1
|
Sizer RE, Ingram RM, White RJ. Barriers Composed of tRNA Genes Can Complement the Benefits of a Ubiquitous Chromatin Opening Element to Enhance Transgene Expression. Biotechnol J 2025; 20:e202400455. [PMID: 39956936 PMCID: PMC11830863 DOI: 10.1002/biot.202400455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/18/2024] [Accepted: 12/20/2024] [Indexed: 02/18/2025]
Abstract
Random integration of transgenes into host cell genomes often occurs in epigenetically unstable regions, leading to variable and unreliable transgene expression. To address this, biomanufacturing organizations frequently employ barrier elements, such as the widely-used ubiquitous chromatin opening element (UCOE). We have compared UCOE barrier activity against a barrier provided by tRNA genes. We demonstrate that the tRNA genes provide a more effective barrier than a UCOE in preventing transgene silencing in Chinese hamster ovary (CHO) cells. Nevertheless, the UCOE offers other benefits, increasing expression strongly, albeit transiently, and reducing production variability. Both the UCOE and tRNA genes counteract the repressive heterochromatin mark H3K9me3, but only the tRNA genes sustain euchromatic H3K27ac and recruitment of RNA polymerase II (Pol II) throughout long-term culture. A hybrid combining these distinct types of elements can provide benefits of both, enhancing expression in a more enduring manner. This synthetic hybrid offers potential for biomanufacturing applications.
Collapse
|
2
|
Zhang M, Ehmann ME, Matukumalli S, Boob AG, Gilbert DM, Zhao H. SHIELD: a platform for high-throughput screening of barrier-type DNA elements in human cells. Nat Commun 2023; 14:5616. [PMID: 37699958 PMCID: PMC10497619 DOI: 10.1038/s41467-023-41468-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 09/04/2023] [Indexed: 09/14/2023] Open
Abstract
Chromatin boundary elements contribute to the partitioning of mammalian genomes into topological domains to regulate gene expression. Certain boundary elements are adopted as DNA insulators for safe and stable transgene expression in mammalian cells. These elements, however, are ill-defined and less characterized in the non-coding genome, partially due to the lack of a platform to readily evaluate boundary-associated activities of putative DNA sequences. Here we report SHIELD (Site-specific Heterochromatin Insertion of Elements at Lamina-associated Domains), a platform tailored for the high-throughput screening of barrier-type DNA elements in human cells. SHIELD takes advantage of the high specificity of serine integrase at heterochromatin, and exploits the natural heterochromatin spreading inside lamina-associated domains (LADs) for the discovery of potent barrier elements. We adopt SHIELD to evaluate the barrier activity of 1000 DNA elements in a high-throughput manner and identify 8 candidates with barrier activities comparable to the core region of cHS4 element in human HCT116 cells. We anticipate SHIELD could facilitate the discovery of novel barrier DNA elements from the non-coding genome in human cells.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mary Elisabeth Ehmann
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Srija Matukumalli
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Aashutosh Girish Boob
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - David M Gilbert
- San Diego Biomedical Research Institute, San Diego, CA, 92121, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Chemistry, Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Kim SM, Lee J, Lee JS. Implementation of ubiquitous chromatin opening elements as artificial integration sites for CRISPR/Cas9‐mediated knock‐in in mammalian cells. Eng Life Sci 2023; 23:e2200047. [PMID: 37025191 PMCID: PMC10071570 DOI: 10.1002/elsc.202200047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/16/2023] [Accepted: 02/07/2023] [Indexed: 03/11/2023] Open
Abstract
CRISPR/Cas9-mediated targeted gene integration (TI) has been used to generate recombinant mammalian cell lines with predictable transgene expression. Identifying genomic hot spots that render high and stable transgene expression and knock-in (KI) efficiency is critical for fully implementing TI-mediated cell line development (CLD); however, such identification is cumbersome. In this study, we developed an artificial KI construct that can be used as a hot spot at different genomic loci. The ubiquitous chromatin opening element (UCOE) was employed because of its ability to open chromatin and enable stable and site-independent transgene expression. UCOE KI cassettes were randomly integrated into CHO-K1 and HEK293T cells, followed by TI of enhanced green fluorescent protein (EGFP) onto the artificial UCOE KI site. The CHO-K1 random pool harboring 5'2.2A2UCOE-CMV displayed a significant increase in EGFP expression level and KI efficiency compared with that of the control without UCOE. In addition, 5'2.2A2UCOE-CMV showed improved Cas9 accessibility in the HEK293T genome, leading to an increase in indel frequency and homology-independent KI. Overall, this assessment revealed the potential of UCOE KI constructs as artificial integration sites in streamlining the screening of high-production targeted integrants by mitigating the selection of genomic hot spots.
Collapse
Affiliation(s)
- Seul Mi Kim
- Department of Molecular Science and Technology Ajou University Suwon Republic of Korea
| | - Jaejin Lee
- Department of Molecular Science and Technology Ajou University Suwon Republic of Korea
| | - Jae Seong Lee
- Department of Molecular Science and Technology Ajou University Suwon Republic of Korea
| |
Collapse
|
4
|
Gödecke N, Herrmann S, Weichelt V, Wirth D. A Ubiquitous Chromatin Opening Element and DNA Demethylation Facilitate Doxycycline-Controlled Expression during Differentiation and in Transgenic Mice. ACS Synth Biol 2023; 12:482-491. [PMID: 36755406 PMCID: PMC9942253 DOI: 10.1021/acssynbio.2c00450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Synthetic expression cassettes provide the ability to control transgene expression in experimental animal models through external triggers, enabling the study of gene function and the modulation of endogenous regulatory networks in vivo. The performance of synthetic expression cassettes in transgenic animals critically depends on the regulatory properties of the respective chromosomal integration sites, which are affected by the remodeling of the chromatin structure during development. The epigenetic status may affect the transcriptional activity of the synthetic cassettes and even lead to transcriptional silencing, depending on the chromosomal sites and the tissue. In this study, we investigated the influence of the ubiquitous chromosome opening element (UCOE) HNRPA2B1-CBX3 and its subfragments A2UCOE and CBX3 on doxycycline-controlled expression modules within the chromosomal Rosa26 locus. While HNRPA2B1-CBX3 and A2UCOE reduced the expression of the synthetic cassettes in mouse embryonic stem cells, CBX3 stabilized the expression and facilitated doxycycline-controlled expression after in vitro differentiation. In transgenic mice, the CBX3 element protected the cassettes from overt silencing although the expression was moderate and only partially controlled by doxycycline. We demonstrate that CBX3-flanked synthetic cassettes can be activated by decitabine-mediated blockade of DNA methylation or by specific recruitment of the catalytic demethylation domain of the ten-eleven translocation protein TET1 to the synthetic promoter. This suggests that CBX3 renders the synthetic cassettes permissive for subsequent epigenetic activation, thereby supporting doxycycline-controlled expression. Together, this study reveals a strategy for overcoming epigenetic constraints of synthetic expression cassettes, facilitating externally controlled transgene expression in mice.
Collapse
Affiliation(s)
- Natascha Gödecke
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Sabrina Herrmann
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Viola Weichelt
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Dagmar Wirth
- RG
Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany,Institute
of Experimental Hematology, Medical University
Hannover (MHH), 30625 Hannover, Germany,
| |
Collapse
|
5
|
Oliviero C, Hinz SC, Grzeschik J, Hock B, Kolmar H, Hagens G. Cell Line Development Using Targeted Gene Integration into MAR-Rich Landing Pads for Stable Expression of Transgenes. Methods Mol Biol 2023; 2681:343-359. [PMID: 37405657 DOI: 10.1007/978-1-0716-3279-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Integration of a gene of interest (GOI) into the genome of mammalian cells is the first step of cell line development campaigns for the production of biotherapeutics. Besides random integration methods, targeted gene integration approaches have emerged as promising tools over the last few years. In addition to reducing heterogeneity within a pool of recombinant transfectants, this process can also facilitate shorter timelines of the current cell line development process. Herein, we describe protocols for generating host cell lines carrying matrix attachment region (MAR)-rich landing pads (LPs), including BxB1 recombination sites. These LP-containing cell lines allow for site-specific and simultaneous integration of multiple GOIs. The resulting transgene-expressing stable recombinant clones can be used for the production of mono- or multispecific antibodies.
Collapse
Affiliation(s)
- Claudia Oliviero
- Institute of Life Technologies, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Sion, Switzerland
| | - Steffen C Hinz
- Institute of Life Technologies, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Sion, Switzerland
| | | | - Björn Hock
- Aerium Therapeutics, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerrit Hagens
- Institute of Life Technologies, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Sion, Switzerland.
| |
Collapse
|
6
|
Use of ubiquitous chromatin opening elements (UCOE) as tools to maintain transgene expression in biotechnology. Comput Struct Biotechnol J 2022; 21:275-283. [PMID: 36582439 PMCID: PMC9764128 DOI: 10.1016/j.csbj.2022.11.059] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
Amongst the most important outputs of the biopharmaceutical industry are recombinant proteins, many of which are produced by integrating transgenes into the genomes of mammalian cells. However, expression is highly variable and can be unstable during prolonged culture. This is often due to epigenetic mechanisms silencing the transgenes. To combat this problem, vectors have been engineered to include ubiquitous chromatin opening elements (UCOEs) that protect against silencing. Here, we recount the evidence that UCOEs can modify chromatin environments and benefit biomanufacturing.
Collapse
|
7
|
Oliviero C, Hinz SC, Bogen JP, Kornmann H, Hock B, Kolmar H, Hagens G. Generation of a Host Cell line containing a MAR-rich landing pad for site-specific integration and expression of transgenes. Biotechnol Prog 2022; 38:e3254. [PMID: 35396920 PMCID: PMC9539524 DOI: 10.1002/btpr.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
In recent years, targeted gene integration (TI) has been introduced as a strategy for the generation of recombinant mammalian cell lines for the production of biotherapeutics. Besides reducing the immense heterogeneity within a pool of recombinant transfectants, TI also aims at shortening the duration of the current cell line development process. Here we describe the generation of a host cell line carrying Matrix‐Attachment Region (MAR)‐rich landing pads (LPs), which allow for the simultaneous and site‐specific integration of multiple genes of interest (GOIs). We show that several copies of each chicken lysozyme 5'MAR‐based LP containing either BxB1 wild type or mutated recombination sites, integrated at one random chromosomal locus of the host cell genome. We further demonstrate that these LP‐containing host cell lines can be used for the site‐specific integration of several GOIs and thus, generation of transgene‐expressing stable recombinant clones. Transgene expression was shown by site‐specific integration of heavy and light chain genes coding for a monospecific antibody (msAb) as well as for a bi‐specific antibody (bsAb). The genetic stability of the herein described LP‐based recombinant clones expressing msAb or bsAb was demonstrated by cultivating the recombinant clones and measuring antibody titers over 85 generations. We conclude that the host cell containing multiple copies of MAR‐rich landing pads can be successfully used for stable expression of one or several GOIs.
Collapse
Affiliation(s)
- Claudia Oliviero
- Institute of Life Technology, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Rue de l'Industrie 19, CH-1950 Sion, Switzerland
| | - Steffen C Hinz
- Institute of Life Technology, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Rue de l'Industrie 19, CH-1950 Sion, Switzerland
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Henri Kornmann
- Ferring Biologics Innovation Center, Route de la Corniche 8, CH-1066, Epalinges, Switzerland
| | - Björn Hock
- Ferring Biologics Innovation Center, Route de la Corniche 8, CH-1066, Epalinges, Switzerland.,SwissThera SA, Route de la Corniche 4, CH-1066, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Gerrit Hagens
- Institute of Life Technology, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Rue de l'Industrie 19, CH-1950 Sion, Switzerland
| |
Collapse
|
8
|
Effects of ubiquitous chromatin opening element (UCOE) on recombinant anti-TNFα antibody production and expression stability in CHO-DG44 cells. Cytotechnology 2022; 74:31-49. [PMID: 35185284 PMCID: PMC8817031 DOI: 10.1007/s10616-021-00503-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/17/2021] [Indexed: 02/03/2023] Open
Abstract
To date, the production of antibodies (mAbs) usually faces the risks of transgene expression reduction and instability, especially after long-time culture. The inclusion of ubiquitous chromatin opening element (UCOE) into expression vectors was reported to enhance protein production and maintain transgene expression stability in CHO cell lines. Thus, we investigate the effects of UCOE on recombinant monoclonal anti-TNFα antibody (mAbTNFα) production and expression stability in CHO-DG44 cells. In our study, non-UCOE and UCOE-based vectors encoding mAbTNFα were constructed and introduced into the CHO-DG44 cells. Cell pools and single-cell clones were obtained by selecting transfected cells with G418, amplifying them by treatment with methotrexate (MTX), and isolating them by limiting dilution. The effects of UCOE on mAb production and stable transgene expression in transfected cells were analyzed via the correlation between mAb yields and mRNA expression level variations, and gene copy number changes. The UCOE pool exhibited higher mAb yield compared to non-UCOE pool. The UCOE was associated with higher transgene transcriptional activity, leading to improvement of mAb production after MTX-mediated gene amplification. The incorporation of UCOE generated cells allowed isolation of greater numbers of positive clones with higher expression. Despite the slightly decreased mAb yield, UCOE clones still retain stable long-term expression in the absence of selective pressure, which was explained by the loss of transgene copies rather than due to the decline of transcriptional activity. In addition, the purified mAb had primary chemical and biological characteristics similar to those of adalimumab. The results showed that the incorporation of UCOE within vectors provides significant advantages in the generation of high-producing clones, enhancement of mAb production, and improvement of gene expression stability.
Collapse
|
9
|
Doan CC, Ho NQC, Nguyen TT, Nguyen TPT, Do DG, Hoang NS, Le TL. Enhancement of anti-TNFα monoclonal antibody production in CHO cells through the use of UCOE and DHFR elements in vector construction and the optimization of cell culture media. Prep Biochem Biotechnol 2021; 52:452-470. [PMID: 34427158 DOI: 10.1080/10826068.2021.1963981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Recently, there has been a high demand for anti-tumor necrosis factor-α monoclonal antibodies (mAbTNFα) in the treatment of rheumatoid arthritis and other autoimmune diseases. Thus, efficient strategies and stable high-producing cell lines need to be established to increase antibody production. In this study, we describe an efficient approach to establish a mAbTNFα high-producing clone through the optimization of expression vectors and cell culture media. The ubiquitous chromatin opening element (UCOE) and dihydrofolate reductase (DHFR)-based vectors encoding mAbTNFα were introduced into the CHO-DG44 cells using lipofection. Clones were obtained by selecting transfected cells with G418, amplifying them by treatment with methotrexate, and isolating them by limiting dilution. Different media formulated with commercial feeds and media were also screened to develop an improved medium. The antibody produced by the selected clone was purified, characterized, and compared to standard adalimumab. Using our established protocol, a cell clone obtained from stable mAbTNFα-expressing cell pools showed a 3.8-fold higher antibody titer compared to stable cell pools. Furthermore, the highest antibody yield of selected clones cultured in fed-batch mode using improved medium was 2450 ± 30 µg/mL, which was 13.2-fold higher than that of stable cell pool cultivated in batch mode using a basal medium. The purified antibody had primary chemical and biological characteristics similar to those of adalimumab. Therefore, the use of UCOE and DHFR vectors in combination with the optimization of cell culture media may help in establishing stable and high-producing CHO cell lines for therapeutic antibody production.
Collapse
Affiliation(s)
- Chinh Chung Doan
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Nguyen Quynh Chi Ho
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Thuy Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Thi Phuong Thao Nguyen
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Dang Giap Do
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam
| | - Nghia Son Hoang
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| | - Thanh Long Le
- Department of Animal Biotechnology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, Ho Chi Minh City, Vietnam.,Faculty of Biotechnology, Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Ha Noi City, Vietnam
| |
Collapse
|
10
|
Gödecke N, Herrmann S, Hauser H, Mayer-Bartschmid A, Trautwein M, Wirth D. Rational Design of Single Copy Expression Cassettes in Defined Chromosomal Sites Overcomes Intraclonal Cell-to-Cell Expression Heterogeneity and Ensures Robust Antibody Production. ACS Synth Biol 2021; 10:145-157. [PMID: 33382574 DOI: 10.1021/acssynbio.0c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression of endogenous genes as well as transgenes depends on regulatory elements within and surrounding genes as well as their epigenetic modifications. Members of a cloned cell population often show pronounced cell-to-cell heterogeneity with respect to the expression of a certain gene. To investigate the heterogeneity of recombinant protein expression we targeted cassettes into two preselected chromosomal hot-spots in Chinese hamster ovary (CHO) cells. Depending on the gene of interest and the design of the expression cassette, we found strong expression variability that could be reduced by epigenetic modifiers, but not by site-specific recruitment of the modulator dCas9-VPR. In particular, the implementation of ubiquitous chromatin opening elements (UCOEs) reduced cell-to-cell heterogeneity and concomitantly increased expression. The application of this method to recombinant antibody expression confirmed that rational design of cell lines for production of transgenes with predictable and high titers is a promising approach.
Collapse
Affiliation(s)
- Natascha Gödecke
- RG Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Sabrina Herrmann
- RG Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Hansjörg Hauser
- Staff Unit Scientific Strategy, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | | | | | - Dagmar Wirth
- RG Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
- Institute of Experimental Hematology, Medical University Hannover, Hannover 30625, Germany
| |
Collapse
|
11
|
Hoseinpoor R, Kazemi B, Rajabibazl M, Rahimpour A. Improving the expression of anti-IL-2Rα monoclonal antibody in the CHO cells through optimization of the expression vector and translation efficiency. J Biotechnol 2020; 324:112-120. [PMID: 33007349 DOI: 10.1016/j.jbiotec.2020.09.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/21/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
The growing need for monoclonal antibodies (mAbs) necessitates the development of novel and efficient production approaches. Regulatory elements like ubiquitous chromatin-opening elements (UCOEs) have been employed for improvement of the mAb expression in the Chinese hamster ovary (CHO) cells. SINEUPs are a class of long non-coding RNAs, which can improve the translation of partly overlapping mRNAs. A combination of these two elements might lead to higher production of mAbs. Therefore, the current study was conducted to investigate the effects of SINEUPs and A2UCOE on the expression of an IgG1 in the CHO-K1 cells. Hence, after constructing the mAb, mAb-SINEUP, and mAb-UCOE vectors, four stable cell pools were generated through combining the above vectors. According to the expression analysis, antibody yields were higher in the mAb-SINEUP and mAb-UCOE cell pools compared to the mAb cells. In addition, the cells possessing both SINEUP and UCOE elements provided the best expression. Persistent mAb expression was observed for over 2 months in these cells, whilst the expression was decreased in the mAb pool. SINEUP and UCOE positively influenced the stable mAb expression. It can be concluded that the SINEUP and UCOE enhance the antibody stability and expression level separately and their combination improves the mAb production in the CHO cells.
Collapse
Affiliation(s)
- Reyhaneh Hoseinpoor
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bahram Kazemi
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Azam Rahimpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Ogaki Y, Fukuma M, Shimizu N. Repeat induces not only gene silencing, but also gene activation in mammalian cells. PLoS One 2020; 15:e0235127. [PMID: 32579599 PMCID: PMC7313748 DOI: 10.1371/journal.pone.0235127] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/08/2020] [Indexed: 11/19/2022] Open
Abstract
Repeat-induced gene silencing (RIGS) establishes the centromere structure, prevents the spread of transposons and silences transgenes, thereby limiting recombinant protein production. We previously isolated a sequence (B-3-31) that alleviates RIGS from the human genome. Here, we developed an assay system for evaluating the influence of repeat sequences on gene expression, based on in vitro ligation followed by our original gene amplification technology in animal cells. Using this assay, we found that the repeat of B-3-31, three core sequences of replication initiation regions (G5, C12, and D8) and two matrix attachment regions (AR1 and 32–3), activated the co-amplified plasmid-encoded d2EGFP gene in both human and hamster cell lines. This upregulation effect persisted for up to 82 days, which was confirmed to be repeat-induced, and was thus designated as a repeat-induced gene activation (RIGA). In clear contrast, the repeat of three bacterial sequences (lambda-phage, Amp, and ColE1) and three human retroposon sequences (Alu, 5’-untranslated region, and ORF1 of a long interspersed nuclear element) suppressed gene expression, thus reflecting RIGS. RIGS was CpG-independent. We suggest that RIGA might be associated with replication initiation. The discovery of RIGS and RIGA has implications for the repeat in mammalian genome, as well as practical value in recombinant production.
Collapse
Affiliation(s)
- Yusuke Ogaki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Miki Fukuma
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
13
|
Gupta K, Parasnis M, Jain R, Dandekar P. Vector-related stratagems for enhanced monoclonal antibody production in mammalian cells. Biotechnol Adv 2019; 37:107415. [DOI: 10.1016/j.biotechadv.2019.107415] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 07/01/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
|
14
|
Zhang J, Zhang J, Cheng S, Yang W, Li S. Enhanced transgene expression using two β-globin MARs flanking expression cassettes in stably transfected CHO-K1 cells. 3 Biotech 2019; 9:435. [PMID: 31696040 DOI: 10.1007/s13205-019-1971-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 10/23/2019] [Indexed: 02/02/2023] Open
Abstract
In this study, we systemically investigated the positions and orientations of matrix attachment regions (MARs) in expression vectors to fully explore the mechanism for improving transgene expression. We constructed 14 vectors that incorporated human β-globin MARs into pIRES-eGFP backbone vectors. The MARs flanked the eGFP expression cassette or promoter in a forward/reverse orientation. After stable transfection into CHO-K1 cells with these vectors, eGFP expression levels were increased significantly relative to that of the control vector (MAR-devoid) when two MARs flanking the expression cassette were incorporated, followed by those at the 5' site (upstream of the promoter). Simultaneously, the percentage of the eGFP-expressing cells was elevated to some extent. The vector with both MARs in forward orientation flanking the expression cassette yielded the highest transgene expression levels (2.5-fold). The orientation (forward or reverse) of the MARs did not present a significant difference when added in the same site. In addition, transgene expression levels were not exclusively dependent on transgene copy numbers. Bioinformatic analysis indicated that some specific transcription factors may contribute to the transcriptional process. In conclusion, two MARs in a forward orientation and flanking the expression cassette comprised the optimal construct for improving the stable transgene expression in the CHO-K1 cells. The effects may be related to specific transcription factors, such as PRDM1 and REL.
Collapse
Affiliation(s)
- Jihong Zhang
- 1School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Junhe Zhang
- 1School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Shan Cheng
- 1School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan China
| | - Wenwen Yang
- 1School of Basic Medical Sciences, Xinxiang Medical University, No. 601 Jinsui Road, Xinxiang, 453003 Henan China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, 453003 China
| | - Shijiang Li
- 3The First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100 China
| |
Collapse
|
15
|
Rozov SM, Deineko EV. Strategies for Optimizing Recombinant Protein Synthesis in Plant Cells: Classical Approaches and New Directions. Mol Biol 2019. [DOI: 10.1134/s0026893319020146] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
Pristovšek N, Nallapareddy S, Grav LM, Hefzi H, Lewis NE, Rugbjerg P, Hansen HG, Lee GM, Andersen MR, Kildegaard HF. Systematic Evaluation of Site-Specific Recombinant Gene Expression for Programmable Mammalian Cell Engineering. ACS Synth Biol 2019; 8:758-774. [PMID: 30807689 DOI: 10.1021/acssynbio.8b00453] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many branches of biology depend on stable and predictable recombinant gene expression, which has been achieved in recent years through targeted integration of the recombinant gene into defined integration sites. However, transcriptional levels of recombinant genes in characterized integration sites are controlled by multiple components of the integrated expression cassette. Lack of readily available tools has inhibited meaningful experimental investigation of the interplay between the integration site and the expression cassette components. Here we show in a systematic manner how multiple components contribute to final net expression of recombinant genes in a characterized integration site. We develop a CRISPR/Cas9-based toolbox for construction of mammalian cell lines with targeted integration of a landing pad, containing a recombinant gene under defined 5' proximal regulatory elements. Generated site-specific recombinant cell lines can be used in a streamlined recombinase-mediated cassette exchange for fast screening of different expression cassettes. Using the developed toolbox, we show that different 5' proximal regulatory elements generate distinct and robust recombinant gene expression patterns in defined integration sites of CHO cells with a wide range of transcriptional outputs. This approach facilitates the generation of user-defined and product-specific gene expression patterns for programmable mammalian cell engineering.
Collapse
Affiliation(s)
- Nuša Pristovšek
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Saranya Nallapareddy
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Hooman Hefzi
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- The Novo Nordisk Foundation Center for Biosustainability at the University of California, San Diego School of Medicine, La Jolla, California 92093, United States
| | - Peter Rugbjerg
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Henning Gram Hansen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
- Department of Biological Sciences, KAIST, 291 Daehak-ro,
Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Mikael Rørdam Andersen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads, Building 223, 2800 Kgs. Lyngby, Denmark
| | - Helene Faustrup Kildegaard
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
17
|
Mauro VP. Codon Optimization in the Production of Recombinant Biotherapeutics: Potential Risks and Considerations. BioDrugs 2018; 32:69-81. [PMID: 29392566 DOI: 10.1007/s40259-018-0261-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biotherapeutics are increasingly becoming the mainstay in the treatment of a variety of human conditions, particularly in oncology and hematology. The production of therapeutic antibodies, cytokines, and fusion proteins have markedly accelerated these fields over the past decade and are probably the major contributor to improved patient outcomes. Today, most protein therapeutics are expressed as recombinant proteins in mammalian cell lines. An expression technology commonly used to increase protein levels involves codon optimization. This approach is possible because degeneracy of the genetic code enables most amino acids to be encoded by more than one synonymous codon and because codon usage can have a pronounced influence on levels of protein expression. Indeed, codon optimization has been reported to increase protein expression by > 1000-fold. The primary tactic of codon optimization is to increase the rate of translation elongation by overcoming limitations associated with species-specific differences in codon usage and transfer RNA (tRNA) abundance. However, in mammalian cells, assumptions underlying codon optimization appear to be poorly supported or unfounded. Moreover, because not all synonymous codon mutations are neutral, codon optimization can lead to alterations in protein conformation and function. This review discusses codon optimization for therapeutic protein production in mammalian cells.
Collapse
|
18
|
Cellular Antisilencing Elements Support Transgene Expression from Herpes Simplex Virus Vectors in the Absence of Immediate Early Gene Expression. J Virol 2018; 92:JVI.00536-18. [PMID: 29950408 DOI: 10.1128/jvi.00536-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 06/13/2018] [Indexed: 01/22/2023] Open
Abstract
Inactivation of all herpes simplex virus (HSV) immediate early (IE) genes to eliminate vector cytotoxicity results in rapid silencing of the viral genome, similar to the establishment of HSV latency. We recently reported that silencing of a nonviral reporter cassette could be overcome in nonneuronal cells by positioning the cassette in the viral latency (LAT) locus between resident chromatin boundary elements. Here, we tested the abilities of the chicken hypersensitive site 4 insulator and the human ubiquitous chromatin opening element A2UCOE to promote transgene expression from an IE-gene-inactivated HSV vector. We found that A2UCOE was particularly active in nonneuronal cells and reduced reporter promoter occupancy by a repressive histone mark. We determined whether multiple transgenes could be expressed under the control of different promoters from different loci of the same virus. The results showed abundant coexpression of LAT-embedded and A2UCOE-flanked genes in nonneuronal cells. In addition, a third reporter gene without known protective elements was active in cultured rat sensory neurons. These findings indicate that cellular antisilencing sequences can contribute to the expression of multiple genes from separate promoters in fully IE gene-disabled HSV vectors, providing an opportunity for therapeutic applications requiring mutually independent expression of different gene products from a single vector.IMPORTANCE Gene therapy has now entered a phase of development in which a growing number of recessive single gene defects can be successfully treated by vector-mediated introduction of a wild-type copy of the gene into the appropriate tissue. However, many disease conditions, such as neurodegeneration, cancer, and inflammatory processes, are more complex, requiring either multiple gene corrections or provision of coordinated gene activities to achieve a therapeutic outcome. Although herpes simplex virus (HSV) vectors have the capacity to meet this need, the challenge has been to genetically engineer the HSV genome in a manner to prevent expression of any viral genes while retaining the ability to express multiple therapeutic transgenes under independent transcriptional control. Here, we show that non-HSV insulator elements can be applied to retain at least transient transgene activity from multiple viral loci, thereby opening the door for more complex gene therapy applications in the future.
Collapse
|
19
|
Neville JJ, Orlando J, Mann K, McCloskey B, Antoniou MN. Ubiquitous Chromatin-opening Elements (UCOEs): Applications in biomanufacturing and gene therapy. Biotechnol Adv 2017; 35:557-564. [DOI: 10.1016/j.biotechadv.2017.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/11/2017] [Accepted: 05/15/2017] [Indexed: 12/31/2022]
|
20
|
Utani K, Fu H, Jang SM, Marks AB, Smith OK, Zhang Y, Redon CE, Shimizu N, Aladjem MI. Phosphorylated SIRT1 associates with replication origins to prevent excess replication initiation and preserve genomic stability. Nucleic Acids Res 2017; 45:7807-7824. [PMID: 28549174 PMCID: PMC5570034 DOI: 10.1093/nar/gkx468] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/09/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022] Open
Abstract
Chromatin structure affects DNA replication patterns, but the role of specific chromatin modifiers in regulating the replication process is yet unclear. We report that phosphorylation of the human SIRT1 deacetylase on Threonine 530 (T530-pSIRT1) modulates DNA synthesis. T530-pSIRT1 associates with replication origins and inhibits replication from a group of 'dormant' potential replication origins, which initiate replication only when cells are subject to replication stress. Although both active and dormant origins bind T530-pSIRT1, active origins are distinguished from dormant origins by their unique association with an open chromatin mark, histone H3 methylated on lysine 4. SIRT1 phosphorylation also facilitates replication fork elongation. SIRT1 T530 phosphorylation is essential to prevent DNA breakage upon replication stress and cells harboring SIRT1 that cannot be phosphorylated exhibit a high prevalence of extrachromosomal elements, hallmarks of perturbed replication. These observations suggest that SIRT1 phosphorylation modulates the distribution of replication initiation events to insure genomic stability.
Collapse
Affiliation(s)
- Koichi Utani
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sang-Min Jang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna B. Marks
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Owen K. Smith
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ya Zhang
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Christophe E. Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Hiroshima 739-8521, Japan
| | - Mirit I. Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
21
|
Droz X, Harraghy N, Lançon E, Le Fourn V, Calabrese D, Colombet T, Liechti P, Rida A, Girod PA, Mermod N. Automated microfluidic sorting of mammalian cells labeled with magnetic microparticles for those that efficiently express and secrete a protein of interest. Biotechnol Bioeng 2017; 114:1791-1802. [DOI: 10.1002/bit.26270] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 01/05/2017] [Accepted: 02/15/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Xuan Droz
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| | - Niamh Harraghy
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| | - Etienne Lançon
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| | | | | | | | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne; Center for Biotechnology UNIL-EPFL; Lausanne Switzerland
| |
Collapse
|
22
|
Ohsaki K, Ohgaki Y, Shimizu N. Amplification of a transgene within a long array of replication origins favors higher gene expression in animal cells. PLoS One 2017; 12:e0175585. [PMID: 28403180 PMCID: PMC5389822 DOI: 10.1371/journal.pone.0175585] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/28/2017] [Indexed: 11/27/2022] Open
Abstract
Plasmids with both a mammalian replication initiation region (IR) and a matrix attachment region (MAR) are spontaneously amplified in transfected cells, and generate extrachromosomal double minute (DM) or chromosomal homogeneously staining region (HSR). We previously isolated the shortest core IR (G5) required for gene amplification. In this study, we ligated the G5 DNA to create direct or inverted repeats, mixed the repeats with an expression plasmid, and transfected the mixture into human COLO 320DM or hamster CHO DG44 cells. Consequently, we found that the transfected sequence generated DMs or HSR where, surprisingly, the plasmid sequence was embedded within a long stretch of G5 sequences. The amplified structure from the direct G5 repeats was stable, whereas that from the inverted repeats was not. The amplification might be explained by the efficient replication/multimerization of the G5 repeat and recombination with the co-transfected plasmid in an extrachromosomal context. The product might then be integrated into a chromosome arm to generate a HSR. The expression from the plasmid within the long G5 array was much higher than that from a simple plasmid repeat. Because G5 is a core IR that favors gene expression, a long array of G5 provides an excellent environment for gene expression from the embedded plasmid.
Collapse
Affiliation(s)
- Kiwamu Ohsaki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Yusuke Ohgaki
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
23
|
Nematpour F, Mahboudi F, Vaziri B, Khalaj V, Ahmadi S, Ahmadi M, Ebadat S, Davami F. Evaluating the expression profile and stability of different UCOE containing vector combinations in mAb-producing CHO cells. BMC Biotechnol 2017; 17:18. [PMID: 28228095 PMCID: PMC5322649 DOI: 10.1186/s12896-017-0330-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 02/03/2017] [Indexed: 12/03/2022] Open
Abstract
Background As the demand for monoclonal antibodies (mAb) increases, more efficient expression methods are required for their manufacturing process. Transcriptional gene silencing is a common phenomenon in recombinant cell lines which leads to expression reduction and instability. There are reports on improved antibody expression in ubiquitous chromatin opening element (UCOE) containing both heavy and light chain gene constructs. Here we investigate the impact of having these elements as part of the light chain, heavy chain or both genes during cell line development. In this regard, non-UCOE and UCOE vectors were constructed and stable Chinese hamster ovary (CHO) cell pools were generated by different vector combinations. Results Expression analysis revealed that all UCOE cell pools had higher antibody yields compared to non-UCOE cells, Moreover the most optimal expression was obtained by cells containing just the UCOE on heavy chain. In terms of stability, it was shown that the high level of expression was kept consistence for more than four months in these cells whereas the expression titers were reduced in the other UCOE pools. Conclusions In conclusion, UCOE significantly enhanced the level and stability of antibody expression and the use of this element with heavy chain provided more stable cell lines with higher production level.
Collapse
Affiliation(s)
- Fatemeh Nematpour
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fereidoun Mahboudi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Behrouz Vaziri
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Vahid Khalaj
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Samira Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Maryam Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.,Departments of Medical Biotechnology, Semnan University of Medical Sciences, Semnan, 3519899951, Iran
| | - Saedeh Ebadat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 1316943551, Iran.
| |
Collapse
|
24
|
Aladjem MI, Redon CE. Order from clutter: selective interactions at mammalian replication origins. Nat Rev Genet 2017; 18:101-116. [PMID: 27867195 PMCID: PMC6596300 DOI: 10.1038/nrg.2016.141] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mammalian chromosome duplication progresses in a precise order and is subject to constraints that are often relaxed in developmental disorders and malignancies. Molecular information about the regulation of DNA replication at the chromatin level is lacking because protein complexes that initiate replication seem to bind chromatin indiscriminately. High-throughput sequencing and mathematical modelling have yielded detailed genome-wide replication initiation maps. Combining these maps and models with functional genetic analyses suggests that distinct DNA-protein interactions at subgroups of replication initiation sites (replication origins) modulate the ubiquitous replication machinery and supports an emerging model that delineates how indiscriminate DNA-binding patterns translate into a consistent, organized replication programme.
Collapse
Affiliation(s)
- Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, 37 Convent Drive, Bethesda, Maryland 20892, USA
| |
Collapse
|
25
|
Marks AB, Fu H, Aladjem MI. Regulation of Replication Origins. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:43-59. [PMID: 29357052 DOI: 10.1007/978-981-10-6955-0_2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In eukaryotes, genome duplication starts concomitantly at many replication initiation sites termed replication origins. The replication initiation program is spatially and temporally coordinated to ensure accurate, efficient DNA synthesis that duplicates the entire genome while maintaining other chromatin-dependent functions. Unlike in prokaryotes, not all potential replication origins in eukaryotes are needed for complete genome duplication during each cell cycle. Instead, eukaryotic cells vary the use of initiation sites so that only a fraction of potential replication origins initiate replication each cell cycle. Flexibility in origin choice allows each eukaryotic cell type to utilize different initiation sites, corresponding to unique nuclear DNA packaging patterns. These patterns coordinate replication with gene expression and chromatin condensation. Budding yeast replication origins share a consensus sequence that marks potential initiation sites. Metazoan origins, on the other hand, lack a consensus sequence. Rather, they are associated with a collection of structural features, chromatin packaging features, histone modifications, transcription, and DNA-DNA/DNA-protein interactions. These features confer cell type-specific replication and expression and play an essential role in maintaining genomic stability.
Collapse
Affiliation(s)
- Anna B Marks
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Haiqing Fu
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
26
|
Kostyrko K, Neuenschwander S, Junier T, Regamey A, Iseli C, Schmid-Siegert E, Bosshard S, Majocchi S, Le Fourn V, Girod PA, Xenarios I, Mermod N. MAR-Mediated transgene integration into permissive chromatin and increased expression by recombination pathway engineering. Biotechnol Bioeng 2016; 114:384-396. [PMID: 27575535 PMCID: PMC5215416 DOI: 10.1002/bit.26086] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/03/2016] [Accepted: 08/25/2016] [Indexed: 12/27/2022]
Abstract
Untargeted plasmid integration into mammalian cell genomes remains a poorly understood and inefficient process. The formation of plasmid concatemers and their genomic integration has been ascribed either to non-homologous end-joining (NHEJ) or homologous recombination (HR) DNA repair pathways. However, a direct involvement of these pathways has remained unclear. Here, we show that the silencing of many HR factors enhanced plasmid concatemer formation and stable expression of the gene of interest in Chinese hamster ovary (CHO) cells, while the inhibition of NHEJ had no effect. However, genomic integration was decreased by the silencing of specific HR components, such as Rad51, and DNA synthesis-dependent microhomology-mediated end-joining (SD-MMEJ) activities. Genome-wide analysis of the integration loci and junction sequences validated the prevalent use of the SD-MMEJ pathway for transgene integration close to cellular genes, an effect shared with matrix attachment region (MAR) DNA elements that stimulate plasmid integration and expression. Overall, we conclude that SD-MMEJ is the main mechanism driving the illegitimate genomic integration of foreign DNA in CHO cells, and we provide a recombination engineering approach that increases transgene integration and recombinant protein expression in these cells. Biotechnol. Bioeng. 2017;114: 384-396. © 2016 The Authors. Biotechnology and Bioengineering published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Kaja Kostyrko
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | | | - Thomas Junier
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | | | | | | - Sandra Bosshard
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | - Stefano Majocchi
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| | | | | | | | - Nicolas Mermod
- Department of Fundamental Microbiology, Institute of Biotechnology, University of Lausanne, and Center for Biotechnology UNIL-EPFL, Lausanne, Switzerland
| |
Collapse
|
27
|
Making Sense of the Tangle: Insights into Chromatin Folding and Gene Regulation. Genes (Basel) 2016; 7:genes7100071. [PMID: 27669308 PMCID: PMC5083910 DOI: 10.3390/genes7100071] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 08/10/2016] [Accepted: 09/07/2016] [Indexed: 01/03/2023] Open
Abstract
Proximity ligation assays such as circularized chromosome conformation capture and high-throughput chromosome capture assays have shed light on the structural organization of the interphase genome. Functional topologically associating domains (TADs) that constitute the building blocks of genomic organization are disrupted and reconstructed during the cell cycle. Epigenetic memory, as well as the sequence of chromosomes, regulate TAD reconstitution. Sub-TAD domains that are invariant across cell types have been identified, and contacts between these domains, rather than looping, are speculated to drive chromatin folding. Replication domains are established simultaneously with TADs during the cell cycle and the two correlate well in terms of characteristic features, such as lamin association and histone modifications. CCCTC-binding factor (CTCF) and cohesin cooperate across different cell types to regulate genes and genome organization. CTCF elements that demarcate TAD boundaries are commonly disrupted in cancer and promote oncogene activation. Chromatin looping facilitates interactions between distant promoters and enhancers, and the resulting enhanceosome complex promotes gene expression. Deciphering the chromatin tangle requires comprehensive integrative analyses of DNA- and protein-dependent factors that regulate genomic organization.
Collapse
|
28
|
Identification of regulatory motifs in the CHO genome for stable monoclonal antibody production. Cytotechnology 2016; 69:451-460. [PMID: 27544513 DOI: 10.1007/s10616-016-0017-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/08/2016] [Indexed: 01/05/2023] Open
Abstract
Chinese hamster ovary (CHO) cell lines are widely used for therapeutic protein production. When a transgene is integrated into the genome of a CHO cell, the expression level is highly dependent on the site of integration because of positional effects such as gene silencing. To overcome negative positional effects and establish stable CHO cell lines with high productivity, several regulatory DNA elements are used in vector construction. Previously, we established the CHO DR1000L-4N cell line, a stable and high copy number Dhfr gene-amplified cell line. It was hypothesized that the chromosomal location of the exogenous gene-amplified region in the CHO DR1000L-4N genome contains regulatory motifs for stable protein production. Therefore, we isolated DNA regulatory motifs from the CHO DR1000L-4N cell line and determined whether these motifs act as an insulator. Our results suggest that stable expression of a transgene can be promoted by the CHO genome sequence, and it would be a powerful tool for therapeutic protein manufacturing.
Collapse
|
29
|
Fukuma M, Ganmyo Y, Miura O, Ohyama T, Shimizu N. Cloning and Characterization of a Human Genomic Sequence that Alleviates Repeat-Induced Gene Silencing. PLoS One 2016; 11:e0153338. [PMID: 27078685 PMCID: PMC4831671 DOI: 10.1371/journal.pone.0153338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 01/06/2023] Open
Abstract
Plasmids bearing a mammalian replication initiation region (IR) and a nuclear matrix attachment region (MAR) are spontaneously amplified in transfected mammalian cells, and such amplification generates chromosomal homogeneously staining regions (HSRs) or extrachromosomal double minutes (DMs). This method provides a novel, efficient, and rapid way to establish cells that stably produce high levels of recombinant proteins. However, because IR/MAR plasmids are amplified as repeats, they are frequently targeted by repeat-induced gene silencing (RIGS), which silences a variety of repeated sequences in transgenes and the genome. To address this problem, we developed a novel screening system using the IR/MAR plasmid to isolate human genome sequences that alleviate RIGS. The screen identified a 3,271 bp sequence (B-3-31) that elevated transgene expression without affecting the amplification process. Neither non-B structure (i.e., the inverted repeats or bending) nor known epigenetic modifier elements such as MARs, insulators, UCOEs, or STARs could explain the anti-silencing activity of B-3-31. Instead, the activity was distributed throughout the entire B-3-31 sequence, which was extremely A/T-rich and CpG-poor. Because B-3-31 effectively and reproducibly alleviated RIGS of repeated genes, it could be used to increase recombinant protein production.
Collapse
Affiliation(s)
- Miki Fukuma
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Yuto Ganmyo
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
| | - Osamu Miura
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Takashi Ohyama
- Graduate School of Advanced Science and Engineering, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Noriaki Shimizu
- Graduate School of Biosphere Science, Hiroshima University, Higashi-hiroshima, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
30
|
Marks AB, Smith OK, Aladjem MI. Replication origins: determinants or consequences of nuclear organization? Curr Opin Genet Dev 2016; 37:67-75. [PMID: 26845042 PMCID: PMC4914405 DOI: 10.1016/j.gde.2015.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 11/24/2015] [Accepted: 11/25/2015] [Indexed: 12/20/2022]
Abstract
Chromosome replication, gene expression and chromatin assembly all occur on the same template, necessitating a tight spatial and temporal coordination to maintain genomic stability. The distribution of replication initiation events is responsive to local and global changes in chromatin structure and is affected by transcriptional activity. Concomitantly, replication origin sequences, which determine the locations of replication initiation events, can affect chromatin structure and modulate transcriptional efficiency. The flexibility observed in the replication initiation landscape might help achieve complete and accurate genome duplication while coordinating the DNA replication program with transcription and other nuclear processes in a cell-type specific manner. This review discusses the relationships among replication origin distribution, local and global chromatin structures and concomitant nuclear metabolic processes.
Collapse
Affiliation(s)
- Anna B Marks
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA
| | - Owen K Smith
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, NCI, NIH, Bethesda, MD, USA.
| |
Collapse
|
31
|
Liu H, Wang P, Liu L, Min Z, Luo K, Wan Y. Nucleosome alterations caused by mutations at modifiable histone residues in Saccharomyces cerevisiae. Sci Rep 2015; 5:15583. [PMID: 26498326 PMCID: PMC4620441 DOI: 10.1038/srep15583] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 09/28/2015] [Indexed: 01/13/2023] Open
Abstract
Nucleosome organization exhibits dynamic properties depending on the cell state and environment. Histone proteins, fundamental components of nucleosomes, are subject to chemical modifications on particular residues. We examined the effect of substituting modifiable residues of four core histones with the non-modifiable residue alanine on nucleosome dynamics. We mapped the genome-wide nucleosomes in 22 histone mutants of Saccharomyces cerevisiae and compared the nucleosome alterations relative to the wild-type strain. Our results indicated that different types of histone mutation resulted in different phenotypes and a distinct reorganization of nucleosomes. Nucleosome occupancy was altered at telomeres, but not at centromeres. The first nucleosomes upstream (−1) and downstream (+1) of the transcription start site (TSS) were more dynamic than other nucleosomes. Mutations in histones affected the nucleosome array downstream of the TSS. Highly expressed genes, such as ribosome genes and genes involved in glycolysis, showed increased nucleosome occupancy in many types of histone mutant. In particular, the H3K56A mutant exhibited a high percentage of dynamic genomic regions, decreased nucleosome occupancy at telomeres, increased occupancy at the +1 and −1 nucleosomes, and a slow growth phenotype under stress conditions. Our findings provide insight into the influence of histone mutations on nucleosome dynamics.
Collapse
Affiliation(s)
- Hongde Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Pingyan Wang
- Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Lingjie Liu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Zhu Min
- Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Kun Luo
- Department of Neurosurgery, Xinjiang Evidence-Based Medicine Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Yakun Wan
- Institute of Life Sciences, Southeast University, Nanjing 210096, China.,Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
32
|
Harraghy N, Calabrese D, Fisch I, Girod PA, LeFourn V, Regamey A, Mermod N. Epigenetic regulatory elements: Recent advances in understanding their mode of action and use for recombinant protein production in mammalian cells. Biotechnol J 2015; 10:967-78. [DOI: 10.1002/biot.201400649] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
|
33
|
Mariati, Koh EYC, Yeo JHM, Ho SCL, Yang Y. Toward stable gene expression in CHO cells. Bioengineered 2015; 5:340-5. [PMID: 25482237 DOI: 10.4161/bioe.32111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Maintaining high gene expression level during long-term culture is critical when producing therapeutic recombinant proteins using mammalian cells. Transcriptional silencing of promoters, most likely due to epigenetic events such as DNA methylation and histone modifications, is one of the major mechanisms causing production instability. Previous studies demonstrated that the core CpG island element (IE) from the hamster adenine phosphoribosyltransferase gene is effective to prevent DNA methylation. We generated one set of modified human cytomegalovirus (hCMV) promoters by insertion of one or two copies of IE in either forward or reverse orientations into different locations of the hCMV promoter. The modified hCMV with one copy of IE inserted between the hCMV enhancer and core promoter in reverse orientation (MR1) was most effective at enhancing expression stability in CHO cells without comprising expression level when compared with the wild type hCMV. We also found that insertion of IE into a chimeric murine CMV (mCMV) enhancer and human elongation factor-1α core (hEF) promoter in reverse orientation did not enhance expression stability, indicating that the effect of IE on expression stability is possibly promoter specific.
Collapse
Affiliation(s)
- Mariati
- a Bioprocessing Technology Institute; Agency for Science, Technology, and Research (A*STAR); Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|
34
|
Chromatin function modifying elements in an industrial antibody production platform--comparison of UCOE, MAR, STAR and cHS4 elements. PLoS One 2015; 10:e0120096. [PMID: 25849659 PMCID: PMC4388700 DOI: 10.1371/journal.pone.0120096] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 02/02/2015] [Indexed: 01/02/2023] Open
Abstract
The isolation of stably transfected cell lines suitable for the manufacture of biotherapeutic protein products can be an arduous process relying on the identification of a high expressing clone; this frequently involves transgene amplification and maintenance of the clones' expression over at least 60 generations. Maintenance of expression, or cell line stability, is highly dependent upon the nature of the genomic environment at the site of transgene integration, where epigenetic mechanisms lead to variable expression and silencing in the vast majority of cases. We have assessed four chromatin function modifying elements (A2UCOE, MAR X_S29, STAR40 and cHS4) for their ability to negate chromatin insertion site position effects and their ability to express and maintain monoclonal antibody expression. Each element was analysed by insertion into different positions within a vector, either flanking or between heavy chain (HC) and light chain (LC) antibody expression cassettes. Our results clearly show that the A2UCOE is the most beneficial element in this system, with stable cell pools and clones increasing antibody yields 6.5-fold and 6.75-fold respectively. Stability analysis demonstrated that the reduction in antibody expression, seen with cells transfected with the control vector over 120 generations, was mitigated in the clones containing A2UCOE-augmented transgenes. Analysis also showed that the A2UCOE reduced the amount of transgene promoter DNA methylation, which contributed to the maintenance of starting levels of expression.
Collapse
|
35
|
A potential epigenetic marker mediating serum folate and vitamin B12 levels contributes to the risk of ischemic stroke. BIOMED RESEARCH INTERNATIONAL 2015; 2015:167976. [PMID: 25705649 PMCID: PMC4331165 DOI: 10.1155/2015/167976] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 12/27/2014] [Indexed: 11/18/2022]
Abstract
Stroke is a multifactorial disease that may be associated with aberrant DNA methylation profiles. We investigated epigenetic dysregulation for the methylenetetrahydrofolate reductase (MTHFR) gene among ischemic stroke patients. Cases and controls were recruited after obtaining signed written informed consents following a screening process against the inclusion/exclusion criteria. Serum vitamin profiles (folate, vitamin B12, and homocysteine) were determined using immunoassays. Methylation profiles for CpGs A and B in the MTHFR gene were determined using a bisulfite-pyrosequencing method. Methylation of MTHFR significantly increased the susceptibility risk for ischemic stroke. In particular, CpG A outperformed CpG B in mediating serum folate and vitamin B12 levels to increase ischemic stroke susceptibility risks by 4.73-fold. However, both CpGs A and B were not associated with serum homocysteine levels or ischemic stroke severity. CpG A is a potential epigenetic marker in mediating serum folate and vitamin B12 to contribute to ischemic stroke.
Collapse
|
36
|
Role of epigenetics in expression of recombinant proteins from mammalian cells. ACTA ACUST UNITED AC 2014. [DOI: 10.4155/pbp.14.47] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
37
|
A PiggyBac-mediated approach for muscle gene transfer or cell therapy. Stem Cell Res 2014; 13:390-403. [PMID: 25310255 DOI: 10.1016/j.scr.2014.08.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 08/27/2014] [Accepted: 08/29/2014] [Indexed: 11/22/2022] Open
Abstract
An emerging therapeutic approach for Duchenne muscular dystrophy is the transplantation of autologous myogenic progenitor cells genetically modified to express dystrophin. The use of this approach is challenged by the difficulty in maintaining these cells ex vivo while keeping their myogenic potential, and ensuring sufficient transgene expression following their transplantation and myogenic differentiation in vivo. We investigated the use of the piggyBac transposon system to achieve stable gene expression when transferred to cultured mesoangioblasts and into murine muscles. Without selection, up to 8% of the mesoangioblasts expressed the transgene from 1 to 2 genomic copies of the piggyBac vector. Integration occurred mostly in intergenic genomic DNA and transgene expression was stable in vitro. Intramuscular transplantation of mouse Tibialis anterior muscles with mesoangioblasts containing the transposon led to sustained myofiber GFP expression in vivo. In contrast, the direct electroporation of the transposon-donor plasmids in the mouse Tibialis muscles in vivo did not lead to sustained transgene expression despite molecular evidence of piggyBac transposition in vivo. Together these findings provide a proof-of-principle that piggyBac transposon may be considered for mesoangioblast cell-based therapies of muscular dystrophies.
Collapse
|