1
|
Sakhuja A, Bhattacharyya R, Katakia YT, Ramakrishnan SK, Chakraborty S, Jayakumar H, Tripathi SM, Pandya Thakkar N, Thakar S, Sundriyal S, Chowdhury S, Majumder S. S-nitrosylation of EZH2 alters PRC2 assembly, methyltransferase activity, and EZH2 stability to maintain endothelial homeostasis. Nat Commun 2025; 16:3953. [PMID: 40289112 PMCID: PMC12034783 DOI: 10.1038/s41467-025-59003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/08/2025] [Indexed: 04/30/2025] Open
Abstract
Nitric oxide (NO), a versatile bio-active molecule modulates cellular functions through diverse mechanisms including S-nitrosylation of proteins. Herein, we report S-nitrosylation of selected cysteine residues of EZH2 in endothelial cells, which interplays with its stability and functions. We detect a significant reduction in H3K27me3 upon S-nitrosylation of EZH2 as contributed by the early dissociation of SUZ12 from the PRC2. Moreover, S-nitrosylation of EZH2 causes its cytosolic translocation, ubiquitination, and degradation. Further analysis reveal S-nitrosylation of cysteine 329 induces EZH2 instability, whereas S-nitrosylation of cysteine 700 abrogates its catalytic activity. We further show that S-nitrosylation-dependent regulation of EZH2 maintains endothelial homeostasis in both physiological and pathological settings. Molecular dynamics simulation reveals the inability of SUZ12 to efficiently bind to the SAL domain of EZH2 upon S-nitrosylation. Taken together, our study reports S-nitrosylation-dependent regulation of EZH2 and its associated PRC2 complex, thereby influencing the epigenetics of endothelial homeostasis.
Collapse
Affiliation(s)
- Ashima Sakhuja
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, Pilani, India
| | - Ritobrata Bhattacharyya
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, Pilani, India
| | - Yash Tushar Katakia
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, Pilani, India
| | - Shyam Kumar Ramakrishnan
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, Pilani, India
| | - Srinjoy Chakraborty
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, Pilani, India
| | - Hariharan Jayakumar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, Pilani, India
| | - Shailesh Mani Tripathi
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, Pilani, India
| | - Niyati Pandya Thakkar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, Pilani, India
| | - Sumukh Thakar
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, Pilani, India
| | - Sandeep Sundriyal
- Department of Pharmacy, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, Pilani, India
| | - Shibasish Chowdhury
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, Pilani, India
| | - Syamantak Majumder
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) Pilani, Pilani Campus, Rajasthan, Pilani, India.
| |
Collapse
|
2
|
Hua Y, Tay NES, Ye X, Owen JA, Liu H, Thompson RE, Muir TW. Protein editing using a coordinated transposition reaction. Science 2025; 388:68-74. [PMID: 40179182 DOI: 10.1126/science.adq8540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 01/30/2025] [Indexed: 04/05/2025]
Abstract
Protein engineering through the ligation of polypeptide fragments has proven enormously powerful for studying biochemical processes. In general, this strategy necessitates a final protein-folding step, constraining the types of systems amenable to the approach. Here, we report a method that allows internal regions of target proteins to be replaced in a single operation. Conceptually, our system is analogous to a DNA transposition reaction but uses orthogonal pairs of engineered split inteins to mediate the editing process. This "protein transposition" reaction is applied to several systems, including folded protein complexes, allowing the efficient introduction of a variety of noncoded elements. By carrying out a molecular "cut and paste" under native protein-folding conditions, our approach substantially expands the scope of protein semisynthesis.
Collapse
Affiliation(s)
- Yi Hua
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Nicholas E S Tay
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Xuanjia Ye
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Jeremy A Owen
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | - Hengyuan Liu
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| | | | - Tom W Muir
- Department of Chemistry, Princeton University, Princeton, NJ, USA
| |
Collapse
|
3
|
Ozleyen A, Duran GN, Donmez S, Ozbil M, Doveston RG, Tumer TB. Identification and inhibition of PIN1-NRF2 protein-protein interactions through computational and biophysical approaches. Sci Rep 2025; 15:8907. [PMID: 40087364 PMCID: PMC11909128 DOI: 10.1038/s41598-025-89342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 02/04/2025] [Indexed: 03/17/2025] Open
Abstract
NRF2 is a transcription factor responsible for coordinating the expression of over a thousand cytoprotective genes. Although NRF2 is constitutively expressed, its stability is modulated by the redox-sensitive protein KEAP1 and other conditional binding partner regulators. The new era of NRF2 research has highlighted the cooperation between NRF2 and PIN1 in modifying its cytoprotective effect. Despite numerous studies, the understanding of the PIN1-NRF2 interaction remains limited. Herein, we described the binding interaction of PIN1 and three different 14-mer long phospho-peptides mimicking NRF2 protein using computer-based, biophysical, and biochemical approaches. According to our computational analyses, the residues positioned in the WW domain of PIN1 (Ser16, Arg17, Ser18, Tyr23, Ser32, Gln33, and Trp34) were found to be crucial for PIN1-NRF2 interactions. Biophysical FP assays were used to verify the computational prediction. The data demonstrated that Pintide, a peptide predominantly interacting with the PIN1 WW-domain, led to a significant reduction in the binding affinity of the NRF2 mimicking peptides. Moreover, we evaluated the impact of known PIN1 inhibitors (juglone, KPT-6566, and EGCG) on the PIN1-NRF2 interaction. Among the inhibitors, KPT-6566 showed the most potent inhibitory effect on PIN1-NRF2 interaction within an IC50 range of 0.3-1.4 µM. Furthermore, our mass spectrometry analyses showed that KPT-6566 appeared to covalently modify PIN1 via conjugate addition, rather than disulfide exchange of the sulfonyl-acetate moiety. Altogether, such inhibitors would also be highly valuable molecular probes for further investigation of PIN1 regulation of NRF2 in the cellular context and potentially pave the way for drug molecules that specifically inhibit the cytoprotective effects of NRF2 in cancer.
Collapse
Affiliation(s)
- Adem Ozleyen
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, LE1 7RH, UK
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK
- Health Institutes of Türkiye, Türkiye Biotechnology Institute, 06270, Ankara, Turkey
| | - Gizem Nur Duran
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Serhat Donmez
- Graduate Program of Molecular Biology and Genetics, School of Graduate Studies, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey
- Institute of Science and Technology Austria (ISTA), 3400, Klosterneuburg, Austria
| | - Mehmet Ozbil
- Institute of Biotechnology, Gebze Technical University, 41400, Gebze, Kocaeli, Turkey
| | - Richard G Doveston
- Leicester Institute for Structural and Chemical Biology, University of Leicester, Leicester, LE1 7RH, UK.
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, UK.
| | - Tugba Boyunegmez Tumer
- Department of Molecular Biology and Genetics, Faculty of Arts and Science, Canakkale Onsekiz Mart University, 17020, Canakkale, Turkey.
- Department of Medical Biotechnology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
| |
Collapse
|
4
|
Attri P, Okumura T, Koga K, Shiratani M. Structural Analysis of Plasma-Induced Oxidation and Electric Field Effect on the Heat Shock Protein (Hsp60) Structure: A Computational Viewpoint. Chem Biodivers 2025; 22:e202401243. [PMID: 39756028 DOI: 10.1002/cbdv.202401243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
In recent years, there has been an increase in the study of the mechanisms behind plasma oncology. For this, many wet lab experiments and computational studies were conducted. Computational studies give an advantage in examining protein structures that are costly to extract in enough amounts to analyze the biophysical properties following plasma treatment. Therefore, in this work, we studied the effect of plasma oxidation and electric field on the human mitochondrial heat shock protein (mHsp60). Hsp60, alias chaperonin, is one of the most conserved proteins expressed across all species. Hence, we performed molecular dynamic simulations to calculate the root-mean-square deviation, root-mean-square fluctuation, and solvent-accessible surface area of mHsp60 with and without oxidation. In addition to the oxidation state, we also applied an electric field (0.003 and 2.0 V/nm) to check the changes in the mHsp60 protein. Through simulations, we observed that the electric field strongly affects the structure of mHsp60 protein compared with the oxidation. The combination of oxidation and electric field effect increases the destabilization of the mHsp60 structure compared with their respective control states.
Collapse
Affiliation(s)
- Pankaj Attri
- Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka, Japan
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka, Japan
| | | | - Kazunori Koga
- Department of Electronics, Kyushu University, Fukuoka, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-interface Engineering, Kyushu University, Fukuoka, Japan
- Department of Electronics, Kyushu University, Fukuoka, Japan
- Quantum and Photonics Technology Research Center, Kyushu University, Fukuoka, Japan
- Institute for Advanced Study, Kyushu University, Fukuoka, Japan
| |
Collapse
|
5
|
Yalçın Çapan Ö. Navigating Uncertainty: Assessing Variants of Uncertain Significance in the CDKL5 Gene for Developmental and Epileptic Encephalopathy Using In Silico Prediction Tools and Computational Analysis. J Mol Neurosci 2025; 75:19. [PMID: 39945963 DOI: 10.1007/s12031-024-02299-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/06/2024] [Indexed: 04/02/2025]
Abstract
Mutations in the CDKL5 gene are associated with developmental and epileptic encephalopathy (DEE), a severe disorder characterized by developmental delay and epileptic activity. In genetic analyses of DEEs, variants classified as pathogenic confirm the diagnosis of the disease while Variants of Uncertain Significance (VUS) remain in a gray area due to insufficient evidence. This study aimed to optimize the interpretation of VUS in the CDKL5 gene by evaluating the performance of 22 in silico prediction tools using 186 known pathogenic or benign missense variants from the ClinVar database. The best-performing tools were then applied to analyze CDKL5 VUS variants, complemented by the evaluation of evolutionary conservation, structural analyses, and molecular dynamics simulations to assess their impact on protein structure and function. The results identified SNPred as the most reliable tool, achieving 100% accuracy, sensitivity, and specificity. Other high-performing tools, including ESM-1v, AlphaMissense, EVE, and ClinPred, demonstrated over 98% accuracy. Among 44 CDKL5 VUS variants evaluated, 20 were initially classified as pathogenic by these tools. However, further evaluation using stringent criteria-incorporating conservation scores, structural disruptions identified by Missense3D and PyMol, and molecular dynamics simulation results-led to the reclassification of 8 VUS variants as "potentially pathogenic" and the remaining 12 as "variants with conflicting data". This comprehensive approach provides a robust framework for the classification of VUS in the CDKL5 gene, offering critical insights for accurate diagnosis and treatment strategies in DEE. These findings will serve as a valuable resource for clinicians and geneticists in resolving the diagnostic ambiguity associated with VUS.
Collapse
Affiliation(s)
- Özlem Yalçın Çapan
- Department of Medical Biology, Faculty of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Türkiye.
| |
Collapse
|
6
|
Heirman P, Verswyvel H, Bauwens M, Yusupov M, De Waele J, Lin A, Smits E, Bogaerts A. Effect of plasma-induced oxidation on NK cell immune checkpoint ligands: A computational-experimental approach. Redox Biol 2024; 77:103381. [PMID: 39395241 PMCID: PMC11663777 DOI: 10.1016/j.redox.2024.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/14/2024] Open
Abstract
Non-thermal plasma (NTP) shows promise as a potent anti-cancer therapy with both cytotoxic and immunomodulatory effects. In this study, we investigate the chemical and biological effects of NTP-induced oxidation on several key, determinant immune checkpoints of natural killer (NK) cell function. We used molecular dynamics (MD) and umbrella sampling simulations to investigate the effect of NTP-induced oxidative changes on the MHC-I complexes HLA-Cw4 and HLA-E. Our simulations indicate that these chemical alterations do not significantly affect the binding affinity of these markers to their corresponding NK cell receptor, which is supported with experimental read-outs of ligand expression on human head and neck squamous cell carcinoma cells after NTP application. Broadening our scope to other key ligands for NK cell reactivity, we demonstrate rapid reduction in CD155 and CD112, target ligands of the inhibitory TIGIT axis, and in immune checkpoint CD73 immediately after treatment. Besides these transient chemical alterations, the reactive species in NTP cause a cascade of downstream cellular reactions. This is underlined by the upregulation of the stress proteins MICA/B, potent ligands for NK cell activation, 24 h post treatment. Taken together, this work corroborates the immunomodulatory potential of NTP, and sheds light on the interaction mechanisms between NTP and cancer cells.
Collapse
Affiliation(s)
- Pepijn Heirman
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium.
| | - Hanne Verswyvel
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium.
| | - Mauranne Bauwens
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Maksudbek Yusupov
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Institute of Fundamental and Applied Research, National Research University TIIAME, 100000, Tashkent, Uzbekistan; Laboratory of Experimental Biophysics, Center for Advanced Technologies, 100174, Tashkent, Uzbekistan
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Abraham Lin
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610, Antwerp, Wilrijk, Belgium
| |
Collapse
|
7
|
Natarajan V, Satalkar V, Gumbart JC, Torres M. Molecular Dynamics Reveals Altered Interactions between Belzutifan and HIF-2 with Natural Variant G323E or Proximal Phosphorylation at T324. ACS OMEGA 2024; 9:37843-37855. [PMID: 39281922 PMCID: PMC11391435 DOI: 10.1021/acsomega.4c03777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/11/2024] [Accepted: 08/16/2024] [Indexed: 09/18/2024]
Abstract
In patients with von-Hippel Lindau (VHL) disease, hypoxia-independent accumulation of HIF-2α leads to increased transcriptional activity of HIF-2α:ARNT that drives cancers such as renal cell carcinoma. Belzutifan, a recently FDA-approved drug, is designed to prevent the transcriptional activity of HIF-2α:ARNT, thereby overcoming the consequences of its unnatural accumulation in VHL-dependent cancers. Emerging evidence suggests that the naturally occurring variant G323E located in the HIF-2α drug binding pocket prevents inhibitory activity of belzutifan analogs, though the mechanism of inhibition remains unclear. Interestingly, proximal phosphorylation at neighboring T324, previously shown to regulate HIF-2 protein interactions, has also been proposed to affect HIF-2 drug binding. Here, we used molecular dynamics (MD) simulations to understand and compare the molecular-level effects of G323E and phospho-T324 (pT324) on the belzutifan bound-HIF-2α:ARNT complex. We find that both G323E and pT324 increase structural flexibility within the drug binding site and reduce the apparent binding affinity for belzutifan. Whereas the effects of G323E are concentrated in the binding pocket Fα helix within the HIF-2α PAS-B domain, pT324 decreased the belzutifan binding affinity and stabilized the HIF-2 heterodimer through an alternate mechanism involving polar interactions between the HIF-2α PAS-B and PAS-A domains. Further analysis via ensemble machine learning uncovered important and distinct interchain residue interactions modified by G323E and pT324. These findings reveal a molecular mechanism of G323E-induced drug resistance and suggest that pT324 may also affect the efficacy of HIF-2 drug binding interactions via allosteric effects.
Collapse
Affiliation(s)
- Vishva Natarajan
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vardhan Satalkar
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - James C Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Matthew Torres
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
8
|
Tan X, Han Y, Zhai S, Dong H, Zhang T, Zhang K. An Integrated Analytical Approach for Screening Functional Post-Translational Modification Sites in Metabolic Enzymes. ACS OMEGA 2024; 9:19003-19008. [PMID: 38708225 PMCID: PMC11064186 DOI: 10.1021/acsomega.3c09514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
Post-translational modifications (PTMs) are pivotal in the orchestration of diverse physiological and pathological processes. Despite this, the identification of functional PTM sites within the vast amount of data remains challenging. Conventionally, those PTM sites are discerned through labor-intensive and time-consuming experiments. Here, we developed an integrated analytical approach for the identification of functional PTM sites on metabolic enzymes via a screening process. Through gene ontology (GO) analysis, we identified 269 enzymes with lysine 2-hydroxyisobutyrylation (Khib) from our proteomics data set of Escherichia coli. The first round of screening was performed based on the enzyme structures/predicted structures using the TM-score engineer, a tool designed to evaluate the impact of PTM on the protein structure. Subsequently, we examined the influence of Khib on the enzyme-substrate interactions through both static and dynamic analyses, molecular docking, and molecular dynamics simulation. Ultimately, we identified NfsB K181hib and ThiF K83hib as potential functional sites. This work has established a novel analytical approach for the identification of functional protein PTM sites, thereby contributing to the understanding of Khib functions.
Collapse
Affiliation(s)
- Xiaoxia Tan
- The
Province and Ministry Co-Sponsored Collaborative Innovation Center
for Medical Epigenetics, Key Laboratory of Immune Microenvironment
and Disease (Ministry of Education), Tianjin Key Laboratory of Medical
Epigenetics, Department of Biochemistry and Molecular Biology, School
of Basic Medical Sciences, Tianjin Medical
University, Tianjin 300070, China
| | - Yue Han
- The
Province and Ministry Co-Sponsored Collaborative Innovation Center
for Medical Epigenetics, Key Laboratory of Immune Microenvironment
and Disease (Ministry of Education), Tianjin Key Laboratory of Medical
Epigenetics, Department of Biochemistry and Molecular Biology, School
of Basic Medical Sciences, Tianjin Medical
University, Tianjin 300070, China
| | - Shengrui Zhai
- The
Province and Ministry Co-Sponsored Collaborative Innovation Center
for Medical Epigenetics, Key Laboratory of Immune Microenvironment
and Disease (Ministry of Education), Tianjin Key Laboratory of Medical
Epigenetics, Department of Biochemistry and Molecular Biology, School
of Basic Medical Sciences, Tianjin Medical
University, Tianjin 300070, China
| | - Hanyang Dong
- The
Province and Ministry Co-Sponsored Collaborative Innovation Center
for Medical Epigenetics, Key Laboratory of Immune Microenvironment
and Disease (Ministry of Education), Tianjin Key Laboratory of Medical
Epigenetics, Department of Biochemistry and Molecular Biology, School
of Basic Medical Sciences, Tianjin Medical
University, Tianjin 300070, China
| | - Tao Zhang
- School
of Biomedical Engineering, Tianjin Medical
University, Tianjin 300070, China
| | - Kai Zhang
- The
Province and Ministry Co-Sponsored Collaborative Innovation Center
for Medical Epigenetics, Key Laboratory of Immune Microenvironment
and Disease (Ministry of Education), Tianjin Key Laboratory of Medical
Epigenetics, Department of Biochemistry and Molecular Biology, School
of Basic Medical Sciences, Tianjin Medical
University, Tianjin 300070, China
| |
Collapse
|
9
|
Yang SK, Kubo S, Black CS, Peri K, Dai D, Legal T, Valente-Paterno M, Gaertig J, Bui KH. Effect of α-tubulin acetylation on the doublet microtubule structure. eLife 2024; 12:RP92219. [PMID: 38598282 PMCID: PMC11006419 DOI: 10.7554/elife.92219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Acetylation of α-tubulin at the lysine 40 residue (αK40) by αTAT1/MEC-17 acetyltransferase modulates microtubule properties and occurs in most eukaryotic cells. Previous literatures suggest that acetylated microtubules are more stable and damage resistant. αK40 acetylation is the only known microtubule luminal post-translational modification site. The luminal location suggests that the modification tunes the lateral interaction of protofilaments inside the microtubule. In this study, we examined the effect of tubulin acetylation on the doublet microtubule (DMT) in the cilia of Tetrahymena thermophila using a combination of cryo-electron microscopy, molecular dynamics, and mass spectrometry. We found that αK40 acetylation exerts a small-scale effect on the DMT structure and stability by influencing the lateral rotational angle. In addition, comparative mass spectrometry revealed a link between αK40 acetylation and phosphorylation in cilia.
Collapse
Affiliation(s)
- Shun Kai Yang
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | - Shintaroh Kubo
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | | | - Katya Peri
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | - Daniel Dai
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | - Thibault Legal
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
| | | | - Jacek Gaertig
- Department of Cellular Biology, University of GeorgiaAthensUnited States
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, McGill UniversityMontréalCanada
- Centre de Recherche en Biologie Structurale, McGill UniversityMontréalCanada
| |
Collapse
|
10
|
Sánchez Milán JA, Fernández‐Rhodes M, Guo X, Mulet M, Ngan SC, Iyappan R, Katoueezadeh M, Sze SK, Serra A, Gallart‐Palau X. Trioxidized cysteine in the aging proteome mimics the structural dynamics and interactome of phosphorylated serine. Aging Cell 2024; 23:e14062. [PMID: 38111315 PMCID: PMC10928580 DOI: 10.1111/acel.14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 12/20/2023] Open
Abstract
Aging is the primary risk factor for the development of numerous human chronic diseases. On a molecular level, it significantly impacts the regulation of protein modifications, leading to the accumulation of degenerative protein modifications (DPMs) such as aberrant serine phosphorylation (p-Ser) and trioxidized cysteine (t-Cys) within the proteome. The altered p-Ser is linked to abnormal cell signaling, while the accumulation of t-Cys is associated with chronic diseases induced by oxidative stress. Despite this, the potential cross-effects and functional interplay between these two critical molecular factors of aging remain undisclosed. This study analyzes the aging proteome of wild-type C57BL/6NTac mice over 2 years using advanced proteomics and bioinformatics. Our objective is to provide a comprehensive analysis of how t-Cys affects cell signaling and protein structure in the aging process. The results obtained indicate that t-Cys residues accumulate in the aging proteome, interact with p-Ser interacting enzymes, as validated in vitro, and alter their structures similarly to p-Ser. These findings have significant implications for understanding the interplay of oxidative stress and phosphorylation in the aging process. Additionally, they open new venues for further research on the role(s) of these protein modifications in various human chronic diseases and aging, wherein exacerbated oxidation and aberrant phosphorylation are implicated.
Collapse
Affiliation(s)
- Jose Antonio Sánchez Milán
- Biomedical Research Institute of Lleida (IRBLLEIDA) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity Hospital Arnau de Vilanova (HUAV)LleidaSpain
- Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRB Lleida) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity of Lleida (UdL)LleidaSpain
| | - María Fernández‐Rhodes
- Biomedical Research Institute of Lleida (IRBLLEIDA) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity Hospital Arnau de Vilanova (HUAV)LleidaSpain
- Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRB Lleida) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity of Lleida (UdL)LleidaSpain
| | - Xue Guo
- Institute of Molecular and Cell Biology (IMCB)SingaporeSingapore
| | - María Mulet
- Biomedical Research Institute of Lleida (IRBLLEIDA) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity Hospital Arnau de Vilanova (HUAV)LleidaSpain
- Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRB Lleida) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity of Lleida (UdL)LleidaSpain
| | - SoFong Cam Ngan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Ranjith Iyappan
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Maryam Katoueezadeh
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Siu Kwan Sze
- Department of Health Sciences, Faculty of Applied Health SciencesBrock UniversitySt. CatharinesOntarioCanada
| | - Aida Serra
- Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRB Lleida) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity of Lleida (UdL)LleidaSpain
| | - Xavier Gallart‐Palau
- Biomedical Research Institute of Lleida (IRBLLEIDA) ‐ +Pec Proteomics Research Group (+PPRG) ‐ Neuroscience AreaUniversity Hospital Arnau de Vilanova (HUAV)LleidaSpain
- Department of PsychologyUniversity of Lleida (UdL)LleidaSpain
| |
Collapse
|
11
|
Volkova A, Semenyuk P. Tyrosine phosphorylation of recombinant hirudin increases affinity to thrombin and antithrombotic activity. Proteins 2024; 92:329-342. [PMID: 37860993 DOI: 10.1002/prot.26616] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/22/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023]
Abstract
Thrombin is one of the key enzymes of the blood coagulation system and a promising target for the development of anticoagulants. One of the most specific natural thrombin inhibitors is hirudin, contained in the salivary glands of medicinal leeches. The medicinal use of recombinant hirudin is limited because of the lack of sulfation on Tyr63, resulting in a 10-fold decrease in activity compared to native (sulfated) hirudin. In the present work, a set of hirudin derivatives was tested for affinity to thrombin: phospho-Tyr63, Tyr63(carboxymethyl)Phe, and Tyr63Glu mutants, which mimic Tyr63 sulfation and Gln65Glu mutant and lysine-succinylated hirudin, which enhance the overall negative charge of hirudin, as well as sulfo-hirudin and desulfo-hirudin as references. Using steered molecular dynamics simulations with subsequent umbrella sampling, phospho-hirudin was shown to exhibit the highest affinity to thrombin among all hirudin analogs, including native sulfo-hirudin; succinylated hirudin was also prospective. Phospho-hirudin exhibited the highest antithrombotic activity in in vitro assay in human plasma. Taking into account the modern methods for obtaining phospho-hirudin and succinylated hirudin, they are prospective as anticoagulants in clinical practice.
Collapse
Affiliation(s)
- Alina Volkova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Pavel Semenyuk
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
12
|
Sousa AD, Costa AL, Costa V, Pereira C. Prediction and biological analysis of yeast VDAC1 phosphorylation. Arch Biochem Biophys 2024; 753:109914. [PMID: 38290597 DOI: 10.1016/j.abb.2024.109914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/02/2024] [Accepted: 01/25/2024] [Indexed: 02/01/2024]
Abstract
The mitochondrial outer membrane protein porin 1 (Por1), the yeast orthologue of mammalian voltage-dependent anion channel (VDAC), is the major permeability pathway for the flux of metabolites and ions between cytosol and mitochondria. In yeast, several Por1 phosphorylation sites have been identified. Protein phosphorylation is a major modification regulating a variety of biological activities, but the potential biological roles of Por1 phosphorylation remains unaddressed. In this work, we analysed 10 experimentally observed phosphorylation sites in yeast Por1 using bioinformatics tools. Two of the residues, T100 and S133, predicted to reduce and increase pore permeability, respectively, were validated using biological assays. In accordance, Por1T100D reduced mitochondrial respiration, while Por1S133E phosphomimetic mutant increased it. Por1T100A expression also improved respiratory growth, while Por1S133A caused defects in all growth conditions tested, notably in fermenting media. In conclusion, we found phosphorylation has the potential to modulate Por1, causing a marked effect on mitochondrial function. It can also impact on cell morphology and growth both in respiratory and, unpredictably, also in fermenting conditions, expanding our knowledge on the role of Por1 in cell physiology.
Collapse
Affiliation(s)
- André D Sousa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal
| | - Ana Luisa Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal
| | - Vítor Costa
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal
| | - Clara Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal; IBMC - Instituto de Biologia Celular e Molecular, Universidade do Porto, Portugal.
| |
Collapse
|
13
|
Arkhipov DV, Lomin SN, Romanov GA. A Model of the Full-Length Cytokinin Receptor: New Insights and Prospects. Int J Mol Sci 2023; 25:73. [PMID: 38203244 PMCID: PMC10779265 DOI: 10.3390/ijms25010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 12/11/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Cytokinins (CK) are one of the most important classes of phytohormones that regulate a wide range of processes in plants. A CK receptor, a sensor hybrid histidine kinase, was discovered more than 20 years ago, but the structural basis for its signaling is still a challenge for plant biologists. To date, only two fragments of the CK receptor structure, the sensory module and the receiver domain, were experimentally resolved. Some other regions were built up by molecular modeling based on structures of proteins homologous to CK receptors. However, in the long term, these data have proven insufficient for solving the structure of the full-sized CK receptor. The functional unit of CK receptor is the receptor dimer. In this article, a molecular structure of the dimeric form of the full-length CK receptor based on AlphaFold Multimer and ColabFold modeling is presented for the first time. Structural changes of the receptor upon interacting with phosphotransfer protein are visualized. According to mathematical simulation and available data, both types of dimeric receptor complexes with hormones, either half- or fully liganded, appear to be active in triggering signals. In addition, the prospects of using this and similar models to address remaining fundamental problems of CK signaling were outlined.
Collapse
Affiliation(s)
| | | | - Georgy A. Romanov
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya 35, 127276 Moscow, Russia; (D.V.A.); (S.N.L.)
| |
Collapse
|
14
|
Sarukhanyan E, Dandekar T. In silico designed microtubule-stabilizer drugs against tauopathy in Alzheimer's disease. J Biomol Struct Dyn 2023; 41:8992-9012. [PMID: 36331069 DOI: 10.1080/07391102.2022.2139760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022]
Abstract
Microtubules are the main building blocks of the cytoskeleton that maintain the shape of the cell. Microtubule-associated proteins, such as Tau protein, facilitate their plasticity in cells. Highly phosphorylated Tau has weak affinity to microtubule and, hence, high probability of aggregation into neurofibrillary tangles (tauopathy). Alzheimer's disease evolves when Tau proteins are abnormally phosphorylated. To prevent tauopathy in Alzheimer's disease, we designed drugs de novo targeting them in silico to the phosphorylated Tau-microtubule complexes. Our molecular docking (AutoDock, MOE, GOLD) and molecular dynamics (GROMACS, 2019.6) simulation results revealed compound 23 (C12H28N4O5) as a potential drug candidate, since it can bind (-11.1 kcal/mol by AutoDock) and fix not only phosphorylated Tau on the surface of microtubules, but also prevent their aggregation into bundles. In addition, compound 23 has shown its ability to de-bundle already grouped phosphorylated peptides into single pieces.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Edita Sarukhanyan
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| |
Collapse
|
15
|
Xie CY, Li WJ, Feng H. Tuning transcription factor DegU for developing extracellular protease overproducer in Bacillus pumilus. Microb Cell Fact 2023; 22:163. [PMID: 37635205 PMCID: PMC10464342 DOI: 10.1186/s12934-023-02177-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/11/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Global transcription machinery engineering (gTME) is an effective approach employed in strain engineering to rewire gene expression and reshape cellular metabolic fluxes at the transcriptional level. RESULTS In this study, we utilized gTME to engineer the positive transcription factor, DegU, in the regulation network of major alkaline protease, AprE, in Bacillus pumilus. To validate its functionality when incorporated into the chromosome, we performed several experiments. First, three negative transcription factors, SinR, Hpr, and AbrB, were deleted to promote AprE synthesis. Second, several hyper-active DegU mutants, designated as DegU(hy), were selected using the fluorescence colorimetric method with the host of the Bacillus subtilis ΔdegSU mutant. Third, we integrated a screened degU(L113F) sequence into the chromosome of the Δhpr mutant of B. pumilus SCU11 to replace the original degU gene using a CRISPR/Cas9 system. Finally, based on transcriptomic and molecular dynamic analysis, we interpreted the possible mechanism of high-yielding and found that the strain produced alkaline proteases 2.7 times higher than that of the control strain (B. pumilus SCU11) in LB medium. CONCLUSION Our findings serve as a proof-of-concept that tuning the global regulator is feasible and crucial for improving the production performance of B. pumilus. Additionally, our study established a paradigm for gene function research in strains that are difficult to handle.
Collapse
Affiliation(s)
- Chao-Ying Xie
- Key Laboratory for Bio-resources and Eco-Environment of the Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Wen-Jin Li
- Key Laboratory for Bio-resources and Eco-Environment of the Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Hong Feng
- Key Laboratory for Bio-resources and Eco-Environment of the Ministry of Education, Sichuan Key Laboratory of Molecular Biology and Biotechnology, College of Life Sciences, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
16
|
Cho H, Yoo T, Moon H, Kang H, Yang Y, Kang M, Yang E, Lee D, Hwang D, Kim H, Kim D, Kim JY, Kim E. Adnp-mutant mice with cognitive inflexibility, CaMKIIα hyperactivity, and synaptic plasticity deficits. Mol Psychiatry 2023; 28:3548-3562. [PMID: 37365244 PMCID: PMC10618100 DOI: 10.1038/s41380-023-02129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/14/2023] [Accepted: 06/13/2023] [Indexed: 06/28/2023]
Abstract
ADNP syndrome, involving the ADNP transcription factor of the SWI/SNF chromatin-remodeling complex, is characterized by developmental delay, intellectual disability, and autism spectrum disorders (ASD). Although Adnp-haploinsufficient (Adnp-HT) mice display various phenotypic deficits, whether these mice display abnormal synaptic functions remain poorly understood. Here, we report synaptic plasticity deficits associated with cognitive inflexibility and CaMKIIα hyperactivity in Adnp-HT mice. These mice show impaired and inflexible contextual learning and memory, additional to social deficits, long after the juvenile-stage decrease of ADNP protein levels to ~10% of the newborn level. The adult Adnp-HT hippocampus shows hyperphosphorylated CaMKIIα and its substrates, including SynGAP1, and excessive long-term potentiation that is normalized by CaMKIIα inhibition. Therefore, Adnp haploinsufficiency in mice leads to cognitive inflexibility involving CaMKIIα hyperphosphorylation and excessive LTP in adults long after its marked expressional decrease in juveniles.
Collapse
Affiliation(s)
- Heejin Cho
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Heera Moon
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information, Daejeon, 34141, Korea
| | - Yeji Yang
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - MinSoung Kang
- Therapeutics & Biotechnology Division, Drug discovery platform research center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
| | - Esther Yang
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Dowoon Lee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Daehee Hwang
- School of Biological Sciences, Seoul National University, Seoul, 08826, Korea
| | - Hyun Kim
- Department of Anatomy and BK21 Graduate Program, Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Doyoun Kim
- Therapeutics & Biotechnology Division, Drug discovery platform research center, Korea Research Institute of Chemical Technology (KRICT), Daejeon, 34114, Korea
- Medicinal Chemistry and Pharmacology, Korea University of Science and Technology (UST), Daejeon, 34113, Korea
| | - Jin Young Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, 162 Yeongudanjiro, Ochang, Cheongju, Chungbuk, 28119, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea.
| |
Collapse
|
17
|
Scrima S, Tiberti M, Ryde U, Lambrughi M, Papaleo E. Comparison of force fields to study the zinc-finger containing protein NPL4, a target for disulfiram in cancer therapy. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2023; 1871:140921. [PMID: 37230374 DOI: 10.1016/j.bbapap.2023.140921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 05/27/2023]
Abstract
Molecular dynamics (MD) simulations are a powerful approach to studying the structure and dynamics of proteins related to health and disease. Advances in the MD field allow modeling proteins with high accuracy. However, modeling metal ions and their interactions with proteins is still challenging. NPL4 is a zinc-binding protein and works as a cofactor for p97 to regulate protein homeostasis. NPL4 is of biomedical importance and has been proposed as the target of disulfiram, a drug recently repurposed for cancer treatment. Experimental studies proposed that the disulfiram metabolites, bis-(diethyldithiocarbamate)‑copper and cupric ions, induce NPL4 misfolding and aggregation. However, the molecular details of their interactions with NPL4 and consequent structural effects are still elusive. Here, biomolecular simulations can help to shed light on the related structural details. To apply MD simulations to NPL4 and its interaction with copper the first important step is identifying a suitable force field to describe the protein in its zinc-bound states. We examined different sets of non-bonded parameters because we want to study the misfolding mechanism and cannot rule out that the zinc may detach from the protein during the process and copper replaces it. We investigated the force-field ability to model the coordination geometry of the metal ions by comparing the results from MD simulations with optimized geometries from quantum mechanics (QM) calculations using model systems of NPL4. Furthermore, we investigated the performance of a force field including bonded parameters to treat copper ions in NPL4 that we obtained based on QM calculations.
Collapse
Affiliation(s)
- Simone Scrima
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark
| | - Matteo Tiberti
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Ulf Ryde
- Division of Theoretical Chemistry, Lund University, Chemical Centre, P. O. Box 124, SE-221 00 Lund, Sweden
| | - Matteo Lambrughi
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark
| | - Elena Papaleo
- Cancer Structural Biology, Danish Cancer Society Research Center, 2100 Copenhagen, Denmark; Cancer Systems Biology, Section for Bioinformatics, Department of Health and Technology, Technical University of Denmark, 2800 Lyngby, Denmark.
| |
Collapse
|
18
|
Song G, Zhong B, Zhang B, Rehman AU, Chen HF. Phosphorylation Modification Force Field FB18CMAP Improving Conformation Sampling of Phosphoproteins. J Chem Inf Model 2023; 63:1602-1614. [PMID: 36800279 DOI: 10.1021/acs.jcim.3c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Phosphorylation of proteins plays an important regulatory role at almost all levels of cellular organization. Molecular dynamics (MD) simulation is a promising tool to reveal the mechanism of how phosphorylation regulates many key biological processes at the atomistic level. MD simulation accuracy depends on force field precision, while the current force fields for phospho-amino acids have resulted in notable inconsistency with experimental data. Here, a new force field parameter (named FB18CMAP) is generated by fitting against quantum mechanics (QM) energy in aqueous solution with φ/ψ dihedral potential-energy surfaces optimized using CMAP parameters. MD simulations of phosphorylated dipeptides, intrinsically disordered proteins (IDPs), and ordered (folded) proteins show that FB18CMAP can mimic NMR observables and structural characteristics of phosphorylated dipeptides and proteins more accurately than the FB18 force field. These findings suggest that FB18CMAP performs well in both the simulation of ordered and disordered states of phosphorylated proteins.
Collapse
Affiliation(s)
- Ge Song
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bozitao Zhong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bo Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ashfaq Ur Rehman
- Departments of Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, Department of Bioinformatics and Biostatistics, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.,Shanghai Center for Bioinformation Technology, Shanghai 200240, China
| |
Collapse
|
19
|
Urban VA, Veresov VG. Structural basis of ZAP-70 activation upon phosphorylation of tyrosines 315, 319 and 493. DOKLADY OF THE NATIONAL ACADEMY OF SCIENCES OF BELARUS 2023. [DOI: 10.29235/1561-8323-2023-67-1-38-40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
ZAP-70 (Zeta-chain-Associated Protein kinase 70) is a key kinase in the regulation of the adaptive immune response. Zap-70 acts by binding its SH2-domains to the T-cell-associated CD3ζ protein, thus transmitting a T-cell activation signal induced by the interaction of Major Histocompatibility Complex with T-cell Receptor. It has been established that for ZAP-70 kinase activation, the phosphorylation of Tyr315, Tyr319, and Tyr493 is required, however the mechanisms are unclear. In the present study, we use the tools of structural modeling to elucidate the ZAP-70 activation mechanisms.
Collapse
Affiliation(s)
- V. A. Urban
- Institute of Biophysics and Cell Engineering of the National Academy
of Sciences of Belarus
| | - V. G. Veresov
- Institute of Biophysics and Cell Engineering of the National Academy
of Sciences of Belarus
| |
Collapse
|
20
|
Francis N, Behera MR, Natarajan K, Laishram RS. Tyrosine phosphorylation controlled poly(A) polymerase I activity regulates general stress response in bacteria. Life Sci Alliance 2023; 6:6/3/e202101148. [PMID: 36535710 PMCID: PMC9764084 DOI: 10.26508/lsa.202101148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
RNA 3'-end polyadenylation that marks transcripts for degradation is implicated in general stress response in Escherichia coli Yet, the mechanism and regulation of poly(A) polymerase I (PAPI) in stress response are obscure. We show that pcnB (that encodes PAPI)-null mutation widely stabilises stress response mRNAs and imparts cellular tolerance to multiple stresses, whereas PAPI ectopic expression renders cells stress-sensitive. We demonstrate that there is a substantial loss of PAPI activity on stress exposure that functionally phenocopies pcnB-null mutation stabilising target mRNAs. We identify PAPI tyrosine phosphorylation at the 202 residue (Y202) that is enormously enhanced on stress exposure. This phosphorylation inhibits PAPI polyadenylation activity under stress. Consequentially, PAPI phosphodeficient mutation (tyrosine 202 to phenylalanine, Y202F) fails to stimulate mRNA expression rendering cells stress-sensitive. Bacterial tyrosine kinase Wzc phosphorylates PAPI-Y202 residue, and that wzc-null mutation renders cells stress-sensitive. Accordingly, wzc-null mutation has no effect on stress sensitivity in the presence of pcnB-null or pcnB-Y202F mutation. We also establish that PAPI phosphorylation-dependent stress tolerance mechanism is distinct and operates downstream of the primary stress regulator RpoS.
Collapse
Affiliation(s)
- Nimmy Francis
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Malaya R Behera
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India.,Regional Centre for Biotechnology, Faridabad, India
| | - Kathiresan Natarajan
- Transdisciplinary Biology Program, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Trivandrum, India
| |
Collapse
|
21
|
Hilpert C, Beranger L, Souza PCT, Vainikka PA, Nieto V, Marrink SJ, Monticelli L, Launay G. Facilitating CG Simulations with MAD: The MArtini Database Server. J Chem Inf Model 2023; 63:702-710. [PMID: 36656159 DOI: 10.1021/acs.jcim.2c01375] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The MArtini Database (MAD - https://mad.ibcp.fr) is a web server designed for the sharing of structures and topologies of molecules parametrized with the Martini coarse-grained (CG) force field. MAD can also convert atomistic structures into CG structures and prepare complex systems (including proteins, lipids, etc.) for molecular dynamics (MD) simulations at the CG level. It is dedicated to the generation of input files for Martini 3, the most recent version of this popular CG force field. Specifically, the MAD server currently includes tools to submit or retrieve CG models of a wide range of molecules (lipids, carbohydrates, nanoparticles, etc.), transform atomistic protein structures into CG structures and topologies, with fine control on the process and assemble biomolecules into large systems, and deliver all files necessary to start simulations in the GROMACS MD engine.
Collapse
Affiliation(s)
- Cécile Hilpert
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), UMR 5086 CNRS & University of Lyon. 7 passage du Vercors, 69367 Lyon, France
| | - Louis Beranger
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), UMR 5086 CNRS & University of Lyon. 7 passage du Vercors, 69367 Lyon, France
| | - Paulo C T Souza
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), UMR 5086 CNRS & University of Lyon. 7 passage du Vercors, 69367 Lyon, France
| | - Petteri A Vainikka
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Vincent Nieto
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), UMR 5086 CNRS & University of Lyon. 7 passage du Vercors, 69367 Lyon, France
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Luca Monticelli
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), UMR 5086 CNRS & University of Lyon. 7 passage du Vercors, 69367 Lyon, France
| | - Guillaume Launay
- Microbiologie Moléculaire et Biochimie Structurale (MMSB), UMR 5086 CNRS & University of Lyon. 7 passage du Vercors, 69367 Lyon, France
| |
Collapse
|
22
|
Elias E, Liguori N, Croce R. The origin of pigment-binding differences in CP29 and LHCII: the role of protein structure and dynamics. PHOTOCHEMICAL & PHOTOBIOLOGICAL SCIENCES : OFFICIAL JOURNAL OF THE EUROPEAN PHOTOCHEMISTRY ASSOCIATION AND THE EUROPEAN SOCIETY FOR PHOTOBIOLOGY 2023:10.1007/s43630-023-00368-7. [PMID: 36740636 DOI: 10.1007/s43630-023-00368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/13/2023] [Indexed: 02/07/2023]
Abstract
The first step of photosynthesis in plants is performed by the light-harvesting complexes (LHC), a large family of pigment-binding proteins embedded in the photosynthetic membranes. These complexes are conserved across species, suggesting that each has a distinct role. However, they display a high degree of sequence homology and their static structures are almost identical. What are then the structural features that determine their different properties? In this work, we compared the two best-characterized LHCs of plants: LHCII and CP29. Using molecular dynamics simulations, we could rationalize the difference between them in terms of pigment-binding properties. The data also show that while the loops between the helices are very flexible, the structure of the transmembrane regions remains very similar in the crystal and the membranes. However, the small structural differences significantly affect the excitonic coupling between some pigment pairs. Finally, we analyzed in detail the structure of the long N-terminus of CP29, showing that it is structurally stable and it remains on top of the membrane even in the absence of other proteins. Although the structural changes upon phosphorylation are minor, they can explain the differences in the absorption properties of the pigments observed experimentally.
Collapse
Affiliation(s)
- Eduard Elias
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Nicoletta Liguori
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
23
|
Castro TG, Ferreira T, Matamá T, Munteanu FD, Cavaco-Paulo A. Acetylation and phosphorylation processes modulate Tau's binding to microtubules: A molecular dynamics study. Biochim Biophys Acta Gen Subj 2023; 1867:130276. [PMID: 36372288 DOI: 10.1016/j.bbagen.2022.130276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/04/2022] [Accepted: 11/04/2022] [Indexed: 11/13/2022]
Abstract
The microtubule-associated protein Tau has its normal function impaired when undergoing post-translational modifications. In this work, molecular modelling techniques were used to infer the effects of acetylation and phosphorylation in Tau's overall conformation, electrostatics, and interactions, but mostly in Tau's ability to bind microtubules. Reported harmful Lys sites were mutated by its acetylated form, generating eight different acetylated Tau (aTau) analogues. Similarly, phosphorylation sites found in normal brains and in Alzheimer's lesioned brains were considered to design phosphorylated Tau (pTau) analogues. All these designed variants were evaluated in intracellular fluid and near a microtubule (MT) model. Our in silico findings demonstrated that the electrostatic changes, due to the absence of positive Lys' charges in acetylation cases, or the increasingly negative charge in the phosphorylated forms, hamper the association to the MT tubulins in most cases. Post-translational modifications also pose very distinct conformations to the ones described for native Tau, which hinders the microtubule-binding region (MTBR) and turns difficult the expected binding. Our study elucidates important molecular processes behind Tau abnormal function which can inspire novel therapeutics to address Alzheimer's disease.
Collapse
Affiliation(s)
- Tarsila G Castro
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.; Aurel Vlaicu, University of Arad, Str. Elena Drăgoi 2-4, RO-310330 Arad, Romania
| | - Tiago Ferreira
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | - Teresa Matamá
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Artur Cavaco-Paulo
- Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, Braga/Guimarães, Portugal.; Aurel Vlaicu, University of Arad, Str. Elena Drăgoi 2-4, RO-310330 Arad, Romania.
| |
Collapse
|
24
|
Chiang DC, Teh AH, Yap BK. Identification of peptide binding sequence of TRIM25 on 14-3-3σ by bioinformatics and biophysical techniques. J Biomol Struct Dyn 2023; 41:13260-13270. [PMID: 36724456 DOI: 10.1080/07391102.2023.2172458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/19/2023] [Indexed: 02/03/2023]
Abstract
14-3-3σ protein is one of the seven isoforms from the highly conserved eukaryotic 14-3-3 protein family. Downregulation of 14-3-3σ expression has been observed in various tumors. TRIM25 is responsible for the proteolytic degradation of 14-3-3σ, in which abrogation of TRIM25 suppressed tumor growth through 14-3-3σ upregulation. However, to date, the exact 14-3-3σ interacting residues of TRIM25 have yet to be resolved. Thus, this study attempts to identify the peptide binding sequence of TRIM25 on 14-3-3σ via both bioinformatics and biophysical techniques. Multiple sequence alignment of the CC domain of TRIM25 revealed five potential peptide binding sequences (Peptide 1-5). Nuclear magnetic resonance (NMR) assay (1H CPMG) identified Peptide 1 as an important sequence for binding to 14-3-3σ. Competition NMR assay suggested that Peptide 1 binds to the amphipathic pocket of 14-3-3σ with an estimated KD of 116.4 µM by isothermal titration calorimetry. Further in silico docking and molecular dynamics simulations studies proposed that Peptide 1 is likely to interact with Lys49, Arg56, Arg129, and Tyr130 residues at the amphipathic pocket of 14-3-3σ. These results suggest that Peptide 1 may serve as a biological probe or a template to design inhibitors of TRIM25-14-3-3σ interaction as a potentially novel class of anticancer agents.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- De Chen Chiang
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang, Malaysia
| | - Aik-Hong Teh
- Centre for Chemical Biology, Universiti Sains Malaysia, Bayan Lepas, Penang, Malaysia
| | - Beow Keat Yap
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, USM, Penang, Malaysia
| |
Collapse
|
25
|
Anand PP, Shibu Vardhanan Y. Molecular cloning, expression, mRNA secondary structure and immunological characterization of mussel foot proteins (Mfps) (Mollusca: Bivalvia). J Biomol Struct Dyn 2023; 41:12242-12266. [PMID: 36688334 DOI: 10.1080/07391102.2023.2166996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/01/2023] [Indexed: 01/24/2023]
Abstract
The macroscale production of mussel foot proteins (Mfps) in the expression system has not succeeded to date. The principal reasons for this are low levels of expression and yield of Mfps, lack of post-translational modifications (PTMs), and immunological toxic effects on the host system. Identification of post-translational modification sites, suitable expression hosts, and immunological responses through an experimental approach is very costly and time-consuming. However, in the present study, in silico post-translation modification, antigenicity, allergenicity, and the immunological reaction of all available Mfps were characterized. Furthermore, all Mfps were codon optimized in three different expression systems to determine the best expression host. Finally, we performed the in-silico cloning of all codon-optimized Mfps in a suitable host (E. coli K12, pET28a(+) vector) and analyzed the secondary structure of mRNA and its structural stability. Among the 78 Mfps, six fps are considered potential allergenic proteins, six fps are considered non-allergenic proteins, and all other fps are probably allergenic. High antigenicity was observed in bacterial cells as compared to yeast and tumor cells. Nevertheless, the predicted expression of Mfps in a bacterial host is higher than in other expression hosts. Important to note that all Mfps showed significant immunological activity in the human system, and we concluded that these antigenic, allergenic, and immunological properties are directly correlated with their amino acid composition. The study's major goal is to provide a comprehensive understanding of Mfps and aid in the future genetic engineering and expression of Mfps and its diverse applications in different fields.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- P P Anand
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Thenhipalam, Kerala, India
| | - Y Shibu Vardhanan
- Biochemistry & Toxicology Division, Department of Zoology, University of Calicut, Thenhipalam, Kerala, India
| |
Collapse
|
26
|
Damodaran K, Khan T, Bickel D, Jaya S, Vranken WF, Sudandiradoss C. New simulation insights on the structural transition mechanism of bovine rhodopsin activation. Proteins 2023; 91:771-780. [PMID: 36629258 DOI: 10.1002/prot.26465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 12/02/2022] [Accepted: 01/02/2023] [Indexed: 01/12/2023]
Abstract
Inactive rhodopsin can absorb photons, which induces different structural transitions that finally activate rhodopsin. We have examined the change in spatial configurations and physicochemical factors that result during the transition mechanism from the inactive to the active rhodopsin state via intermediates. During the activation process, many existing atomic contacts are disrupted, and new ones are formed. This is related to the movement of Helix 5, which tilts away from Helix 3 in the intermediate state in lumirhodopsin and moves closer to Helix 3 again in the active state. Similar patterns of changing atomic contacts are observed between Helices 3 and 5 of the adenosine and neurotensin receptors. In addition, residues 220-238 of rhodopsin, which are disordered in the inactive state, fold in the active state before binding to the Gα, where it catalyzes GDP/GTP exchange on the Gα subunit. Finally, molecular dynamics simulations in the membrane environment revealed that the arrestin binding region adopts a more flexible extended conformation upon phosphorylation, likely promoting arrestin binding and inactivation. In summary, our results provide additional structural understanding of specific rhodopsin activation which might be relevant to other Class A G protein-coupled receptor proteins.
Collapse
Affiliation(s)
- Kamalesh Damodaran
- Department of Integrative Biology, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, India.,Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Brussels, Belgium
| | - Taushif Khan
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - David Bickel
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sreeshma Jaya
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Wim F Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB/VUB, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
| | - Chinnappan Sudandiradoss
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
27
|
Dutta P, Roy P, Sengupta N. Effects of External Perturbations on Protein Systems: A Microscopic View. ACS OMEGA 2022; 7:44556-44572. [PMID: 36530249 PMCID: PMC9753117 DOI: 10.1021/acsomega.2c06199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
Protein folding can be viewed as the origami engineering of biology resulting from the long process of evolution. Even decades after its recognition, research efforts worldwide focus on demystifying molecular factors that underlie protein structure-function relationships; this is particularly relevant in the era of proteopathic disease. A complex co-occurrence of different physicochemical factors such as temperature, pressure, solvent, cosolvent, macromolecular crowding, confinement, and mutations that represent realistic biological environments are known to modulate the folding process and protein stability in unique ways. In the current review, we have contextually summarized the substantial efforts in unveiling individual effects of these perturbative factors, with major attention toward bottom-up approaches. Moreover, we briefly present some of the biotechnological applications of the insights derived from these studies over various applications including pharmaceuticals, biofuels, cryopreservation, and novel materials. Finally, we conclude by summarizing the challenges in studying the combined effects of multifactorial perturbations in protein folding and refer to complementary advances in experiment and computational techniques that lend insights to the emergent challenges.
Collapse
Affiliation(s)
- Pallab Dutta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| | - Priti Roy
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
- Department
of Chemistry, Oklahoma State University, Stillwater, Oklahoma74078, United States
| | - Neelanjana Sengupta
- Department
of Biological Sciences, Indian Institute
of Science Education and Research (IISER) Kolkata, Mohanpur741246, India
| |
Collapse
|
28
|
Weigle AT, Feng J, Shukla D. Thirty years of molecular dynamics simulations on posttranslational modifications of proteins. Phys Chem Chem Phys 2022; 24:26371-26397. [PMID: 36285789 PMCID: PMC9704509 DOI: 10.1039/d2cp02883b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Posttranslational modifications (PTMs) are an integral component to how cells respond to perturbation. While experimental advances have enabled improved PTM identification capabilities, the same throughput for characterizing how structural changes caused by PTMs equate to altered physiological function has not been maintained. In this Perspective, we cover the history of computational modeling and molecular dynamics simulations which have characterized the structural implications of PTMs. We distinguish results from different molecular dynamics studies based upon the timescales simulated and analysis approaches used for PTM characterization. Lastly, we offer insights into how opportunities for modern research efforts on in silico PTM characterization may proceed given current state-of-the-art computing capabilities and methodological advancements.
Collapse
Affiliation(s)
- Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jiangyan Feng
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
29
|
Balanced Force Field ff03CMAP Improving the Dynamics Conformation Sampling of Phosphorylation Site. Int J Mol Sci 2022; 23:ijms231911285. [PMID: 36232586 PMCID: PMC9569523 DOI: 10.3390/ijms231911285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 09/08/2022] [Accepted: 09/11/2022] [Indexed: 11/30/2022] Open
Abstract
Phosphorylation plays a key role in plant biology, such as the accumulation of plant cells to form the observed proteome. Statistical analysis found that many phosphorylation sites are located in disordered regions. However, current force fields are mainly trained for structural proteins, which might not have the capacity to perfectly capture the dynamic conformation of the phosphorylated proteins. Therefore, we evaluated the performance of ff03CMAP, a balanced force field between structural and disordered proteins, for the sampling of the phosphorylated proteins. The test results of 11 different phosphorylated systems, including dipeptides, disordered proteins, folded proteins, and their complex, indicate that the ff03CMAP force field can better sample the conformations of phosphorylation sites for disordered proteins and disordered regions than ff03. For the solvent model, the results strongly suggest that the ff03CMAP force field with the TIP4PD water model is the best combination for the conformer sampling. Additional tests of CHARMM36m and FB18 force fields on two phosphorylated systems suggest that the overall performance of ff03CMAP is similar to that of FB18 and better than that of CHARMM36m. These results can help other researchers to choose suitable force field and solvent models to investigate the dynamic properties of phosphorylation proteins.
Collapse
|
30
|
Electrostatic and steric effects underlie acetylation-induced changes in ubiquitin structure and function. Nat Commun 2022; 13:5435. [PMID: 36114200 PMCID: PMC9481602 DOI: 10.1038/s41467-022-33087-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 08/26/2022] [Indexed: 12/29/2022] Open
Abstract
Covalent attachment of ubiquitin (Ub) to proteins is a highly versatile posttranslational modification. Moreover, Ub is not only a modifier but itself is modified by phosphorylation and lysine acetylation. However, the functional consequences of Ub acetylation are poorly understood. By generation and comprehensive characterization of all seven possible mono-acetylated Ub variants, we show that each acetylation site has a particular impact on Ub structure. This is reflected in selective usage of the acetylated variants by different E3 ligases and overlapping but distinct interactomes, linking different acetylated variants to different cellular pathways. Notably, not only electrostatic but also steric effects contribute to acetylation-induced changes in Ub structure and, thus, function. Finally, we provide evidence that p300 acts as a position-specific Ub acetyltransferase and HDAC6 as a general Ub deacetylase. Our findings provide intimate insights into the structural and functional consequences of Ub acetylation and highlight the general importance of Ub acetylation. Ubiquitin is not only a posttranslational modifier but itself is subject to modifications, such as acetylation. Characterization of distinct acetylated ubiquitin variants reveals that each acetylation site has a particular impact on ubiquitin structure and its protein-protein interaction properties.
Collapse
|
31
|
Structural insights into the pSer/pThr dependent regulation of the SHP2 tyrosine phosphatase in insulin and CD28 signaling. Nat Commun 2022; 13:5439. [PMID: 36114179 PMCID: PMC9481563 DOI: 10.1038/s41467-022-32918-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 08/23/2022] [Indexed: 11/09/2022] Open
Abstract
Serine/threonine phosphorylation of insulin receptor substrate (IRS) proteins is well known to modulate insulin signaling. However, the molecular details of this process have mostly been elusive. While exploring the role of phosphoserines, we have detected a direct link between Tyr-flanking Ser/Thr phosphorylation sites and regulation of specific phosphotyrosine phosphatases. Here we present a concise structural study on how the activity of SHP2 phosphatase is controlled by an asymmetric, dual phosphorylation of its substrates. The structure of SHP2 has been determined with three different substrate peptides, unveiling the versatile and highly dynamic nature of substrate recruitment. What is more, the relatively stable pre-catalytic state of SHP2 could potentially be useful for inhibitor design. Our findings not only show an unusual dependence of SHP2 catalytic activity on Ser/Thr phosphorylation sites in IRS1 and CD28, but also suggest a negative regulatory mechanism that may also apply to other tyrosine kinase pathways as well. SHP2 is an important human tyrosine phosphatase with key roles in cancer, immune responses and insulin signaling. Here, the authors explore its substrate recognition mechanism in molecular detail and uncover a complex regulatory mechanism for this enzyme that marks specific target sites for dephosphorylation.
Collapse
|
32
|
Joshi H, Prakash MK. Using Atomistic Simulations to Explore the Role of Methylation and ATP in Chemotaxis Signal Transduction. ACS OMEGA 2022; 7:27886-27895. [PMID: 35990422 PMCID: PMC9386827 DOI: 10.1021/acsomega.2c00792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
A bacterial chemotaxis mechanism is activated when nutrients bind to surface receptors. The sequence of intra- and interprotein events in this signal cascade from the receptors to the eventual molecular motors has been clearly identified. However, the atomistic details remain elusive, as in general may be expected of intraprotein signal transduction pathways, especially when fibrillar proteins are involved. We performed atomistic calculations of the methyl accepting chemoprotein (MCP)-CheA-CheW multidomain complex from Escherichia coli, simulating the methylated and unmethylated conditions in the chemoreceptors and the ATP-bound and apo conditions of the CheA. Our results indicate that these atomistic simulations, especially with one of the two force fields we tried, capture several relevant features of the downstream effects, such as the methylation favoring an intermediate structure that is more toward a dipped state and increases the chance of ATP hydrolysis. The results thus suggest the sensitivity of the model to reflect the nutrient signal response, a nontrivial validation considering the complexity of the system, encouraging even more detailed studies on the thermodynamic quantification of the effects and the identification of the signaling networks.
Collapse
|
33
|
O-GlcNAc modification of leucyl-tRNA synthetase 1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine. Nat Commun 2022; 13:2904. [PMID: 35614056 PMCID: PMC9133088 DOI: 10.1038/s41467-022-30696-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/12/2022] [Indexed: 12/11/2022] Open
Abstract
All living organisms have the ability to sense nutrient levels to coordinate cellular metabolism. Despite the importance of nutrient-sensing pathways that detect the levels of amino acids and glucose, how the availability of these two types of nutrients is integrated is unclear. Here, we show that glucose availability regulates the central nutrient effector mTORC1 through intracellular leucine sensor leucyl-tRNA synthetase 1 (LARS1). Glucose starvation results in O-GlcNAcylation of LARS1 on residue S1042. This modification inhibits the interaction of LARS1 with RagD GTPase and reduces the affinity of LARS1 for leucine by promoting phosphorylation of its leucine-binding site by the autophagy-activating kinase ULK1, decreasing mTORC1 activity. The lack of LARS1 O-GlcNAcylation constitutively activates mTORC1, supporting its ability to sense leucine, and deregulates protein synthesis and leucine catabolism under glucose starvation. This work demonstrates that LARS1 integrates leucine and glucose availability to regulate mTORC1 and the metabolic fate of leucine. Leucyl-tRNA synthetase 1 (LARS1) is a leucine sensor for mTORC1 signaling and regulates leucine utilization depending on glucose availability. Here, the author show that O-GlcNAcylation of LARS1 is crucial for its ability to regulate mTORC1 activity and leucine metabolism upon glucose starvation.
Collapse
|
34
|
Obi CD, Bhuiyan T, Dailey HA, Medlock AE. Ferrochelatase: Mapping the Intersection of Iron and Porphyrin Metabolism in the Mitochondria. Front Cell Dev Biol 2022; 10:894591. [PMID: 35646904 PMCID: PMC9133952 DOI: 10.3389/fcell.2022.894591] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 04/14/2022] [Indexed: 12/29/2022] Open
Abstract
Porphyrin and iron are ubiquitous and essential for sustaining life in virtually all living organisms. Unlike iron, which exists in many forms, porphyrin macrocycles are mostly functional as metal complexes. The iron-containing porphyrin, heme, serves as a prosthetic group in a wide array of metabolic pathways; including respiratory cytochromes, hemoglobin, cytochrome P450s, catalases, and other hemoproteins. Despite playing crucial roles in many biological processes, heme, iron, and porphyrin intermediates are potentially cytotoxic. Thus, the intersection of porphyrin and iron metabolism at heme synthesis, and intracellular trafficking of heme and its porphyrin precursors are tightly regulated processes. In this review, we discuss recent advances in understanding the physiological dynamics of eukaryotic ferrochelatase, a mitochondrially localized metalloenzyme. Ferrochelatase catalyzes the terminal step of heme biosynthesis, the insertion of ferrous iron into protoporphyrin IX to produce heme. In most eukaryotes, except plants, ferrochelatase is localized to the mitochondrial matrix, where substrates are delivered and heme is synthesized for trafficking to multiple cellular locales. Herein, we delve into the structural and functional features of ferrochelatase, as well as its metabolic regulation in the mitochondria. We discuss the regulation of ferrochelatase via post-translational modifications, transportation of substrates and product across the mitochondrial membrane, protein-protein interactions, inhibition by small-molecule inhibitors, and ferrochelatase in protozoal parasites. Overall, this review presents insight on mitochondrial heme homeostasis from the perspective of ferrochelatase.
Collapse
Affiliation(s)
- Chibuike David Obi
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Tawhid Bhuiyan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
| | - Harry A. Dailey
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Amy E. Medlock
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, United States
- Augusta University/University of Georgia Medical Partnership, University of Georgia, Athens, GA, United States
| |
Collapse
|
35
|
Gorai B, Vashisth H. Structures and interactions of insulin-like peptides from cone snail venom. Proteins 2022; 90:680-690. [PMID: 34661928 PMCID: PMC8816879 DOI: 10.1002/prot.26265] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/27/2021] [Accepted: 10/12/2021] [Indexed: 12/19/2022]
Abstract
The venomous insulin-like peptides released by certain cone snails stimulate hypoglycemic shock to immobilize fish and catch the prey. Compared to human insulin (hIns), the cone snail insulins (Con-Ins) are typically monomeric and shorter in sequence, yet they exhibit moderate hIns-like biological activity. We have modeled six variants of Con-Ins (G3, K1, K2, T1A, T1B, and T2) and carried out explicit-solvent molecular dynamics (MD) simulations of eight types of insulins, two with known structures (hIns and Con-Ins-G1) and six Con-Ins with modeled structures, to characterize key residues of each insulin that interact with the truncated human insulin receptor (μIR). We show that each insulin/μIR complex is stable during explicit-solvent MD simulations and hIns interactions indicate the highest affinity for the "site 1" of IR. The residue contact maps reveal that each insulin preferably interacts with the αCT peptide than the L1 domain of IR. Through analysis of the average nonbonded interaction energy contribution of every residue of each insulin for the μIR, we probe the residues establishing favorable interactions with the receptor. We compared the interaction energy of each residue of every Con-Ins to the μIR and observed that γ-carboxylated glutamate (Gla), His, Thr, Tyr, Tyr/His, and Asn in Con-Ins are favorable substitutions for GluA4, AsnA21, ValB12, LeuB15, GlyB20, and ArgB22 in hIns, respectively. The identified insulin analogs, although lacking the last eight residues of the B-chain of hIns, bind strongly to μIR. Our findings are potentially useful in designing potent fast-acting therapeutic insulin.
Collapse
Affiliation(s)
- Biswajit Gorai
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| | - Harish Vashisth
- Department of Chemical Engineering, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
36
|
Terrile MC, Tebez NM, Colman SL, Mateos JL, Morato-López E, Sánchez-López N, Izquierdo-Álvarez A, Marina A, Calderón Villalobos LIA, Estelle M, Martínez-Ruiz A, Fiol DF, Casalongué CA, Iglesias MJ. S-Nitrosation of E3 Ubiquitin Ligase Complex Components Regulates Hormonal Signalings in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2022; 12:794582. [PMID: 35185952 PMCID: PMC8854210 DOI: 10.3389/fpls.2021.794582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/13/2021] [Indexed: 06/01/2023]
Abstract
E3 ubiquitin ligases mediate the last step of the ubiquitination pathway in the ubiquitin-proteasome system (UPS). By targeting transcriptional regulators for their turnover, E3s play a crucial role in every aspect of plant biology. In plants, SKP1/CULLIN1/F-BOX PROTEIN (SCF)-type E3 ubiquitin ligases are essential for the perception and signaling of several key hormones including auxins and jasmonates (JAs). F-box proteins, TRANSPORT INHIBITOR RESPONSE 1 (TIR1) and CORONATINE INSENSITIVE 1 (COI1), bind directly transcriptional repressors AUXIN/INDOLE-3-ACETIC ACID (AUX/IAA) and JASMONATE ZIM-DOMAIN (JAZ) in auxin- and JAs-depending manner, respectively, which permits the perception of the hormones and transcriptional activation of signaling pathways. Redox modification of proteins mainly by S-nitrosation of cysteines (Cys) residues via nitric oxide (NO) has emerged as a valued regulatory mechanism in physiological processes requiring its rapid and versatile integration. Previously, we demonstrated that TIR1 and Arabidopsis thaliana SKP1 (ASK1) are targets of S-nitrosation, and these NO-dependent posttranslational modifications enhance protein-protein interactions and positively regulate SCFTIR1 complex assembly and expression of auxin response genes. In this work, we confirmed S-nitrosation of Cys140 in TIR1, which was associated in planta to auxin-dependent developmental and stress-associated responses. In addition, we provide evidence on the modulation of the SCFCOI1 complex by different S-nitrosation events. We demonstrated that S-nitrosation of ASK1 Cys118 enhanced ASK1-COI1 protein-protein interaction. Overexpression of non-nitrosable ask1 mutant protein impaired the activation of JA-responsive genes mediated by SCFCOI1 illustrating the functional relevance of this redox-mediated regulation in planta. In silico analysis positions COI1 as a promising S-nitrosation target, and demonstrated that plants treated with methyl JA (MeJA) or S-nitrosocysteine (NO-Cys, S-nitrosation agent) develop shared responses at a genome-wide level. The regulation of SCF components involved in hormonal perception by S-nitrosation may represent a key strategy to determine the precise time and site-dependent activation of each hormonal signaling pathway and highlights NO as a pivotal molecular player in these scenarios.
Collapse
Affiliation(s)
- Maria Cecilia Terrile
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Nuria Malena Tebez
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Silvana Lorena Colman
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Julieta Lisa Mateos
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| | - Esperanza Morato-López
- Servicio de Proteómica, Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Madrid, Spain
| | - Nuria Sánchez-López
- Servicio de Proteómica, Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Madrid, Spain
| | - Alicia Izquierdo-Álvarez
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Anabel Marina
- Servicio de Proteómica, Centro de Biología Molecular “Severo Ochoa”, CSIC-UAM, Madrid, Spain
| | - Luz Irina A. Calderón Villalobos
- Molecular Signal Processing Department, Leibniz Institute of Plant Biochemistry (IPB), Halle (Saale), Germany
- KWS Gateway Research Center, LLC., BRDG Park at The Danforth Plant Science Center, St. Louis, MO, United States
| | - Mark Estelle
- Section of Cell and Developmental Biology, University of California, San Diego, La Jolla, CA, United States
| | - Antonio Martínez-Ruiz
- Unidad de Investigación, Hospital Universitario Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Diego Fernando Fiol
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Claudia Anahí Casalongué
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - María José Iglesias
- Instituto de Investigaciones Biológicas, UE-CONICET-UNMDP, Facultad de Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-UBA, Buenos Aires, Argentina
| |
Collapse
|
37
|
de Brevern AG, Rebehmed J. Current status of PTMs structural databases: applications, limitations and prospects. Amino Acids 2022; 54:575-590. [PMID: 35020020 DOI: 10.1007/s00726-021-03119-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 12/20/2021] [Indexed: 12/11/2022]
Abstract
Protein 3D structures, determined by their amino acid sequences, are the support of major crucial biological functions. Post-translational modifications (PTMs) play an essential role in regulating these functions by altering the physicochemical properties of proteins. By virtue of their importance, several PTM databases have been developed and released in decades, but very few of these databases incorporate real 3D structural data. Since PTMs influence the function of the protein and their aberrant states are frequently implicated in human diseases, providing structural insights to understand the influence and dynamics of PTMs is crucial for unraveling the underlying processes. This review is dedicated to the current status of databases providing 3D structural data on PTM sites in proteins. Some of these databases are general, covering multiple types of PTMs in different organisms, while others are specific to one particular type of PTM, class of proteins or organism. The importance of these databases is illustrated with two major types of in silico applications: predicting PTM sites in proteins using machine learning approaches and investigating protein structure-function relationships involving PTMs. Finally, these databases suffer from multiple problems and care must be taken when analyzing the PTMs data.
Collapse
Affiliation(s)
- Alexandre G de Brevern
- Université de Paris, INSERM, UMR_S 1134, DSIMB, 75739, Paris, France.,Université de la Réunion, INSERM, UMR_S 1134, DSIMB, 97715, Saint-Denis de La Réunion, France.,Laboratoire d'Excellence GR-Ex, 75739, Paris, France
| | - Joseph Rebehmed
- Department of Computer Science and Mathematics, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
38
|
Gadhavi J, Shah S, Sinha T, Jain A, Gupta S. Charge neutralization of lysine via carbamylation reveals hidden aggregation hot-spots in tau protein flanking regions. FEBS J 2021; 289:2562-2577. [PMID: 34796642 DOI: 10.1111/febs.16284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/19/2021] [Accepted: 11/17/2021] [Indexed: 11/28/2022]
Abstract
Tau protein is found abundantly in neurofibrillary tangles in Alzheimer's disease (AD). The longest human tau isoform (2N4R) has 44 lysine residues. Several lysine-based post-translational modifications (PTMs) such as glycation, acetylation, ubiquitination, and sumoylation have been implicated not only in AD, but also in other tauopathies. Carbamylation is one such lysine neutralizing age-related nonenzymatic PTM which can modulate the aggregation propensity of tau. In this work, we have studied the aggregation potential of lysine-rich regions of tau upon carbamylation which do not aggregate in their native form. Using an array of biophysical and microscopic analyses, such as ThT kinetic assay, fluorescence microscopy, Congo red staining, and scanning electron microscopy, we demonstrate that peptides derived from four of five such regions exhibit robust fibrillar amyloid formation. These regions are found in the N-terminal projection domain that encompasses proline-rich domain (148-153 and 223-230), repeat domain R1 (253-260), as well as fibrillary core region (368-378), and can be described as hidden aggregation hot-spots which become activated upon carbamylation. We have further compared the impact of carbamylation with acetylation on the aggregation propensity of lysine-rich peptide (254 KKVAVV259 ) using biophysical experiments and molecular dynamics simulations and deduced that carbamylation is a much stronger driver of aggregation than acetylation. Our findings may offer more insight into amyloid fibrils' interaction with hidden aggregation-prone nucleating sequences that act as hot-spots for inducing tau fibrillation.
Collapse
Affiliation(s)
- Joshna Gadhavi
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, India
| | - Sumedha Shah
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, India
| | - Tulika Sinha
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Alok Jain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Ranchi, India
| | - Sharad Gupta
- Department of Biological Engineering, Indian Institute of Technology Gandhinagar, India
| |
Collapse
|
39
|
Khan MA, Kumar P, Akif M, Miyoshi H. Phosphorylation of eukaryotic initiation factor eIFiso4E enhances the binding rates to VPg of turnip mosaic virus. PLoS One 2021; 16:e0259688. [PMID: 34735537 PMCID: PMC8568277 DOI: 10.1371/journal.pone.0259688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 09/29/2021] [Indexed: 11/28/2022] Open
Abstract
Binding of phosphorylated eIFiso4E with viral genome-linked protein (VPg) of turnip mosaic virus was examined by stopped-flow, fluorescence, circular dichroism (CD) spectroscopy, and molecular docking analysis. Phosphorylation of eIFiso4E increased (4-fold) the binding rates as compared to unphosphorylated eIFiso4E with VPg. Stopped-flow kinetic studies of phosphorylated eIFiso4E with VPg showed a concentration-independent conformational change. The dissociation rate was about 3-fold slower for eIFiso4E∙VPg complex upon phosphorylation. Phosphorylation enhanced the association rates and lowered the dissociation rates for the eIFiso4E∙VPg binding, with having higher preferential binding to eIFiso4Ep. Binding rates for the interaction of eIFiso4Ep with VPg increased (6-fold) with an increase in temperature, 278 K to 298 K. The activation energies for binding of eIFiso4Ep and eIFiso4E with VPg were 37.2 ± 2.8 and 52.6 ± 3.6 kJ/mol, respectively. Phosphorylation decreased the activation energy for the binding of eIFiso4E to VPg. The reduced energy barrier suggests more stable platform for eIFiso4Ep∙VPg initiation complex formation, which was further supported by molecular docking analysis. Moreover, far-UV CD studies revealed that VPg formed complex with eIFiso4Ep with substantial change in the secondary structure. These results suggested that phosphorylation, not only reduced the energy barrier and dissociation rate but also enhanced binding rate, and an overall conformational change, which provides a more stable platform for efficient viral translation.
Collapse
Affiliation(s)
- Mateen A. Khan
- Department of Life Science, College of Science and General Studies, Alfaisal University, Riyadh, Saudi Arabia
- * E-mail:
| | - Pankaj Kumar
- Department of Biochemistry, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Mohd. Akif
- Department of Biochemistry, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Hiroshi Miyoshi
- Department of Microbiology, St. Marianna University School of Medicine, Kawasaki, Japan
| |
Collapse
|
40
|
Stoppelman JP, Ng TT, Nerenberg PS, Wang LP. Development and Validation of AMBER-FB15-Compatible Force Field Parameters for Phosphorylated Amino Acids. J Phys Chem B 2021; 125:11927-11942. [PMID: 34668708 DOI: 10.1021/acs.jpcb.1c07547] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Phosphorylation of select amino acid residues is one of the most common biological mechanisms for regulating protein structures and functions. While computational modeling can be used to explore the detailed structural changes associated with phosphorylation, most molecular mechanics force fields developed for the simulation of phosphoproteins have been noted to be inconsistent with experimental data. In this work, we parameterize force fields for the phosphorylated forms of the amino acids serine, threonine, and tyrosine using the ForceBalance software package with the goal of improving agreement with experiments for these residues. Our optimized force field, denoted as FB18, is parameterized using high-quality ab initio potential energy scans and is designed to be fully compatible with the AMBER-FB15 protein force field. When utilized in MD simulations together with the TIP3P-FB water model, we find that FB18 consistently enhances the prediction of experimental quantities such as 3J NMR couplings and intramolecular hydrogen-bonding propensities in comparison to previously published models. As was reported with AMBER-FB15, we also see improved agreement with the reference QM calculations in regions at and away from local minima. We thus believe that the FB18 parameter set provides a promising route for the further investigation of the varied effects of protein phosphorylation.
Collapse
Affiliation(s)
- John P Stoppelman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, United States
| | - Tracey T Ng
- Department of Physics & Astronomy, California State University, Los Angeles, California 90032, United States
| | - Paul S Nerenberg
- Department of Physics & Astronomy, California State University, Los Angeles, California 90032, United States.,Department of Biological Sciences, California State University, Los Angeles, California 90032, United States
| | - Lee-Ping Wang
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
41
|
Shi XX, Wang ZZ, Wang YL, Huang GY, Yang JF, Wang F, Hao GF, Yang GF. PTMdyna: exploring the influence of post-translation modifications on protein conformational dynamics. Brief Bioinform 2021; 23:6394992. [PMID: 34643234 DOI: 10.1093/bib/bbab424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 09/02/2021] [Accepted: 09/14/2021] [Indexed: 11/14/2022] Open
Abstract
Protein post-translational modifications (PTM) play vital roles in cellular regulation, modulating functions by driving changes in protein structure and dynamics. Exploring comprehensively the influence of PTM on conformational dynamics can facilitate the understanding of the related biological function and molecular mechanism. Currently, a series of excellent computation tools have been designed to analyze the time-dependent structural properties of proteins. However, the protocol aimed to explore conformational dynamics of post-translational modified protein is still a blank. To fill this gap, we present PTMdyna to visually predict the conformational dynamics differences between unmodified and modified proteins, thus indicating the influence of specific PTM. PTMdyna exhibits an AUC of 0.884 tested on 220 protein-protein complex structures. The case of heterochromatin protein 1α complexed with lysine 9-methylated histone H3, which is critical for genomic stability and cell differentiation, was used to demonstrate its applicability. PTMdyna provides a reliable platform to predict the influence of PTM on protein dynamics, making it easier to interpret PTM functionality at the structure level. The web server is freely available at http://ccbportal.com/PTMdyna.
Collapse
Affiliation(s)
- Xing-Xing Shi
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, P. R. China.,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, Hubei, P. R. China
| | - Zhi-Zheng Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, P. R. China.,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, Hubei, P. R. China
| | - Yu-Liang Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, P. R. China.,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, Hubei, P. R. China
| | - Guang-Yi Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, P. R. China.,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, Hubei, P. R. China
| | - Jing-Fang Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, P. R. China.,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, Hubei, P. R. China
| | - Fan Wang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, P. R. China.,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, Hubei, P. R. China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, P. R. China.,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, Hubei, P. R. China.,State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang, Guizhou, P. R. China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, Hubei, P. R. China.,International Joint Research Center for Intelligent Biosensor Technology and Health, Central China Normal University, Wuhan, Hubei, P. R. China
| |
Collapse
|
42
|
Tikhonov D, Kulikova L, Rudnev V, Kopylov AT, Taldaev A, Stepanov A, Malsagova K, Izotov A, Enikeev D, Potoldykova N, Kaysheva A. Changes in Protein Structural Motifs upon Post-Translational Modification in Kidney Cancer. Diagnostics (Basel) 2021; 11:diagnostics11101836. [PMID: 34679534 PMCID: PMC8534394 DOI: 10.3390/diagnostics11101836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 11/28/2022] Open
Abstract
Post-translational modification (PTM) leads to conformational changes in protein structure, modulates the biological function of proteins, and, consequently, changes the signature of metabolic transformations and the immune response in the body. Common PTMs are reversible and serve as a mechanism for modulating metabolic trans-formations in cells. It is likely that dysregulation of post-translational cellular signaling leads to abnormal proliferation and oncogenesis. We examined protein PTMs in the blood samples from patients with kidney cancer. Conformational changes in proteins after modification were analyzed. The proteins were analyzed using ultra-high resolution HPLC-MS/MS and structural analysis was performed with the AMBER and GROMACS software packages. Fifteen proteins containing PTMs were identified in blood samples from patients with kidney cancer. For proteins with PDB structures, a comparative analysis of the structural changes accompanying the modifications was performed. Results revealed that PTMs are localized in stable and compact space protein globule motifs that are exposed to a solvent. The phenomenon of modification is accompanied, as a rule, by an increase in the area available for the solvent of the modified amino acid residue and its active environment.
Collapse
Affiliation(s)
- Dmitry Tikhonov
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia; (D.T.); (L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Liudmila Kulikova
- Institute of Mathematical Problems of Biology RAS—The Branch of Keldysh Institute of Applied Mathematics of Russian Academy of Sciences, 142290 Pushchino, Russia; (D.T.); (L.K.)
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
| | - Vladimir Rudnev
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, 142290 Pushchino, Russia;
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
| | - Arthur T. Kopylov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
| | - Amir Taldaev
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
- Institute of Urology and Reproductive Health, Sechenov University, 119121 Moscow, Russia; (D.E.); (N.P.)
| | - Alexander Stepanov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
| | - Kristina Malsagova
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
- Correspondence: ; Tel.: +7-499-764-9878
| | - Alexander Izotov
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
| | - Dmitry Enikeev
- Institute of Urology and Reproductive Health, Sechenov University, 119121 Moscow, Russia; (D.E.); (N.P.)
| | - Natalia Potoldykova
- Institute of Urology and Reproductive Health, Sechenov University, 119121 Moscow, Russia; (D.E.); (N.P.)
| | - Anna Kaysheva
- V.N. Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia; (A.T.K.); (A.T.); (A.S.); (A.I.); (A.K.)
| |
Collapse
|
43
|
Castaño JD, Zhou M, Schilling J. Towards an Understanding of Oxidative Damage in an α-L-Arabinofuranosidase of Trichoderma reesei: a Molecular Dynamics Approach. Appl Biochem Biotechnol 2021; 193:3287-3300. [PMID: 34125378 DOI: 10.1007/s12010-021-03594-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
Trichoderma reesei is a "workhorse" fungus that produces glycosyl hydrolases (e.g., cellulases) at high titers for use in industrial bioprocessing. In this study, we focused on α-L-arabinofuranosidase, an enzyme important for the treatment of lignocellulosic biomass, but susceptible to oxidative damage that can occur during industrial processing. The molecular details that render this enzyme inactive have not yet been identified. To approach this issue, we used proteomics to identify amino acid residues that were oxidized after a relevant oxidative treatment (Fenton reaction). These oxidative modifications were included in the 3D protein structures, and using molecular dynamics simulations, we then studied the behaviors of non-modified and oxidized enzymes. These simulations showed significant alterations of the conformational stability of the protein when oxidized, as evidenced by changes in root mean square deviation (RMSD) and principal component analyses (PCA) trajectories. Likewise, enzyme-ligand interactions such as hydrogen bonds were greatly reduced in quantity and quality in the oxidized protein. Finally, free energy landscape plots showed that there was a more rugged energy surface in the oxidized protein, implying a less favorable reaction pathway. These results reveal the basis for loss of function in this carbohydrate active enzyme (CAZY) in the commercially relevant fungus T. reesei.
Collapse
Affiliation(s)
- Jesus D Castaño
- Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, 55108, USA
- Marine and Coastal Research Institute, INVEMAR, Santa Marta, Colombia, 470006
| | - Mowei Zhou
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Jonathan Schilling
- Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
44
|
Qazi S, Das S, Khuntia BK, Sharma V, Sharma S, Sharma G, Raza K. In Silico Molecular Docking and Molecular Dynamic Simulation Analysis of Phytochemicals From Indian Foods as Potential Inhibitors of SARS-CoV-2 RdRp and 3CLpro. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211031707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
With the current pandemic of the novel coronavirus disease 2019 (COVID-19) in hand, researchers around the globe are dexterously working to find the best suitable drug candidates and overcome vaccination-related challenges, to achieve efficient control over the second surge of COVID-19. The medical consultants time and again have been reiterating the need to abide by the precautionary steps to prevent the spread of the coronavirus by maintaining social distancing when outside, sanitizing hands regularly, and wearing masks and gloves. They also suggest taking a good and hygienic meal so as to boost immunity. Indians have an inborn nature of using natural spices, food, and medicines in their daily lives. Indian researchers have paid heed to deploy compounds from natural sources to explore potential antiviral agents against COVID-19 as the chances of acquiring side effects are perceived as less, and the efficacy of phytochemicals from medicinal plants is sometimes greater when compared to their synthetic counterparts. In the present study, we performed an in silico molecular docking and molecular dynamic simulation analysis of screened phytochemicals from a comprehensive list of Ayurvedic herbs/functional foods that are present in natural food products against key receptor proteins of severe acute respiratory syndrome coronavirus 2. We found that Aegle marmelos, Vetiveria zizanoides, Moringaolifera, and Punica granatum have antiviral potential to prevent coronavirus infection in the populace.
Collapse
Affiliation(s)
- Sahar Qazi
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| | - Soumi Das
- ICMR-National Institute of Pathology, New Delhi, India
| | - Bharat Krushna Khuntia
- Center for Integrative Medicine and Research (CIMR), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Vandna Sharma
- Center for Integrative Medicine and Research (CIMR), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Shruti Sharma
- ICMR-National Institute of Pathology, New Delhi, India
| | - Gautam Sharma
- Center for Integrative Medicine and Research (CIMR), All India Institute of Medical Sciences (AIIMS), New Delhi, India
| | - Khalid Raza
- Department of Computer Science, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
45
|
Petrov D. Perturbation Free-Energy Toolkit: An Automated Alchemical Topology Builder. J Chem Inf Model 2021; 61:4382-4390. [PMID: 34415755 PMCID: PMC8479811 DOI: 10.1021/acs.jcim.1c00428] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Indexed: 11/30/2022]
Abstract
Free-energy calculations play an important role in the application of computational chemistry to a range of fields, including protein biochemistry, rational drug design, or materials science. Importantly, the free-energy difference is directly related to experimentally measurable quantities such as partition and adsorption coefficients, water activity, and binding affinities. Among several techniques aimed at predicting free-energy differences, perturbation approaches, involving the alchemical transformation of one molecule into another through intermediate states, stand out as rigorous methods based on statistical mechanics. However, despite the importance of free-energy calculations, the applicability of the perturbation approaches is still largely impeded by a number of challenges, including the definition of the perturbation path, i.e., alchemical changes leading to the transformation of one molecule to the other. To address this, an automatic perturbation topology builder based on a graph-matching algorithm is developed, which can identify the maximum common substructure (MCS) of two or multiple molecules and provide the perturbation topologies suitable for free-energy calculations using the GROMOS and the GROMACS simulation packages. Various MCS search options are presented leading to alternative definitions of the perturbation pathway. Moreover, perturbation topologies generated using the default multistate MCS search are used to calculate the changes in free energy between lysine and its two post-translational modifications, 3-methyllysine and acetyllysine. The pairwise free-energy calculations performed on this test system led to a cycle closure of 0.5 ± 0.3 and 0.2 ± 0.2 kJ mol-1, with GROMOS and GROMACS simulation packages, respectively. The same relative free energies between the three states are obtained by employing the enveloping distribution sampling (EDS) approach when compared to the pairwise perturbations. Importantly, this toolkit is made available online as an open-source Python package (https://github.com/drazen-petrov/SMArt).
Collapse
Affiliation(s)
- Drazen Petrov
- Department of Material Sciences
and Process Engineering, Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences
Vienna, Muthgasse 18, A-1190 Vienna, Austria
| |
Collapse
|
46
|
P. Oliveira M, Hünenberger PH. Systematic optimization of a fragment-based force field against experimental pure-liquid properties considering large compound families: application to oxygen and nitrogen compounds. Phys Chem Chem Phys 2021; 23:17774-17793. [PMID: 34350931 PMCID: PMC8386690 DOI: 10.1039/d1cp02001c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 06/30/2021] [Indexed: 12/04/2022]
Abstract
The CombiFF approach is a workflow for the automated refinement of force-field parameters against experimental condensed-phase data, considering entire classes of organic molecules constructed using a fragment library via combinatorial isomer enumeration. One peculiarity of this approach is that it relies on an electronegativity-equalization scheme to account for induction effects within molecules, with values of the atomic hardness and electronegativity as electrostatic parameters, rather than the partial charges themselves. In a previous article [M. P. Oliveira, M. Andrey, S. R. Rieder, L. Kern, D. F. Hahn, S. Riniker, B. A. C. Horta and P. H. Hünenberger, J. Chem. Theory. Comput. 2020, 16, 7525], CombiFF was introduced and applied to calibrate a GROMOS-compatible united-atom force field for the saturated acyclic (halo-)alkane family. Here, this scheme is employed for the construction of a corresponding force field for saturated acyclic compounds encompassing eight common chemical functional groups involving oxygen and/or nitrogen atoms, namely: ether, aldehyde, ketone, ester, alcohol, carboxylic acid, amine, and amide. Monofunctional as well as homo-polyfunctional compounds are considered. A total of 1712 experimental liquid densities ρliq and vaporization enthalpies ΔHvap concerning 1175 molecules are used for the calibration (339 molecules) and validation (836 molecules) of the 102 non-bonded interaction parameters of the force field. Using initial parameter values based on the GROMOS 2016H66 parameter set, convergence is reached after five iterations. Given access to one processor per simulated system, this operation only requires a few days of wall-clock computing time. After optimization, the root-mean-square deviations from experiment are 29.9 (22.4) kg m-3 for ρliq and 4.1 (5.5) kJ mol-1 for ΔHvap for the calibration (validation) set. Thus, a very good level of agreement with experiment is achieved in terms of these two properties, although the errors are inhomogeneously distributed across the different chemical functional groups.
Collapse
Affiliation(s)
- Marina P. Oliveira
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCICH-8093 ZürichSwitzerland+41 44 632 5503
| | - Philippe H. Hünenberger
- Laboratorium für Physikalische Chemie, ETH Zürich, ETH-Hönggerberg, HCICH-8093 ZürichSwitzerland+41 44 632 5503
| |
Collapse
|
47
|
Attri P, Kurita H, Koga K, Shiratani M. Impact of Reactive Oxygen and Nitrogen Species Produced by Plasma on Mdm2-p53 Complex. Int J Mol Sci 2021; 22:ijms22179585. [PMID: 34502494 PMCID: PMC8431430 DOI: 10.3390/ijms22179585] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
The study of protein–protein interactions is of great interest. Several early studies focused on the murine double minute 2 (Mdm2)–tumor suppressor protein p53 interactions. However, the effect of plasma treatment on Mdm2 and p53 is still absent from the literature. This study investigated the structural changes in Mdm2, p53, and the Mdm2–p53 complex before and after possible plasma oxidation through molecular dynamic (MD) simulations. MD calculation revealed that the oxidized Mdm2 bounded or unbounded showed high flexibility that might increase the availability of tumor suppressor protein p53 in plasma-treated cells. This study provides insight into Mdm2 and p53 for a better understanding of plasma oncology.
Collapse
Affiliation(s)
- Pankaj Attri
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Graduate School of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan
- Correspondence:
| | - Hirofumi Kurita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi 441-8580, Aichi, Japan;
| | - Kazunori Koga
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Center for Novel Science Initiatives, National Institute of Natural Science, Tokyo 105-0001, Japan
| | - Masaharu Shiratani
- Center of Plasma Nano-Interface Engineering, Kyushu University, Fukuoka 819-0395, Japan;
- Faculty of Information Science and Electrical Engineering, Kyushu University, Fukuoka 819-0395, Japan;
| |
Collapse
|
48
|
Dongre AV, Das S, Bellur A, Kumar S, Chandrashekarmath A, Karmakar T, Balaram P, Balasubramanian S, Balaram H. Structural basis for the hyperthermostability of an archaeal enzyme induced by succinimide formation. Biophys J 2021; 120:3732-3746. [PMID: 34302792 DOI: 10.1016/j.bpj.2021.07.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/18/2021] [Accepted: 07/19/2021] [Indexed: 10/20/2022] Open
Abstract
Stability of proteins from hyperthermophiles (organisms existing under boiling water conditions) enabled by a reduction of conformational flexibility is realized through various mechanisms. A succinimide (SNN) arising from the post-translational cyclization of the side chains of aspartyl/asparaginyl residues with the backbone amide -NH of the succeeding residue would restrain the torsion angle Ψ and can serve as a new route for hyperthermostability. However, such a succinimide is typically prone to hydrolysis, transforming to either an aspartyl or β-isoaspartyl residue. Here, we present the crystal structure of Methanocaldococcus jannaschii glutamine amidotransferase and, using enhanced sampling molecular dynamics simulations, address the mechanism of its increased thermostability, up to 100°C, imparted by an unexpectedly stable succinimidyl residue at position 109. The stability of SNN109 to hydrolysis is seen to arise from its electrostatic shielding by the side-chain carboxylate group of its succeeding residue Asp110, as well as through n → π∗ interactions between SNN109 and its preceding residue Glu108, both of which prevent water access to SNN. The stable succinimidyl residue induces the formation of an α-turn structure involving 13-atom hydrogen bonding, which locks the local conformation, reducing protein flexibility. The destabilization of the protein upon replacement of SNN with a Φ-restricted prolyl residue highlights the specificity of the succinimidyl residue in imparting hyperthermostability to the enzyme. The conservation of the succinimide-forming tripeptide sequence (E(N/D)(E/D)) in several archaeal GATases strongly suggests an adaptation of this otherwise detrimental post-translational modification as a harbinger of thermostability.
Collapse
Affiliation(s)
- Aparna Vilas Dongre
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sudip Das
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Asutosh Bellur
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Sanjeev Kumar
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Anusha Chandrashekarmath
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Tarak Karmakar
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India; Department of Chemistry and Applied Biosciences, ETH Zurich, Lugano, Ticino, Switzerland; Facoltà di Informatica, Istituto di Scienze Computationali, Università della Svizzera Italiana, Lugano, Ticino, Switzerland
| | - Padmanabhan Balaram
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India; Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India
| | - Sundaram Balasubramanian
- Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| | - Hemalatha Balaram
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
49
|
Khan S, Akrema, Qazi S, Ahmad R, Raza K, Rahisuddin. In Silico and Electrochemical Studies for a ZnO-CuO-Based Immunosensor for Sensitive and Selective Detection of E. coli. ACS OMEGA 2021; 6:16076-16085. [PMID: 34179653 PMCID: PMC8223399 DOI: 10.1021/acsomega.1c01959] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 12/04/2023]
Abstract
Escherichia coli is a harmful Gram-negative bacterium commonly found in the gut of warm-blooded organisms and affects millions of people annually worldwide. In this study, we have synthesized a ZnO-CuO nanocomposite (NC) by a co-precipitation method and characterized the as-synthesized NC using FTIR spectroscopy, XRD, Raman spectroscopy, and FESEM techniques. To fabricate the immunosensor, the ZnO-CuO NC composite was screen-printed on gold-plated electrodes followed by physisorption of the anti-LPS E. coli antibody. The biosensor was optimized for higher specificity and sensitivity. The immunosensor exhibited a high sensitivity (11.04 μA CFU mL-1) with a low detection limit of 2 CFU mL-1 with a redox couple. The improved performance of the immunosensor is attributed to the synergistic effect of the NC and the antilipopolysaccharide antibody against E. coli. The selectivity studies were also carried out with Staphylococcus aureus to assess the specificity of the immunosensor. Testing in milk samples was done by spiking the milk samples with different concentrations of E. coli to check the potential of this immunosensor. We further checked the affinity between ZnO-CuO NC with E. coli LPS and the anti-LPS antibody using molecular docking studies. Atomic charge computation and interaction analyses were performed to support our hypothesis. Our results discern that there is a strong correlation between molecular docking studies and electrochemical characterization. The interaction analysis further displays the strong affinity between the antibody-LPS complex when immobilized with a nanoparticle composite (ZnO-CuO).
Collapse
Affiliation(s)
- Summaiyya Khan
- Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Akrema
- Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| | - Sahar Qazi
- Department
of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Rafiq Ahmad
- Centre
for Nanoscience and Nanotechnology, Jamia
Millia Islamia, New Delhi 110025, India
| | - Khalid Raza
- Department
of Computer Science, Jamia Millia Islamia, New Delhi 110025, India
| | - Rahisuddin
- Department
of Chemistry, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
50
|
Croitoru A, Park SJ, Kumar A, Lee J, Im W, MacKerell AD, Aleksandrov A. Additive CHARMM36 Force Field for Nonstandard Amino Acids. J Chem Theory Comput 2021; 17:3554-3570. [PMID: 34009984 DOI: 10.1021/acs.jctc.1c00254] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Nonstandard amino acids are both abundant in nature, where they play a key role in various cellular processes, and can be synthesized in laboratories, for example, for the manufacture of a range of pharmaceutical agents. In this work, we have extended the additive all-atom CHARMM36 and CHARMM General force field (CGenFF) to a large set of 333 nonstandard amino acids. These include both amino acids with nonstandard side chains, such as post-translationally modified and artificial amino acids, as well as amino acids with modified backbone groups, such as chromophores composed of several amino acids. Model compounds representative of the nonstandard amino acids were parametrized for protonation states that are likely at the physiological pH of 7 and, for some more common residues, in both d- and l-stereoisomers. Considering all protonation, tautomeric, and stereoisomeric forms, a total of 406 nonstandard amino acids were parametrized. Emphasis was placed on the quality of both intra- and intermolecular parameters. Partial charges were derived using quantum mechanical (QM) data on model compound dipole moments, electrostatic potentials, and interactions with water. Optimization of all intramolecular parameters, including torsion angle parameters, was performed against information from QM adiabatic potential energy surface (PES) scans. Special emphasis was put on the quality of terms corresponding to PES around rotatable dihedral angles. Validation of the force field was based on molecular dynamics simulations of 20 protein complexes containing different nonstandard amino acids. Overall, the presented parameters will allow for computational studies of a wide range of proteins containing nonstandard amino acids, including natural and artificial residues.
Collapse
Affiliation(s)
- Anastasia Croitoru
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| | - Sang-Jun Park
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Anmol Kumar
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Jumin Lee
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Wonpil Im
- Departments of Biological Sciences, Chemistry, Bioengineering, and Computer Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Alexander D MacKerell
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, 20 Penn Street, Baltimore, Maryland 21201, United States
| | - Alexey Aleksandrov
- Laboratoire d'Optique et Biosciences (CNRS UMR7645, INSERM U1182), Ecole Polytechnique, Institut Polytechnique de Paris, F-91128 Palaiseau, France
| |
Collapse
|