1
|
Li J, Liu D, Li X, Wei J, Du W, Zhao A, Xu M. RNA vaccines: The dawn of a new age for tuberculosis? Hum Vaccin Immunother 2025; 21:2469333. [PMID: 40013818 PMCID: PMC11869779 DOI: 10.1080/21645515.2025.2469333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/03/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Since 2019, there has been a growing focus on mRNA vaccines for infectious disease prevention, particularly following the emergence of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). mRNA vaccines offer advantages such as rapid production and the ability to induce robust cellular and antibody responses, which are essential for combating infections that require cell-mediated immunity, including Tuberculosis (TB). This review explores recent progress in TB mRNA vaccines and addresses several key areas: (1) the urgent need for new TB vaccines; (2) current advancements in TB vaccine development, and the advantages and challenges of mRNA technology; (3) the design and characteristics of TB mRNA vaccines; (4) the immunological mechanisms of TB mRNA vaccines; (5) manufacturing processes for TB mRNA vaccines; and (6) safety and regulatory considerations. This interdisciplinary review aims to provide insights for researchers working to address critical questions in TB mRNA vaccine development.
Collapse
Affiliation(s)
- Junli Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Dong Liu
- Graduate School of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, China
- Guangzhou Laboratory, Guangzhou, China
| | - Xiaochi Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Jiazheng Wei
- College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, China
| | - Weixin Du
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Aihua Zhao
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| | - Miao Xu
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing, China
- State Key Laboratory of Drug Regulatory Science, National Institutes for Food and Drug Control, Beijing, China
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing, China
| |
Collapse
|
2
|
Cao D, Tian M, Liu Z, Guo K, Peng J, Ravichandra A, Ferrell C, Dong Y. Unlock the sustained therapeutic efficacy of mRNA. J Control Release 2025; 383:113837. [PMID: 40368188 DOI: 10.1016/j.jconrel.2025.113837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 05/01/2025] [Accepted: 05/10/2025] [Indexed: 05/16/2025]
Abstract
mRNA therapies have emerged as a transformative class of medicines, offering immense potential across a diverse array of applications. This progress has been particularly evident in the wake of the success of lipid nanoparticle (LNP)-based mRNA vaccines during the COVID-19 pandemic. As these applications expand, the demand for sustained protein production has become increasingly critical. However, conventional mRNA therapies face significant challenges, including inherent RNA instability and suboptimal expression efficiency, often requiring repeated dosing to maintain therapeutic efficacy over time. This review highlights recent advances in strategies to prolong the therapeutic efficacy of LNP-mRNA systems. We focus on preclinical and emerging approaches aimed at extending the period of protein translation by engineering both the mRNA molecule and the LNP delivery system. Sustained protein expression is a cornerstone of mRNA-based therapeutics, and addressing this challenge is vital for unlocking their therapeutic potential. We hope this review provides valuable insights to guide the development of optimized delivery platforms for LNP-mRNA therapeutics.
Collapse
Affiliation(s)
- Dinglingge Cao
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Meng Tian
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zhengwei Liu
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kaiyuan Guo
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jonathan Peng
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Anjali Ravichandra
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Caroline Ferrell
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yizhou Dong
- Icahn Genomics Institute, Precision Immunology Institute, Department of Immunology and Immunotherapy, Department of Oncological Sciences, Tisch Cancer Institute, Friedman Brain Institute, Biomedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Li R, Wu X, Xue K, Wu S, Jiang G, He M, Xia Y, Liu H, Zhong M, Li J, Fan L, Li J. CircTADA2A stabilizes p53 via interacting with TRIM28 and suppresses the maintenance of FLT3-ITD acute myeloid leukemia. Leukemia 2025:10.1038/s41375-025-02589-4. [PMID: 40175625 DOI: 10.1038/s41375-025-02589-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/10/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Internal tandem duplication mutations in the FMS-like tyrosine kinase 3 (FLT3-ITDs) occur in 25%-30% of acute myeloid leukemia (AML) cases and are associated with adverse prognosis. RNA-based therapeutics exhibit significant potential for treating diseases, prompting us to develop a novel circular RNA (circRNA)-based therapeutic strategy for FLT3-ITD AML. Here, we find circTADA2A is downregulated in FLT3-ITD AML patients. We further demonstrate that the downregulation of circTADA2A is critical for the proliferation of human FLT3-ITD AML cells, the sustenance of AML, and the self-renewal of leukemia stem/initiating cells (LSCs/LICs). Mechanistically, circTADA2A inhibits the TRIM28/MDM2 complexes formation by competitively binding to TRIM28, resulting in decreased levels of p53 ubiquitination and activating the p53 pathway. Importantly, in vitro transcription of circTADA2A and in vivo delivery via lipid nanoparticles (LNPs) significantly enhance the elimination of FLT3-ITD leukemia cells in combination with quizartinib treatment. In conclusion, our work uncovers the crucial functions of circTADA2A in the maintenance of FLT3-ITD AML and highlights a translationally important circTADA2A-based therapeutic approach for FLT3-ITD AML treatment.
Collapse
Affiliation(s)
- Ran Li
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Wu
- Department of Child Health Care, Nanjing Maternity and Child Health Care Hospital, Women's Hospital of Nanjing Medical University, Nanjing, China
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shishuang Wu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ge Jiang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mengke He
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Xia
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Hailing Liu
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Miao Zhong
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China
| | - Jianyong Li
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Lei Fan
- Department of Hematology, Jiangsu Province Hospital, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China.
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
O'Leary E, Jiang Y, Kristensen LS, Hansen TB, Kjems J. The therapeutic potential of circular RNAs. Nat Rev Genet 2025; 26:230-244. [PMID: 39789148 DOI: 10.1038/s41576-024-00806-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/20/2024] [Indexed: 01/12/2025]
Abstract
Over the past decade, research into circular RNA (circRNA) has increased rapidly, and over the past few years, circRNA has emerged as a promising therapeutic platform. The regulatory functions of circRNAs, including their roles in templating protein translation and regulating protein and RNA functions, as well as their unique characteristics, such as increased stability and a favourable immunological profile compared with mRNAs, make them attractive candidates for RNA-based therapies. Here, we describe the properties of circRNAs, their therapeutic potential and technologies for their synthesis. We also discuss the prospects and challenges to be overcome to unlock the full potential of circRNAs as drugs.
Collapse
Affiliation(s)
| | - Yanyi Jiang
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | | | | | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark.
- Department of Molecular Biology and Genetics (MBG), Aarhus University, Aarhus, Denmark.
| |
Collapse
|
5
|
Hatzimanolis O, Sykes AM, Cristino AS. Circular RNAs in neurological conditions - computational identification, functional validation, and potential clinical applications. Mol Psychiatry 2025; 30:1652-1675. [PMID: 39966624 PMCID: PMC11919710 DOI: 10.1038/s41380-025-02925-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 01/11/2025] [Accepted: 02/10/2025] [Indexed: 02/20/2025]
Abstract
Non-coding RNAs (ncRNAs) have gained significant attention in recent years due to advancements in biotechnology, particularly high-throughput total RNA sequencing. These developments have led to new understandings of non-coding biology, revealing that approximately 80% of non-coding regions in the genome possesses biochemical functionality. Among ncRNAs, circular RNAs (circRNAs), first identified in 1976, have emerged as a prominent research field. CircRNAs are abundant in most human cell types, evolutionary conserved, highly stable, and formed by back-splicing events which generate covalently closed ends. Notably, circRNAs exhibit high expression levels in neural tissue and perform diverse biochemical functions, including acting as molecular sponges for microRNAs, interacting with RNA-binding proteins to regulate their availability and activity, modulating transcription and splicing, and even translating into functional peptides in some cases. Recent advancements in computational and experimental methods have enhanced our ability to identify and validate circRNAs, providing valuable insights into their biological roles. This review focuses on recent developments in circRNA research as they related to neuropsychiatric and neurodegenerative conditions. We also explore their potential applications in clinical diagnostics, therapeutics, and future research directions. CircRNAs remain a relatively underexplored area of non-coding biology, particularly in the context of neurological disorders. However, emerging evidence supports their role as critical players in the etiology and molecular mechanisms of conditions such as schizophrenia, bipolar disorder, major depressive disorder, Alzheimer's disease, and Parkinson's disease. These findings suggest that circRNAs may provide a novel framework contributing to the molecular dysfunctions underpinning these complex neurological conditions.
Collapse
Affiliation(s)
- Oak Hatzimanolis
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alex M Sykes
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia
| | - Alexandre S Cristino
- Institute for Biomedicine and Glycomics, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
6
|
Yang LX, Li H, Cheng ZH, Sun HY, Huang JP, Li ZP, Li XX, Hu ZG, Wang J. The Application of Non-Coding RNAs as Biomarkers, Therapies, and Novel Vaccines in Diseases. Int J Mol Sci 2025; 26:3055. [PMID: 40243658 PMCID: PMC11988403 DOI: 10.3390/ijms26073055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/18/2025] Open
Abstract
Non-coding RNAs (ncRNAs) are a class of RNAs that largely lack the capacity to encode proteins. They have garnered significant attention due to their central regulatory functions across numerous cellular and physiological processes at transcriptional, post-transcriptional, and translational levels. Over the past decade, ncRNA-based therapies have gained considerable attention in the diagnosis, treatment, and prevention of diseases, and many studies have revealed a significant relationship between ncRNAs and diseases. At the same time, due to their tissue specificity, an increasing number of projects have focused on the application of ncRNAs as biomarkers in diseases, as well as the design and development of novel ncRNA-based vaccines and therapies for clinical use. These ncRNAs may also drive research into the potential molecular mechanisms and complex pathogenesis of related diseases. However, new biomarkers need to be validated for their clinical effectiveness. Additionally, to produce safe and stable RNA products, factors such as purity, precise dosage, and effective delivery methods must be ensured to achieve optimal bioactivity. These challenges remain key issues in the clinical application of ncRNAs. This review summarizes the prospects of ncRNAs as potential biomarkers, as well as the current research status and clinical applications of ncRNAs in therapies and vaccines, and discusses the challenges and expectations of ncRNAs in disease diagnosis and drug therapy.
Collapse
Affiliation(s)
- Lu-Xuan Yang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Hui Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Zhi-Hui Cheng
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - He-Yue Sun
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Jie-Ping Huang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Zhi-Peng Li
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| | - Xin-Xin Li
- Institute of Scientific Research, Guangxi University, Nanning 530004, China;
| | - Zhi-Gang Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Jian Wang
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.-X.Y.); (H.L.); (Z.-H.C.); (H.-Y.S.); (J.-P.H.); (Z.-P.L.)
| |
Collapse
|
7
|
Ling X, Yao Y, Ma J. Structures of a natural circularly permuted group II intron reveal mechanisms of branching and backsplicing. Nat Struct Mol Biol 2025:10.1038/s41594-025-01489-6. [PMID: 40016344 DOI: 10.1038/s41594-025-01489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 01/09/2025] [Indexed: 03/01/2025]
Abstract
Circularly permuted (CP) group II introns, identified in various bacteria phyla, swap domains D5 and D6 near the 5' end and have reversed splice sites (SSs), leading to backsplicing and circular RNA formation. In this study, we present multiple high-resolution cryo-electron microscopy structures of a natural CP group II intron from Comamonas testosteroni KF-1 (Cte 1), elucidating the molecular mechanisms of branching and backsplicing. During branching, the 5' SS is positioned by an auxiliary sequence (AUX)-enhanced interaction between the exon-binding site and intron-binding site (IBS) and stacks on the branch-site adenosine within D6, allowing the attacking 2'-OH group to coordinate with a metal ion in the active center. In backsplicing, the 3' SS is aligned with the branching step, leaving IBS in the active center, stabilized by base pairing with the AUX, which enables the free 3'-end hydroxyl group to directly attack the scissile phosphate of 3' SS. Furthermore, a groove in Cte 1 may stabilize the circular RNA. These findings highlight a conserved catalytic mechanism for canonical group II introns, albeit facilitated by the versatile AUX, opening avenues for designing potent ribozymes producing circular RNAs.
Collapse
Affiliation(s)
- Xiaobin Ling
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China.
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA, USA.
| | - Yuqi Yao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China
| | - Jinbiao Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Department of Biochemistry and Biophysics, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
8
|
Qian L, Wang L, Chen H, Wang S, Hou Y, Xu L, Xia Y, Xu M, Huang X. Hsa_circ_0001756 drives gastric cancer glycolysis by increasing the expression and stability of PGK1 mRNA. Front Immunol 2025; 16:1511247. [PMID: 40051638 PMCID: PMC11882586 DOI: 10.3389/fimmu.2025.1511247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 01/29/2025] [Indexed: 03/09/2025] Open
Abstract
Introduction Strategies for preventing high glycolysis in tumour cells are urgently needed. CircRNAs (circRNAs) play important roles in glycolysis. However, the mechanism underlying the effects of hsa_circ_0001756 in gastric cancer (GC) remains unclear. Methods In this study, we detected the expression of hsa_circ_0001756 in GC tissues and cells using quantitative real-time polymerase chain reaction (qRT PCR). Construct a silencing and overexpression vector to validate the role of hsa_circ_0001756 in GC. Pulldown and RIP experiments were conducted to verify the identification of miRNA and protein binding to hsa_circ_0001756. Results The expression level of hsa_circ_0001756 in GC tissues and cells is significantly upregulated. The expression level of hsa_circ_0001756 is closely related to TNM stage and tumour size in patients with GC. The proliferation and migration of hsa_circ_0001756-expressing cells in vitro were assessed by functional experiments. Hsa_circ_0001756 was found to not only promote the expression and stability of PGK1 by binding with polypyrimidine tract-binding protein 1 (PTBP1) but also promote glycolysis through the miR-185-3P/PGK1 pathway. We found that the regulatory relationships of competing endogenous RNA (ceRNA) and RNA-binding proteins (RBPs) with hsa_circ_0001756may affect glycolysis in GC. Conclusion This study provides a theoretical basis for designing drugs that target molecules related to energy metabolism in tumours and provides a new strategy for the clinical treatment of GC.
Collapse
Affiliation(s)
- Long Qian
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- General Surgery Department, Wuhu Hospital of Traditional Chinese Medicine, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Luman Wang
- Department of Immunology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Hao Chen
- Department of Oncology, Wuhu Conch Hospital, Wuhu, Anhui, China
| | - Song Wang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Yinfen Hou
- Department of Medical Examination Center, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
| | - Li Xu
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Yabin Xia
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| | - Maoqi Xu
- General Surgery Department, Anhui Wannan Rehabilitation Hospital, The Fifth People’s Hospital of Wuhu, Wuhu, Anhui, China
| | - Xiaoxu Huang
- Department of Gastrointestinal Surgery, The First Affiliated Yijishan Hospital of Wannan Medical College, Wuhu, Anhui, China
- Anhui Province Key Laboratory of Non-coding RNA Basic and Clinical Transformation, Wuhu, Anhui, China
| |
Collapse
|
9
|
Zhang Y, Song X, Feng Y, Qian Y, Chen B, Zhang T, Wang H, Chen Y, Yu X, Ding H, Li R, Ge P, Xu L, Dong G, Jiang F. The circRNA cEMSY Induces Immunogenic Cell Death and Boosts Immunotherapy Efficacy in Lung Adenocarcinoma. Cancer Res 2025; 85:497-514. [PMID: 39531509 PMCID: PMC11786956 DOI: 10.1158/0008-5472.can-24-1484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/11/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Immunogenic cell death (ICD) induces an active immune response. Activating ICD represents a potential approach to boost the antitumor activity of immunotherapy, highlighting the need to identify effective and safe ICD inducers. In this study, we identified a conserved, ICD-related circular RNA cEMSY by systematically screening ICD models induced by multiple cell stressors in lung adenocarcinoma. cEMSY triggered ICD in lung adenocarcinoma cells both in vitro and in vivo, leading to the release of damage-associated molecular patterns and promoting T-cell cross-priming by dendritic cells. Notably, the intratumoral delivery of lipid nanoparticle-encapsulated cEMSY induced a potent antitumor immune response in an immunosuppressed tumor model, which synergized with PD-1 blockade to facilitate long-term antitumor immunity with no apparent toxicities. Mechanistically, cEMSY mediated mitochondrial aggregation of the RNA-binding protein TDP-43 that enabled leakage of mitochondrial DNA to stimulate the cGAS-STING pathway, activating the antiviral immune response. Clinically, elevated expression of cEMSY correlated with enhanced infiltration of dendritic cells and CD8+ T cells and favorable immunotherapy response in lung adenocarcinoma. Together, these findings support the dual potential of cEMSY as a target and biomarker for improving immune checkpoint inhibitor responses in lung adenocarcinoma. Significance: cEMSY is a safe and effective immunogenic cell death inducer that synergizes with PD-1 blockade in lung adenocarcinoma, providing a potential strategy to enhance the efficacy of tumor immunotherapy.
Collapse
Affiliation(s)
- Yijian Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Xuming Song
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Yipeng Feng
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Yuxian Qian
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Bing Chen
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Te Zhang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Hui Wang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Yuzhong Chen
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Xinnian Yu
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
- Department of Oncology, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
| | - Hanlin Ding
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Rutao Li
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Soochow, P. R. China
| | - Pengfei Ge
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
- Department of Thoracic Surgery, Jiangsu Taizhou People’s Hospital, Taizhou, P. R. China
| | - Lin Xu
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, P. R. China
| | - Gaochao Dong
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| | - Feng Jiang
- Department of Thoracic Surgery, Nanjing Medical University Affiliated Cancer Hospital & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, P. R. China
- Jiangsu Key Laboratory of Molecular and Translational Cancer Research, Cancer Institute of Jiangsu Province, Nanjing, P. R. China
- The Fourth Clinical College of Nanjing Medical University, Nanjing, P. R. China
| |
Collapse
|
10
|
Ye C, Liu Z, Xie Q, Tang Y, Zeng J, Feng Z, Liu J, Xie H. Adeno-associated virus mediated artificial circular RNA for triggering cancer immunotherapy to treat prostate cancer. Front Oncol 2025; 15:1443571. [PMID: 39959665 PMCID: PMC11827427 DOI: 10.3389/fonc.2025.1443571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/07/2025] [Indexed: 02/18/2025] Open
Abstract
Introduction Specifically regulating endogenous molecules is a potential molecular therapeutic strategy. Naturally occurring circular RNAs (circRNAs) are structurally stable and have been proved to serve as highly efficient miR-sponges and protein-sponges in cancer cells. Methods We chemically synthesized circRNA (ScircRNA) in vitro to achieve therapeutic dysfunction by targeting specific miRNAs. RNase R and fetal bovine serum were used to evaluate the stability of ScircRNAs. In prostate cancer cell lines, the competitive inhibition of the ScircRNA on miR-375 and miR-21 activity was evaluated using luciferase report gene, cell proliferation, and apoptosis assays. Results We found that ScircRNAs were more resistant to nuclease digestion and more effective inhibiting target miRNAs than linear RNA sponges. The ScircRNAs inhibited malignant phenotype of prostate cancer by specifically inhibiting the activity of miR-21 and miR-375. In addition, we used the ScircRNA inhibiting CDK5 expression to trigger T-cell mediated cancer immunotherapy for treating prostate cancer in vivo. Discussion The ScircRNAs possessed the advantages of stable structure and simple construction, and can specifically inhibit the function of target miRNAs, which has a potential therapeutic application prospect in prostate cancer.
Collapse
Affiliation(s)
- Chujin Ye
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Zhiye Liu
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Qifan Xie
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yanlin Tang
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiayi Zeng
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Ziwei Feng
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Jiumin Liu
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Haibiao Xie
- Department of Urology, Guangdong Provincial People’s Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Wu L, Zhang J, Cornwell‐Arquitt R, Hendrix DA, Radakovic A, Szostak JW. Selective Nonenzymatic Formation of Biologically Common RNA Hairpins. Angew Chem Int Ed Engl 2025; 64:e202417370. [PMID: 39568250 PMCID: PMC11773311 DOI: 10.1002/anie.202417370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 11/22/2024]
Abstract
The prebiotic formation of RNA building blocks is well-supported experimentally, yet the emergence of sequence- and structure-specific RNA oligomers is generally attributed to biological selection via Darwinian evolution rather than prebiotic chemical selectivity. In this study, we used deep sequencing to investigate the partitioning of randomized RNA overhangs into ligated products by either splinted ligation or loop-closing ligation. Comprehensive sequence-reactivity profiles revealed that loop-closing ligation preferentially yields hairpin structures with loop sequences UNNG, CNNG, and GNNA (where N represents A, C, G, or U) under competing conditions. In contrast, splinted ligation products tended to be GC rich. Notably, the overhang sequences that preferentially partition to loop-closing ligation significantly overlap with the most common biological tetraloops, whereas the overhangs favoring splinted ligation exhibit an inverse correlation with biological tetraloops. Applying these sequence rules enables the high-efficiency assembly of functional ribozymes from short RNAs without template inhibition. Our findings suggest that the RNA tetraloop structures that are common in biology may have been predisposed and prevalent in the prebiotic pool of RNAs, prior to the advent of Darwinian evolution. We suggest that the one-step prebiotic chemical process of loop-closing ligation could have favored the emergence of the first RNA functions.
Collapse
Affiliation(s)
- Long‐Fei Wu
- Howard Hughes Medical InstituteThe University of ChicagoChicagoIL 60637USA
- Current address: Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240China
| | | | | | - David A. Hendrix
- Department of Biochemistry and BiophysicsOregon State UniversityUSA
- School of Electrical Engineering and Computer ScienceOregon State UniversityUSA
| | | | - Jack W. Szostak
- Howard Hughes Medical InstituteThe University of ChicagoChicagoIL 60637USA
| |
Collapse
|
12
|
Xu Y, Qi S, Zhang G, Liu D, Xu D, Qin T, Cheng Q, Kang H, Hu B, Huang Z. One-pot ligation of multiple mRNA fragments on dsDNA splint advancing regional modification and translation. Nucleic Acids Res 2025; 53:gkae1280. [PMID: 39778864 PMCID: PMC11707544 DOI: 10.1093/nar/gkae1280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 12/09/2024] [Accepted: 12/18/2024] [Indexed: 01/30/2025] Open
Abstract
Region-specific RNA modifications are crucial for advancing RNA research and therapeutics, including messenger RNA (mRNA)-based vaccines and immunotherapy. However, the predominant method, synthesizing regionally modified mRNAs with short single-stranded DNA (ssDNA) splints, encounters challenges in ligating long mRNA fragments due to the formation of RNA self-folded complex structures. To address this issue, we developed an efficient strategy using an easily obtained long double-stranded DNA (dsDNA) as a ligation splint after in situ denaturing, while parts of this dsDNA are the templates for transcribing mRNA fragments. We observed that the denatured dsDNA formed a long hybrid duplex with these mRNA fragments, overcoming their structures. Further, our novel strategy remarkably facilitated the ligation of long mRNA fragments (especially structured ones), offering ligation efficiency up to 106-fold higher than the ssDNA method. Using this one-pot strategy, we conveniently synthesized the mRNAs with N1-methylpseudouridine (m1ψ) and 5-methylcytidine (m5C) modifications in specific regions. We have found that compared with the fully modified mRNAs, the 3'UTR m1ψ modifications alone increased the translation efficiency, and the combined modifications of the m1ψ-3'UTR and m5C-5'UTR/CDS exhibited higher translation efficiency and lower immunogenicity in general. Our study presents a broadly applicable strategy for producing regionally modified mRNAs, advancing the potential of mRNA therapeutics.
Collapse
Affiliation(s)
- Yunfan Xu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Shuopeng Qi
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Gongrui Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Dan Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Dejin Xu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Tong Qin
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Qin Cheng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Han Kang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Bei Hu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
| | - Zhen Huang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, The College of Life Sciences, Sichuan University, 24 South Section 1, 1st Ring Road, Chengdu, Sichuan 610064, P.R. China
- SeNA Research Institute, School of Life Sciences, Hubei University, 368 Youyi Avenue, Wuhan, Hubei 430062, P.R. China
| |
Collapse
|
13
|
Tong M, Palmer N, Dailamy A, Kumar A, Khaliq H, Han S, Finburgh E, Wing M, Hong C, Xiang Y, Miyasaki K, Portell A, Rainaldi J, Suhardjo A, Nourreddine S, Chew WL, Kwon EJ, Mali P. Robust genome and cell engineering via in vitro and in situ circularized RNAs. Nat Biomed Eng 2025; 9:109-126. [PMID: 39187662 DOI: 10.1038/s41551-024-01245-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 07/24/2024] [Indexed: 08/28/2024]
Abstract
Circularization can improve RNA persistence, yet simple and scalable approaches to achieve this are lacking. Here we report two methods that facilitate the pursuit of circular RNAs (cRNAs): cRNAs developed via in vitro circularization using group II introns, and cRNAs developed via in-cell circularization by the ubiquitously expressed RtcB protein. We also report simple purification protocols that enable high cRNA yields (40-75%) while maintaining low immune responses. These methods and protocols facilitate a broad range of applications in stem cell engineering as well as robust genome and epigenome targeting via zinc finger proteins and CRISPR-Cas9. Notably, cRNAs bearing the encephalomyocarditis internal ribosome entry enabled robust expression and persistence compared with linear capped RNAs in cardiomyocytes and neurons, which highlights the utility of cRNAs in these non-dividing cells. We also describe genome targeting via deimmunized Cas9 delivered as cRNA and a long-range multiplexed protein engineering methodology for the combinatorial screening of deimmunized protein variants that enables compatibility between persistence of expression and immunogenicity in cRNA-delivered proteins. The cRNA toolset will aid research and the development of therapeutics.
Collapse
Affiliation(s)
- Michael Tong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Nathan Palmer
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amir Dailamy
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Aditya Kumar
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Hammza Khaliq
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sangwoo Han
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Emma Finburgh
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Madeleine Wing
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Camilla Hong
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Yichen Xiang
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Katelyn Miyasaki
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Andrew Portell
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Joseph Rainaldi
- Biomedical Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Amanda Suhardjo
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Ester J Kwon
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Du Y, Zuber PK, Xiao H, Li X, Gordiyenko Y, Ramakrishnan V. Efficient circular RNA synthesis for potent rolling circle translation. Nat Biomed Eng 2024:10.1038/s41551-024-01306-3. [PMID: 39672985 DOI: 10.1038/s41551-024-01306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 10/31/2024] [Indexed: 12/15/2024]
Abstract
Circular RNA (circRNA) is a candidate for next-generation messenger RNA therapeutics owing to its remarkable stability. Here we describe trans-splicing-based methods for the synthesis of circRNAs over 8,000 nucleotides. The methods are independent of bacterial sequences, outperform the permuted intron-exon method and allow for the incorporation of RNA modifications. The resulting unmodified circRNAs, which incorporate sequences from human 28S ribosomal RNA, display low immunogenicity and are translated more efficiently than permuted intron-exon-derived circRNAs. Additionally, by using viral internal ribosomal entry sites for rolling circle translation, we show that ribosomes can efficiently read through highly structured internal ribosomal entry sites, enhancing the efficiency of rolling circle translation by over 7,000-fold with respect to previous constructs. The efficient and reliable production of circRNA may facilitate its therapeutic use.
Collapse
Affiliation(s)
- Yifei Du
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | | - Xueyan Li
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
15
|
Cai J, Qiu Z, Chi‐Shing Cho W, Liu Z, Chen S, Li H, Chen K, Li Y, Zuo C, Qiu M. Synthetic circRNA therapeutics: innovations, strategies, and future horizons. MedComm (Beijing) 2024; 5:e720. [PMID: 39525953 PMCID: PMC11550093 DOI: 10.1002/mco2.720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/18/2024] [Accepted: 08/19/2024] [Indexed: 11/16/2024] Open
Abstract
Small molecule drugs are increasingly emerging as innovative and effective treatments for various diseases, with mRNA therapeutics being a notable representative. The success of COVID-19 vaccines has underscored the transformative potential of mRNA in RNA therapeutics. Within the RNA family, there is another unique type known as circRNA. This single-stranded closed-loop RNA molecule offers notable advantages over mRNA, including enhanced stability and prolonged protein expression, which may significantly impact therapeutic strategies. Furthermore, circRNA plays a pivotal role in the pathogenesis of various diseases, such as cancers, autoimmune disorders, and cardiovascular diseases, making it a promising clinical intervention target. Despite these benefits, the application of circRNA in clinical settings remains underexplored. This review provides a comprehensive overview of the current state of synthetic circRNA therapeutics, focusing on its synthesis, optimization, delivery, and diverse applications. It also addresses the challenges impeding the advancement of circRNA therapeutics from bench to bedside. By summarizing these aspects, the review aims to equip researchers with insights into the ongoing developments and future directions in circRNA therapeutics. Highlighting both the progress and the existing gaps in circRNA research, this review offers valuable perspectives for advancing the field and guiding future investigations.
Collapse
Affiliation(s)
- Jingsheng Cai
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Zonghao Qiu
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | | | - Zheng Liu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Shaoyi Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Haoran Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Kezhong Chen
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| | - Yun Li
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
| | - Chijian Zuo
- Suzhou CureMed Biopharma Technology Co., Ltd.SuzhouChina
| | - Mantang Qiu
- Thoracic Oncology Institute & Research Unit of Intelligence Diagnosis and Treatment in Early Non‐Small Cell Lung CancerPeking University People's HospitalBeijingChina
- Department of Thoracic SurgeryPeking University People's HospitalBeijingChina
- Institute of Advanced Clinical MedicinePeking UniversityBeijingChina
| |
Collapse
|
16
|
Zhao X, Yang Y, Wang Y, Chen X, Yao Y, Yuan T, Li J, Li Y, Song X. Roles of noncoding RNA in allergic rhinitis. Int Forum Allergy Rhinol 2024; 14:1757-1775. [PMID: 39367803 DOI: 10.1002/alr.23461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/13/2024] [Indexed: 10/07/2024]
Abstract
BACKGROUND Allergic rhinitis (AR) is one of the most common respiratory noninfectious diseases and chronic inflammatory diseases, the incidence of which has been increasing in recent years. The main pathological characteristics of AR are repeated inflammation, airway hyperreactivity, mucus hypersecretion, and reversible airway obstruction due to inflammatory cell response. AR occurrence is associated with various factors, including those of genetic and environmental origins. Noncoding RNAs (ncRNAs) are a group of RNA molecules that cannot be converted into polypeptides. The three main categories of ncRNAs include microRNAs (miRNAs), long ncRNAs (lncRNAs), and circular RNAs (circRNAs). NcRNAs play a crucial role in controlling gene expression and contribute to the development of numerous human diseases. METHODS Articles are selected based on Pubmed's literature review and the author's personal knowledge. The largest and highest quality studies were included. The search selection is not standardized. Several recent studies have indicated the relationship of ncRNAs with the development of respiratory allergic diseases. NcRNAs, including miRNAs, lncRNAs, and circRNAs, are important gene expression regulatory factors. We review the expression and function of ncRNAs in AR, their role as disease biomarkers, and their prospective applicability in future research and clinically. We also discuss interactions between ncRNAs and their influence on AR comprehensively, these interactions are essential for determining the underlying pathological mechanisms further and discovering new drug therapeutic targets. RESULTS NcRNAs can be used as biomarkers for early AR diagnosis, disease surveillance and prognosis assessment. Various categories of ncRNAs play distinct yet interconnected roles and actively contribute to intricate gene regulatory networks. They are also therapeutic targets and biomarkers in other allergic diseases. CONCLUSION This article demonstrates ncRNAs have a wide range of applications in AR treatment. The database covers three key areas: miRNAs, lncRNAs, and circRNAs. Additionally, potential avenues for future research to facilitate the practical application of ncRNAs as therapeutic targets and biomarkers will be explore. With further research and technological development, ncRNAs may provide additional innovative, effective solutions for AR treatment.
Collapse
Affiliation(s)
- Xiangkun Zhao
- Department of Clinical Medicine, The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yuteng Yang
- Department of Clinical Medicine, The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yaqi Wang
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Xi Chen
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yisong Yao
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Ting Yuan
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Jiaxuan Li
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Yumei Li
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| | - Xicheng Song
- Department of Clinical Medicine, The Second School of Clinical Medicine of Binzhou Medical University, Yantai, China
- Department of Otolaryngology, Head and Neck Surgery, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Shandong Provincial Clinical Research Center for Otorhinolaryngologic Diseases, Yantai Yuhuangding Hospital, Qingdao University, Yantai, China
- Yantai Key Laboratory of Otorhinolaryngologic Diseases, Yantai, China
| |
Collapse
|
17
|
Wang H, Gao Y, Bai J, Liu H, Li Y, Zhang J, Ma C, Zhao X, Zhang L, Wan K, Zhu D. CircLMBR1 inhibits phenotypic transformation of hypoxia-induced pulmonary artery smooth muscle via the splicing factor PUF60. Eur J Pharmacol 2024; 980:176855. [PMID: 39059570 DOI: 10.1016/j.ejphar.2024.176855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/04/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024]
Abstract
Phenotypic transformation of pulmonary artery smooth muscle cells (PASMCs) contributes to vascular remodeling in hypoxic pulmonary hypertension (PH). Recent studies have suggested that circular RNAs (circRNAs) may play important roles in the vascular remodeling of hypoxia-induced PH. However, whether circRNAs cause pulmonary vascular remodeling by regulating the phenotypic transformation in PH has not been investigated. Microarray and RT-qPCR analysis identified that circLMBR1, a novel circRNA, decreased in mouse lung tissues of the hypoxia-SU5416 PH model, as well as in human PASMCs and mouse PASMCs exposed to hypoxia. Overexpression of circLMBR1 in the Semaxinib (SU5416) mouse model ameliorated hypoxia-induced PH and vascular remodeling in the lungs. Notably, circLMBR1 was mainly distributed in the nucleus and bound to the splicing factor PUF60. CircLMBR1 suppressed the phenotypic transformation of human PASMCs and vascular remodeling by inhibiting PUF60 expression. Furthermore, we identified U2AF65 as the downstream regulatory factor of PUF60. U2AF65 directly interacted with the pre-mRNA of the contractile phenotype marker smooth muscle protein 22-α (SM22α) and inhibited its splicing. Meanwhile, hypoxia exposure increased the formation of the PUF60-U2AF65 complex, thereby inhibiting SM22α production and inducing the transition of human PASMCs from a contractile phenotype to a synthetic phenotype. Overall, our results verified the important role of circLMBR1 in the pathological process of PH. We also proposed a new circLMBR1/PUF60-U2AF65/pre-SM22α pathway that could regulate the phenotypic transformation and proliferation of human PASMCs. This study may provide new perspectives for the diagnosis and treatment of PH.
Collapse
MESH Headings
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/drug effects
- Animals
- Humans
- Mice
- Vascular Remodeling/drug effects
- Vascular Remodeling/genetics
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Phenotype
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Male
- Splicing Factor U2AF/genetics
- Splicing Factor U2AF/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Hypoxia/metabolism
- Hypoxia/genetics
- Mice, Inbred C57BL
- Cell Hypoxia
- Indoles/pharmacology
- Pyrroles
Collapse
Affiliation(s)
- Hongdan Wang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Yupei Gao
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - June Bai
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Huiyu Liu
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Yiying Li
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Junting Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China
| | - Cui Ma
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, PR China
| | - Xijuan Zhao
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, PR China
| | - Lixin Zhang
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, 163319, PR China
| | - Kuiyu Wan
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China
| | - Daling Zhu
- Central Laboratory of Harbin Medical University (Daqing), Daqing, 163319, PR China; College of Pharmacy, Harbin Medical University, Harbin, 150081, PR China; Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, Harbin, 150081, PR China.
| |
Collapse
|
18
|
Liu CX, Yang L, Chen LL. Dynamic conformation: Marching toward circular RNA function and application. Mol Cell 2024; 84:3596-3609. [PMID: 39366349 DOI: 10.1016/j.molcel.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024]
Abstract
Circular RNA is a group of covalently closed, single-stranded transcripts with unique biogenesis, stability, and conformation that play distinct roles in modulating cellular functions and also possess a great potential for developing circular RNA-based therapies. Importantly, due to its circular conformation, circular RNA generates distinct intramolecular base pairing that is different from the linear transcript. In this perspective, we review how circular RNA conformation can affect its turnover and modes of action, as well as what factors can modulate circular RNA conformation. We also discuss how understanding circular RNA conformation can facilitate learning about their functions as well as the remaining technological issues to further address their conformation. These efforts will ultimately inform the design of circular RNA-based platforms for biomedical applications.
Collapse
Affiliation(s)
- Chu-Xiao Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; New Cornerstone Science Laboratory, Shenzhen, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
19
|
Wu J, Wang H, Gao P, Ouyang S. Pyroptosis: Induction and inhibition strategies for immunotherapy of diseases. Acta Pharm Sin B 2024; 14:4195-4227. [PMID: 39525577 PMCID: PMC11544194 DOI: 10.1016/j.apsb.2024.06.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 11/16/2024] Open
Abstract
Cell death is a central process for organismal health. Pyroptosis, namely pyroptotic cell death, is recognized as a critical type that disrupts membrane and triggers pro-inflammatory cytokine secretion via gasdermins, providing a robust form of cytolysis. Meanwhile, along with the thorough research, a great deal of evidence has demonstrated the dual effects of pyroptosis in host defense and inflammatory diseases. More importantly, the recent identification of abundant gasdermin-like proteins in bacteria and fungi suggests an ancient origin of pyroptosis-based regulated cell death in the life evolution. In this review, we bring a general overview of pyroptosis pathways focusing on gasdermin structural biology, regulatory mechanisms, and recent progress in induction and inhibition strategies for disease treatment. We look forward to providing an insightful perspective for readers to comprehend the frame and challenges of the pyroptosis field, and to accelerating its clinical application.
Collapse
Affiliation(s)
- Junjun Wu
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Hong Wang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Pu Gao
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Songying Ouyang
- Key Laboratory of Microbial Pathogenesis and Interventions of Fujian Province University, the Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
20
|
Hejazian SM, Rahbar Saadat Y, Hosseiniyan Khatibi SM, Farnood F, Farzamikia N, Hejazian SS, Batoumchi S, Shoja MM, Zununi Vahed S, Ardalan M. Circular RNAs as novel biomarkers in glomerular diseases. Arch Physiol Biochem 2024; 130:568-580. [PMID: 37194131 DOI: 10.1080/13813455.2023.2212328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 05/18/2023]
Abstract
Circular RNAs (circRNAs) regulate gene expression and biological procedures by controlling target genes or downstream pathways by sponging their related miRNA (s). Three types of circRNAs have been identified; exonic circRNAs (ecircRNAs), intronic RNAs (ciRNAs), and exon-intron circRNAs (ElciRNAs). It is clarified that altered levels of circRNAs have dynamic pathological and physiological functions in kidney diseases. Evidence suggests that circRNAs can be considered novel diagnostic biomarkers and therapeutic targets for renal diseases. Glomerulonephritis (GN) is a general term used to refer to a wide range of glomerular diseases. GN is an important cause of chronic kidney diseases. Here, we review the biogenesis of circRNAs, and their molecular and physiological functions in the kidney. Moreover, the dysregulated expression of circRNAs and their biological functions are discussed in primary and secondary glomerulonephritis. Moreover, diagnostic and therapeutic values of circRNAs in distinguishing or treating different types of GN are highlighted.
Collapse
Affiliation(s)
| | | | | | - Farahnoosh Farnood
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Negin Farzamikia
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Sina Hejazian
- Neurosciences Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sepideh Batoumchi
- Kidney Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammadali M Shoja
- College of Allopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL, USA
| | | | | |
Collapse
|
21
|
Qi S, Wang H, Liu G, Qin Q, Gao P, Ying B. Efficient circularization of protein-encoding RNAs via a novel cis-splicing system. Nucleic Acids Res 2024; 52:10400-10415. [PMID: 39162233 PMCID: PMC11417360 DOI: 10.1093/nar/gkae711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/24/2024] [Accepted: 08/16/2024] [Indexed: 08/21/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as a promising alternative to linear mRNA, owing to their unique properties and potential therapeutic applications, driving the development of novel approaches for their production. This study introduces a cis-splicing system that efficiently produces circRNAs by incorporating a ribozyme core at one end of the precursor, thereby eliminating the need for additional spacer elements between the ribozyme and the gene of interest (GOI). In this cis-splicing system, sequences resembling homologous arms at both ends of the precursor are crucial for forming the P9.0 duplex, which in turn facilitates effective self-splicing and circularization. We demonstrate that the precise recognition of the second transesterification site depends more on the structural characteristics of P9.0 adjacent to the ωG position than on the nucleotide composition of the P9.0-ωG itself. Further optimization of structural elements, like P10 and P1-ex, significantly improves circularization efficiency. The circRNAs generated through the cis-splicing system exhibit prolonged protein expression and minimal activation of the innate immune response. This study provides a comprehensive exploration of circRNA generation via a novel strategy and offers valuable insights into the structural engineering of RNA, paving the way for future advancements in circRNA-based applications.
Collapse
Affiliation(s)
- Shaojun Qi
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Huiming Wang
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Guopeng Liu
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Qianshan Qin
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Peng Gao
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| | - Bo Ying
- Department of mRNA Sciences, Suzhou Abogen Biosciences Co., Ltd., Suzhou 215123, China
| |
Collapse
|
22
|
Kim J. Circular RNAs: Novel Players in Cancer Mechanisms and Therapeutic Strategies. Int J Mol Sci 2024; 25:10121. [PMID: 39337606 PMCID: PMC11432211 DOI: 10.3390/ijms251810121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/19/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Circular RNAs (circRNAs) are a novel class of noncoding RNAs that have emerged as pivotal players in gene regulation. Our understanding of circRNAs has greatly expanded over the last decade, with studies elucidating their biology and exploring their therapeutic applications. In this review, we provide an overview of the current understanding of circRNA biogenesis, outline their mechanisms of action in cancer, and assess their clinical potential as biomarkers. Furthermore, we discuss circRNAs as a potential therapeutic strategy, including recent advances in circRNA production and translation, along with proof-of-concept preclinical studies of cancer vaccines.
Collapse
Affiliation(s)
- Jimi Kim
- Department of Life Sciences, Gachon University, Seongnam 13120, Republic of Korea;
- Department of Health Science and Technology, GAIHST, Lee Gil Ya Cancer and Diabetes Institute, Incheon 21999, Republic of Korea
| |
Collapse
|
23
|
Wang L, Dong C, Zhang W, Ma X, Rou W, Yang K, Cui T, Qi S, Yang L, Xie J, Yu G, Wang L, Chen X, Liu Z. Developing an enhanced chimeric permuted intron-exon system for circular RNA therapeutics. Theranostics 2024; 14:5869-5882. [PMID: 39346546 PMCID: PMC11426236 DOI: 10.7150/thno.98214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024] Open
Abstract
Rationale: Circular RNA (circRNA) therapeutics hold great promise as an iteration strategy in messenger RNA (mRNA) therapeutics due to their inherent stability and durable protein translation capability. Nevertheless, the efficiency of RNA circularization remains a significant constraint, particularly in establishing large-scale manufacturing processes for producing highly purified circRNAs. Hence, it is imperative to develop a universal and more efficient RNA circularization system when considering synthetic circRNAs as therapeutic agents with prospective clinical applications. Methods: We initially developed a chimeric RNA circularization system based on the original permuted intron-exon (PIE) and subsequently established a high-performance liquid chromatography (HPLC) method to obtain highly purified circRNAs. We then evaluated their translational ability and immunogenicity. The circRNAs expressing human papillomavirus (HPV) E7 peptide (43-62aa) and dimerized receptor binding domain (dRBD) from SARS-CoV-2 were encapsulated within lipid nanoparticles (LNPs) as vaccines, followed by an assessment of the in vivo efficacy through determination of antigen-specific T and B cell responses, respectively. Results: We have successfully developed a universal chimeric permuted intron-exon system (CPIE) through engineering of group I self-splicing introns derived from Anabaena pre-tRNALeu or T4 phage thymidylate (Td) synthase gene. Within CPIE, we have effectively enhanced RNA circularization efficiency. By utilizing size exclusion chromatography, circRNAs were effectively separated, which exhibit low immunogenicity and sustained potent protein expression property. In vivo data demonstrate that the constructed circRNA vaccines can elicit robust immune activation (B cell and/or T cell responses) against tumor or SARS-CoV-2 and its variants in mouse models. Conclusions: Overall, we provide an efficient and universal system to synthesize circRNA in vitro, which has extensive application prospect for circRNA therapeutics.
Collapse
Affiliation(s)
- Lei Wang
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan 030001, China
| | - Chunbo Dong
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Weibing Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Xu Ma
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| | - Wei Rou
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Kai Yang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tong Cui
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
| | - Shaolong Qi
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lijun Yang
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan 030001, China
| | - Jun Xie
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
- Department of Biochemistry and Molecular Biology, Shanxi Key Laboratory of Birth Defect and Cell Regeneration, Shanxi Medical University, Taiyuan 030001, China
| | - Guocan Yu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lianqing Wang
- Center of Translational Medicine, Zibo Central Hospital, Zibo 255036, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
- Theranostics Center of Excellence (TCE), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 138667, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Singapore 138673, Singapore
| | - Zhida Liu
- MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, China
- Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, China
- College of Veterinary Medicine, Shanxi Agricultural University, Jinzhong 030801, China
| |
Collapse
|
24
|
Lee KH, Lee NE, Lee SW. In Vitro Self-Circularization Methods Based on Self-Splicing Ribozyme. Int J Mol Sci 2024; 25:9437. [PMID: 39273386 PMCID: PMC11394858 DOI: 10.3390/ijms25179437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024] Open
Abstract
In vitro circular RNA (circRNA) preparation methods have been gaining a lot of attention recently as several reports suggest that circRNAs are more stable, with better performances in cells and in vivo, than linear RNAs in various biomedical applications. Self-splicing ribozymes are considered a major in vitro circRNA generation method for biomedical applications due to their simplicity and efficiency in the circularization of the gene of interest. This review summarizes, updates, and discusses the recently developed self-circularization methods based on the self-splicing ribozyme, such as group I and II intron ribozymes, and the pros and cons of each method in preparing circRNA in vitro.
Collapse
Affiliation(s)
- Kyung Hyun Lee
- R&D Center, Rznomics Inc., Seongnam 13486, Republic of Korea
| | - Nan-Ee Lee
- R&D Center, Rznomics Inc., Seongnam 13486, Republic of Korea
| | - Seong-Wook Lee
- R&D Center, Rznomics Inc., Seongnam 13486, Republic of Korea
- Department of Bioconvergence Engineering, Research Institute of Advanced Omics, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
25
|
Zhang J, Luo Z, Zheng Y, Duan M, Qiu Z, Huang C. CircRNA as an Achilles heel of cancer: characterization, biomarker and therapeutic modalities. J Transl Med 2024; 22:752. [PMID: 39127679 DOI: 10.1186/s12967-024-05562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/31/2024] [Indexed: 08/12/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of endogenous noncoding RNAs characterized by their lack of 5' caps and 3' poly(A) tails. These molecules have garnered substantial attention from the scientific community. A wide range of circRNA types has been found to be expressed in various tissues of the human body, exhibiting unique characteristics such as high abundance, remarkable stability, and tissue-specific expression patterns. These attributes, along with their detectability in liquid biopsy samples such as plasma, position circRNAs an ideal choice as cancer diagnostic and prognostic biomarkers. Additionally, several studies have reported that the functions of circRNAs are associated with tumor proliferation, metastasis, and drug resistance. They achieve this through various mechanisms, including modulation of parental gene expression, regulation of gene transcription, acting as microRNA (miRNA) sponges, and encoding functional proteins. In recent years, a large number of studies have focused on synthesizing circRNAs in vitro and delivering them to tumor tissue to exert its effects in inhibit tumor progression. Herein, we briefly discuss the biogenesis, characteristics, functions, and detection of circRNAs, emphasizing their clinical potential as biomarkers for cancer diagnosis and prognosis. We also provide an overview the recent techniques for synthesizing circRNAs and delivery strategies, and outline the application of engineered circRNAs in clinical cancer therapy.
Collapse
Affiliation(s)
- Jun Zhang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Zai Luo
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| | - Yang Zheng
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Mingyu Duan
- Department of Education, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 650 Xinsongjiang Road, Songjiang District, Shanghai, 201600, China
| | - Zhengjun Qiu
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China
| | - Chen Huang
- Department of Gastrointestinal Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 100 Haining Road, Hongkou District, Shanghai, 200080, China.
| |
Collapse
|
26
|
Su CI, Chuang ZS, Shie CT, Wang HI, Kao YT, Yu CY. A cis-acting ligase ribozyme generates circular RNA in vitro for ectopic protein functioning. Nat Commun 2024; 15:6607. [PMID: 39098891 PMCID: PMC11298514 DOI: 10.1038/s41467-024-51044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/25/2024] [Indexed: 08/06/2024] Open
Abstract
Delivering synthetic protein-coding RNA bypassing the DNA stage for ectopic protein functioning is a novel therapeutic strategy. Joining the linear RNA head-to-tail covalently could be a state-of-the-art strategy for functioning longer. Here we enroll a cis-acting ligase ribozyme (RzL) to generate circular RNA (circRNA) in vitro for ectopic protein expression. The RNA circularization is confirmed by masking the 5' phosphate group, resisting exonuclease RNase R digestion, failing for further tailing, and sequencing the RT-PCR products of the joined region. Interestingly, one internal ribosome entry site (IRES) renders circRNA translation competent, but two IRES in cis, not trans, hamper the translation. The circRNA with highly potent in translation is conferred for antiviral functioning. Accompanying specific guided RNA, a circRNA expressing ribonuclease Cas13 shows excellent potential against the corresponding RNA virus, further extending circRNA functioning in its growing list of applications.
Collapse
Affiliation(s)
- Chan-I Su
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Zih-Shiuan Chuang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
- National Infectious Diseases Bank, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Chi-Ting Shie
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Hsin-I Wang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Yu-Ting Kao
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan
| | - Chia-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli, 350, Taiwan.
- National Infectious Diseases Bank, National Health Research Institutes, Miaoli, 350, Taiwan.
- Department of Microbiology and Immunology, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
27
|
Wang F, Cai G, Wang Y, Zhuang Q, Cai Z, Li Y, Gao S, Li F, Zhang C, Zhao B, Liu X. Circular RNA-based neoantigen vaccine for hepatocellular carcinoma immunotherapy. MedComm (Beijing) 2024; 5:e667. [PMID: 39081513 PMCID: PMC11286538 DOI: 10.1002/mco2.667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/29/2024] [Accepted: 06/10/2024] [Indexed: 08/02/2024] Open
Abstract
mRNA vaccines are regarded as a highly promising avenue for next-generation cancer therapy. Nevertheless, the intricacy of production, inherent instability, and low expression persistence of linear mRNA significantly restrict their extensive utilization. Circular RNAs (circRNAs) offer a novel solution to these limitations due to their efficient protein expression ability, which can be rapidly generated in vitro without the need for extra modifications. Here, we present a novel neoantigen vaccine based on circRNA that induces a potent anti-tumor immune response by expressing hepatocellular carcinoma-specific tumor neoantigens. By cyclizing linearRNA molecules, we were able to enhance the stability of RNA vaccines and form highly stable circRNA molecules with the capacity for sustained protein expression. We confirmed that neoantigen-encoded circRNA can promote dendritic cell (DC) activation and enhance DC-induced T-cell activation in vitro, thereby enhancing T-cell killing of tumor cells. Encapsulating neoantigen-encoded circRNA within lipid nanoparticles for in vivo expression has enabled the creation of a novel circRNA vaccine platform. This platform demonstrates superior tumor treatment and prevention in various murine tumor models, eliciting a robust T-cell immune response. Our circRNA neoantigen vaccine offers new options and application prospects for neoantigen immunotherapy in solid tumors.
Collapse
Affiliation(s)
- Fei Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsFuzhouP. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhouP. R. China
| | - Guang Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsFuzhouP. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhouP. R. China
| | - Yingchao Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsFuzhouP. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhouP. R. China
| | - Qiuyu Zhuang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsFuzhouP. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhouP. R. China
| | - Zhixiong Cai
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsFuzhouP. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhouP. R. China
| | - Yingying Li
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsFuzhouP. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhouP. R. China
| | - Shaodong Gao
- School of Basic Medical SciencesFujian Medical UniversityFuzhouP. R. China
| | - Fang Li
- School of Basic Medical SciencesFujian Medical UniversityFuzhouP. R. China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsFuzhouP. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhouP. R. China
| | - Bixing Zhao
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsFuzhouP. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhouP. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian ProvinceMengchao Hepatobiliary Hospital of Fujian Medical UniversityFuzhouP. R. China
- Fujian Provincial Clinical Research Center for Hepatobiliary and Pancreatic TumorsFuzhouP. R. China
- Mengchao Med‐X CenterFuzhou UniversityFuzhouP. R. China
| |
Collapse
|
28
|
张 皓, 王 艳, 程 冯, 安 云, 赵 长. [Progress of allergic rhinitis research based on transcriptome sequencing]. LIN CHUANG ER BI YAN HOU TOU JING WAI KE ZA ZHI = JOURNAL OF CLINICAL OTORHINOLARYNGOLOGY, HEAD, AND NECK SURGERY 2024; 38:556-560. [PMID: 38858125 PMCID: PMC11480586 DOI: 10.13201/j.issn.2096-7993.2024.06.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Indexed: 06/12/2024]
Abstract
Traditional studies on allergic rhinitis(AR) have mainly adopted animal models and biomolecular approaches. In addition, the advent of transcriptome sequencing technology is promoting the development of AR at the genetic level. Recently, many scholars have focused on the role of common RNA in the pathogenesis of AR, suggesting that breakthroughs have been made in the field of AR bioinformatics analysis. This review aims to summarize the research advances in AR, the development of transcriptome sequencing technology, and the application of transcriptome sequencing in AR, in order to explore potential drug targets for AR treatment and provide new insights into precision medicine.
Collapse
Affiliation(s)
- 皓翔 张
- 山西医科大学第二附属医院耳鼻咽喉头颈外科 山西省气道炎性疾病神经免疫研究省级重点培育实验室(太原,030001)Department of Otorhinolaryngology Head and Neck Surgery, the Second Hospital, Shanxi Medical University, Key Research Laboratory of Airway Neuroimmunology, Taiyuan, 030001, China
| | - 艳杰 王
- 山西医科大学第二附属医院耳鼻咽喉头颈外科 山西省气道炎性疾病神经免疫研究省级重点培育实验室(太原,030001)Department of Otorhinolaryngology Head and Neck Surgery, the Second Hospital, Shanxi Medical University, Key Research Laboratory of Airway Neuroimmunology, Taiyuan, 030001, China
| | - 冯丽 程
- 山西医科大学第二附属医院耳鼻咽喉头颈外科 山西省气道炎性疾病神经免疫研究省级重点培育实验室(太原,030001)Department of Otorhinolaryngology Head and Neck Surgery, the Second Hospital, Shanxi Medical University, Key Research Laboratory of Airway Neuroimmunology, Taiyuan, 030001, China
| | - 云芳 安
- 山西医科大学第二附属医院耳鼻咽喉头颈外科 山西省气道炎性疾病神经免疫研究省级重点培育实验室(太原,030001)Department of Otorhinolaryngology Head and Neck Surgery, the Second Hospital, Shanxi Medical University, Key Research Laboratory of Airway Neuroimmunology, Taiyuan, 030001, China
| | - 长青 赵
- 山西医科大学第二附属医院耳鼻咽喉头颈外科 山西省气道炎性疾病神经免疫研究省级重点培育实验室(太原,030001)Department of Otorhinolaryngology Head and Neck Surgery, the Second Hospital, Shanxi Medical University, Key Research Laboratory of Airway Neuroimmunology, Taiyuan, 030001, China
| |
Collapse
|
29
|
Benitez MBM, Navarro YP, Azuara-Liceaga E, Cruz AT, Flores JV, Lopez-Canovas L. Circular RNAs and the regulation of gene expression in diabetic nephropathy (Review). Int J Mol Med 2024; 53:44. [PMID: 38516776 PMCID: PMC10998718 DOI: 10.3892/ijmm.2024.5368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Circular RNAs (circRNAs) are non‑coding single‑stranded covalently closed RNA molecules that are considered important as regulators of gene expression at the transcriptional and post‑transcriptional levels. These molecules have been implicated in the initiation and progression of multiple human diseases, ranging from cancer to inflammatory and metabolic diseases, including diabetes mellitus and its vascular complications. The present article aimed to review the current knowledge on the biogenesis and functions of circRNAs, as well as their role in cell processes associated with diabetic nephropathy. In addition, novel potential interactions between circRNAs expressed in renal cells exposed to high‑glucose concentrations and the transcription factors c‑Jun and c‑Fos are reported.
Collapse
Affiliation(s)
- Maximo Berto Martinez Benitez
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Yussel Pérez Navarro
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Elisa Azuara-Liceaga
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Angeles Tecalco Cruz
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| | - Jesús Valdés Flores
- Biochemistry Department, Center for Research and Advanced Studies, National Polytechnic Institute of Mexico, Mexico City, CP 07360, Mexico
| | - Lilia Lopez-Canovas
- Postgraduate Program in Genomic Sciences, Science and Technology School, Autonomous University of Mexico City, Mexico City, CP 03100, Mexico
| |
Collapse
|
30
|
He W, Zhang X, Zou Y, Li J, Chang L, He YC, Jin Q, Ye J. Effective synthesis of circRNA via a thermostable T7 RNA polymerase variant as the catalyst. Front Bioeng Biotechnol 2024; 12:1356354. [PMID: 38655387 PMCID: PMC11035883 DOI: 10.3389/fbioe.2024.1356354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Introduction Circular RNAs (circRNAs) are endogenous noncoding RNAs (ncRNAs) with transcriptional lengths ranging from hundreds to thousands. circRNAs have attracted attention owing to their stable structure and ability to treat complicated diseases. Our objective was to create a one-step reaction for circRNA synthesis using wild-type T7 RNA polymerase as the catalyst. However, T7 RNA polymerase is thermally unstable, and we streamlined circRNA synthesis via consensus and folding free energy calculations for hotspot selection. Because of the thermal instability, the permuted intron and exon (PIE) method for circRNA synthesis is conducted via tandem catalysis with a transcription reaction at a low temperature and linear RNA precursor cyclization at a high temperature. Methods To streamline the process, a multisite mutant T7 RNA polymerase (S430P, N433T, S633P, F849I, F880Y, and G788A) with significantly improved thermostability was constructed, and G788A was used. Results The resulting mutant exhibited stable activity at 45°C for over an hour, enabling the implementation of a one-pot transcription and cyclization reaction. The simplified circRNA production process demonstrated an efficiency comparable to that of the conventional two-step reaction, with a cyclization rate exceeding 95% and reduced production of immunostimulatory dsRNA byproducts.
Collapse
Affiliation(s)
- Wei He
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
- Vazyme Biotech Co., Ltd, Nanjing, China
| | | | | | - Ji Li
- Vazyme Biotech Co., Ltd, Nanjing, China
| | - Le Chang
- Vazyme Biotech Co., Ltd, Nanjing, China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou, China
| | | | - Jianren Ye
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
31
|
Xiao F, He Z, Wang S, Li J, Fan X, Yan T, Yang M, Yang D. Regulatory mechanism of circular RNAs in neurodegenerative diseases. CNS Neurosci Ther 2024; 30:e14499. [PMID: 37864389 PMCID: PMC11017410 DOI: 10.1111/cns.14499] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 08/24/2023] [Accepted: 10/02/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Neurodegenerative disease is a collective term for a category of diseases that are caused by neuronal dysfunction, such as Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). Circular RNAs (circRNAs) are a class of non-coding RNAs without the 3' cap and 5' poly(A) and are linked by covalent bonds. CircRNAs are highly expressed in brain neurons and can regulate the pathological process of neurodegenerative diseases by affecting the levels of various deposition proteins. AIMS This review is aiming to suggest that the majority of circRNAs influence neurodegenerative pathologies mainly by affecting the abnormal deposition of proteins in neurodegenerative diseases. METHODS We systematically summarized the pathological features of neurodegenerative diseases and the regulatory mechanisms of circRNAs in various types of neurodegenerative diseases. RESULTS Neurodegenerative disease main features include intercellular ubiquitin-proteasome system abnormalities, changes in cytoskeletal proteins, and the continuous deposition of insoluble protein fragments and inclusion bodies in the cytoplasm or nucleus, resulting in impairment of the normal physiological processes of the neuronal system. CircRNAs have multiple mechanisms, such as acting as microRNA sponges, binding to proteins, and regulating transcription. CircRNAs, which are highly stable molecules, are expected to be potential biomarkers for the pathological detection of neurodegenerative diseases such as AD and PD. CONCLUSIONS In this review, we describe the regulatory roles and mechanisms of circRNAs in neurodegenerative diseases and aim to employ circRNAs as biomarkers for the diagnosis and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Feng Xiao
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Zhi He
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Siqi Wang
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Jiamei Li
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Xiaolan Fan
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Taiming Yan
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
| | - Mingyao Yang
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| | - Deying Yang
- College of Animal Science and TechnologySichuan Agricultural UniversityChengduChina
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan ProvinceSichuan Agricultural UniversityChengduChina
| |
Collapse
|
32
|
Jia S, Yu L, Wang L, Peng L. The functional significance of circRNA/miRNA/mRNA interactions as a regulatory network in lung cancer biology. Int J Biochem Cell Biol 2024; 169:106548. [PMID: 38360264 DOI: 10.1016/j.biocel.2024.106548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/22/2024] [Accepted: 02/02/2024] [Indexed: 02/17/2024]
Abstract
Lung cancer, the leading cause of cancer-related deaths, presents significant challenges to patients due to its poor prognosis. Recent research has increasingly implicated circular RNAs in the development and progression of lung cancer. These circular RNAs have been found to impact various aspects of tumor behavior, including proliferation, metastasis, cell cycle regulation, apoptosis, cancer stem cells, therapy response, and the tumor microenvironment. One of the key mechanisms by which circular RNAs exert their influence is through their ability to act as miRNA sponges, sequestering microRNAs and preventing them from targeting other RNA molecules. Accumulating evidence suggests that circular RNAs can function as competing endogenous RNAs, affecting the expression of target mRNAs by sequestering microRNAs. Dysregulation of competing endogenous RNAs networks involving circular RNAs, microRNAs, and mRNAs leads to the aberrant expression of oncogenes and tumor suppressors involved in lung cancer pathogenesis. Understanding the dynamic interplay and molecular mechanisms among circular RNAs, microRNAs, and mRNAs holds great promise for advancing early diagnosis, personalized therapeutic interventions, and improved patient outcomes in lung cancer. Therefore, this study aims to provide an in-depth exploration of the executive roles of circular RNAs/microRNAs/ mRNAs interactions in lung cancer pathogenesis and their potential utility for diagnosing lung cancer, predicting patient prognosis, and guiding targeted therapies. By offering a comprehensive overview of the dysregulation of the axes as driving factors in lung cancer, we aim to pave the way for their translation into clinical practice in the future.
Collapse
Affiliation(s)
- Shengnan Jia
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China; Department of Hepatopancreatobiliary Medicine, The Second Hospital of Jilin University, Changchun, Jilin 130041, China
| | - Ling Yu
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun 130041, China
| | - Lihui Wang
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| | - Liping Peng
- Department of Respiratory Medicine, The First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin 130021, China.
| |
Collapse
|
33
|
Wang R, Zhang M, Wang H, Chen L, Zhang X, Guo L, Qi T, Tang H, Shahzad K, Wang H, Qiao X, Wu J, Xing C. Identification and characterization of circular RNAs involved in the fertility stability of cotton CMS-D2 restorer line under heat stress. BMC PLANT BIOLOGY 2024; 24:32. [PMID: 38183049 PMCID: PMC10768462 DOI: 10.1186/s12870-023-04706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/25/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND As a vital type of noncoding RNAs, circular RNAs (circRNAs) play important roles in plant growth and development and stress response. However, little is known about the biological roles of circRNAs in regulating the stability of male fertility restoration for cytoplasmic male sterility (CMS) conditioned by Gossypium harknessii cytoplasm (CMS-D2) cotton under high-temperature (HT) stress. RESULTS In this study, RNA-sequencing and bioinformatics analysis were performed on pollen grains of isonuclear alloplasmic near-isogenic restorer lines NH [N(Rf1rf1)] and SH [S(Rf1rf1)] with obvious differences in fertility stability under HT stress at two environments. A total of 967 circRNAs were identified, with 250 differentially expressed under HT stress. We confirmed the back-splicing sites of eight selected circRNAs using divergent primers and Sanger sequencing. Tissue-specific expression patterns of five differentially expressed circRNAs (DECs) were also verified by RT-PCR and qRT-PCR. Functional enrichment and metabolic pathway analysis revealed that the parental genes of DECs were significantly enriched in fertility-related biological processes such as pollen tube guidance and cell wall organization, as well as the Pentose and glucuronate interconversions, Steroid biosynthesis, and N-Glycan biosynthesis pathways. Moreover, we also constructed a putative circRNA-mediated competing endogenous RNA (ceRNA) network consisting of 21 DECs, eight predicted circRNA-binding miRNAs, and their corresponding 22 mRNA targets, especially the two ceRNA modules circRNA346-miR159a-MYB33 and circRNA484-miR319e-MYB33, which might play important biological roles in regulating pollen fertility stability of cotton CMS-D2 restorer line under HT stress. CONCLUSIONS Through systematic analysis of the abundance, characteristics and expression patterns of circRNAs, as well as the potential functions of their parent genes, our findings suggested that circRNAs and their mediated ceRNA networks acted vital biological roles in cotton pollen development, and might be also essential regulators for fertility stability of CMS-D2 restorer line under heat stress. This study will open a new door for further unlocking complex regulatory mechanisms underpinning the fertility restoration stability for CMS-D2 in cotton.
Collapse
Affiliation(s)
- Ruijie Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Hui Wang
- Xiangyang Vocational and Technical College, Xiangyang, 441050, Hubei, China
| | - Liangliang Chen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xuexian Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Liping Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Tingxiang Qi
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Huini Tang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Kashif Shahzad
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Hailin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Xiuqin Qiao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China
| | - Jianyong Wu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| | - Chaozhu Xing
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Key Laboratory for Cotton Genetic Improvement, Ministry of Agriculture and Rural Affairs, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, 38 Huanghe Dadao, Anyang, 455000, Henan, China.
| |
Collapse
|
34
|
Chiang TW, Jhong SE, Chen YC, Chen CY, Wu WS, Chuang TJ. FL-circAS: an integrative resource and analysis for full-length sequences and alternative splicing of circular RNAs with nanopore sequencing. Nucleic Acids Res 2024; 52:D115-D123. [PMID: 37823705 PMCID: PMC10767854 DOI: 10.1093/nar/gkad829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/26/2023] [Accepted: 10/02/2023] [Indexed: 10/13/2023] Open
Abstract
Circular RNAs (circRNAs) are RNA molecules with a continuous loop structure characterized by back-splice junctions (BSJs). While analyses of short-read RNA sequencing have identified millions of BSJ events, it is inherently challenging to determine exact full-length sequences and alternatively spliced (AS) isoforms of circRNAs. Recent advances in nanopore long-read sequencing with circRNA enrichment bring an unprecedented opportunity for investigating the issues. Here, we developed FL-circAS (https://cosbi.ee.ncku.edu.tw/FL-circAS/), which collected such long-read sequencing data of 20 cell lines/tissues and thereby identified 884 636 BSJs with 1 853 692 full-length circRNA isoforms in human and 115 173 BSJs with 135 617 full-length circRNA isoforms in mouse. FL-circAS also provides multiple circRNA features. For circRNA expression, FL-circAS calculates expression levels for each circRNA isoform, cell line/tissue specificity at both the BSJ and isoform levels, and AS entropy for each BSJ across samples. For circRNA biogenesis, FL-circAS identifies reverse complementary sequences and RNA binding protein (RBP) binding sites residing in flanking sequences of BSJs. For functional patterns, FL-circAS identifies potential microRNA/RBP binding sites and several types of evidence for circRNA translation on each full-length circRNA isoform. FL-circAS provides user-friendly interfaces for browsing, searching, analyzing, and downloading data, serving as the first resource for discovering full-length circRNAs at the isoform level.
Collapse
Affiliation(s)
- Tai-Wei Chiang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Song-En Jhong
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Yu-Chen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Chia-Ying Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Wei-Sheng Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan, Taiwan
| | | |
Collapse
|
35
|
Gupta R, Arora K, Mehrotra Arora N, Kundu P. Significance of VLPs in Vlp-circRNA vaccines: a vaccine candidate or delivery vehicle? RNA Biol 2024; 21:17-28. [PMID: 39240021 PMCID: PMC11382717 DOI: 10.1080/15476286.2024.2399307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/07/2024] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs with a closed loop lacking 5' and 3' ends. These circRNAs are translatable and, therefore, have a potential in developing vaccine. CircRNA vaccines have been shown to be more stable, safe, easy to manufacture and scale-up production when compared to mRNA vaccines. However, these vaccines also suffer from several drawbacks such as low circularization efficiency for longer RNA precursor and usage of lipid nano particles (LNPs) in their delivery. LNPs have been shown to require large amounts of RNA due to their indirect delivery from endosome to cytosol. Besides, individual components of LNPs provide reactogenicity. Usage of virus like particles (VLPs) can improve the increased production and targeted delivery of circRNA vaccines and show no reactogenicity. Moreover, VLPs has also been used to produce vaccines against several diseases such as hepatitis C virus (HCV) etc. In this article, we will discuss about the methods used to enhance synthesis or circularization efficiency of circRNA. Moreover, we will also discuss about the significance of VLPs as the delivery vehicle for circRNA and their possible usage as the dual vaccine.
Collapse
Affiliation(s)
- Reeshu Gupta
- Department of Research and Development, Premas Biotech Pvt Ltd., Industrial Model Township (IMT), Gurugram, India
- Research and Development Cell, Parul University, Vadodara, Gujarat, India
| | - Kajal Arora
- Department of Research and Development, Premas Biotech Pvt Ltd., Industrial Model Township (IMT), Gurugram, India
| | - Nupur Mehrotra Arora
- Department of Research and Development, Premas Biotech Pvt Ltd., Industrial Model Township (IMT), Gurugram, India
| | - Prabuddha Kundu
- Department of Research and Development, Premas Biotech Pvt Ltd., Industrial Model Township (IMT), Gurugram, India
| |
Collapse
|
36
|
Feng Z, Zhang X, Zhou J, Li Q, Chu L, Di G, Xu Z, Chen Q, Wang M, Jiang X, Xia H, Chen X. An in vitro-transcribed circular RNA targets the mitochondrial inner membrane cardiolipin to ablate EIF4G2 +/PTBP1 + pan-adenocarcinoma. NATURE CANCER 2024; 5:30-46. [PMID: 37845485 DOI: 10.1038/s43018-023-00650-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 09/07/2023] [Indexed: 10/18/2023]
Abstract
In vitro-transcribed (IVT) mRNA has arisen as a rapid method for the production of nucleic acid drugs. Here, we have constructed an oncolytic IVT mRNA that utilizes human rhinovirus type 2 (HRV2) internal ribosomal entry sites (IRESs) to selectively trigger translation in cancer cells with high expression of EIF4G2 and PTBP1. The oncolytic effect was provided by a long hGSDMDc .825 T>A/c.884 A>G-F1LCT mutant mRNA sequence with mitochondrial inner membrane cardiolipin targeting toxicity that triggers mitophagy. Utilizing the permuted intron-exon (PIE) splicing circularization strategy and lipid nanoparticle (LNP) encapsulation reduced immunogenicity of the mRNA and enabled delivery to eukaryotic cells in vivo. Engineered HRV2 IRESs-GSDMDp.D275E/E295G-F1LCT circRNA-LNPs (GSDMDENG circRNA) successfully inhibited EIF4G2+/PTBP1+ pan-adenocarcinoma xenografts growth. Importantly, in a spontaneous tumor model with abnormal EIF4G2 and PTBP1 caused by KRAS G12D mutation, GSDMDENG circRNA significantly prevented the occurrence of pancreatic, lung and colon adenocarcinoma, improved the survival rate and induced persistent KRAS G12D tumor antigen-specific cytotoxic T lymphocyte responses.
Collapse
Affiliation(s)
- Zunyong Feng
- The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College, Department of Neurosurgery, Department of Intensive Care Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Zhongda Hospital, School of Medicine & School of Biological Sciences and Medical Engineering, Advanced Institute for Life and Health & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, China
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore, Singapore
| | - Xuanbo Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore, Singapore
| | - Jing Zhou
- Department of Anatomy, School of Basic Medicine & School of Medical Imageology, Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, China
| | - Qiang Li
- Department of Anatomy, School of Basic Medicine & School of Medical Imageology, Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, China
| | - Liuxi Chu
- Zhongda Hospital, School of Medicine & School of Biological Sciences and Medical Engineering, Advanced Institute for Life and Health & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, China
| | - Guangfu Di
- The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College, Department of Neurosurgery, Department of Intensive Care Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Zhengyuan Xu
- Department of Anatomy, School of Basic Medicine & School of Medical Imageology, Anhui Province Key laboratory of Active Biological Macro-molecules Research, Wannan Medical College, Wuhu, China
| | - Qun Chen
- The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College, Department of Neurosurgery, Department of Intensive Care Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| | - Ming Wang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaochun Jiang
- The Translational Research Institute for Neurological Disorders & Interdisciplinary Research Center of Neuromedicine and Chemical Biology of Wannan Medical College, Department of Neurosurgery, Department of Intensive Care Medicine, the First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China.
| | - Hongping Xia
- Zhongda Hospital, School of Medicine & School of Biological Sciences and Medical Engineering, Advanced Institute for Life and Health & Interdisciplinary Innovation Institute for Medicine and Engineering, Southeast University, Nanjing, China.
- Department of Pathology, Nanjing Drum Tower Hospital Clinical College & Key Laboratory of Antibody Technique of National Health Commission & Jiangsu Antibody Drug Engineering Research Center, Nanjing Medical University, Nanjing, China.
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, Singapore.
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), Proteos, Singapore, Singapore.
| |
Collapse
|
37
|
Luo Y, Liang M, Yu C, Ma W. Circular at the very beginning: on the initial genomes in the RNA world. RNA Biol 2024; 21:17-31. [PMID: 39016036 PMCID: PMC11259081 DOI: 10.1080/15476286.2024.2380130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024] Open
Abstract
It is likely that an RNA world existed in early life, when RNA played both the roles of the genome and functional molecules, thereby undergoing Darwinian evolution. However, even with only one type of polymer, it seems quite necessary to introduce a labour division concerning these two roles because folding is required for functional molecules (ribozymes) but unfavourable for the genome (as a template in replication). Notably, while ribozymes tend to have adopted a linear form for folding without constraints, a circular form, which might have been topologically hindered in folding, seems more suitable for an RNA template. Another advantage of involving a circular genome could have been to resist RNA's end-degradation. Here, we explore the scenario of a circular RNA genome plus linear ribozyme(s) at the precellular stage of the RNA world through computer modelling. The results suggest that a one-gene scene could have been 'maintained', albeit with rather a low efficiency for the circular genome to produce the ribozyme, which required precise chain-break or chain-synthesis. This strict requirement may have been relieved by introducing a 'noncoding' sequence into the genome, which had the potential to derive a second gene through mutation. A two-gene scene may have 'run well' with the two corresponding ribozymes promoting the replication of the circular genome from different respects. Circular genomes with more genes might have arisen later in RNA-based protocells. Therefore, circular genomes, which are common in the modern living world, may have had their 'root' at the very beginning of life.
Collapse
Affiliation(s)
- Yufan Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Minglun Liang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Chunwu Yu
- College of Computer Sciences, Wuhan University, Wuhan, China
| | - Wentao Ma
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
38
|
Jia X, Huang J, Wu B, Yang M, Xu W. RNA-Seq profiling of circular RNAs in mice with lipopolysaccharide-induced acute lung injury. Genomics 2024; 116:110755. [PMID: 38061481 DOI: 10.1016/j.ygeno.2023.110755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/16/2023] [Accepted: 12/03/2023] [Indexed: 12/21/2023]
Abstract
Acute lung injury (ALI) is a serious illness that develops suddenly, progresses rapidly, has a poor treatment response and a high mortality rate. Studies have found that circular RNAs (circRNA) play a critical role in several diseases, but their role in ALI remains unclear. The aim of this study was to identify circRNAs that are associated with ALI and investigate their potential molecular mechanisms. A comparison of lung circRNA and microRNA expression profiles in mice with ALI and controls was performed by RNA-sequencing. A bioinformatic analysis was conducted to identify differentially expressed (DE) RNAs, to construct competitive endogenous RNA (ceRNA) networks, and to analyze their function and pathways. Then, a protein-protein interaction (PPI) network was generated by the Search Tool for the Retrieval of Interacting Genes database, and hub genes were identified using Cytoscape. Furthermore, a key ceRNA subnetwork was constructed based on these hub genes. Overall, we found 239 DE circRNAs and 42 DE microRNAs in ALI mice compared to controls. Additionally, the molecular mechanism of ALI was further understood by building ceRNA networks based on these DE genes. ALI-induced circRNAs are mostly function in the inflammatory response and metabolic processes. Moreover, DE circRNAs are primarily involved in the nuclear factor (NF)-kappa B and PI3K-Akt signaling pathways. Seven hub genes were derived from the PPI network of 191 genes, followed by the construction of circRNA-miRNA-hub gene subnetworks. In this study, circRNA profiles are remarkably changed in mice with LPS-triggered ALI, and their potential contribution to the disease is revealed.
Collapse
Affiliation(s)
- Xianxian Jia
- Department of Pediatrics, Shengjing Hospital of China Medical University, NO. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Jinhui Huang
- Department of Pediatrics, Shengjing Hospital of China Medical University, NO. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Bo Wu
- Department of Pediatrics, Shengjing Hospital of China Medical University, NO. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Miao Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, NO. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning Province, China
| | - Wei Xu
- Department of Pediatrics, Shengjing Hospital of China Medical University, NO. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning Province, China.
| |
Collapse
|
39
|
Wang HF, Zhou XF, Zhang QM, Wu JQ, Hou JH, Xu XL, Li XM, Liu YL. Involvement of circRNA Regulators MBNL1 and QKI in the Progression of Esophageal Squamous Cell Carcinoma. Cancer Control 2024; 31:10732748241257142. [PMID: 38769028 PMCID: PMC11107321 DOI: 10.1177/10732748241257142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Abstract
OBJECTIVES To investigate the role of circRNA regulators MBNL1 and QKI in the progression of esophageal squamous cell carcinoma. BACKGROUND MBNL1 and QKI are pivotal regulators of pre-mRNA alternative splicing, crucial for controlling circRNA production - an emerging biomarker and functional regulator of tumor progression. Despite their recognized roles, their involvement in ESCC progression remains unexplored. METHODS The expression levels of MBNL1 and QKI were examined in 28 tissue pairs from ESCC and adjacent normal tissues using data from the GEO database. Additionally, a total of 151 ESCC tissue samples, from stage T1 to T4, consisting of 13, 43, 87, and 8 cases per stage, respectively, were utilized for immunohistochemical (IHC) analysis. RNA sequencing was utilized to examine the expression profiles of circRNAs, lncRNAs, and mRNAs across 3 normal tissues, 3 ESCC tissues, and 3 pairs of KYSE150 cells in both wildtype (WT) and those with MBNL1 or QKI knockouts. Transwell, colony formation, and subcutaneous tumorigenesis assays assessed the impact of MBNL1 or QKI knockout on ESCC cell migration, invasion, and proliferation. RESULTS ESCC onset significantly altered MBNL1 and QKI expression levels, influencing diverse RNA species. Elevated MBNL1 or QKI expression correlated with patient age or tumor invasion depth, respectively. MBNL1 or QKI knockout markedly enhanced cancer cell migration, invasion, proliferation, and tumor growth. Moreover, the absence of either MBNL1 or QKI modulated the expression profiles of multiple circRNAs, causing extensive downstream alterations in the expression of numerous lncRNAs and mRNAs. While the functions of circRNA and lncRNA among the top 20 differentially expressed genes remain unclear, mRNAs like SLCO4C1, TMPRSS15, and MAGEB2 have reported associations with tumor progression. CONCLUSIONS This study underscores the tumor-suppressive roles of MBNL1 and QKI in ESCC, proposing them as potential biomarkers and therapeutic targets for ESCC diagnosis and treatment.
Collapse
Affiliation(s)
- Hai-Feng Wang
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiao-Feng Zhou
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Qun-Mei Zhang
- Department of Blood Transfusion, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jie-Qing Wu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Jing-Han Hou
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xue-Lian Xu
- Department of Oncology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Xiu-Min Li
- Henan Key Laboratory of Tumor Molecular Therapy Medicine, The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, China
| | - Yu-Long Liu
- Department of Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Soochow University, Suzhou, Jiangsu, China
- Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
40
|
Woodruff R, Parekh F, Lamb K, Mekkaoui L, Allen C, Smetanova K, Huang J, Williams A, Toledo GS, Lilova K, Roddie C, Sillibourne J, Pule M. Large-scale manufacturing of base-edited chimeric antigen receptor T cells. Mol Ther Methods Clin Dev 2023; 31:101123. [PMID: 37886606 PMCID: PMC10597784 DOI: 10.1016/j.omtm.2023.101123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Base editing is a revolutionary gene-editing technique enabling the introduction of point mutations into the genome without generating detrimental DNA double-stranded breaks. Base-editing enzymes are commonly delivered in the form of modified linear messenger RNA (mRNA) that is costly to produce. Here, we address this problem by developing a simple protocol for manufacturing base-edited cells using circular RNA (circRNA), which is less expensive to synthesize. Compared with linear mRNA, higher editing efficiencies were achieved with circRNA, enabling an 8-fold reduction in the amount of RNA required. We used this protocol to manufacture a clinical dose (1 × 108 cells) of base-edited chimeric antigen receptor (CAR) T cells lacking expression of the inhibitory receptor, PD-1. Editing efficiencies of up to 86% were obtained using 0.25 μg circRNA/1 × 106 cells. Increased editing efficiencies with circRNA were attributed to more efficient translation. These results suggest that circRNA, which is less expensive to produce than linear mRNA, is a viable option for reducing the cost of manufacturing base-edited cells at scale.
Collapse
Affiliation(s)
- Rosie Woodruff
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | - Farhaan Parekh
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | - Katarina Lamb
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | - Leila Mekkaoui
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | - Christopher Allen
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | | | - Jasmine Huang
- Imperial College London, South Kensington Campus, SW7 2AZ London, UK
| | - Alex Williams
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | | | - Koki Lilova
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | - Claire Roddie
- Deparment of Haematology, Cancer Institute, 72 Huntley Street, WC1E 6BT London, UK
| | - James Sillibourne
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
| | - Martin Pule
- Autolus Therapeutics, The Mediaworks, 191 Wood Lane, W12 7FP London, UK
- Deparment of Haematology, Cancer Institute, 72 Huntley Street, WC1E 6BT London, UK
| |
Collapse
|
41
|
Xie J, Ye F, Deng X, Tang Y, Liang JY, Huang X, Sun Y, Tang H, Lei J, Zheng S, Zou Y. Circular RNA: A promising new star of vaccine. J Transl Int Med 2023; 11:372-381. [PMID: 38130633 PMCID: PMC10732498 DOI: 10.2478/jtim-2023-0122] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
Circular RNAs (circRNAs) are a class of single-stranded RNAs with covalently closed structures. Owing to their not having 3' or 5' ends, circRNAs are highly durable and insusceptible to exonuclease-mediated degradation. Moreover, some circRNAs with certain structures are translatable, making them novel vaccines. Vaccines are efficient tools for immunotherapy, such as for the prevention of infectious diseases and cancer treatment. The immune system is activated during immunotherapy to fight against abnormal allies or invaders. CircRNA vaccines represent a potential new avenue in the vaccine era. Recently, several circRNA vaccines have been synthesized and tested in vitro and in vivo. Our review briefly introduces the current understanding of the biology and function of translatable circRNAs, molecular biology, synthetic methods, delivery of circRNA, and current circRNA vaccines. We also discussed the challenges and future directions in the field by summarizing the developments in circRNA vaccines in the past few years.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Fengxi Ye
- Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou510060, Guangdong Province, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Yuhui Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Jie-Ying Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou510000, Guangdong Province, China
| | - Xufeng Huang
- Department of Data Science and Visualization, Faculty of Informatics, University of Debrecen, Debrecen, Hungary
| | - Yuying Sun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Jinsong Lei
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| | - Shaoquan Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
- Breast Disease Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou510000, Guangdong Province, China
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou510060, Guangdong Province, China
| |
Collapse
|
42
|
Zhu W, Huang Y, Yu C. The emerging role of circRNAs on skeletal muscle development in economical animals. Anim Biotechnol 2023; 34:2778-2792. [PMID: 36052979 DOI: 10.1080/10495398.2022.2118130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
CircRNAs are a novel type of closed circular molecules formed through a covalent bond lacking a 5'cap and 3' end tail, which mainly arise from mRNA precursor. They are widely distributed in plants and animals and are characterized by stable structure, high conservativeness in cells or tissues, and showed the expression specificity at different stages of development in different tissues. CircRNAs have been gradually attracted wide attention with the development of RNA sequencing, which become a new research hotspot in the field of RNA. CircRNAs play an important role in gene expression regulation. Presently, the related circRNAs research in the regulation of animal muscle development is still at the initial stage. In this review, the formation, properties, biological functions of circRNAs were summarized. The recent research progresses of circRNAs in skeletal muscle growth and development from economic animals including livestock, poultry and fishes were introduced. Finally, we proposed a prospective for further studies of circRNAs in muscle development, and we hope our research could provide new ideas, some theoretical supports and helps for new molecular genetic markers exploitation and animal genetic breeding in future.
Collapse
Affiliation(s)
- Wenwen Zhu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| | - Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, China
| | - Chuan Yu
- Animal Diseases and Public Health Engineering Research Center of Henan Province, Luoyang Polytechnic, Luoyang, China
| |
Collapse
|
43
|
Zhan J, Yang J, Zheng J, Qi Y, Ye Y, Chen X, Wei X. CircMIRLET7BHG, upregulated in an m6A-dependent manner, induces the nasal epithelial barrier dysfunction in allergic rhinitis pathogenesis. Int Immunopharmacol 2023; 125:111162. [PMID: 37976602 DOI: 10.1016/j.intimp.2023.111162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/19/2023]
Abstract
OBJECTIVE Allergic rhinitis (AR) remains a frequent aspiratory allergic inflammatory disorder with a high incidence. Circular RNAs (circRNAs) have been revealed to participate in the pathogenesis of AR. This study investigated the biological function of circMIRLET7BHG (hsa_circ_0008668) in AR progression. METHODS Ovalbumin (OVA)-exposed human nasal epithelial cell line (HNEpC) and mice were adopted as the in vitro and in vivo models of AR. Immunofluorescence staining was used to determine epithelial tight junction protein expression. Target molecule levels were assessed by RT-qPCR and Western blotting. Localization of circMIRLET7BHG and IGF2BP1 was observed by RNA-FISH and immunofluorescence. Epithelial barrier damage was determined by transepithelial electrical resistance and fluorescein isothiocyanate-dextran (FD4) permeability. Serum concentrations of IgE, sIgE, IFN-γ, IL-4, and IL-5 were detected by ELISA. Apoptosis, pathological changes, and eosinophil infiltration in nasal mucosa tissues were evaluated by TUNEL, H&E, and Sirius red staining, respectively. Molecular mechanism was analyzed by RNA pull-down, RIP, and MeRIP assays. RESULTS An increased expression of circMIRLET7BHG was found in AR patients and experimental models. Down-regulation of circMIRLET7BHG attenuated OVA-induced allergic symptoms via relieving epithelial thicknesses, eosinophil infiltration, apoptosis, and inflammatory response in mice. Subsequently, circMIRLET7BHG deficiency prevented OVA-induced epithelial barrier dysfunction by reducing epithelial permeability, and inhibiting tight junction proteins. Mechanistically, methyltransferase-like 3 (METTL3) enhanced circMIRLET7BHG expression via m6A methylation, which enhanced ADAM10 mRNA stability via interaction with IGF2BP1. CONCLUSION METTL3-mediated m6A modification increased circMIRLET7BHG expression that consequently raised ADAM10 mRNA stability via interplay with IGF2BP1, thereby promoting AR by inducing epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Jiabin Zhan
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China
| | - Jie Yang
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China
| | - Jing Zheng
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China
| | - Yanyan Qi
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China
| | - Yi Ye
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China
| | - Xiaoqian Chen
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China
| | - Xin Wei
- Department of Otorhinolaryngology Head and Neck Surgery, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), No.19, Xiuhua Road, Haikou City, Hainan Province 570311, P.R. China.
| |
Collapse
|
44
|
Sun M, Yang Y. Biological functions and applications of circRNAs-next generation of RNA-based therapy. J Mol Cell Biol 2023; 15:mjad031. [PMID: 37147015 PMCID: PMC10708935 DOI: 10.1093/jmcb/mjad031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 04/23/2023] [Indexed: 05/07/2023] Open
Affiliation(s)
- Meiling Sun
- Research and Development Department, Shanghai CirCode Biomedicine Co. Ltd, Shanghai, China
| | - Yun Yang
- Research and Development Department, Shanghai CirCode Biomedicine Co. Ltd, Shanghai, China
| |
Collapse
|
45
|
Li H, Wang C, Yao J, Jin Y, Song X, Meng Q, Wu J, Liu Q, Liu M, Sun H. Circ_0114581 promotes osteogenic differentiation of BMSCs via the MiR-155-5p/HNRNPA3 axis. Life Sci 2023; 333:122127. [PMID: 37769807 DOI: 10.1016/j.lfs.2023.122127] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/20/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
Osteoporosis (OP) is a common metabolic bone disease characterized by deterioration of bone tissue structure, reduction of bone mass, and susceptibility to fracture. More and new suitable therapeutic targets need to be discovered. The purpose of this study was to explore the ceRNA mechanisms of circRNAs involved in osteoporosis. In this study, a competing endogenous RNA (ceRNA) regulatory network was obtained through the application of OP-related high throughput data sets. Our results provided evidence that HNRNPA3 was involved in the regulation of osteogenic differentiation in BMSCs. Testing of human bone tissues and ovariectomized mice bones proved that its expression level was negatively correlated with OP. The utilization of miRNA mimic or inhibitor proved that miR-155-5p could negatively regulate the expression of HNRNPA3, while overexpression of hsa_circ_0114581 with a circRNA overexpression vector proved that hsa_circ_0114581 could indirectly promoted HNRNPA3 expression and osteogenic differentiation by sponging hsa-miR-155-5p. A serious of luciferase reporter assay experiments further verified the binding site between miR-155-5p and HNRNPA3 and the binding site between miR-155-5p and hsa_circ_0114581. This study proved that the hsa_circ_0114581/hsa-miR-155-5p/HNRNPA3 axis was related with OP. The results reveal valuable insights into the pathogenesis of OP and noncoding RNA markers that may have a treatment role and will help to provide hypotheses for future studies.
Collapse
Affiliation(s)
- Hao Li
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China; Academy of Integrative Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Changyuan Wang
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Jialin Yao
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Yue Jin
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Xingyu Song
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian 116011, China
| | - Qiang Meng
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Qi Liu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China
| | - Mozhen Liu
- Department of Orthopaedics, The First Affiliated Hospital, Dalian Medical University, No. 222, Zhongshan Road, Xigang District, Dalian 116011, China.
| | - Huijun Sun
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China; Academy of Integrative Medicine, Dalian Medical University, 9 West Section, Lvshun South Road, Lvshunkou District, Dalian 116044, China.
| |
Collapse
|
46
|
Cui Y, Wu X, Jin J, Man W, Li J, Li X, Li Y, Yao H, Zhong R, Chen S, Wu J, Zhu T, Lin Y, Xu J, Wang Y. CircHERC1 promotes non-small cell lung cancer cell progression by sequestering FOXO1 in the cytoplasm and regulating the miR-142-3p-HMGB1 axis. Mol Cancer 2023; 22:179. [PMID: 37932766 PMCID: PMC10626661 DOI: 10.1186/s12943-023-01888-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/24/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND Noncoding RNAs such as circular RNAs (circRNAs) are abundant in the human body and influence the occurrence and development of various diseases. Non-small cell lung cancer (NSCLC) is one of the most common malignant cancers. Information on the functions and mechanism of circRNAs in lung cancer is limited; thus, the topic needs more exploration. The purpose of this study was to identify aberrantly expressed circRNAs in lung cancer, unravel their roles in NSCLC progression, and provide new targets for lung cancer diagnosis and therapy. METHODS High-throughput sequencing was used to analyze differential circRNA expression in patients with lung cancer. qRT‒PCR was used to determine the level of circHERC1 in lung cancer tissues and plasma samples. Gain- and loss-of-function experiments were implemented to observe the impacts of circHERC1 on the growth, invasion, and metastasis of lung cancer cells in vitro and in vivo. Mechanistically, dual luciferase reporter assays, fluorescence in situ hybridization (FISH), RNA immunoprecipitation (RIP) and RNA pull-down experiments were performed to confirm the underlying mechanisms of circHERC1. Nucleocytoplasmic localization of FOXO1 was determined by nucleocytoplasmic isolation and immunofluorescence. The interaction of circHERC1 with FOXO1 was verified by RNA pull-down, RNA immunoprecipitation (RIP) and western blot assays. The proliferation and migration of circHERC1 in vivo were verified by subcutaneous and tail vein injection in nude mice. RESULTS CircHERC1 was significantly upregulated in lung cancer tissues and cells, ectopic expression of circHERC1 strikingly facilitated the proliferation, invasion and metastasis, and inhibited the apoptosis of lung cancer cells in vitro and in vivo. However, knockdown of circHERC1 exerted the opposite effects. CircHERC1 was mainly distributed in the cytoplasm. Further mechanistic research indicated that circHERC1 acted as a competing endogenous RNA of miR-142-3p to relieve the repressive effect of miR-142-3p on its target HMGB1, activating the MAPK/ERK and NF-κB pathways and promoting cell migration and invasion. More importantly, we found that circHERC1 could bind FOXO1 and sequester it in the cytoplasm, adjusting the feedback AKT pathway. The accumulation of FOXO1 in the cytosol and nuclear exclusion promoted cell proliferation and inhibited apoptosis. CircHERC1 is a new circRNA that promotes tumor function in NSCLC and may serve as a potential prognostic biomarker and therapeutic target for NSCLC. CONCLUSIONS CircHERC1 is a new circRNA that promotes tumor function in NSCLC and may serve as a potential diagnosis biomarker and therapeutic target for NSCLC. Our findings indicate that circHERC1 facilitates the invasion and metastasis of NSCLC cells by regulating the miR-142-3p/HMGB1 axis and activating the MAPK/ERK and NF-κB pathways. In addition, circHERC1 can promote cell proliferation and inhibit apoptosis by sequestering FOXO1 in the cytoplasm to regulate AKT activity and BIM transcription.
Collapse
Affiliation(s)
- Yumeng Cui
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Xiaojie Wu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jie Jin
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Weiling Man
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jie Li
- Department of Thoracic Surgery, The First Medical Center of Chinese PLA General Hospital, Beijing, 100850, China
| | - Xiang Li
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yanghua Li
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - He Yao
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Rongbin Zhong
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Shiyun Chen
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Jiahui Wu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Tianhao Zhu
- Beijing Institute of Biotechnology, Beijing, 100071, China
| | - Yanli Lin
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Junjie Xu
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| | - Youliang Wang
- Beijing Institute of Biotechnology, Beijing, 100071, China.
| |
Collapse
|
47
|
Ji D, Feng H, Liew SW, Kwok CK. Modified nucleic acid aptamers: development, characterization, and biological applications. Trends Biotechnol 2023; 41:1360-1384. [PMID: 37302912 DOI: 10.1016/j.tibtech.2023.05.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/30/2023] [Accepted: 05/18/2023] [Indexed: 06/13/2023]
Abstract
Aptamers are single-stranded oligonucleotides that bind to their targets via specific structural interactions. To improve the properties and performance of aptamers, modified nucleotides are incorporated during or after a selection process such as systematic evolution of ligands by exponential enrichment (SELEX). We summarize the latest modified nucleotides and strategies used in modified (mod)-SELEX and post-SELEX to develop modified aptamers, highlight the methods used to characterize aptamer-target interactions, and present recent progress in modified aptamers that recognize different targets. We discuss the challenges and perspectives in further advancing the methodologies and toolsets to accelerate the discovery of modified aptamers, improve the throughput of aptamer-target characterization, and expand the functional diversity and complexity of modified aptamers.
Collapse
Affiliation(s)
- Danyang Ji
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Hengxin Feng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Shiau Wei Liew
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong, Hong Kong, SAR, China; Shenzhen Research Institute of City University of Hong Kong, Shenzhen, China.
| |
Collapse
|
48
|
Chen H, Gu Z, Yang L, Liu F, An R, Ge Y, Liang X. Direct dsRNA preparation by promoter-free RCT and RNase H cleavage using one circular dsDNA template with a mismatched bubble. RNA (NEW YORK, N.Y.) 2023; 29:1691-1702. [PMID: 37536954 PMCID: PMC10578470 DOI: 10.1261/rna.079670.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 07/13/2023] [Indexed: 08/05/2023]
Abstract
Double-stranded RNA (dsRNA) has aroused widespread interest due to its effects on immunity and applications based on RNAi. However, the in vitro preparation of dsRNA is costly and laborious. In this study, we have developed a novel and interesting method designated as pfRCT (promoter-free rolling-circle transcription) for direct, facile, and efficient dsRNA preparation. This method generates equal amounts of sense and antisense strands simultaneously from a single circular dsDNA template. To initiate transcription by T7 RNA polymerase without directional preference, a 9-15-bp bubble (mismatched duplex with strong sequence symmetry) is introduced into the template. During RCT, all the necessary reagents, including the template, NTPs, RNA polymerase, RNase H, and Helpers, are present in one pot; and the just-transcribed RNA is immediately truncated by RNase H to monomers with the desired size. The ends of the dsRNA product can also be simply sealed by T4 RNA ligase 1 after pfRCT. This new approach is expected to promote the applications of dsRNA.
Collapse
Affiliation(s)
- Hui Chen
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, Shandong, China
| | - Zhenzhu Gu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
| | - Liu Yang
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Feng Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
| | - Ran An
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, Shandong, China
| | - Yinlin Ge
- Department of Biochemistry and Molecular Biology School of Basic Medicine, Qingdao University, Qingdao 266071, Shandong, China
| | - Xingguo Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266550, Shandong, China
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, Shandong, China
| |
Collapse
|
49
|
Wang Y, Sun S, Chen Y, Li J, Lin Y, Wu L, Jing H, Shen Y, Yang H. Decreased expression of hsa_circ_0112879 in oral squamous cell carcinoma and its clinicopathological implications. Transl Cancer Res 2023; 12:2875-2886. [PMID: 37969381 PMCID: PMC10643961 DOI: 10.21037/tcr-23-140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/01/2023] [Indexed: 11/17/2023]
Abstract
Background To identify differently expressed circular RNA (circRNA) in oral squamous cell carcinoma (OSCC) and adjacent normal tissue, construct a hsa_circ_0112879-related microRNAs (miRNAs) prognostic model, and discuss the circRNA as a biomarker for early diagnosis of OSCC. Methods The expression of hsa_circ_0112879 in OSCC cell lines and tissues was detected by quantitative real-time polymerase chain reaction (qRT-PCR). A receiver operating characteristic (ROC) curve was plotted to estimate its clinical significance. The potential miRNA and messenger RNA (mRNA) binding to hsa_circ_009755 were predicted by R software edgeR package. Based on the median value of the risk score in the all-sample cohort, all the included patients with OSCC were divided into either high- or low-risk groups, and Kaplan-Meier analysis was performed. The ROC curve was used to verify the accuracy of the risk signature in predicting the prognosis of OSCC. By univariable Cox, least absolute shrinkage and selection operator (LASSO), and multivariable Cox analyses, we constructed a hsa_circ_0112879-related miRNAs risk model to forecast the prognosis of OSCC. Results The expression of hsa_circ_0112879 was significantly downregulated in the OSCC tissues and cell lines. The expression level was statistically correlated with the pathological differentiation of OSCC tumors (P=0.0285). Furthermore, 141 differentially expressed hsa_circ_0112879-related miRNAs were obtained [|log2FC| >1, false discovery rate (FDR) <0.05], of which 70 miRNAs were up-regulated in OSCC tissues, whereas 71 miRNAs were down-regulated in OSCC tissues. The area under the ROC curve (AUC) at 1-, 3-, and 5-year in the all-sample cohort was 0.591, 0.689, and 0.618, respectively. The toll-like receptor signaling pathway, Janus tyrosine kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, nucleotide-binding and oligomerization domain (NOD)-like receptor signaling pathway, and T-cell receptor (TCR) signaling pathway were mainly enriched in the high-risk group. Conclusions The model and nomogram constructed herein has the ability to discriminate the prognosis of OSCC patients. Hsa_circ_0112879 may serve as a novel biomarker in the diagnosis and prognosis of OSCC.
Collapse
Affiliation(s)
- Yufan Wang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shuai Sun
- Department of Stomatology, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, China
| | - Yuling Chen
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianrong Li
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuntao Lin
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Li Wu
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Huan Jing
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yuehong Shen
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
50
|
Perenkov AD, Sergeeva AD, Vedunova MV, Krysko DV. In Vitro Transcribed RNA-Based Platform Vaccines: Past, Present, and Future. Vaccines (Basel) 2023; 11:1600. [PMID: 37897003 PMCID: PMC10610676 DOI: 10.3390/vaccines11101600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
mRNA was discovered in 1961, but it was not used as a vaccine until after three decades. Recently, the development of mRNA vaccine technology gained great impetus from the pursuit of vaccines against COVID-19. To improve the properties of RNA vaccines, and primarily their circulation time, self-amplifying mRNA and trans-amplifying mRNA were developed. A separate branch of mRNA technology is circular RNA vaccines, which were developed with the discovery of the possibility of translation on their protein matrix. Circular RNA has several advantages over mRNA vaccines and is considered a fairly promising platform, as is trans-amplifying mRNA. This review presents an overview of the mRNA platform and a critical discussion of the more modern self-amplifying mRNA, trans-amplifying mRNA, and circular RNA platforms created on its basis. Finally, the main features, advantages, and disadvantages of each of the presented mRNA platforms are discussed. This discussion will facilitate the decision-making process in selecting the most appropriate platform for creating RNA vaccines against cancer or viral diseases.
Collapse
Affiliation(s)
- Alexey D. Perenkov
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Alena D. Sergeeva
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Maria V. Vedunova
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
| | - Dmitri V. Krysko
- Institute of Biology and Biomedicine, National Research Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
- Cell Death Investigation and Therapy (CDIT) Laboratory, Anatomy and Embryology Unit, Department of Human Structure and Repair, Faculty of Medicine and Health Science, Ghent University, 9000 Ghent, Belgium
- Cancer Research Institute Ghent, 9000 Ghent, Belgium
| |
Collapse
|