524 PMCID: PMC8949993 DOI: 10.3390/ijms23063103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/17/2022] Open
Abstract
RNA molecules can adopt specific RNA triplex structures to execute critical biological functions. Human adenoviruses (HAdVs) are abundant pathogens encoding the essential, noncoding virus-associated RNA I (VA RNAI). Here, we employ a triplex-specific probing assay, based on the intercalating and cleaving agent benzoquinoquinoxaline 1, 10-phenanthroline (BQQ–OP), to unravel a potential RNA triplex formation in VA RNAI. The BQQ–OP cleavage of the pathogenic HAdV type 4 (HAdV-4) VA RNAI indicates that a potential triplex is formed involving the highly conserved stem 4 of the central domain and side stem 7. Further, the integrity of the HAdV-4 VA RNAI side stem 7 contributes to a potential triplex formation in vitro and virus growth in vivo. Collectively, we propose that the HAdV-4 VA RNAI can potentially form a biologically relevant triplex structure.
Collapse
|
10
|
Price AM, Steinbock RT, Di C, Hayer K, Li Y, Herrmann C, Parenti N, Whelan J, Weiss S, Weitzman M. Adenovirus prevents dsRNA formation by promoting efficient splicing of viral RNA. Nucleic Acids Res 2022; 50:1201-1220. [PMID: 34671803 PMCID: PMC8860579 DOI: 10.1093/nar/gkab896] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/10/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic cells recognize intracellular pathogens through pattern recognition receptors, including sensors of aberrant nucleic acid structures. Sensors of double-stranded RNA (dsRNA) are known to detect replication intermediates of RNA viruses. It has long been suggested that annealing of mRNA from symmetrical transcription of both top and bottom strands of DNA virus genomes can produce dsRNA during infection. Supporting this hypothesis, nearly all DNA viruses encode inhibitors of dsRNA-recognition pathways. However, direct evidence that DNA viruses produce dsRNA is lacking. Contrary to dogma, we show that the nuclear-replicating DNA virus adenovirus (AdV) does not produce detectable levels of dsRNA during infection. In contrast, abundant dsRNA is detected within the nucleus of cells infected with AdV mutants defective for viral RNA processing. In the presence of nuclear dsRNA, the cytoplasmic dsRNA sensor PKR is relocalized and activated within the nucleus. Accumulation of viral dsRNA occurs in the late phase of infection, when unspliced viral transcripts form intron/exon base pairs between top and bottom strand transcripts. We propose that DNA viruses actively limit dsRNA formation by promoting efficient splicing and mRNA processing, thus avoiding detection and restriction by host innate immune sensors of pathogenic nucleic acids.
Collapse
Affiliation(s)
- Alexander M Price
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Robert T Steinbock
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Chao Di
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Katharina E Hayer
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yize Li
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christin Herrmann
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Cell & Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicholas A Parenti
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jillian N Whelan
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan R Weiss
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew D Weitzman
- Division of Protective Immunity, Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Guo F, Xing L. RNA helicase A as co-factor for DNA viruses during replication. Virus Res 2020; 291:198206. [PMID: 33132162 DOI: 10.1016/j.virusres.2020.198206] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 11/30/2022]
Abstract
RNA helicase A (RHA) is a ubiquitously expressed DExH-box helicase enzyme that is involved in a wide range of biological processes including transcription, translation, and RNA processing. A number of RNA viruses recruit RHA to the viral RNA to facilitate virus replication. DNA viruses contain a DNA genome and replicate using a DNA-dependent DNA polymerase. RHA has also been reported to associate with some DNA viruses during replication, in which the enzyme acts on the viral RNA or protein products. As shown for Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus, RHA has potential to allow the virus to control a switch in cellular gene expression to modulate the antiviral response. While the study of the interaction of RHA with DNA viruses is still at an early stage, preliminary evidence indicates that the underlying molecular mechanisms are diverse. We now review the current status of this emerging field.
Collapse
Affiliation(s)
- Fan Guo
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, PR China
| | - Li Xing
- Institute of Biomedical Sciences, Shanxi University, 92 Wucheng Road, Taiyuan 030006, Shanxi province, PR China.
| |
Collapse
|
12
|
Punga T, Darweesh M, Akusjärvi G. Synthesis, Structure, and Function of Human Adenovirus Small Non-Coding RNAs. Viruses 2020; 12:E1182. [PMID: 33086737 PMCID: PMC7589676 DOI: 10.3390/v12101182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 12/25/2022] Open
Abstract
Human adenoviruses (HAdVs) are common pathogens causing a variety of respiratory, ocular and gastrointestinal diseases. To accomplish their efficient replication, HAdVs take an advantage of viral small non-coding RNAs (sncRNAs), which have multiple roles during the virus lifecycle. Three of the best-characterized HAdV sncRNAs; VA RNA, mivaRNA and MLP-TSS-sRNA will be discussed in the present review. Even though VA RNA has been extensively characterized during the last 60 years, this multifunctional molecule continues to surprise us as more of its structural secrets unfold. Likely, the recent developments on mivaRNA and MLP-TSS-sRNA synthesis and function highlight the importance of these sncRNA in virus replication. Collectively, we will summarize the old and new knowledge about these three viral sncRNAs with focus on their synthesis, structure and functions.
Collapse
Affiliation(s)
- Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, 75123 Uppsala, Sweden; (M.D.); (G.A.)
| | | | | |
Collapse
|
13
|
Zhao H, Punga T, Pettersson U. Adenovirus in the omics era - a multipronged strategy. FEBS Lett 2020; 594:1879-1890. [PMID: 31811727 DOI: 10.1002/1873-3468.13710] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 01/15/2023]
Abstract
Human adenoviruses (HAdVs) are common pathogens associated with a wide variety of respiratory, ocular, and gastrointestinal diseases. To achieve its effective lytic mode of replication, HAdVs have to reprogram host-cell gene expression and fine-tune viral gene expression in a temporal manner. In two decades, omics revolution has advanced our knowledge about the HAdV and host-cell interplay at the RNA and protein levels. This review summarizes the current knowledge from large-scale datasets on how HAdV infections adjust coding and noncoding RNA expression, as well as how they reprogram host-cell proteome during the lytic course of infection.
Collapse
Affiliation(s)
- Hongxing Zhao
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Sweden
| | - Ulf Pettersson
- Beijer Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Sweden
| |
Collapse
|
14
|
Mishra R, Kumar A, Ingle H, Kumar H. The Interplay Between Viral-Derived miRNAs and Host Immunity During Infection. Front Immunol 2020; 10:3079. [PMID: 32038626 PMCID: PMC6989438 DOI: 10.3389/fimmu.2019.03079] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/17/2019] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs are short non-coding RNAs that play a crucial role in the regulation of gene expression during cellular processes. The host-encoded miRNAs are known to modulate the antiviral defense during viral infection. In the last decade, multiple DNA and RNA viruses have been shown to produce miRNAs known as viral miRNAs (v-miRNAs) so as to evade the host immune response. In this review, we highlight the origin and biogenesis of viral miRNAs during the viral lifecycle. We also explore the role of viral miRNAs in immune evasion and hence in maintaining chronic infection and disease. Finally, we offer insights into the underexplored role of viral miRNAs as potential targets for developing therapeutics for treating complex viral diseases.
Collapse
Affiliation(s)
- Richa Mishra
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
| | - Ashish Kumar
- Department of Dermatology, School of Medicine, University of California, Davis, Sacramento, CA, United States
| | - Harshad Ingle
- Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| | - Himanshu Kumar
- Laboratory of Immunology and Infectious Disease Biology, Department of Biological Sciences, Indian Institute of Science Education and Research, Bhopal, India
- Laboratory of Host Defense, WPI Immunology, Frontier Research Centre, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Nemerow G, Flint J. Lessons learned from adenovirus (1970-2019). FEBS Lett 2019; 593:3395-3418. [PMID: 31777951 DOI: 10.1002/1873-3468.13700] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/24/2019] [Accepted: 11/24/2019] [Indexed: 12/11/2022]
Abstract
Animal viruses are well recognized for their ability to uncover fundamental cell and molecular processes, and adenovirus certainly provides a prime example. This review illustrates the lessons learned from studying adenovirus over the past five decades. We take a look back at the key studies of adenovirus structure and biophysical properties, which revealed the mechanisms of adenovirus association with antibody, cell receptor, and immune molecules that regulate infection. In addition, we discuss the critical contribution of studies of adenovirus gene expression to elucidation of fundamental reactions in pre-mRNA processing and its regulation. Other pioneering studies furnished the first examples of protein-primed initiation of DNA synthesis and viral small RNAs. As a nonenveloped virus, adenoviruses have furnished insights into the modes of virus attachment, entry, and penetration of host cells, and we discuss the diversity of cell receptors that support these processes, as well as membrane penetration. As a result of these extensive studies, adenovirus vectors were among the first to be developed for therapeutic applications. We highlight some of the early (unsuccessful) trials and the lessons learned from them.
Collapse
Affiliation(s)
- Glen Nemerow
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Jane Flint
- Department of Molecular Biology, Princeton University, NJ, USA
| |
Collapse
|
16
|
Darweesh M, Kamel W, Gavrilin MA, Akusjärvi G, Svensson C. Adenovirus VA RNAI Blocks ASC Oligomerization and Inhibits NLRP3 Inflammasome Activation. Front Immunol 2019; 10:2791. [PMID: 31849970 PMCID: PMC6901988 DOI: 10.3389/fimmu.2019.02791] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/14/2019] [Indexed: 01/10/2023] Open
Abstract
Virus infected immune cells can rapidly respond to the invader by activating the inflammasome and as a consequence release proinflammatory cytokines and eventually die by pyroptosis. In human adenovirus-5 (Ad5) infected THP-1 cells, inhibition of NLRP3 inflammasome activation was demonstrated by a decreased secretion of HMGB1 and matured forms of caspase-1and IL-1ß. An Ad5 mutant virus defective in expression of the non-coding VA RNAI failed to inhibit the NLRP3 inflammasome and in addition displayed formation of ASC specks and increased cell lysis. Importantly, in vitro synthesized VA RNAI was able to inhibit the NLRP3 inflammasome activity in THP-1 cells in the absence of an Ad5 infection, suggesting that VA RNAI binding to PKR and blocking its function is sufficient for inhibition of the NLRP3 inflammasome. Although the inhibition of NLRP3 inflammasome activation required the phylogenetically conserved base paired tetranucleotide sequence in the central stem of VA RNAI, we demonstrate that PKR binding to VA RNAI primarily protected the apical stem, but not the tetranucleotide sequence itself. VA RNAI did not influence the interaction between PKR and NLRP3. In contrast, we describe a novel interaction between PKR and ASC and further show that VA RNAI inhibited ASC phosphorylation and oligomerization. Collectively, our results indicate a novel role for Ad5 VA RNAI as an inhibitor of NLRP3 inflammasome activation by targeting the cellular pro-inflammatory protein PKR.
Collapse
Affiliation(s)
- Mahmoud Darweesh
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.,Department of Microbiology and Immunology, Al-Azhr University, Assiut, Egypt
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Mikhail A Gavrilin
- Department of Internal Medicine, The Ohio State University, Columbus, OH, United States
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Catharina Svensson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
17
|
Crenshaw BJ, Jones LB, Bell CR, Kumar S, Matthews QL. Perspective on Adenoviruses: Epidemiology, Pathogenicity, and Gene Therapy. Biomedicines 2019; 7:E61. [PMID: 31430920 PMCID: PMC6784011 DOI: 10.3390/biomedicines7030061] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/03/2019] [Accepted: 08/14/2019] [Indexed: 02/06/2023] Open
Abstract
Human adenoviruses are large (150 MDa) doubled-stranded DNA viruses that cause respiratory infections. These viruses are particularly pathogenic in healthy and immune-compromised individuals, and currently, no adenovirus vaccine is available for the general public. The purpose of this review is to describe (i) the epidemiology and pathogenicity of human adenoviruses, (ii) the biological role of adenovirus vectors in gene therapy applications, and (iii) the potential role of exosomes in adenoviral infections.
Collapse
Affiliation(s)
- Brennetta J Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Leandra B Jones
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Courtnee' R Bell
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA
| | - Sanjay Kumar
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Qiana L Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| |
Collapse
|
18
|
Wakabayashi K, Machitani M, Tachibana M, Sakurai F, Mizuguchi H. A MicroRNA Derived from Adenovirus Virus-Associated RNAII Promotes Virus Infection via Posttranscriptional Gene Silencing. J Virol 2019; 93:e01265-18. [PMID: 30355689 PMCID: PMC6321910 DOI: 10.1128/jvi.01265-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/11/2018] [Indexed: 12/18/2022] Open
Abstract
The adenovirus (Ad) serotype 5 genome encodes two noncoding small RNAs (virus-associated RNAs I and II [VA-RNAI and -II]), which are approximately 160-nucleotide (nt) RNAs transcribed by RNA polymerase III. It is well known that VA-RNAI supports Ad infection via the inhibition of double-stranded RNA-dependent protein kinase (PKR), which recognizes double-stranded RNA and acts as an antiviral system. Recent studies revealed that VA-RNAs are processed into VA-RNA-derived microRNAs (miRNAs) (mivaRNAI and -II); however, we and another group recently demonstrated that mivaRNAI does not promote Ad replication. On the other hand, the roles of VA-RNAII and mivaRNAII in Ad replication have remained to be clarified. In this study, we demonstrated mivaRNAII-mediated promotion of Ad replication. Transfection with chemically synthesized 3'-mivaRNAII-138, one of the most abundant forms of mivaRNAII, significantly enhanced Ad replication, while the other species of mivaRNAII did not. We identified 8 putative target genes of 3'-mivaRNAII-138 by microarray analysis and in silico analysis. Among the 8 candidates, knockdown of the cullin 4A (CUL4A) gene, which encodes a component of the ubiquitin ligase complex, most significantly enhanced Ad replication. CUL4A expression was significantly suppressed by 3'-mivaRNAII-138 via posttranscriptional gene silencing, indicating that CUL4A is a target gene of 3'-mivaRNAII-138 and mivaRNAII functions as a viral miRNA promoting Ad infection. It has been reported that CUL4A is involved in degradation of c-Jun, which acts as a transcription factor in the Jun-N-terminal kinase (JNK) signaling cascade. Treatment with JNK inhibitors dramatically suppressed Ad replication, suggesting that mivaRNAII-mediated downregulation of CUL4A enhanced JNK signaling and thereby promoted Ad infection.IMPORTANCE Several types of viruses encode viral miRNAs which regulate host and/or viral gene expression via posttranscriptional gene silencing, leading to efficient viral infection. Adenovirus (Ad) expresses miRNAs derived from VA-RNAs (mivaRNAI and -II); however, recent studies have revealed that processing of VA-RNAI into mivaRNAI inhibits Ad replication. Conversely, we demonstrate here that mivaRNAII significantly promotes Ad replication and that mivaRNAII-mediated suppression of CUL4A expression via posttranscriptional gene silencing induces accumulation of c-Jun, leading to promotion of Ad infection. These results exhibited the significance of VA-RNAII for supporting Ad infection through a mechanism complementary to that of VA-RNAI. These observations could provide important clues toward a new perspective on host-virus interaction. Moreover, Ad is widely used as a basic framework for viral vectors and oncolytic viruses. Our findings will help to regulate Ad infection and will promote the development of novel Ad vectors and oncolytic Ad.
Collapse
Affiliation(s)
- K Wakabayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - M Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - M Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
| | - F Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - H Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Center for Advanced Medical Engineering and Informatics, Osaka University, Osaka, Japan
- Laboratory of Hepatocyte Differentiation, National Institute of Biomedical Innovation, Osaka, Japan
| |
Collapse
|
19
|
Brachtlova T, van Beusechem VW. Unleashing the Full Potential of Oncolytic Adenoviruses against Cancer by Applying RNA Interference: The Force Awakens. Cells 2018; 7:cells7120228. [PMID: 30477117 PMCID: PMC6315459 DOI: 10.3390/cells7120228] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/19/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Oncolytic virus therapy of cancer is an actively pursued field of research. Viruses that were once considered as pathogens threatening the wellbeing of humans and animals alike are with every passing decade more prominently regarded as vehicles for genetic and oncolytic therapies. Oncolytic viruses kill cancer cells, sparing healthy tissues, and provoke an anticancer immune response. Among these viruses, recombinant adenoviruses are particularly attractive agents for oncolytic immunotherapy of cancer. Different approaches are currently examined to maximize their therapeutic effect. Here, knowledge of virus–host interactions may lead the way. In this regard, viral and host microRNAs are of particular interest. In addition, cellular factors inhibiting viral replication or dampening immune responses are being discovered. Therefore, applying RNA interference is an attractive approach to strengthen the anticancer efficacy of oncolytic viruses gaining attention in recent years. RNA interference can be used to fortify the virus’ cancer cell-killing and immune-stimulating properties and to suppress cellular pathways to cripple the tumor. In this review, we discuss different ways of how RNA interference may be utilized to increase the efficacy of oncolytic adenoviruses, to reveal their full potential.
Collapse
Affiliation(s)
- Tereza Brachtlova
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands.
| | - Victor W van Beusechem
- Amsterdam UMC, Vrije Universiteit Amsterdam, Medical Oncology, Cancer Center Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands.
| |
Collapse
|
20
|
Chen L, Zhou Y, Li H. LncRNA, miRNA and lncRNA-miRNA interaction in viral infection. Virus Res 2018; 257:25-32. [PMID: 30165080 DOI: 10.1016/j.virusres.2018.08.018] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 08/25/2018] [Accepted: 08/26/2018] [Indexed: 12/27/2022]
Abstract
Noncoding RNAs (ncRNAs) are key components of the transcriptome and play an important role in both normal biological activity and pathological processes such as viral infection and tumorigenesis. LncRNAs and miRNAs are the most important elements of ncRNAs and function as vital regulatory elements. Their complex regulatory relationship has therefore attracted a lot of attention. In this review, we address the generation, classification, and regulatory mechanisms of lncRNAs and miRNAs in the interaction between virus and host, focusing on their mutual regulation in viral replication and pathogenesis. In-depth analysis of the underlying mechanisms will provide new information for the prevention of viral infections and development of antiviral drugs.
Collapse
Affiliation(s)
- Linlin Chen
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, 935 Jiaoling Road, Kunming 650118, China.
| | - Yan Zhou
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, 935 Jiaoling Road, Kunming 650118, China.
| | - Hongjun Li
- Department of Molecular Biology, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, 935 Jiaoling Road, Kunming 650118, China.
| |
Collapse
|
21
|
Multiple nuclear-replicating viruses require the stress-induced protein ZC3H11A for efficient growth. Proc Natl Acad Sci U S A 2018; 115:E3808-E3816. [PMID: 29610341 PMCID: PMC5910864 DOI: 10.1073/pnas.1722333115] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
There is a strong need for the development of new antiviral therapies, and this study sheds light on a host–virus interaction that is significant for a number of medically important human viruses. The study also suggests that the RNA-binding zinc finger CCCH-type containing 11A (ZC3H11A) protein takes part in a mechanism that facilitates nuclear export of mRNA, particularly under cellular stress, a mechanism that has been “hijacked” by several nuclear-replicating viruses to promote their replication. ZC3H11A is therefore a potential target for development of an antiviral therapy. The zinc finger CCCH-type containing 11A (ZC3H11A) gene encodes a well-conserved zinc finger protein that may function in mRNA export as it has been shown to associate with the transcription export (TREX) complex in proteomic screens. Here, we report that ZC3H11A is a stress-induced nuclear protein with RNA-binding capacity that localizes to nuclear splicing speckles. During an adenovirus infection, the ZC3H11A protein and splicing factor SRSF2 relocalize to nuclear regions where viral DNA replication and transcription take place. Knockout (KO) of ZC3H11A in HeLa cells demonstrated that several nuclear-replicating viruses are dependent on ZC3H11A for efficient growth (HIV, influenza virus, herpes simplex virus, and adenovirus), whereas cytoplasmic replicating viruses are not (vaccinia virus and Semliki Forest virus). High-throughput sequencing of ZC3H11A–cross-linked RNA showed that ZC3H11A binds to short purine-rich ribonucleotide stretches in cellular and adenoviral transcripts. We show that the RNA-binding property of ZC3H11A is crucial for its function and localization. In ZC3H11A KO cells, the adenovirus fiber mRNA accumulates in the cell nucleus. Our results suggest that ZC3H11A is important for maintaining nuclear export of mRNAs during stress and that several nuclear-replicating viruses take advantage of this mechanism to facilitate their replication.
Collapse
|
22
|
Kamel W, Akusjärvi G. An Ago2-associated capped transcriptional start site small RNA suppresses adenovirus DNA replication. RNA (NEW YORK, N.Y.) 2017; 23:1700-1711. [PMID: 28839112 PMCID: PMC5648037 DOI: 10.1261/rna.061291.117] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Here we show that the adenovirus major late promoter produces a 31-nucleotide transcriptional start site small RNA (MLP-TSS-sRNA) that retains the 7-methylguanosine (m7G)-cap and is incorporated onto Ago2-containing RNA-induced silencing complexes (RISC) in human adenovirus-37 infected cells. RNA polymerase II CLIP (UV-cross linking immunoprecipitation) experiments suggest that the MLP-TSS-sRNA is produced by promoter proximal stalling/termination of RNA polymerase II transcription at the site of the small RNA 3' end. The MLP-TSS-sRNA is highly stable in cells and functionally active, down-regulating complementary targets in a sequence and dose-dependent manner. The MLP-TSS-sRNA is transcribed from the opposite strand to the adenoviral DNA polymerase and preterminal protein mRNAs, two essential viral replication proteins. We show that the MLP-TSS-sRNA act in trans to reduce DNA polymerase and preterminal protein mRNA expression. As a consequence of this, the MLP-TSS-sRNA has an inhibitory effect on the efficiency of viral DNA replication. Collectively, our results suggest that this novel sRNA may serve a regulatory function controlling viral genome replication during a lytic and/or persistent adenovirus infection in its natural host.
Collapse
Affiliation(s)
- Wael Kamel
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, BMC, Uppsala University, SE-751 23 Uppsala, Sweden
| |
Collapse
|
23
|
Piedade D, Azevedo-Pereira JM. MicroRNAs as Important Players in Host-Adenovirus Interactions. Front Microbiol 2017; 8:1324. [PMID: 28769895 PMCID: PMC5511817 DOI: 10.3389/fmicb.2017.01324] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 06/30/2017] [Indexed: 12/20/2022] Open
Abstract
MicroRNAs (miRNAs) are powerful regulators of gene expression and fine-tuning genes in all tissues. Cellular miRNAs can control 100s of biologic processes (e.g., morphogenesis of embryonic structures, differentiation of tissue-specific cells, and metabolic control in specific cell types) and have been involved in the regulation of nearly all cellular pathways. Inherently to their involvement in different physiologic processes, miRNAs deregulation has been associated with several diseases. Moreover, several viruses have been described as either, avoid and block cellular miRNAs or synthesize their own miRNA to facilitate infection and pathogenesis. Adenoviruses genome encodes two non-coding RNAs, known as viral-associated (VA) RNAI and VA RNAII, which seem to play an important role either by blocking important proteins from miRNA pathway, such as Exportin-5 and Dicer, or by targeting relevant cellular factors. Drastic changes in cellular miRNA expression profile are also noticeable and several cellular functions are affected by these changes. This review focuses on the mechanisms underlying the biogenesis and molecular interactions of miRNAs providing basic concepts of their functions as well as in the interplay between miRNAs and human adenoviruses.
Collapse
Affiliation(s)
- Diogo Piedade
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de LisboaLisboa, Portugal
| | - José M Azevedo-Pereira
- Host-Pathogen Interaction Unit, iMed.ULisboa, Faculdade de Farmácia, Universidade de LisboaLisboa, Portugal
| |
Collapse
|
24
|
Assadian F, Kamel W, Laurell G, Svensson C, Punga T, Akusjärvi G. Expression profile of Epstein-Barr virus and human adenovirus small RNAs in tonsillar B and T lymphocytes. PLoS One 2017; 12:e0177275. [PMID: 28542273 PMCID: PMC5444648 DOI: 10.1371/journal.pone.0177275] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 04/25/2017] [Indexed: 12/24/2022] Open
Abstract
We have used high-throughput small RNA sequencing to characterize viral small RNA expression in purified tonsillar B and T lymphocytes isolated from patients tested positive for Epstein-Barr virus (EBV) or human adenovirus (HAdV) infections, respectively. In the small set of patients analyzed, the expression profile of EBV and HAdV miRNAs could not distinguish between patients diagnosed with tonsillar hypertrophy or chronic/recurrent tonsillitis. The EBV miR-BART expression profile among the patients diagnosed with tonsillar diseases resembles most closely the pattern seen in EBV+ tumors (Latency II/I). The miR-BARTs that appear to be absent in normal EBV infected cells are essentially all detectable in the diseased tonsillar B lymphocytes. In the EBV+ B cells we detected 44 EBV miR-BARTs derived from the proposed BART precursor hairpins whereof five are not annotated in miRBase v21. One previously undetected miRNA, BART16b-5p, originates from the miR-BART16 precursor hairpin as an alternative 5´ miR-BART16 located precisely upstream of the annotated miR-BART16-5p. Further, our analysis revealed an extensive sequence variation among the EBV miRNAs with isomiRs having a constant 5´ end but alternative 3´ ends. A range of small RNAs was also detected from the terminal stem of the EBER RNAs and the 3´ part of v-snoRNA1. During a lytic HAdV infection in established cell lines the terminal stem of the viral non-coding VA RNAs are processed to highly abundant viral miRNAs (mivaRNAs). In contrast, mivaRNA expression in HAdV positive tonsillar T lymphocytes was very low. The small RNA profile further showed that the 5´ mivaRNA from VA RNAI and the 3´ mivaRNA from VA RNAII were as predicted, whereas the 3´ mivaRNA from VA RNAI showed an aberrant processing upstream of the expected Dicer cleavage site.
Collapse
Affiliation(s)
- Farzaneh Assadian
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Göran Laurell
- Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden
| | - Catharina Svensson
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
25
|
Molecular mechanisms of Dicer: endonuclease and enzymatic activity. Biochem J 2017; 474:1603-1618. [PMID: 28473628 PMCID: PMC5415849 DOI: 10.1042/bcj20160759] [Citation(s) in RCA: 161] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 12/12/2022]
Abstract
The enzyme Dicer is best known for its role as a riboendonuclease in the small RNA pathway. In this canonical role, Dicer is a critical regulator of the biogenesis of microRNA and small interfering RNA, as well as a growing number of additional small RNAs derived from various sources. Emerging evidence demonstrates that Dicer's endonuclease role extends beyond the generation of small RNAs; it is also involved in processing additional endogenous and exogenous substrates, and is becoming increasingly implicated in regulating a variety of other cellular processes, outside of its endonuclease function. This review will describe the canonical and newly identified functions of Dicer.
Collapse
|
26
|
Wang Z, Zhao Y, Zhang Y. Viral lncRNA: A regulatory molecule for controlling virus life cycle. Noncoding RNA Res 2017; 2:38-44. [PMID: 30159419 PMCID: PMC6096409 DOI: 10.1016/j.ncrna.2017.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/16/2017] [Accepted: 03/22/2017] [Indexed: 11/30/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are found not only in mammals but also in other organisms, including viruses. Recent findings suggest that lncRNAs play various regulatory roles in multiple major biological and pathological processes. During viral life cycles, lncRNAs are involved in a series of steps, including enhancing viral gene expression, promoting viral replication and genome packaging, boosting virion release, maintaining viral latency and assisting viral transformation; additionally, lncRNAs antagonize host antiviral innate immune responses. In contrast to proteins that function in viral infection, lncRNAs are expected to be novel targets for the modulation of all types of biochemical processes due to their broad characteristics and profound influence. This review highlights our current understanding of the regulatory roles of lncRNAs during viral infection processes with an emphasis on the potential usefulness of lncRNAs as a target for viral intervention strategies, which could have therapeutic implications for the application of a clinical approach for the treatment of viral diseases.
Collapse
Affiliation(s)
- Ziqiang Wang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.,Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, PR China
| | - Yiwan Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.,Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, PR China
| | - Yaou Zhang
- Key Lab in Healthy Science and Technology, Division of Life Science, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, PR China.,Open FIESTA Center, Tsinghua University, Shenzhen, 518055, PR China
| |
Collapse
|
27
|
Lan S, Kamel W, Punga T, Akusjärvi G. The adenovirus L4-22K protein regulates transcription and RNA splicing via a sequence-specific single-stranded RNA binding. Nucleic Acids Res 2017; 45:1731-1742. [PMID: 27899607 PMCID: PMC5389519 DOI: 10.1093/nar/gkw1145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 11/11/2016] [Indexed: 01/30/2023] Open
Abstract
The adenovirus L4-22K protein both activates and suppresses transcription from the adenovirus major late promoter (MLP) by binding to DNA elements located downstream of the MLP transcriptional start site: the so-called DE element (positive) and the R1 region (negative). Here we show that L4-22K preferentially binds to the RNA form of the R1 region, both to the double-stranded RNA and the single-stranded RNA of the same polarity as the nascent MLP transcript. Further, L4-22K binds to a 5΄-CAAA-3΄ motif in the single-stranded RNA, which is identical to the sequence motif characterized for L4-22K DNA binding. L4-22K binding to single-stranded RNA results in an enhancement of U1 snRNA recruitment to the major late first leader 5΄ splice site. This increase in U1 snRNA binding results in a suppression of MLP transcription and a concurrent stimulation of major late first intron splicing.
Collapse
Affiliation(s)
- Susan Lan
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Uppsala University, S-751 23 Uppsala, Sweden
| |
Collapse
|
28
|
Machitani M, Sakurai F, Wakabayashi K, Tomita K, Tachibana M, Mizuguchi H. Dicer functions as an antiviral system against human adenoviruses via cleavage of adenovirus-encoded noncoding RNA. Sci Rep 2016; 6:27598. [PMID: 27273616 PMCID: PMC4895142 DOI: 10.1038/srep27598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/20/2016] [Indexed: 12/20/2022] Open
Abstract
In various organisms, including nematodes and plants, RNA interference (RNAi) is a defense system against virus infection; however, it is unclear whether RNAi functions as an antivirus system in mammalian cells. Rather, a number of DNA viruses, including herpesviruses, utilize post-transcriptional silencing systems for their survival. Here we show that Dicer efficiently suppresses the replication of adenovirus (Ad) via cleavage of Ad-encoding small RNAs (VA-RNAs), which efficiently promote Ad replication via the inhibition of eIF2α phosphorylation, to viral microRNAs (mivaRNAs). The Dicer knockdown significantly increases the copy numbers of VA-RNAs, leading to the efficient inhibition of eIF2α phosphorylation and the subsequent promotion of Ad replication. Conversely, overexpression of Dicer significantly inhibits Ad replication. Transfection with mivaRNA does not affect eIF2α phosphorylation or Ad replication. These results indicate that Dicer-mediated processing of VA-RNAs leads to loss of activity of VA-RNAs for enhancement of Ad replication and that Dicer functions as a defence system against Ad in mammalian cells.
Collapse
Affiliation(s)
- Mitsuhiro Machitani
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Fuminori Sakurai
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Regulatory Sciences for Oligonucleotide Therapeutics, Clinical Drug Development Unit, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Keisaku Wakabayashi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kyoko Tomita
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masashi Tachibana
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyuki Mizuguchi
- Laboratory of Biochemistry and Molecular Biology, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Laboratory of Hepatocyte Regulation, National Institute of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito, Asagi, Ibaraki, Osaka 567-0085, Japan.,iPS Cell-Based Research Project on Hepatic Toxicity and Metabolism, Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka 565-0871, Japan.,Global Center for Advanced Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan.,Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
29
|
Fortes P, Morris KV. Long noncoding RNAs in viral infections. Virus Res 2015; 212:1-11. [PMID: 26454188 DOI: 10.1016/j.virusres.2015.10.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023]
Abstract
Viral infections induce strong modifications in the cell transcriptome. Among the RNAs whose expression is altered by infection are long noncoding RNAs (lncRNAs). LncRNAs are transcripts with potential to function as RNA molecules. Infected cells may express viral lncRNAs, cellular lncRNAs and chimeric lncRNAs formed by viral and cellular sequences. Some viruses express viral lncRNAs whose function is essential for viral viability. They are transcribed by polymerase II or III and some of them can be processed by unique maturation steps performed by host cell machineries. Some viral lncRNAs control transcription, stability or translation of cellular and viral genes. Surprisingly, similar functions can be exerted by cellular lncRNAs induced by infection. Expression of cellular lncRNAs may be altered in response to viral replication or viral protein expression. However, many cellular lncRNAs respond to the antiviral pathways induced by infection. In fact, many lncRNAs function as positive or negative regulators of the innate antiviral response. Our current knowledge about the identity and function of lncRNAs in infected cells is very limited. However, research into this field has already helped in the identification of novel cellular pathways and may help in the development of therapeutic tools for the treatment of viral infections, autoimmune diseases, neurological disorders and cancer.
Collapse
Affiliation(s)
- Puri Fortes
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain.
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; School of Biotechnology and Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
30
|
Abstract
Viral infections induce strong modifications in the cell transcriptome. Among the RNAs whose expression is altered by infection are long noncoding RNAs (lncRNAs). LncRNAs are transcripts with potential to function as RNA molecules. Infected cells may express viral lncRNAs, cellular lncRNAs and chimeric lncRNAs formed by viral and cellular sequences. Some viruses express viral lncRNAs whose function is essential for viral viability. They are transcribed by polymerase II or III and some of them can be processed by unique maturation steps performed by host cell machineries. Some viral lncRNAs control transcription, stability or translation of cellular and viral genes. Surprisingly, similar functions can be exerted by cellular lncRNAs induced by infection. Expression of cellular lncRNAs may be altered in response to viral replication or viral protein expression. However, many cellular lncRNAs respond to the antiviral pathways induced by infection. In fact, many lncRNAs function as positive or negative regulators of the innate antiviral response. Our current knowledge about the identity and function of lncRNAs in infected cells is very limited. However, research into this field has already helped in the identification of novel cellular pathways and may help in the development of therapeutic tools for the treatment of viral infections, autoimmune diseases, neurological disorders and cancer.
Collapse
Affiliation(s)
- Puri Fortes
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain.
| | - Kevin V Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA, USA; School of Biotechnology and Biomedical Sciences, University of New South Wales, Kensington, NSW, Australia
| |
Collapse
|
31
|
Inturi R, Kamel W, Akusjärvi G, Punga T. Complementation of the human adenovirus type 5 VA RNAI defect by the Vaccinia virus E3L protein and serotype-specific VA RNAIs. Virology 2015. [PMID: 26196231 DOI: 10.1016/j.virol.2015.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human adenoviruses (HAdVs) encode for multifunctional non-coding virus-associated (VA) RNAs, which function as powerful suppressors of the cellular interferon (IFN) and RNA interference (RNAi) systems. In this study we tested the ability of various plant and animal virus encoded RNAi and IFN suppressor proteins to functionally substitute for the HAdV-5 VA RNAI. Our results revealed that only the Vaccinia virus (VACV) E3L protein was able to substitute for the HAdV-5 VA RNAI functions in virus-infected cells. Interestingly, the E3L protein rescues the translational defect but does not stimulate viral capsid mRNA accumulation observed with VA RNA. We further show that the E3L C-terminal region containing the dsRNA-binding domain is needed to enhance VA RNAI mutant virus replication. Additionally, we show that the HAdV-4 and HAdV-37 VA RNAI are more effective than the HAdV-5 VA RNAI in rescuing virus replication.
Collapse
Affiliation(s)
- Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, Uppsala, Sweden.
| |
Collapse
|
32
|
Vachon VK, Conn GL. Adenovirus VA RNA: An essential pro-viral non-coding RNA. Virus Res 2015; 212:39-52. [PMID: 26116898 DOI: 10.1016/j.virusres.2015.06.018] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 06/15/2015] [Accepted: 06/17/2015] [Indexed: 12/25/2022]
Abstract
Adenovirus (AdV) 'virus-associated' RNAs (VA RNAs) are exceptionally abundant (up to 10(8)copies/cell), heterogeneous, non-coding RNA transcripts (∼ 150-200 nucleotides). The predominant species, VA RNAI, is best recognized for its essential function in relieving the cellular anti-viral blockade of protein synthesis through inhibition of the double-stranded RNA-activated protein kinase (PKR). More recent evidence has revealed that VA RNAs also interfere with several other host cell processes, in part by virtue of the high level to which they accumulate. Following transcription by cellular RNA polymerase III, VA RNAs saturate the nuclear export protein Exportin 5 (Exp5) and the cellular endoribonculease Dicer, interfering with pre-micro (mi)RNA export and miRNA biogenesis, respectively. Dicer-processed VA RNA fragments are incorporated into the RNA-induced silencing complex (RISC) as 'mivaRNAs', where they may specifically target cellular genes. VA RNAI also interacts with other innate immune proteins, including OAS1. While intact VA RNAI has the paradoxical effect of activating OAS1, a non-natural VA RNAI construct lacking the entire Terminal Stem has been reported to be a pseudoinhibitor of OAS1. Here, we show that a VA RNAI construct corresponding to an authentic product of Dicer processing similarly fails to activate OAS1 but also retains only a modest level of inhibitory activity against PKR in contrast to the non-natural deletion construct. These findings underscore the complexity of the arms race between virus and host, and highlight the need for further exploration of the impact of VA RNAI interactions with host defenses on the outcome of AdV infection beyond that of well-established PKR inhibition. Additional contributions of VA RNAI heterogeneity resulting from variations in transcription initiation and termination to each of these functions remain open questions that are discussed here.
Collapse
Affiliation(s)
- Virginia K Vachon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA; Microbiology and Molecular Genetics (MMG) Program, Graduate Division of Biological and Biomedical Sciences, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
33
|
Pickl JMA, Kamel W, Ciftci S, Punga T, Akusjärvi G. Opposite expression of CYP51A1 and its natural antisense transcript AluCYP51A1 in adenovirus type 37 infected retinal pigmented epithelial cells. FEBS Lett 2015; 589:1383-8. [PMID: 25907535 DOI: 10.1016/j.febslet.2015.04.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/26/2015] [Accepted: 04/10/2015] [Indexed: 11/29/2022]
Abstract
Cytochrome P450 family member CYP51A1 is a key enzyme in cholesterol biosynthesis whose deregulation is implicated in numerous diseases, including retinal degeneration. Here we describe that HAdV-37 infection leads to downregulation of CYP51A1 expression and overexpression of its antisense non-coding Alu element (AluCYP51A1) in retinal pigment epithelium (RPE) cells. This change in gene expression is associated with a reversed accumulation of a positive histone mark at the CYP51A1 and AluCYP51A1 promoters. Further, transient AluCYP51A1 RNA overexpression correlates with reduced CYP51A1 mRNA accumulation. Collectively, our data suggest that AluCYP51A1 might control CYP51A1 gene expression in HAdV-37-infected RPE cells.
Collapse
Affiliation(s)
- Julia Maria Anna Pickl
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, 75123 Uppsala, Sweden
| | - Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, 75123 Uppsala, Sweden
| | - Sibel Ciftci
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, 75123 Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, 75123 Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Husargatan 3, BMC, Box 582, 75123 Uppsala, Sweden.
| |
Collapse
|
34
|
Abstract
Eukaryotic cells produce several classes of long and small noncoding RNA (ncRNA). Many DNA and RNA viruses synthesize their own ncRNAs. Like their host counterparts, viral ncRNAs associate with proteins that are essential for their stability, function, or both. Diverse biological roles--including the regulation of viral replication, viral persistence, host immune evasion, and cellular transformation--have been ascribed to viral ncRNAs. In this review, we focus on the multitude of functions played by ncRNAs produced by animal viruses. We also discuss their biogenesis and mechanisms of action.
Collapse
Affiliation(s)
- Kazimierz T Tycowski
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Yang Eric Guo
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Nara Lee
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Walter N Moss
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Tenaya K Vallery
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Mingyi Xie
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| | - Joan A Steitz
- Department of Molecular Biophysics and Biochemistry, Howard Hughes Medical Institute, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA
| |
Collapse
|
35
|
Abstract
Human adenoviruses (HAdVs) are an important cause of infections in both immunocompetent and immunocompromised individuals, and they continue to provide clinical challenges pertaining to diagnostics and treatment. The growing number of HAdV types identified by genomic analysis, as well as the improved understanding of the sites of viral persistence and reactivation, requires continuous adaptions of diagnostic approaches to facilitate timely detection and monitoring of HAdV infections. In view of the clinical relevance of life-threatening HAdV diseases in the immunocompromised setting, there is an urgent need for highly effective treatment modalities lacking major side effects. The present review summarizes the recent progress in the understanding and management of HAdV infections.
Collapse
|
36
|
Identification of RISC-associated adenoviral microRNAs, a subset of their direct targets, and global changes in the targetome upon lytic adenovirus 5 infection. J Virol 2014; 89:1608-27. [PMID: 25410853 DOI: 10.1128/jvi.02336-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
UNLABELLED Adenoviruses encode a set of highly abundant microRNAs (mivaRNAs), which are generated by Dicer-mediated cleavage of the larger noncoding virus-associated RNAs (VA RNAs) I and II. We performed deep RNA sequencing to thoroughly investigate the relative abundance of individual single strands of mivaRNA isoforms in human A549 cells lytically infected with human adenovirus 5 (Ad5) at physiologically relevant multiplicities of infection (MOIs). In addition, we investigated their relative abundance in the endogenous RNA-induced silencing complexes (RISCs). The occupation of endogenous RISCs by mivaRNAs turned out to be pronounced but not as dominant as previously inferred from experiments with AGO2-overexpressing cells infected at high MOIs. In parallel, levels of RISC-incorporated mRNAs were investigated as well. Analysis of mRNAs enriched in RISCs in Ad5-infected cells revealed that only mRNAs with complementarity to the seed sequences of mivaRNAs derived from VA RNAI but not VA RNAII were overrepresented among them, indicating that only mivaRNAs derived from VA RNAI are likely to contribute substantially to the posttranscriptional downregulation of host gene expression. Furthermore, to generate a comprehensive picture of the entire transcriptome/targetome in lytically infected cells, we determined changes in cellular miRNA levels in both total RNA and RISC RNA as well, and bioinformatical analysis of mRNAs of total RNA/RISC fractions revealed a general, genome-wide trend toward detargeting of cellular mRNAs upon infection. Lastly, we identified the direct targets of both single strands of a VA RNAI-derived mivaRNA that constituted one of the two most abundant isoforms in RISCs of lytically infected A549 cells. IMPORTANCE Viral and cellular miRNAs have been recognized as important players in virus-host interactions. This work provides the currently most comprehensive picture of the entire mRNA/miRNA transcriptome and of the complete RISC targetome during lytic adenovirus infection and thus represents the basis for a deeper understanding of the interplay between the virus and the cellular RNA interference machinery. Our data suggest that, at least in the model system that was employed, lytic infection by Ad5 is accompanied by a measurable global net detargeting effect on cellular mRNAs, and analysis of RISC-associated viral small RNAs revealed that the VA RNAs are the only source of virus-encoded miRNAs. Moreover, this work allows to assess the power of individual viral miRNAs to regulate cellular gene expression and provides a list of proven and putative direct targets of these miRNAs, which is of importance, given the fact that information about validated targets of adenovirus-encoded miRNAs is scarce.
Collapse
|
37
|
Kamel W, Segerman B, Punga T, Akusjärvi G. Small RNA sequence analysis of adenovirus VA RNA-derived miRNAs reveals an unexpected serotype-specific difference in structure and abundance. PLoS One 2014; 9:e105746. [PMID: 25144466 PMCID: PMC4140831 DOI: 10.1371/journal.pone.0105746] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 07/16/2014] [Indexed: 01/20/2023] Open
Abstract
Human adenoviruses (HAds) encode for one or two highly abundant virus-associated RNAs, designated VA RNAI and VA RNAII, which fold into stable hairpin structures resembling miRNA precursors. Here we show that the terminal stem of the VA RNAs originating from Ad4, Ad5, Ad11 and Ad37, all undergo Dicer dependent processing into virus-specific miRNAs (so-called mivaRNAs). We further show that the mivaRNA duplex is subjected to a highly asymmetric RISC loading with the 3′-strand from all VA RNAs being the favored strand, except for the Ad37 VA RNAII, where the 5′-mivaRNAII strand was preferentially assembled into RISC. Although the mivaRNA seed sequences are not fully conserved between the HAds a bioinformatics prediction approach suggests that a large fraction of the VA RNAII-, but not the VA RNAI-derived mivaRNAs still are able to target the same cellular genes. Using small RNA deep sequencing we demonstrate that the Dicer processing event in the terminal stem of the VA RNAs is not unique and generates 3′-mivaRNAs with a slight variation of the position of the 5′ terminal nucleotide in the RISC loaded guide strand. Also, we show that all analyzed VA RNAs, except Ad37 VA RNAI and Ad5 VA RNAII, utilize an alternative upstream A start site in addition to the classical +1 G start site. Further, the 5′-mivaRNAs with an A start appears to be preferentially incorporated into RISC. Although the majority of mivaRNA research has been done using Ad5 as the model system our analysis demonstrates that the mivaRNAs expressed in Ad11- and Ad37-infected cells are the most abundant mivaRNAs associated with Ago2-containing RISC. Collectively, our results show an unexpected variability in Dicer processing of the VA RNAs and a serotype-specific loading of mivaRNAs into Ago2-based RISC.
Collapse
Affiliation(s)
- Wael Kamel
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Science for Life Laboratory Uppsala University, Uppsala, Sweden
| | - Bo Segerman
- National Veterinary Institute, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Science for Life Laboratory Uppsala University, Uppsala, Sweden
| | - Göran Akusjärvi
- Department of Medical Biochemistry and Microbiology, Uppsala Biomedical Center, Science for Life Laboratory Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
38
|
Wilson JL, Vachon VK, Sunita S, Schwartz SL, Conn GL. Dissection of the adenoviral VA RNAI central domain structure reveals minimum requirements for RNA-mediated inhibition of PKR. J Biol Chem 2014; 289:23233-23245. [PMID: 24970889 DOI: 10.1074/jbc.m114.550046] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Virus-associated RNA I (VA RNAI) is a short (∼160-nucleotide) non-coding RNA transcript employed by adenoviruses to subvert the innate immune system protein double-stranded RNA-activated protein kinase (PKR). The central domain of VA RNAI is proposed to contain a complex tertiary structure that contributes to its optimal inhibitory activity against PKR. Here we use a combination of VA RNAI mutagenesis, structural analyses, as well as PKR activity and binding assays to dissect this tertiary structure and assess its functional role. Our results support the existence of a pH- and Mg(2+)-dependent tertiary structure involving pseudoknot formation within the central domain. Unexpectedly, this structure appears to play no direct role in PKR inhibition. Deletion of central domain sequences within a minimal but fully active construct lacking the tertiary structure reveals a crucial role in PKR binding and inhibition for nucleotides in the 5' half of the central domain. Deletion of the central domain 3' half also significantly impacts activity but appears to arise indirectly by reducing its capacity to assist in optimally presenting the 5' half sequence. Collectively, our results identify regions of VA RNAI critical for PKR inhibition and reveal that the requirements for an effective RNA inhibitor of PKR are simpler than appreciated previously.
Collapse
Affiliation(s)
- Jo L Wilson
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Virginia K Vachon
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - S Sunita
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Samantha L Schwartz
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia 30322.
| |
Collapse
|
39
|
Cox JE, Sullivan CS. Balance and Stealth: The Role of Noncoding RNAs in the Regulation of Virus Gene Expression. Annu Rev Virol 2014; 1:89-109. [PMID: 26958716 DOI: 10.1146/annurev-virology-031413-085439] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In the past two decades, our knowledge of gene regulation has been greatly expanded by the discovery of microRNAs (miRNAs). miRNAs are small (19-24 nt) noncoding RNAs (ncRNAs) found in metazoans, plants, and some viruses. They have been shown to regulate many cellular processes, including differentiation, maintenance of homeostasis, apoptosis, and the immune response. At present, there are over 300 known viral miRNAs encoded by diverse virus families. One well-characterized function of some viral miRNAs is the regulation of viral transcripts. Host miRNAs can also regulate viral gene expression. We propose that viruses take advantage of both host and viral ncRNA regulation to balance replication and infectious state (for example, latent versus lytic infection). As miRNA regulation can be reversed upon certain cellular stresses, we hypothesize that ncRNAs can serve viruses as barometers for cellular stress.
Collapse
Affiliation(s)
- Jennifer E Cox
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712;
| | - Christopher S Sullivan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712;
| |
Collapse
|
40
|
Inturi R, Thaduri S, Punga T. Adenovirus precursor pVII protein stability is regulated by its propeptide sequence. PLoS One 2013; 8:e80617. [PMID: 24260437 PMCID: PMC3829898 DOI: 10.1371/journal.pone.0080617] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/04/2013] [Indexed: 11/18/2022] Open
Abstract
Adenovirus encodes for the pVII protein, which interacts and modulates virus DNA structure in the infected cells. The pVII protein is synthesized as the precursor protein and undergoes proteolytic processing by viral proteinase Avp, leading to release of a propeptide sequence and accumulation of the mature VII protein. Here we elucidate the molecular functions of the propeptide sequence present in the precursor pVII protein. The results show that the propeptide is the destabilizing element targeting the precursor pVII protein for proteasomal degradation. Our data further indicate that the propeptide sequence and the lysine residues K26 and K27 regulate the precursor pVII protein stability in a co-dependent manner. We also provide evidence that the Cullin-3 E3 ubiquitin ligase complex alters the precursor pVII protein stability by association with the propeptide sequence. In addition, we show that inactivation of the Cullin-3 protein activity reduces adenovirus E1A gene expression during early phase of virus infection. Collectively, our results indicate a novel function of the adenovirus propeptide sequence and involvement of Cullin-3 in adenovirus gene expression.
Collapse
Affiliation(s)
- Raviteja Inturi
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Srinivas Thaduri
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Tanel Punga
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|