1
|
Shinkai N, Asada K, Machino H, Takasawa K, Takahashi S, Kouno N, Komatsu M, Hamamoto R, Kaneko S. SEgene identifies links between super enhancers and gene expression across cell types. NPJ Syst Biol Appl 2025; 11:49. [PMID: 40389443 PMCID: PMC12089303 DOI: 10.1038/s41540-025-00533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 05/11/2025] [Indexed: 05/21/2025] Open
Abstract
Enhancers are non-coding DNA regions that facilitate gene transcription, with a specialized subset, super-enhancers, known to exert exceptionally strong transcriptional activation effects. Super-enhancers have been implicated in oncogenesis, and their identification is achievable through histone mark chromatin immunoprecipitation followed by sequencing data using existing analytical tools. However, conventional super-enhancer detection methodologies often do not accurately reflect actual gene expression levels, and the large volume of identified super-enhancers complicates comprehensive analysis. To address these limitations, we developed the super-enhancer to gene links (SE-to-gene Links) analysis, a platform named "SEgene" which incorporates the peak-to-gene links approach-a statistical method designed to reveal correlations between genes and peak regions ( https://github.com/hamamoto-lab/SEgene ). This platform enables a targeted evaluation of super-enhancer regions in relation to gene expression, facilitating the identification of super-enhancers that are functionally linked to transcriptional activity. Here, we demonstrate the application of SE-to-gene Links analysis to public datasets, confirming its efficacy in accurately detecting super-enhancers and identifying functionally associated genes. Additionally, SE-to-gene Links analysis identified ERBB2 as a significant gene of interest in the lung adenocarcinoma dataset from the National Cancer Center Japan cohort, suggesting a potential impact across multiple patient samples. Thus, the SE-to-gene Links analysis provides an analytical tool for evaluating super-enhancers as potential therapeutic targets, supporting the identification of clinically significant super-enhancer regions and their functionally associated genes.
Collapse
Affiliation(s)
- Norio Shinkai
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Ken Asada
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Hidenori Machino
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ken Takasawa
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Nobuji Kouno
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Masaaki Komatsu
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
| | - Ryuji Hamamoto
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute, Tokyo, Japan.
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project, Tokyo, Japan.
| |
Collapse
|
2
|
Zhou X, Qin Y, Li J, Fan L, Zhang S, Zhang B, Wu L, Gao A, Yang Y, Lv X, Guo B, Sun L. LncPepAtlas: a comprehensive resource for exploring the translational landscape of long non-coding RNAs. Nucleic Acids Res 2025; 53:D468-D476. [PMID: 39435995 PMCID: PMC11701525 DOI: 10.1093/nar/gkae905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/20/2024] [Accepted: 10/07/2024] [Indexed: 10/23/2024] Open
Abstract
Long non-coding RNAs were commonly viewed as non-coding elements. However, they are increasingly recognized for their ability to be translated into proteins, thereby playing a significant role in various cellular processes and diseases. With developments in biotechnology and computational algorithms, a range of novel approaches are being applied to investigate the translation of long non-coding RNA (lncRNAs). Herein, we developed the LncPepAtlas database (http://www.cnitbiotool.net/LncPepAtlas/), which aims to compile multiple evidences for the translation of lncRNAs and annotations for the upstream regulation of lncRNAs across various species. LncPepAtlas integrated compelling evidence from nine distinct sources for the translation of lncRNAs. These include a dataset comprising 2631 publicly available Ribo-seq samples from nine species, which has been collected and analysed. LncPepAtlas offers extensive annotation for lncRNA upstream regulation and expression profiles across various cancers, tissues or cell lines at transcriptional and translational levels. Importantly, it enables novel antigen predictions for lncRNA-encoded peptides. By identifying numerous peptide candidates that could potentially bind to major histocompatibility complex class I and II molecules, this work may provide new insights into cancer immunotherapy. The function of peptides were inferred by aligning them with experimentally detected proteins. LncPepAtlas aims to become a convenient resource for exploring translatable lncRNAs.
Collapse
Affiliation(s)
- Xinyuan Zhou
- Binzhou People’s Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
- Institute of Brain Science and Brain-inspired Research, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yanxia Qin
- Binzhou People’s Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Jiangxue Li
- Binzhou People’s Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Linyuan Fan
- Department of Thoracic Surgery, Qilu Hospital of Shandong University, Jinan, Shandong 250000, China
| | - Shun Zhang
- School of Information Science and Engineering, University of Jinan, Jinan, Shandong 250022, China
| | - Bing Zhang
- School of Mathematical Sciences, Harbin Normal University, Harbin, Heilongjiang 150025, China
| | - Luoxuan Wu
- College of Ophthalmology, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Anwei Gao
- Binzhou People’s Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yongsan Yang
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xueqin Lv
- School of Mathematical Sciences, Harbin Normal University, Harbin, Heilongjiang 150025, China
- College of Basic Science, Tianjin Sino-German University of Applied Sciences, Tianjin 300350, China
| | - Bingzhou Guo
- Binzhou People’s Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Liang Sun
- Binzhou People’s Hospital Affiliated to Shandong First Medical University/College of Medical Information and Artificial Intelligence, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| |
Collapse
|
3
|
Zhou X, Zhou L, Qian F, Chen J, Zhang Y, Yu Z, Zhang J, Yang Y, Li Y, Song C, Wang Y, Shang D, Dong L, Zhu J, Li C, Wang Q. TFTG: A comprehensive database for human transcription factors and their targets. Comput Struct Biotechnol J 2024; 23:1877-1885. [PMID: 38707542 PMCID: PMC11068477 DOI: 10.1016/j.csbj.2024.04.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024] Open
Abstract
Transcription factors (TFs) are major contributors to gene transcription, especially in controlling cell-specific gene expression and disease occurrence and development. Uncovering the relationship between TFs and their target genes is critical to understanding the mechanism of action of TFs. With the development of high-throughput sequencing techniques, a large amount of TF-related data has accumulated, which can be used to identify their target genes. In this study, we developed TFTG (Transcription Factor and Target Genes) database (http://tf.liclab.net/TFTG), which aimed to provide a large number of available human TF-target gene resources by multiple strategies, besides performing a comprehensive functional and epigenetic annotations and regulatory analyses of TFs. We identified extensive available TF-target genes by collecting and processing TF-associated ChIP-seq datasets, perturbation RNA-seq datasets and motifs. We also obtained experimentally confirmed relationships between TF and target genes from available resources. Overall, the target genes of TFs were obtained through integrating the relevant data of various TFs as well as fourteen identification strategies. Meanwhile, TFTG was embedded with user-friendly search, analysis, browsing, downloading and visualization functions. TFTG is designed to be a convenient resource for exploring human TF-target gene regulations, which will be useful for most users in the TF and gene expression regulation research.
Collapse
Affiliation(s)
- Xinyuan Zhou
- The First Affiliated Hospital & Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- College of Artificial Intelligence and Big Data For Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Liwei Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fengcui Qian
- The First Affiliated Hospital & Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiaxin Chen
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yuexin Zhang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhengmin Yu
- School of Computer, University of South China, Hengyang, Hunan 421001, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yongsan Yang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yanyu Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Chao Song
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuezhu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Desi Shang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Longlong Dong
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Jiang Zhu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Chunquan Li
- The First Affiliated Hospital & Hunan Provincial Key Laboratory of Multi-omics And Artificial Intelligence of Cardiovascular Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hunan Provincial Maternal and Child Health Care Hospital, National Health Commission Key Laboratory of Birth Defect Research and Prevention, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences & MOE Key Lab of Rare Pediatric Diseases, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- School of Computer, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Institute of Cardiovascular Disease, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- The First Affiliated Hospital, Department of Cardiology, Hengyang Medical School, University of South China, Hengyang, China
| | - Qiuyu Wang
- The First Affiliated Hospital, Cardiovascular Lab of Big Data and Imaging Artificial Intelligence, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
4
|
Ma H, Qu J, Pang Z, Luo J, Yan M, Xu W, Zhuang H, Liu L, Qu Q. Super-enhancer omics in stem cell. Mol Cancer 2024; 23:153. [PMID: 39090713 PMCID: PMC11293198 DOI: 10.1186/s12943-024-02066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/12/2024] [Indexed: 08/04/2024] Open
Abstract
The hallmarks of stem cells, such as proliferation, self-renewal, development, differentiation, and regeneration, are critical to maintain stem cell identity which is sustained by genetic and epigenetic factors. Super-enhancers (SEs), which consist of clusters of active enhancers, play a central role in maintaining stemness hallmarks by specifically transcriptional model. The SE-navigated transcriptional complex, including SEs, non-coding RNAs, master transcriptional factors, Mediators and other co-activators, forms phase-separated condensates, which offers a toggle for directing diverse stem cell fate. With the burgeoning technologies of multiple-omics applied to examine different aspects of SE, we firstly raise the concept of "super-enhancer omics", inextricably linking to Pan-omics. In the review, we discuss the spatiotemporal organization and concepts of SEs, and describe links between SE-navigated transcriptional complex and stem cell features, such as stem cell identity, self-renewal, pluripotency, differentiation and development. We also elucidate the mechanism of stemness and oncogenic SEs modulating cancer stem cells via genomic and epigenetic alterations hijack in cancer stem cell. Additionally, we discuss the potential of targeting components of the SE complex using small molecule compounds, genome editing, and antisense oligonucleotides to treat SE-associated organ dysfunction and diseases, including cancer. This review also provides insights into the future of stem cell research through the paradigm of SEs.
Collapse
Affiliation(s)
- Hongying Ma
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
- Hunan key laboratory of the Research and Development of Novel Pharmaceutical Preparations, Changsha Medical University, Changsha, 410219, China
| | - Zicheng Pang
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jian Luo
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Min Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Weixin Xu
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Haihui Zhuang
- Department of Pharmacy, the Second Xiangya Hospital, Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China
| | - Linxin Liu
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, No.87 Xiangya Road, Changsha, 410008, People's Republic of China.
- Institute for Rational and Safe Medication Practices, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China.
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
5
|
Yao Z, Song P, Jiao W. Pathogenic role of super-enhancers as potential therapeutic targets in lung cancer. Front Pharmacol 2024; 15:1383580. [PMID: 38681203 PMCID: PMC11047458 DOI: 10.3389/fphar.2024.1383580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024] Open
Abstract
Lung cancer is still one of the deadliest malignancies today, and most patients with advanced lung cancer pass away from disease progression that is uncontrollable by medications. Super-enhancers (SEs) are large clusters of enhancers in the genome's non-coding sequences that actively trigger transcription. Although SEs have just been identified over the past 10 years, their intricate structure and crucial role in determining cell identity and promoting tumorigenesis and progression are increasingly coming to light. Here, we review the structural composition of SEs, the auto-regulatory circuits, the control mechanisms of downstream genes and pathways, and the characterization of subgroups classified according to SEs in lung cancer. Additionally, we discuss the therapeutic targets, several small-molecule inhibitors, and available treatment options for SEs in lung cancer. Combination therapies have demonstrated considerable advantages in preclinical models, and we anticipate that these drugs will soon enter clinical studies and benefit patients.
Collapse
Affiliation(s)
- Zhiyuan Yao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Peng Song
- Department of Thoracic Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wenjie Jiao
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
6
|
Tao Y, Wang QH, Li XT, Liu Y, Sun RH, Xu HJ, Zhang M, Li SY, Yang L, Wang HJ, Hao LY, Cao JL, Pan Z. Spinal-Specific Super Enhancer in Neuropathic Pain. J Neurosci 2023; 43:8547-8561. [PMID: 37802656 PMCID: PMC10711714 DOI: 10.1523/jneurosci.1006-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/31/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023] Open
Abstract
Dysfunctional gene expression in nociceptive pathways plays a critical role in the development and maintenance of neuropathic pain. Super enhancers (SEs), composed of a large cluster of transcriptional enhancers, are emerging as new players in the regulation of gene expression. However, whether SEs participate in nociceptive responses remains unknown. Here, we report a spinal-specific SE (SS-SE) that regulates chronic constriction injury (CCI)-induced neuropathic pain by driving Ntmt1 and Prrx2 transcription in dorsal horn neurons. Peripheral nerve injury significantly enhanced the activity of SS-SE and increased the expression of NTMT1 and PRRX2 in the dorsal horn of male mice in a bromodomain-containing protein 4 (BRD4)-dependent manner. Both intrathecal administration of a pharmacological BRD4 inhibitor JQ1 and CRISPR-Cas9-mediated SE deletion abolished the increased NTMT1 and PRRX2 in CCI mice and attenuated their nociceptive hypersensitivities. Furthermore, knocking down Ntmt1 or Prrx2 with siRNA suppressed the injury-induced elevation of phosphorylated extracellular-signal-regulated kinase (p-ERK) and glial fibrillary acidic protein (GFAP) expression in the dorsal horn and alleviated neuropathic pain behaviors. Mimicking the increase in spinal Ntmt1 or Prrx2 in naive mice increased p-ERK and GFAP expression and led to the genesis of neuropathic pain-like behavior. These results redefine our understanding of the regulation of pain-related genes and demonstrate that BRD4-driven increases in SS-SE activity is responsible for the genesis of neuropathic pain through the governance of NTMT1 and PRRX2 expression in dorsal horn neurons. Our findings highlight the therapeutic potential of BRD4 inhibitors for the treatment of neuropathic pain.SIGNIFICANCE STATEMENT SEs drive gene expression by recruiting master transcription factors, cofactors, and RNA polymerase, but their role in the development of neuropathic pain remains unknown. Here, we report that the activity of an SS-SE, located upstream of the genes Ntmt1 and Prrx2, was elevated in the dorsal horn of mice with neuropathic pain. SS-SE contributes to the genesis of neuropathic pain by driving expression of Ntmt1 and Prrx2 Both inhibition of SS-SE with a pharmacological BRD4 inhibitor and genetic deletion of SS-SE attenuated pain hypersensitivities. This study suggests an effective and novel therapeutic strategy for neuropathic pain.
Collapse
Affiliation(s)
- Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiao-Tong Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ya Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Run-Hang Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Heng-Jun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Si-Yuan Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hong-Jun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
7
|
Wang M, Chen Q, Wang S, Xie H, Liu J, Huang R, Xiang Y, Jiang Y, Tian D, Bian E. Super-enhancers complexes zoom in transcription in cancer. J Exp Clin Cancer Res 2023; 42:183. [PMID: 37501079 PMCID: PMC10375641 DOI: 10.1186/s13046-023-02763-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
Super-enhancers (SEs) consist of multiple typical enhancers enriched at high density with transcription factors, histone-modifying enzymes and cofactors. Oncogenic SEs promote tumorigenesis and malignancy by altering protein-coding gene expression and noncoding regulatory element function. Therefore, they play central roles in the treatment of cancer. Here, we review the structural characteristics, organization, identification, and functions of SEs and the underlying molecular mechanism by which SEs drive oncogenic transcription in tumor cells. We then summarize abnormal SE complexes, SE-driven coding genes, and noncoding RNAs involved in tumor development. In summary, we believe that SEs show great potential as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- MengTing Wang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
| | - QingYang Chen
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - ShuJie Wang
- Department of Clinical MedicineThe Second School of Clinical Medical, Anhui Medical University, Hefei, China
| | - Han Xie
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - Jun Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - RuiXiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YuFei Xiang
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China
| | - YanYi Jiang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, China.
- Hefei Cancer Hospital, Chinese Academy of Sciences, Hefei, 230031, China.
| | - DaSheng Tian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
| | - ErBao Bian
- Department of Orthopaedics, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Institute of Orthopaedics, Research Center for Translational Medicine, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230601, China.
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
8
|
Hamamoto R, Takasawa K, Shinkai N, Machino H, Kouno N, Asada K, Komatsu M, Kaneko S. Analysis of super-enhancer using machine learning and its application to medical biology. Brief Bioinform 2023; 24:bbad107. [PMID: 36960780 PMCID: PMC10199775 DOI: 10.1093/bib/bbad107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/11/2023] [Accepted: 03/01/2023] [Indexed: 03/25/2023] Open
Abstract
The analysis of super-enhancers (SEs) has recently attracted attention in elucidating the molecular mechanisms of cancer and other diseases. SEs are genomic structures that strongly induce gene expression and have been reported to contribute to the overexpression of oncogenes. Because the analysis of SEs and integrated analysis with other data are performed using large amounts of genome-wide data, artificial intelligence technology, with machine learning at its core, has recently begun to be utilized. In promoting precision medicine, it is important to consider information from SEs in addition to genomic data; therefore, machine learning technology is expected to be introduced appropriately in terms of building a robust analysis platform with a high generalization performance. In this review, we explain the history and principles of SE, and the results of SE analysis using state-of-the-art machine learning and integrated analysis with other data are presented to provide a comprehensive understanding of the current status of SE analysis in the field of medical biology. Additionally, we compared the accuracy between existing machine learning methods on the benchmark dataset and attempted to explore the kind of data preprocessing and integration work needed to make the existing algorithms work on the benchmark dataset. Furthermore, we discuss the issues and future directions of current SE analysis.
Collapse
Affiliation(s)
- Ryuji Hamamoto
- Division Chief in the Division of Medical AI Research and Development, National Cancer Center Research Institute; a Professor in the Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University and a Team Leader of the Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project
| | - Ken Takasawa
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project and an External Research Staff in the Medical AI Research and Development, National Cancer Center Research Institute
| | - Norio Shinkai
- Department of NCC Cancer Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University
| | - Hidenori Machino
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project and an External Research Staff in the Medical AI Research and Development, National Cancer Center Research Institute
| | - Nobuji Kouno
- Department of Surgery, Graduate School of Medicine, Kyoto University
| | - Ken Asada
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project and an External Research Staff of Medical AI Research and Development, National Cancer Center Research Institute
| | - Masaaki Komatsu
- Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project and an External Research Staff of Medical AI Research and Development, National Cancer Center Research Institute
| | - Syuzo Kaneko
- Division of Medical AI Research and Development, National Cancer Center Research Institute and a Visiting Scientist in the Cancer Translational Research Team, RIKEN Center for Advanced Intelligence Project
| |
Collapse
|
9
|
Yang Z, Zheng Y, Wu H, Xie H, Zhao J, Chen Z, Li L, Yue X, Zhao B, Bian E. Integrative analysis of a novel super-enhancer-associated lncRNA prognostic signature and identifying LINC00945 in aggravating glioma progression. Hum Genomics 2023; 17:33. [PMID: 37004060 PMCID: PMC10064652 DOI: 10.1186/s40246-023-00480-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/25/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Super-enhancers (SEs), driving high-level expression of genes with tumor-promoting functions, have been investigated recently. However, the roles of super-enhancer-associated lncRNAs (SE-lncRNAs) in tumors remain undetermined, especially in gliomas. We here established a SE-lncRNAs expression-based prognostic signature to choose the effective treatment of glioma and identify a novel therapeutic target. METHODS Combined analysis of RNA sequencing (RNA-seq) data and ChIP sequencing (ChIP-seq) data of glioma patient-derived glioma stem cells (GSCs) screened SE-lncRNAs. Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome Atlas (TCGA) datasets served to construct and validate SE-lncRNA prognostic signature. The immune profiles and potential immuno- and chemotherapies response prediction value of the signature were also explored. Moreover, we verified the epigenetic activation mechanism of LINC00945 via the ChIP assay, and its effect on glioma was determined by performing the functional assay and a mouse xenograft model. RESULTS 6 SE-lncRNAs were obtained and identified three subgroups of glioma patients with different prognostic and clinical features. A risk signature was further constructed and demonstrated to be an independent prognostic factor. The high-risk group exhibited an immunosuppressive microenvironment and was higher enrichment of M2 macrophage, regulatory T cells (Tregs), and Cancer-associated fibroblasts (CAFs). Patients in the high-risk group were better candidates for immunotherapy and chemotherapeutics. The SE of LINC00945 was further verified via ChIP assay. Mechanistically, BRD4 may mediate epigenetic activation of LINC00945. Additionally, overexpression of LINC00945 promoted glioma cell proliferation, EMT, migration, and invasion in vitro and xenograft tumor formation in vivo. CONCLUSION Our study constructed the first prognostic SE-lncRNA signature with the ability to optimize the choice of patients receiving immuno- and chemotherapies and provided a potential therapeutic target for glioma.
Collapse
Affiliation(s)
- Zhihao Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Yinfei Zheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Haoyuan Wu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Han Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Jiajia Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Zhigang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Lianxin Li
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Xiaoyu Yue
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
- Cerebral Vascular Disease Research Center, Anhui Medical University, 678 Fu Rong Road, Hefei, 230601, Anhui Province, China.
| |
Collapse
|
10
|
iEnhancer-MRBF: Identifying enhancers and their strength with a multiple Laplacian-regularized radial basis function network. Methods 2022; 208:1-8. [DOI: 10.1016/j.ymeth.2022.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/26/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
|
11
|
Kashkin KN, Kotova ES, Alekseenko IV, Bulanenkova SS, Akopov SB, Kopantzev EP, Nikolaev LG, Chernov IP, Didych DA. Efficient Selection of Enhancers and Promoters from MIA PaCa-2 Pancreatic Cancer Cells by ChIP-lentiMPRA. Int J Mol Sci 2022; 23:ijms232315011. [PMID: 36499347 PMCID: PMC9740945 DOI: 10.3390/ijms232315011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
A library of active genome regulatory elements (putative promoters and enhancers) from MIA PaCa-2 pancreatic adenocarcinoma cells was constructed using a specially designed lentiviral vector and a massive parallel reporter assay (ChIP-lentiMPRA). Chromatin immunoprecipitation of the cell genomic DNA by H3K27ac antibodies was used for primary enrichment of the library for regulatory elements. Totally, 11,264 unique genome regions, many of which are capable of enhancing the expression of the CopGFP reporter gene from the minimal CMV promoter, were identified. The regions tend to be located near promoters. Based on the proximity assay, we found an enrichment of highly expressed genes among those associated with three or more mapped distal regions (2 kb distant from the 5'-ends of genes). It was shown significant enrichment of genes related to carcinogenesis or Mia PaCa-2 cell identity genes in this group. In contrast, genes associated with 1-2 distal regions or only with proximal regions (within 2 kbp of the 5'-ends of genes) are more often related to housekeeping functions. Thus, ChIP-lentiMPRA is a useful strategy for creating libraries of regulatory elements for the study of tumor-specific gene transcription.
Collapse
Affiliation(s)
- Kirill Nikitich Kashkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Elena Sergeevna Kotova
- Laboratory of Human Molecular Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Street, 1a, 119435 Moscow, Russia
| | - Irina Vasilievna Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Svetlana Sergeevna Bulanenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Sergey Borisovich Akopov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Eugene Pavlovich Kopantzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Lev Grigorievich Nikolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Igor Pavlovich Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Dmitry Alexandrovich Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-919-777-4620
| |
Collapse
|
12
|
Panahi-Moghadam S, Hassani S, Farivar S, Vakhshiteh F. Emerging Role of Enhancer RNAs as Potential Diagnostic and Prognostic Biomarkers in Cancer. Noncoding RNA 2022; 8:ncrna8050066. [PMID: 36287118 PMCID: PMC9607539 DOI: 10.3390/ncrna8050066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Enhancers are distal cis-acting elements that are commonly recognized to regulate gene expression via cooperation with promoters. Along with regulating gene expression, enhancers can be transcribed and generate a class of non-coding RNAs called enhancer RNAs (eRNAs). The current discovery of abundant tissue-specific transcription of enhancers in various diseases such as cancers raises questions about the potential role of eRNAs in disease diagnosis and therapy. This review aimed to demonstrate the current understanding of eRNAs in cancer research with a focus on the potential roles of eRNAs as prognostic and diagnostic biomarkers in cancers.
Collapse
Affiliation(s)
- Somayeh Panahi-Moghadam
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 1411713116, Iran
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Shokoufeh Hassani
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Toxicology and Diseases Group, Pharmaceutical Sciences Research Center (PSRC), The Institute of Pharmaceutical Sciences (TIPS), Tehran University of Medical Sciences (TUMS), Tehran 1417614411, Iran
| | - Shirin Farivar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran 1983969411, Iran
| | - Faezeh Vakhshiteh
- Oncopathology Research Center, Iran University of Medical Sciences (IUMS), Tehran 1449614535, Iran
- Correspondence:
| |
Collapse
|
13
|
Mulero Hernández J, Fernández-Breis JT. Analysis of the landscape of human enhancer sequences in biological databases. Comput Struct Biotechnol J 2022; 20:2728-2744. [PMID: 35685360 PMCID: PMC9168495 DOI: 10.1016/j.csbj.2022.05.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 12/01/2022] Open
Abstract
The process of gene regulation extends as a network in which both genetic sequences and proteins are involved. The levels of regulation and the mechanisms involved are multiple. Transcription is the main control mechanism for most genes, being the downstream steps responsible for refining the transcription patterns. In turn, gene transcription is mainly controlled by regulatory events that occur at promoters and enhancers. Several studies are focused on analyzing the contribution of enhancers in the development of diseases and their possible use as therapeutic targets. The study of regulatory elements has advanced rapidly in recent years with the development and use of next generation sequencing techniques. All this information has generated a large volume of information that has been transferred to a growing number of public repositories that store this information. In this article, we analyze the content of those public repositories that contain information about human enhancers with the aim of detecting whether the knowledge generated by scientific research is contained in those databases in a way that could be computationally exploited. The analysis will be based on three main aspects identified in the literature: types of enhancers, type of evidence about the enhancers, and methods for detecting enhancer-promoter interactions. Our results show that no single database facilitates the optimal exploitation of enhancer data, most types of enhancers are not represented in the databases and there is need for a standardized model for enhancers. We have identified major gaps and challenges for the computational exploitation of enhancer data.
Collapse
Affiliation(s)
- Juan Mulero Hernández
- Dept. Informática y Sistemas, Universidad de Murcia, CEIR Campus Mare Nostrum, IMIB-Arrixaca, Spain
| | | |
Collapse
|
14
|
Skopelitou D, Srivastava A, Miao B, Kumar A, Dymerska D, Paramasivam N, Schlesner M, Lubinski J, Hemminki K, Försti A, Reddy Bandapalli O. Whole exome sequencing identifies novel germline variants of SLC15A4 gene as potentially cancer predisposing in familial colorectal cancer. Mol Genet Genomics 2022; 297:965-979. [PMID: 35562597 PMCID: PMC9250485 DOI: 10.1007/s00438-022-01896-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 04/02/2022] [Indexed: 11/25/2022]
Abstract
About 15% of colorectal cancer (CRC) patients have first-degree relatives affected by the same malignancy. However, for most families the cause of familial aggregation of CRC is unknown. To identify novel high-to-moderate-penetrance germline variants underlying CRC susceptibility, we performed whole exome sequencing (WES) on four CRC cases and two unaffected members of a Polish family without any mutation in known CRC predisposition genes. After WES, we used our in-house developed Familial Cancer Variant Prioritization Pipeline and identified two novel variants in the solute carrier family 15 member 4 (SLC15A4) gene. The heterozygous missense variant, p. Y444C, was predicted to affect the phylogenetically conserved PTR2/POT domain and to have a deleterious effect on the function of the encoded peptide/histidine transporter. The other variant was located in the upstream region of the same gene (GRCh37.p13, 12_129308531_C_T; 43 bp upstream of transcription start site, ENST00000266771.5) and it was annotated to affect the promoter region of SLC15A4 as well as binding sites of 17 different transcription factors. Our findings of two distinct variants in the same gene may indicate a synergistic up-regulation of SLC15A4 as the underlying genetic cause and implicate this gene for the first time in genetic inheritance of familial CRC.
Collapse
Affiliation(s)
- Diamanto Skopelitou
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Aayushi Srivastava
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| | - Beiping Miao
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Abhishek Kumar
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Bioinformatics, International Technology Park, Bangalore, India
- Manipal Academy of Higher Education (MAHE), Manipal, Karnataka 576104 India
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine and Biomedical Center in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
15
|
Yoshino S, Suzuki HI. The molecular understanding of super-enhancer dysregulation in cancer. NAGOYA JOURNAL OF MEDICAL SCIENCE 2022; 84:216-229. [PMID: 35967935 PMCID: PMC9350580 DOI: 10.18999/nagjms.84.2.216] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/20/2022] [Indexed: 11/30/2022]
Abstract
Abnormalities in the regulation of gene expression are associated with various pathological conditions. Among the distal regulatory elements in the genome, the activation of target genes by enhancers plays a central role in the formation of cell type-specific gene expression patterns. Super-enhancers are a subclass of enhancers that frequently contain multiple enhancer-like elements and are characterized by dense binding of master transcription factors and Mediator complexes and high signals of active histone marks. Super-enhancers have been studied in detail as important regulatory regions that control cell identity and contribute to the pathogenesis of diverse diseases. In cancer, super-enhancers have multifaceted roles by activating various oncogenes and other cancer-related genes and shaping characteristic gene expression patterns in cancer cells. Alterations in super-enhancer activities in cancer involve multiple mechanisms, including the dysregulation of transcription factors and the super-enhancer-associated genomic abnormalities. The study of super-enhancers could contribute to the identification of effective biomarkers and the development of cancer therapeutics targeting transcriptional addiction. In this review, we summarize the roles of super-enhancers in cancer biology, with a particular focus on hematopoietic malignancies, in which multiple super-enhancer alteration mechanisms have been reported.
Collapse
Affiliation(s)
- Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya, Japan.
,Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya, Japan
| |
Collapse
|
16
|
Ni P, Su Z. PCRMS: a database of predicted cis-regulatory modules and constituent transcription factor binding sites in genomes. Database (Oxford) 2022; 2022:6572594. [PMID: 35452518 PMCID: PMC9216522 DOI: 10.1093/database/baac024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/20/2022] [Accepted: 04/12/2022] [Indexed: 01/13/2023]
Abstract
More accurate and more complete predictions of cis-regulatory modules (CRMs) and constituent transcription factor (TF) binding sites (TFBSs) in genomes can facilitate characterizing functions of regulatory sequences. Here, we developed a database predicted cis-regulatory modules (PCRMS) (https://cci-bioinfo.uncc.edu) that stores highly accurate and unprecedentedly complete maps of predicted CRMs and TFBSs in the human and mouse genomes. The web interface allows the user to browse CRMs and TFBSs in an organism, find the closest CRMs to a gene, search CRMs around a gene and find all TFBSs of a TF. PCRMS can be a useful resource for the research community to characterize regulatory genomes. Database URL: https://cci-bioinfo.uncc.edu/.
Collapse
Affiliation(s)
- Pengyu Ni
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| | - Zhengchang Su
- Department of Bioinformatics and Genomics, The University of North Carolina at Charlotte, 9201 University City Boulevard, Charlotte, NC 28223, USA
| |
Collapse
|
17
|
Peng Y, Kang H, Luo J, Zhang Y. A Comparative Analysis of Super-Enhancers and Broad H3K4me3 Domains in Pig, Human, and Mouse Tissues. Front Genet 2021; 12:701049. [PMID: 34899824 PMCID: PMC8652260 DOI: 10.3389/fgene.2021.701049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/29/2021] [Indexed: 11/13/2022] Open
Abstract
Super-enhancers (SEs) and broad H3K4me3 domains (BDs) are crucial regulators in the control of tissue identity in human and mouse. However, their features in pig remain largely unknown. In this study, by integrative computational analyses of epigenomic and transcriptomic data, we have characterized SEs and BDs in six pig tissues and analyzed their conservation in comparison with human and mouse tissues. Similar to human and mouse, pig SEs and BDs display higher tissue specificity than their typical counterparts. Genes proximal to SEs and BDs are associated with tissue identity in most tissues. About 55-182 SEs (5-17% in total) and 99-309 BDs (8-16% in total) across pig tissues are considered as functionally conserved elements because they have orthologous SEs and BDs in human and mouse. However, these elements do not necessarily exhibit sequence conservation. The functionally conserved SEs are correlated to tissue identity in majority of pig tissues, while those conserved BDs are linked to tissue identity in a few tissues. Our study provides resources for future gene regulatory studies in pig. It highlights that SEs are more effective in defining tissue identity than BDs, which is contrasting to a previous study. It also provides novel insights on understanding the sequence features of functionally conserved elements.
Collapse
Affiliation(s)
- Yanling Peng
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huifang Kang
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Jing Luo
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yubo Zhang
- Animal Functional Genomics Group, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
18
|
Liu N, Low WY, Alinejad-Rokny H, Pederson S, Sadlon T, Barry S, Breen J. Seeing the forest through the trees: prioritising potentially functional interactions from Hi-C. Epigenetics Chromatin 2021; 14:41. [PMID: 34454581 PMCID: PMC8399707 DOI: 10.1186/s13072-021-00417-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/19/2021] [Indexed: 11/30/2022] Open
Abstract
Eukaryotic genomes are highly organised within the nucleus of a cell, allowing widely dispersed regulatory elements such as enhancers to interact with gene promoters through physical contacts in three-dimensional space. Recent chromosome conformation capture methodologies such as Hi-C have enabled the analysis of interacting regions of the genome providing a valuable insight into the three-dimensional organisation of the chromatin in the nucleus, including chromosome compartmentalisation and gene expression. Complicating the analysis of Hi-C data, however, is the massive amount of identified interactions, many of which do not directly drive gene function, thus hindering the identification of potentially biologically functional 3D interactions. In this review, we collate and examine the downstream analysis of Hi-C data with particular focus on methods that prioritise potentially functional interactions. We classify three groups of approaches: structural-based discovery methods, e.g. A/B compartments and topologically associated domains, detection of statistically significant chromatin interactions, and the use of epigenomic data integration to narrow down useful interaction information. Careful use of these three approaches is crucial to successfully identifying potentially functional interactions within the genome.
Collapse
Affiliation(s)
- Ning Liu
- Computational & Systems Biology, Precision Medicine Theme, South Australian Health & Medical Research Institute, SA, 5000, Adelaide, Australia
- Robinson Research Institute, University of Adelaide, SA, 5005, Adelaide, Australia
- Adelaide Medical School, University of Adelaide, SA, 5005, Adelaide, Australia
| | - Wai Yee Low
- The Davies Research Centre, School of Animal and Veterinary Sciences, University of Adelaide, Roseworthy, SA, 5371, Australia
| | - Hamid Alinejad-Rokny
- BioMedical Machine Learning Lab, The Graduate School of Biomedical Engineering, The University of New South Wales, NSW, 2052, Sydney, Australia
- Core Member of UNSW Data Science Hub, The University of New South Wales, 2052, Sydney, Australia
| | - Stephen Pederson
- Adelaide Medical School, University of Adelaide, SA, 5005, Adelaide, Australia
- Dame Roma Mitchell Cancer Research Laboratories (DRMCRL), Adelaide Medical School, University of Adelaide, SA, 5005, Adelaide, Australia
| | - Timothy Sadlon
- Robinson Research Institute, University of Adelaide, SA, 5005, Adelaide, Australia
- Women's & Children's Health Network, SA, 5006, North Adelaide, Australia
| | - Simon Barry
- Robinson Research Institute, University of Adelaide, SA, 5005, Adelaide, Australia
- Core Member of UNSW Data Science Hub, The University of New South Wales, 2052, Sydney, Australia
- Women's & Children's Health Network, SA, 5006, North Adelaide, Australia
| | - James Breen
- Computational & Systems Biology, Precision Medicine Theme, South Australian Health & Medical Research Institute, SA, 5000, Adelaide, Australia.
- Robinson Research Institute, University of Adelaide, SA, 5005, Adelaide, Australia.
- Adelaide Medical School, University of Adelaide, SA, 5005, Adelaide, Australia.
- South Australian Genomics Centre (SAGC), South Australian Health & Medical Research Institute (SAHMRI), SA, 5000, Adelaide, Australia.
| |
Collapse
|
19
|
Skopelitou D, Miao B, Srivastava A, Kumar A, Kuswick M, Dymerska D, Paramasivam N, Schlesner M, Lubinski J, Hemminki K, Försti A, Bandapalli OR. Whole Exome Sequencing Identifies APCDD1 and HDAC5 Genes as Potentially Cancer Predisposing in Familial Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22041837. [PMID: 33673279 PMCID: PMC7917948 DOI: 10.3390/ijms22041837] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/06/2021] [Accepted: 02/07/2021] [Indexed: 01/01/2023] Open
Abstract
Germline mutations in predisposition genes account for only 20% of all familial colorectal cancers (CRC) and the remaining genetic burden may be due to rare high- to moderate-penetrance germline variants that are not explored. With the aim of identifying such potential cancer-predisposing variants, we performed whole exome sequencing on three CRC cases and three unaffected members of a Polish family and identified two novel heterozygous variants: a coding variant in APC downregulated 1 gene (APCDD1, p.R299H) and a non-coding variant in the 5′ untranslated region (UTR) of histone deacetylase 5 gene (HDAC5). Sanger sequencing confirmed the variants segregating with the disease and Taqman assays revealed 8 additional APCDD1 variants in a cohort of 1705 familial CRC patients and no further HDAC5 variants. Proliferation assays indicated an insignificant proliferative impact for the APCDD1 variant. Luciferase reporter assays using the HDAC5 variant resulted in an enhanced promoter activity. Targeting of transcription factor binding sites of SNAI-2 and TCF4 interrupted by the HDAC5 variant showed a significant impact of TCF4 on promoter activity of mutated HDAC5. Our findings contribute not only to the identification of unrecognized genetic causes of familial CRC but also underline the importance of 5’UTR variants affecting transcriptional regulation and the pathogenesis of complex disorders.
Collapse
Affiliation(s)
- Diamanto Skopelitou
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Beiping Miao
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Aayushi Srivastava
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
| | - Abhishek Kumar
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Magdalena Kuswick
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (M.K.); (D.D.); (J.L.)
| | - Dagmara Dymerska
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (M.K.); (D.D.); (J.L.)
| | - Nagarajan Paramasivam
- Computational Oncology, Molecular Diagnostics Program, National Center for Tumor Diseases (NCT), 69120 Heidelberg, Germany;
| | - Matthias Schlesner
- Bioinformatics and Omics Data Analytics, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany;
| | - Jan Lubinski
- Department of Genetics and Pathology, Pomeranian Medical University, 71252 Szczecin, Poland; (M.K.); (D.D.); (J.L.)
| | - Kari Hemminki
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
- Biomedical Center, Faculty of Medicine in Pilsen, Charles University in Prague, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Obul Reddy Bandapalli
- Molecular Genetic Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany; (D.S.); (B.M.); (A.S.); (A.K.); (K.H.); (A.F.)
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
- Medical Faculty, Heidelberg University, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-6221-421809
| |
Collapse
|
20
|
Zhang J, Yue W, Zhou Y, Liao M, Chen X, Hua J. Super enhancers-Functional cores under the 3D genome. Cell Prolif 2021; 54:e12970. [PMID: 33336467 PMCID: PMC7848964 DOI: 10.1111/cpr.12970] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 12/13/2022] Open
Abstract
Complex biochemical reactions take place in the nucleus all the time. Transcription machines must follow the rules. The chromatin state, especially the three-dimensional structure of the genome, plays an important role in gene regulation and expression. The super enhancers are important for defining cell identity in mammalian developmental processes and human diseases. It has been shown that the major components of transcriptional activation complexes are recruited by super enhancer to form phase-separated condensates. We summarize the current knowledge about super enhancer in the 3D genome. Furthermore, a new related transcriptional regulation model from super enhancer is outlined to explain its role in the mammalian cell progress.
Collapse
Affiliation(s)
- Juqing Zhang
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina
| | - Wei Yue
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina
| | - Yaqi Zhou
- College of Life ScienceNorthwest A&F UniversityYanglingChina
| | - Mingzhi Liao
- College of Life ScienceNorthwest A&F UniversityYanglingChina
| | - Xingqi Chen
- Department of Immunology, Genetics and PathologyUppsala UniversityUppsalaSweden
| | - Jinlian Hua
- College of Veterinary MedicineShaanxi Centre of Stem Cells Engineering & TechnologyNorthwest A&F UniversityYanglingChina
| |
Collapse
|
21
|
Man JCK, van Duijvenboden K, Krijger PHL, Hooijkaas IB, van der Made I, de Gier-de Vries C, Wakker V, Creemers EE, de Laat W, Boukens BJ, Christoffels VM. Genetic Dissection of a Super Enhancer Controlling the Nppa-Nppb Cluster in the Heart. Circ Res 2021; 128:115-129. [PMID: 33107387 DOI: 10.1161/circresaha.120.317045] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
RATIONALE ANP (atrial natriuretic peptide) and BNP (B-type natriuretic peptide), encoded by the clustered genes Nppa and Nppb, are important prognostic, diagnostic, and therapeutic proteins in cardiac disease. The spatiotemporal expression pattern and stress-induction of the Nppa and Nppb are tightly regulated, possibly involving their coregulation by an evolutionary conserved enhancer cluster. OBJECTIVE To explore the physiological functions of the enhancer cluster and elucidate the genomic mechanism underlying Nppa-Nppb coregulation in vivo. METHODS AND RESULTS By analyzing epigenetic data we uncovered an enhancer cluster with super enhancer characteristics upstream of Nppb. Using CRISPR/Cas9 genome editing, the enhancer cluster or parts thereof, Nppb and flanking regions or the entire genomic block spanning Nppa-Nppb, respectively, were deleted from the mouse genome. The impact on gene regulation and phenotype of the respective mouse lines was investigated by transcriptomic, epigenomic, and phenotypic analyses. The enhancer cluster was essential for prenatal and postnatal ventricular expression of Nppa and Nppb but not of any other gene. Enhancer cluster-deficient mice showed enlarged hearts before and after birth, similar to Nppa-Nppb compound knockout mice we generated. Analysis of the other deletion alleles indicated the enhancer cluster engages the promoters of Nppa and Nppb in a competitive rather than a cooperative mode, resulting in increased Nppa expression when Nppb and flanking sequences were deleted. The enhancer cluster maintained its active epigenetic state and selectivity when its target genes are absent. In enhancer cluster-deficient animals, Nppa was induced but remained low in the postmyocardial infarction border zone and in the hypertrophic ventricle, involving regulatory sequences proximal to Nppa. CONCLUSIONS Coordinated ventricular expression of Nppa and Nppb is controlled in a competitive manner by a shared super enhancer, which is also required to augment stress-induced expression and to prevent premature hypertrophy.
Collapse
MESH Headings
- Animals
- Atrial Natriuretic Factor/genetics
- Atrial Natriuretic Factor/metabolism
- Binding Sites
- Binding, Competitive
- CRISPR-Cas Systems
- Cell Line
- Disease Models, Animal
- Enhancer Elements, Genetic
- Epigenesis, Genetic
- Gene Expression Regulation, Developmental
- Humans
- Hypertrophy, Left Ventricular/genetics
- Hypertrophy, Left Ventricular/metabolism
- Hypertrophy, Left Ventricular/pathology
- Mice, Knockout
- Multigene Family
- Myocardial Infarction/genetics
- Myocardial Infarction/metabolism
- Myocardial Infarction/pathology
- Myocytes, Cardiac/metabolism
- Myocytes, Cardiac/pathology
- Natriuretic Peptide, Brain/genetics
- Natriuretic Peptide, Brain/metabolism
- Promoter Regions, Genetic
- Mice
Collapse
Affiliation(s)
- Joyce C K Man
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Karel van Duijvenboden
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Peter H L Krijger
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (P.H.L.K., W.d.L.)
| | - Ingeborg B Hooijkaas
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Ingeborg van der Made
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Corrie de Gier-de Vries
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Esther E Creemers
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, the Netherlands (P.H.L.K., W.d.L.)
| | - Bastiaan J Boukens
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
- Department of Experimental Cardiology (I.v.d.M., E.E.C., B.J.B.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology (J.C.K.M., K.v.D., I.B.H., C.d.G.-d.V., V.W., B.J.B., V.M.C.), Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, location AMC, The Netherlands
| |
Collapse
|
22
|
Ma X, Yu M, Hao C, Yang W. Shikonin induces tumor apoptosis in glioma cells via endoplasmic reticulum stress, and Bax/Bak mediated mitochondrial outer membrane permeability. JOURNAL OF ETHNOPHARMACOLOGY 2020; 263:113059. [PMID: 32663591 DOI: 10.1016/j.jep.2020.113059] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 04/09/2020] [Accepted: 05/31/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Shikonin, one of the main active ingredients of Chinese herbal medicine Lithospermum erythrorhizon, has been widely used to treat various disease including virus infection and inflammation in clinical. Its anti-tumor activity has been recorded in "Chinese herbal medicine". Recently, some studies about its anti-glioma effects have been reported. However, little is known about the molecular pharmacological activity of Shikonin in glioma. AIM This study aimed to systematically uncover and validate the pharmacological mechanism of Shikonin against glioma. MATERIAL AND METHODS Network pharmacology approach, survival analysis, and Pearson co-expression analysis were performed to uncover and test the pharmacological mechanisms of Shikonin in glioma. Apoptosis assay, Caspase-3 activity assay and immunoblot analysis were practiced to validate the mechanisms. RESULTS Network pharmacology results suggested, anti-glioma effect of Shikonin by interfering endoplasmic reticulum (ER) stress-mediated tumor apoptosis targeting Caspase-3, and Bax/Bak-induced mitochondrial outer membrane permeabilization (MOMP) triggering cancer cell apoptosis. Survival analysis suggested the association of CASP3 with glioma (P < 0.05). Pearson correlation analysis indicated possible interaction of CASP3 with PERK through positive feedback regulation. Shikonin or in combination with 14G2a induced cell apoptosis in oligodendroglioma Hs683 cells in a dose-dependent manner with at a maximum apoptosis rate of 33%-37.5%, and 73%-77% respectively. Immunoblot analysis showed that Shikonin increased Caspase-3 activity to about 4.29 times, and increased 9 times when it combined with 14G2a. Shikonin increased also the expression levels of the proteins PERK and CHOP by about 4.4 and 5.6 folds, respectively, when it combined with 14G2a. CONCLUSIONS This study highlights the pharmacological mechanisms of Shikonin in the induction of tumor apoptosis in glioma cells.
Collapse
Affiliation(s)
- Xiaoqin Ma
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Meixiang Yu
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Chenxia Hao
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China
| | - Wanhua Yang
- Department of Pharmacy, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
23
|
Super-enhancer in prostate cancer: transcriptional disorders and therapeutic targets. NPJ Precis Oncol 2020; 4:31. [PMID: 33299103 PMCID: PMC7677538 DOI: 10.1038/s41698-020-00137-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022] Open
Abstract
Abnormal activity of oncogenic and tumor-suppressor signaling pathways contributes to cancer and cancer risk in humans. Transcriptional dysregulation of these pathways is commonly associated with tumorigenesis and the development of cancer. Genetic and epigenetic alterations may mediate dysregulated transcriptional activity. One of the most important epigenetic alternations is the non-coding regulatory element, which includes both enhancers and super-enhancers (SEs). SEs, characterized as large clusters of enhancers with aberrant high levels of transcription factor binding, have been considered as key drivers of gene expression in controlling and maintaining cancer cell identity. In cancer cells, oncogenes acquire SEs and the cancer phenotype relies on these abnormal transcription programs driven by SEs, which leads to cancer cells often becoming addicted to the SEs-related transcription programs, including prostate cancer. Here, we summarize recent findings of SEs and SEs-related gene regulation in prostate cancer and review the potential pharmacological inhibitors in basic research and clinical trials.
Collapse
|
24
|
Wang Y, Nie H, He X, Liao Z, Zhou Y, Zhou J, Ou C. The emerging role of super enhancer-derived noncoding RNAs in human cancer. Theranostics 2020; 10:11049-11062. [PMID: 33042269 PMCID: PMC7532672 DOI: 10.7150/thno.49168] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 08/23/2020] [Indexed: 02/06/2023] Open
Abstract
Super enhancers (SEs) are large clusters of adjacent enhancers that drive the expression of genes which regulate cellular identity; SE regions can be enriched with a high density of transcription factors, co-factors, and enhancer-associated epigenetic modifications. Through enhanced activation of their target genes, SEs play an important role in various diseases and conditions, including cancer. Recent studies have shown that SEs not only activate the transcriptional expression of coding genes to directly regulate biological functions, but also drive the transcriptional expression of non-coding RNAs (ncRNAs) to indirectly regulate biological functions. SE-derived ncRNAs play critical roles in tumorigenesis, including malignant proliferation, metastasis, drug resistance, and inflammatory response. Moreover, the abnormal expression of SE-derived ncRNAs is closely related to the clinical and pathological characterization of tumors. In this review, we summarize the functions and roles of SE-derived ncRNAs in tumorigenesis and discuss their prospective applications in tumor therapy. A deeper understanding of the potential mechanism underlying the action of SE-derived ncRNAs in tumorigenesis may provide new strategies for the early diagnosis of tumors and targeted therapy.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Biomarkers, Tumor/analysis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Cell Proliferation/drug effects
- Cell Proliferation/genetics
- Drug Resistance, Neoplasm/genetics
- Enhancer Elements, Genetic/genetics
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Expression Regulation, Neoplastic/genetics
- Humans
- Molecular Targeted Therapy/methods
- Neoplasms/diagnosis
- Neoplasms/drug therapy
- Neoplasms/genetics
- Neoplasms/pathology
- Precision Medicine/methods
- RNA, Untranslated/analysis
- RNA, Untranslated/genetics
- RNA, Untranslated/metabolism
Collapse
Affiliation(s)
- Yutong Wang
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hui Nie
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoyun He
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Zhiming Liao
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yangying Zhou
- Department of Oncology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jianhua Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
25
|
Wang Q, Peng L, Chen Y, Liao L, Chen J, Li M, Li Y, Qian F, Zhang Y, Wang F, Li C, Lin D, Xu L, Li E. Characterization of super-enhancer-associated functional lncRNAs acting as ceRNAs in ESCC. Mol Oncol 2020; 14:2203-2230. [PMID: 32460441 PMCID: PMC7463357 DOI: 10.1002/1878-0261.12726] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/01/2020] [Accepted: 05/20/2020] [Indexed: 02/05/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) have important regulatory roles in cancer biology. Although some lncRNAs have well-characterized functions, the vast majority of this class of molecules remains functionally uncharacterized. To systematically pinpoint functional lncRNAs, a computational approach was proposed for identification of lncRNA-mediated competing endogenous RNAs (ceRNAs) through combining global and local regulatory direction consistency of expression. Using esophageal squamous cell carcinoma (ESCC) as model, we further identified many known and novel functional lncRNAs acting as ceRNAs (ce-lncRNAs). We found that most of them significantly regulated the expression of cancer-related hallmark genes. These ce-lncRNAs were significantly regulated by enhancers, especially super-enhancers (SEs). Landscape analyses for lncRNAs further identified SE-associated functional ce-lncRNAs in ESCC, such as HOTAIR, XIST, SNHG5, and LINC00094. THZ1, a specific CDK7 inhibitor, can result in global transcriptional downregulation of SE-associated ce-lncRNAs. We further demonstrate that a SE-associated ce-lncRNA, LINC00094 can be activated by transcription factors TCF3 and KLF5 through binding to SE regions and promoted ESCC cancer cell growth. THZ1 downregulated expression of LINC00094 through inhibiting TCF3 and KLF5. Our data demonstrated the important roles of SE-associated ce-lncRNAs in ESCC oncogenesis and might serve as targets for ESCC diagnosis and therapy.
Collapse
Affiliation(s)
- Qiu‐Yu Wang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
- School of Medical InformaticsHarbin Medical UniversityDaqingChina
| | - Liu Peng
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
| | - Yang Chen
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
- Institute of Oncologic PathologyMedical College of Shantou UniversityShantouChina
| | - Lian‐Di Liao
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
- Institute of Oncologic PathologyMedical College of Shantou UniversityShantouChina
| | - Jia‐Xin Chen
- School of Medical InformaticsHarbin Medical UniversityDaqingChina
| | - Meng Li
- School of Medical InformaticsHarbin Medical UniversityDaqingChina
| | - Yan‐Yu Li
- School of Medical InformaticsHarbin Medical UniversityDaqingChina
| | - Feng‐Cui Qian
- School of Medical InformaticsHarbin Medical UniversityDaqingChina
| | - Yue‐Xin Zhang
- School of Medical InformaticsHarbin Medical UniversityDaqingChina
| | - Fan Wang
- School of Medical InformaticsHarbin Medical UniversityDaqingChina
| | - Chun‐Quan Li
- School of Medical InformaticsHarbin Medical UniversityDaqingChina
| | - De‐Chen Lin
- Department of MedicineCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Li‐Yan Xu
- Institute of Oncologic PathologyMedical College of Shantou UniversityShantouChina
| | - En‐Min Li
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan AreaShantou University Medical CollegeShantouChina
| |
Collapse
|
26
|
Qian FC, Li XC, Guo JC, Zhao JM, Li YY, Tang ZD, Zhou LW, Zhang J, Bai XF, Jiang Y, Pan Q, Wang QY, Li EM, Li CQ, Xu LY, Lin DC. SEanalysis: a web tool for super-enhancer associated regulatory analysis. Nucleic Acids Res 2020; 47:W248-W255. [PMID: 31028388 PMCID: PMC6602466 DOI: 10.1093/nar/gkz302] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/04/2019] [Accepted: 04/18/2019] [Indexed: 01/07/2023] Open
Abstract
Super-enhancers (SEs) have prominent roles in biological and pathological processes through their unique transcriptional regulatory capability. To date, several SE databases have been developed by us and others. However, these existing databases do not provide downstream or upstream regulatory analyses of SEs. Pathways, transcription factors (TFs), SEs, and SE-associated genes form complex regulatory networks. Therefore, we designed a novel web server, SEanalysis, which provides comprehensive SE-associated regulatory network analyses. SEanalysis characterizes SE-associated genes, TFs binding to target SEs, and their upstream pathways. The current version of SEanalysis contains more than 330 000 SEs from more than 540 types of cells/tissues, 5042 TF ChIP-seq data generated from these cells/tissues, DNA-binding sequence motifs for ∼700 human TFs and 2880 pathways from 10 databases. SEanalysis supports searching by either SEs, samples, TFs, pathways or genes. The complex regulatory networks formed by these factors can be interactively visualized. In addition, we developed a customizable genome browser containing >6000 customizable tracks for visualization. The server is freely available at http://licpathway.net/SEanalysis.
Collapse
Affiliation(s)
- Feng-Cui Qian
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xue-Cang Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Jin-Cheng Guo
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, China
| | - Jian-Mei Zhao
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yan-Yu Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Zhi-Dong Tang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Li-Wei Zhou
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xue-Feng Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yong Jiang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Qi Pan
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Qiu-Yu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China.,Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, China
| | - En-Min Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Chun-Quan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Li-Yan Xu
- Institute of Oncologic Pathology, Medical College of Shantou University, Shantou 515041, China
| | - De-Chen Lin
- Guangdong Province Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China
| |
Collapse
|
27
|
Chen C, Zhou D, Gu Y, Wang C, Zhang M, Lin X, Xing J, Wang H, Zhang Y. SEA version 3.0: a comprehensive extension and update of the Super-Enhancer archive. Nucleic Acids Res 2020; 48:D198-D203. [PMID: 31667506 PMCID: PMC7145603 DOI: 10.1093/nar/gkz1028] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 12/21/2022] Open
Abstract
Super-enhancers (SEs) are critical for the transcriptional regulation of gene expression. We developed the super-enhancer archive version 3.0 (SEA v. 3.0, http://sea.edbc.org) to extend SE research. SEA v. 3.0 provides the most comprehensive archive to date, consisting of 164 545 super-enhancers. Of these, 80 549 are newly identified from 266 cell types/tissues/diseases using an optimized computational strategy, and 52 have been experimentally confirmed with manually curated references. We now support super-enhancers in 11 species including 7 new species (zebrafish, chicken, chimp, rhesus, sheep, Xenopus tropicalis and stickleback). To facilitate super-enhancer functional analysis, we added several new regulatory datasets including 3 361 785 typical enhancers, chromatin interactions, SNPs, transcription factor binding sites and SpCas9 target sites. We also updated or developed new criteria query, genome visualization and analysis tools for the archive. This includes a tool based on Shannon Entropy to evaluate SE cell type specificity, a new genome browser that enables the visualization of SE spatial interactions based on Hi-C data, and an enhanced enrichment analysis interface that provides online enrichment analyses of SE related genes. SEA v. 3.0 provides a comprehensive database of all available SE information across multiple species, and will facilitate super-enhancer research, especially as related to development and disease.
Collapse
Affiliation(s)
- Chuangeng Chen
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Dianshuang Zhou
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Yue Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin 150081, China
| | - Cong Wang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Mengyan Zhang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Xiangyu Lin
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Jie Xing
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Hongli Wang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| | - Yan Zhang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
28
|
Gao T, Qian J. EnhancerAtlas 2.0: an updated resource with enhancer annotation in 586 tissue/cell types across nine species. Nucleic Acids Res 2020; 48:D58-D64. [PMID: 31740966 PMCID: PMC7145677 DOI: 10.1093/nar/gkz980] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/02/2019] [Accepted: 10/31/2019] [Indexed: 02/06/2023] Open
Abstract
Enhancers are distal cis-regulatory elements that activate the transcription of their target genes. They regulate a wide range of important biological functions and processes, including embryogenesis, development, and homeostasis. As more and more large-scale technologies were developed for enhancer identification, a comprehensive database is highly desirable for enhancer annotation based on various genome-wide profiling datasets across different species. Here, we present an updated database EnhancerAtlas 2.0 (http://www.enhanceratlas.org/indexv2.php), covering 586 tissue/cell types that include a large number of normal tissues, cancer cell lines, and cells at different development stages across nine species. Overall, the database contains 13 494 603 enhancers, which were obtained from 16 055 datasets using 12 high-throughput experiment methods (e.g. H3K4me1/H3K27ac, DNase-seq/ATAC-seq, P300, POLR2A, CAGE, ChIA-PET, GRO-seq, STARR-seq and MPRA). The updated version is a huge expansion of the first version, which only contains the enhancers in human cells. In addition, we predicted enhancer–target gene relationships in human, mouse and fly. Finally, the users can search enhancers and enhancer–target gene relationships through five user-friendly, interactive modules. We believe the new annotation of enhancers in EnhancerAtlas 2.0 will facilitate users to perform useful functional analysis of enhancers in various genomes.
Collapse
Affiliation(s)
- Tianshun Gao
- The Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Jiang Qian
- The Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
29
|
Li X, Shi L, Wang Y, Zhong J, Zhao X, Teng H, Shi X, Yang H, Ruan S, Li M, Sun ZS, Zhan Q, Mao F. OncoBase: a platform for decoding regulatory somatic mutations in human cancers. Nucleic Acids Res 2020; 47:D1044-D1055. [PMID: 30445567 PMCID: PMC6323961 DOI: 10.1093/nar/gky1139] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/11/2018] [Indexed: 12/16/2022] Open
Abstract
Whole-exome and whole-genome sequencing have revealed millions of somatic mutations associated with different human cancers, and the vast majority of them are located outside of coding sequences, making it challenging to directly interpret their functional effects. With the rapid advances in high-throughput sequencing technologies, genome-scale long-range chromatin interactions were detected, and distal target genes of regulatory elements were determined using three-dimensional (3D) chromatin looping. Herein, we present OncoBase (http://www.oncobase.biols.ac.cn/), an integrated database for annotating 81 385 242 somatic mutations in 68 cancer types from more than 120 cancer projects by exploring their roles in distal interactions between target genes and regulatory elements. OncoBase integrates local chromatin signatures, 3D chromatin interactions in different cell types and reconstruction of enhancer-target networks using state-of-the-art algorithms. It employs informative visualization tools to display the integrated local and 3D chromatin signatures and effects of somatic mutations on regulatory elements. Enhancer-promoter interactions estimated from chromatin interactions are integrated into a network diffusion system that quantitatively prioritizes somatic mutations and target genes from a large pool. Thus, OncoBase is a useful resource for the functional annotation of regulatory noncoding regions and systematically benchmarking the regulatory effects of embedded noncoding somatic mutations in human carcinogenesis.
Collapse
Affiliation(s)
- Xianfeng Li
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Leisheng Shi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yan Wang
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jianing Zhong
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases of Ministry of Education, Gannan Medical University, Ganzhou 341000,China
| | - Xiaolu Zhao
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Huajing Teng
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaohui Shi
- Sino-Danish college, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haonan Yang
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Shasha Ruan
- Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430072, China
| | - MingKun Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhong Sheng Sun
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China
| | - Qimin Zhan
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Fengbiao Mao
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
30
|
Bai X, Shi S, Ai B, Jiang Y, Liu Y, Han X, Xu M, Pan Q, Wang F, Wang Q, Zhang J, Li X, Feng C, Li Y, Wang Y, Song Y, Feng K, Li C. ENdb: a manually curated database of experimentally supported enhancers for human and mouse. Nucleic Acids Res 2020; 48:D51-D57. [PMID: 31665430 PMCID: PMC7145688 DOI: 10.1093/nar/gkz973] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/10/2019] [Accepted: 10/16/2019] [Indexed: 12/30/2022] Open
Abstract
Enhancers are a class of cis-regulatory elements that can increase gene transcription by forming loops in intergenic regions, introns and exons. Enhancers, as well as their associated target genes, and transcription factors (TFs) that bind to them, are highly associated with human disease and biological processes. Although some enhancer databases have been published, most only focus on enhancers identified by high-throughput experimental techniques. Therefore, it is highly desirable to construct a comprehensive resource of manually curated enhancers and their related information based on low-throughput experimental evidences. Here, we established a comprehensive manually-curated enhancer database for human and mouse, which provides a resource for experimentally supported enhancers, and to annotate the detailed information of enhancers. The current release of ENdb documents 737 experimentally validated enhancers and their related information, including 384 target genes, 263 TFs, 110 diseases and 153 functions in human and mouse. Moreover, the enhancer-related information was supported by experimental evidences, such as RNAi, in vitro knockdown, western blotting, qRT-PCR, luciferase reporter assay, chromatin conformation capture (3C) and chromosome conformation capture-on-chip (4C) assays. ENdb provides a user-friendly interface to query, browse and visualize the detailed information of enhancers. The database is available at http://www.licpathway.net/ENdb.
Collapse
Affiliation(s)
- Xuefeng Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Shanshan Shi
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Bo Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Yong Jiang
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Yuejuan Liu
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Xiaole Han
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Mingcong Xu
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Qi Pan
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Fan Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Qiuyu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Xuecang Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Chenchen Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Yanyu Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Yuezhu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Yiwei Song
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Ke Feng
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University. Daqing 163319, China
| |
Collapse
|
31
|
Wang X, Cairns MJ, Yan J. Super-enhancers in transcriptional regulation and genome organization. Nucleic Acids Res 2020; 47:11481-11496. [PMID: 31724731 PMCID: PMC7145697 DOI: 10.1093/nar/gkz1038] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/19/2019] [Accepted: 10/22/2019] [Indexed: 12/14/2022] Open
Abstract
Gene expression is precisely controlled in a stage and cell-type-specific manner, largely through the interaction between cis-regulatory elements and their associated trans-acting factors. Where these components aggregate in promoters and enhancers, they are able to cooperate to modulate chromatin structure and support the engagement in long-range 3D superstructures that shape the dynamics of a cell's genomic architecture. Recently, the term 'super-enhancer' has been introduced to describe a hyper-active regulatory domain comprising a complex array of sequence elements that work together to control the key gene networks involved in cell identity. Here, we survey the unique characteristics of super-enhancers compared to other enhancer types and summarize the recent advances in our understanding of their biological role in gene regulation. In particular, we discuss their capacity to attract the formation of phase-separated condensates, and capacity to generate three-dimensional genome structures that precisely activate their target genes. We also propose a multi-stage transition model to explain the evolutionary pressure driving the development of super-enhancers in complex organisms, and highlight the potential for involvement in tumorigenesis. Finally, we discuss more broadly the role of super-enhancers in human health disorders and related potential in therapeutic interventions.
Collapse
Affiliation(s)
- Xi Wang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education / School of Life Sciences, Northwest University, Xi'an 710069, China.,Division of Theoretical Systems Biology, Germany Cancer Research Center, Heidelberg 69115, Germany.,School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, University Drive, Callaghan, NSW 2308, Australia.,Centre for Brain and Mental Health Research, University of Newcastle, Callaghan, NSW 2308, Australia; and Hunter Medical Research Institute
| | - Jian Yan
- Key Laboratory of Resource Biology and Biotechnology in Western China (Northwest University), Ministry of Education / School of Life Sciences, Northwest University, Xi'an 710069, China.,Department of Biomedical Sciences, City University of Hong Kong, Kowloon Tong, Hong Kong S.A.R., China
| |
Collapse
|
32
|
Cheng M, Zhang ZW, Ji XH, Xu Y, Bian E, Zhao B. Super-enhancers: A new frontier for glioma treatment. Biochim Biophys Acta Rev Cancer 2020; 1873:188353. [PMID: 32112817 DOI: 10.1016/j.bbcan.2020.188353] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 01/17/2023]
Abstract
Glioma is the most common primary malignant tumor in the human brain. Although there are a variety of treatments, such as surgery, radiation and chemotherapy, glioma is still an incurable disease. Super-enhancers (SEs) are implicated in the control of tumor cell identity, and they promote oncogenic transcription, which supports tumor cells. Inhibition of the SE complex, which is required for the assembly and maintenance of SEs, may repress oncogenic transcription and impede tumor growth. In this review, we discuss the unique characteristics of SEs compared to typical enhancers, and we summarize the recent advances in the understanding of their properties and biological role in gene regulation. Additionally, we highlight that SE-driven lncRNAs, miRNAs and genes are involved in the malignant phenotype of glioma. Most importantly, the application of SE inhibitors in different cancer subtypes has introduced new directions in glioma treatment.
Collapse
Affiliation(s)
- Meng Cheng
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Zheng Wei Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Xing Hu Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Yadi Xu
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China
| | - Erbao Bian
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| | - Bing Zhao
- Department of Neurosurgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Cerebral Vascular Disease Research Center, Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
33
|
George JW, Fan H, Johnson B, Carpenter TJ, Foy KK, Chatterjee A, Patterson AL, Koeman J, Adams M, Madaj ZB, Chesla D, Marsh EE, Triche TJ, Shen H, Teixeira JM. Integrated Epigenome, Exome, and Transcriptome Analyses Reveal Molecular Subtypes and Homeotic Transformation in Uterine Fibroids. Cell Rep 2019; 29:4069-4085.e6. [PMID: 31851934 PMCID: PMC6956710 DOI: 10.1016/j.celrep.2019.11.077] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 09/20/2019] [Accepted: 11/19/2019] [Indexed: 11/29/2022] Open
Abstract
Uterine fibroids are benign myometrial smooth muscle tumors of unknown etiology that, when symptomatic, are the most common indication for hysterectomy in the United States. Unsupervised clustering of results from DNA methylation analyses segregates normal myometrium from fibroids and further segregates the fibroids into subtypes characterized by MED12 mutation or activation of either HMGA2 or HMGA1 expression. Upregulation of HMGA2 expression does not always appear to be dependent on translocation but is associated with hypomethylation in the HMGA2 gene body. HOXA13 expression is upregulated in fibroids and correlates with expression of typical uterine fibroid genes. Significant overlap of differentially expressed genes is observed between cervical stroma and uterine fibroids compared with normal myometrium. These analyses show a possible role of DNA methylation in fibroid biology and suggest that homeotic transformation of myometrial cells to a more cervical stroma phenotype could be an important mechanism for etiology of the disease.
Collapse
Affiliation(s)
- Jitu Wilson George
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Huihui Fan
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Benjamin Johnson
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Tyler James Carpenter
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | | | - Anindita Chatterjee
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - Amanda Lynn Patterson
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA; Division of Animal Sciences, Department of Obstetrics, Gynecology and Women's Health, University of Missouri, Columbia, MO, USA
| | - Julie Koeman
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Marie Adams
- Genomics Core, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Zachary Brian Madaj
- Bioinformatics and Biostatistics Core, Van Andel Research Institute, Grand Rapids, MI, USA
| | - David Chesla
- Spectrum Health Universal Biorepository, Spectrum Health System, Grand Rapids, MI, USA
| | - Erica Elizabeth Marsh
- Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | - Hui Shen
- Center for Epigenetics, Van Andel Research Institute, Grand Rapids, MI, USA.
| | - Jose Manuel Teixeira
- Department of Obstetrics, Gynecology, and Reproductive Biology, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.
| |
Collapse
|
34
|
Vijayabaskar MS, Goode DK, Obier N, Lichtinger M, Emmett AML, Abidin FNZ, Shar N, Hannah R, Assi SA, Lie-A-Ling M, Gottgens B, Lacaud G, Kouskoff V, Bonifer C, Westhead DR. Identification of gene specific cis-regulatory elements during differentiation of mouse embryonic stem cells: An integrative approach using high-throughput datasets. PLoS Comput Biol 2019; 15:e1007337. [PMID: 31682597 PMCID: PMC6855567 DOI: 10.1371/journal.pcbi.1007337] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 11/14/2019] [Accepted: 08/15/2019] [Indexed: 01/22/2023] Open
Abstract
Gene expression governs cell fate, and is regulated via a complex interplay of transcription factors and molecules that change chromatin structure. Advances in sequencing-based assays have enabled investigation of these processes genome-wide, leading to large datasets that combine information on the dynamics of gene expression, transcription factor binding and chromatin structure as cells differentiate. While numerous studies focus on the effects of these features on broader gene regulation, less work has been done on the mechanisms of gene-specific transcriptional control. In this study, we have focussed on the latter by integrating gene expression data for the in vitro differentiation of murine ES cells to macrophages and cardiomyocytes, with dynamic data on chromatin structure, epigenetics and transcription factor binding. Combining a novel strategy to identify communities of related control elements with a penalized regression approach, we developed individual models to identify the potential control elements predictive of the expression of each gene. Our models were compared to an existing method and evaluated using the existing literature and new experimental data from embryonic stem cell differentiation reporter assays. Our method is able to identify transcriptional control elements in a gene specific manner that reflect known regulatory relationships and to generate useful hypotheses for further testing.
Collapse
Affiliation(s)
- M. S. Vijayabaskar
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Debbie K. Goode
- Wellcome Trust & MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Nadine Obier
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham. Birmingham, United Kingdom
| | - Monika Lichtinger
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham. Birmingham, United Kingdom
| | - Amber M. L. Emmett
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Fatin N. Zainul Abidin
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Nisar Shar
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Rebecca Hannah
- Wellcome Trust & MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Salam A. Assi
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham. Birmingham, United Kingdom
| | - Michael Lie-A-Ling
- CRUK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Berthold Gottgens
- Wellcome Trust & MRC Cambridge Stem Cell Institute and Cambridge Institute for Medical Research, University of Cambridge, Cambridge, United Kingdom
| | - Georges Lacaud
- CRUK Manchester Institute, University of Manchester, Manchester, United Kingdom
| | - Valerie Kouskoff
- Division of Developmental Biology and Medicine, The University of Manchester, Manchester, United Kingdom
| | - Constanze Bonifer
- Institute for Cancer and Genomic Sciences, College of Medical and Dental Sciences, University of Birmingham. Birmingham, United Kingdom
| | - David R. Westhead
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| |
Collapse
|
35
|
Man JCK, Mohan RA, Boogaard MVD, Hilvering CRE, Jenkins C, Wakker V, Bianchi V, Laat WD, Barnett P, Boukens BJ, Christoffels VM. An enhancer cluster controls gene activity and topology of the SCN5A-SCN10A locus in vivo. Nat Commun 2019; 10:4943. [PMID: 31666509 PMCID: PMC6821807 DOI: 10.1038/s41467-019-12856-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 10/03/2019] [Indexed: 12/19/2022] Open
Abstract
Mutations and variations in and around SCN5A, encoding the major cardiac sodium channel, influence impulse conduction and are associated with a broad spectrum of arrhythmia disorders. Here, we identify an evolutionary conserved regulatory cluster with super enhancer characteristics downstream of SCN5A, which drives localized cardiac expression and contains conduction velocity-associated variants. We use genome editing to create a series of deletions in the mouse genome and show that the enhancer cluster controls the conformation of a >0.5 Mb genomic region harboring multiple interacting gene promoters and enhancers. We find that this cluster and its individual components are selectively required for cardiac Scn5a expression, normal cardiac conduction and normal embryonic development. Our studies reveal physiological roles of an enhancer cluster in the SCN5A-SCN10A locus, show that it controls the chromatin architecture of the locus and Scn5a expression, and suggest that genetic variants affecting its activity may influence cardiac function.
Collapse
Affiliation(s)
- Joyce C K Man
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Rajiv A Mohan
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Malou van den Boogaard
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Catharina R E Hilvering
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Catherine Jenkins
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Vincent Wakker
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Valerio Bianchi
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Wouter de Laat
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, the Netherlands
| | - Phil Barnett
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Bastiaan J Boukens
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands
| | - Vincent M Christoffels
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Academic Medical Center, Amsterdam, The Netherlands.
| |
Collapse
|
36
|
Whole Genome Sequencing of Familial Non-Medullary Thyroid Cancer Identifies Germline Alterations in MAPK/ERK and PI3K/AKT Signaling Pathways. Biomolecules 2019; 9:biom9100605. [PMID: 31614935 PMCID: PMC6843654 DOI: 10.3390/biom9100605] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/06/2019] [Accepted: 10/10/2019] [Indexed: 12/24/2022] Open
Abstract
Evidence of familial inheritance in non-medullary thyroid cancer (NMTC) has accumulated over the last few decades. However, known variants account for a very small percentage of the genetic burden. Here, we focused on the identification of common pathways and networks enriched in NMTC families to better understand its pathogenesis with the final aim of identifying one novel high/moderate-penetrance germline predisposition variant segregating with the disease in each studied family. We performed whole genome sequencing on 23 affected and 3 unaffected family members from five NMTC-prone families and prioritized the identified variants using our Familial Cancer Variant Prioritization Pipeline (FCVPPv2). In total, 31 coding variants and 39 variants located in upstream, downstream, 5′ or 3′ untranslated regions passed FCVPPv2 filtering. Altogether, 210 genes affected by variants that passed the first three steps of the FCVPPv2 were analyzed using Ingenuity Pathway Analysis software. These genes were enriched in tumorigenic signaling pathways mediated by receptor tyrosine kinases and G-protein coupled receptors, implicating a central role of PI3K/AKT and MAPK/ERK signaling in familial NMTC. Our approach can facilitate the identification and functional validation of causal variants in each family as well as the screening and genetic counseling of other individuals at risk of developing NMTC.
Collapse
|
37
|
Sentürk Cetin N, Kuo CC, Ribarska T, Li R, Costa IG, Grummt I. Isolation and genome-wide characterization of cellular DNA:RNA triplex structures. Nucleic Acids Res 2019; 47:2306-2321. [PMID: 30605520 PMCID: PMC6411930 DOI: 10.1093/nar/gky1305] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 12/18/2018] [Accepted: 12/27/2018] [Indexed: 12/21/2022] Open
Abstract
RNA can directly bind to purine-rich DNA via Hoogsteen base pairing, forming a DNA:RNA triple helical structure that anchors the RNA to specific sequences and allows guiding of transcription regulators to distinct genomic loci. To unravel the prevalence of DNA:RNA triplexes in living cells, we have established a fast and cost-effective method that allows genome-wide mapping of DNA:RNA triplex interactions. In contrast to previous approaches applied for the identification of chromatin-associated RNAs, this method uses protein-free nucleic acids isolated from chromatin. High-throughput sequencing and computational analysis of DNA-associated RNA revealed a large set of RNAs which originate from non-coding and coding loci, including super-enhancers and repeat elements. Combined analysis of DNA-associated RNA and RNA-associated DNA identified genomic DNA:RNA triplex structures. The results suggest that triplex formation is a general mechanism of RNA-mediated target-site recognition, which has major impact on biological functions.
Collapse
Affiliation(s)
- Nevcin Sentürk Cetin
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Chao-Chung Kuo
- Institute for Computational Genomics, RWTH University Medical School Aachen, Germany
| | - Teodora Ribarska
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Ronghui Li
- Institute for Computational Genomics, RWTH University Medical School Aachen, Germany
| | - Ivan G Costa
- Institute for Computational Genomics, RWTH University Medical School Aachen, Germany
| | - Ingrid Grummt
- Division of Molecular Biology of the Cell II, German Cancer Research Center, DKFZ-ZMBH Alliance, Heidelberg, Germany
| |
Collapse
|
38
|
Zhang G, Shi J, Zhu S, Lan Y, Xu L, Yuan H, Liao G, Liu X, Zhang Y, Xiao Y, Li X. DiseaseEnhancer: a resource of human disease-associated enhancer catalog. Nucleic Acids Res 2019; 46:D78-D84. [PMID: 29059320 PMCID: PMC5753380 DOI: 10.1093/nar/gkx920] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Accepted: 10/01/2017] [Indexed: 01/09/2023] Open
Abstract
Large-scale sequencing studies discovered substantial genetic variants occurring in enhancers which regulate genes via long range chromatin interactions. Importantly, such variants could affect enhancer regulation by changing transcription factor bindings or enhancer hijacking, and in turn, make an essential contribution to disease progression. To facilitate better usage of published data and exploring enhancer deregulation in various human diseases, we created DiseaseEnhancer (http://biocc.hrbmu.edu.cn/DiseaseEnhancer/), a manually curated database for disease-associated enhancers. As of July 2017, DiseaseEnhancer includes 847 disease-associated enhancers in 143 human diseases. Database features include basic enhancer information (i.e. genomic location and target genes); disease types; associated variants on the enhancer and their mediated phenotypes (i.e. gain/loss of enhancer and the alterations of transcription factor bindings). We also include a feature on our website to export any query results into a file and download the full database. DiseaseEnhancer provides a promising avenue for researchers to facilitate the understanding of enhancer deregulation in disease pathogenesis, and identify new biomarkers for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Guanxiong Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jian Shi
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Shiwei Zhu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yujia Lan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Liwen Xu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Huating Yuan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Gaoming Liao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xiaoqin Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yunpeng Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Xia Li
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
39
|
Perenthaler E, Yousefi S, Niggl E, Barakat TS. Beyond the Exome: The Non-coding Genome and Enhancers in Neurodevelopmental Disorders and Malformations of Cortical Development. Front Cell Neurosci 2019; 13:352. [PMID: 31417368 PMCID: PMC6685065 DOI: 10.3389/fncel.2019.00352] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/16/2019] [Indexed: 12/22/2022] Open
Abstract
The development of the human cerebral cortex is a complex and dynamic process, in which neural stem cell proliferation, neuronal migration, and post-migratory neuronal organization need to occur in a well-organized fashion. Alterations at any of these crucial stages can result in malformations of cortical development (MCDs), a group of genetically heterogeneous neurodevelopmental disorders that present with developmental delay, intellectual disability and epilepsy. Recent progress in genetic technologies, such as next generation sequencing, most often focusing on all protein-coding exons (e.g., whole exome sequencing), allowed the discovery of more than a 100 genes associated with various types of MCDs. Although this has considerably increased the diagnostic yield, most MCD cases remain unexplained. As Whole Exome Sequencing investigates only a minor part of the human genome (1-2%), it is likely that patients, in which no disease-causing mutation has been identified, could harbor mutations in genomic regions beyond the exome. Even though functional annotation of non-coding regions is still lagging behind that of protein-coding genes, tremendous progress has been made in the field of gene regulation. One group of non-coding regulatory regions are enhancers, which can be distantly located upstream or downstream of genes and which can mediate temporal and tissue-specific transcriptional control via long-distance interactions with promoter regions. Although some examples exist in literature that link alterations of enhancers to genetic disorders, a widespread appreciation of the putative roles of these sequences in MCDs is still lacking. Here, we summarize the current state of knowledge on cis-regulatory regions and discuss novel technologies such as massively-parallel reporter assay systems, CRISPR-Cas9-based screens and computational approaches that help to further elucidate the emerging role of the non-coding genome in disease. Moreover, we discuss existing literature on mutations or copy number alterations of regulatory regions involved in brain development. We foresee that the future implementation of the knowledge obtained through ongoing gene regulation studies will benefit patients and will provide an explanation to part of the missing heritability of MCDs and other genetic disorders.
Collapse
Affiliation(s)
| | | | | | - Tahsin Stefan Barakat
- Department of Clinical Genetics, Erasmus MC – University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
40
|
Cong Z, Li Q, Yang Y, Guo X, Cui L, You T. The SNP of rs6854845 suppresses transcription via the DNA looping structure alteration of super-enhancer in colon cells. Biochem Biophys Res Commun 2019; 514:734-741. [PMID: 31078271 DOI: 10.1016/j.bbrc.2019.04.190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 04/28/2019] [Indexed: 12/01/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) identified by Genome-Wide Association Studies (GWASs) have been determined to closely connect with multiple diseases. Previous studies revealed one underlying mechanism that SNPs located within the regulatory elements could affect the encoding gene expression through long-range regulation. SNP rs6854845 was suggested to be a risk of colon cancer in human population. Nevertheless, the underlying molecular mechanism for colon carcinogenesis remains largely unknown. In present study, rs6854845 with G > T mutation in situ in FHC, HCT-116 and SW-480 cells were generated by Crispr/Cas9. The nearby chromatin organization was investigated by chromatin conformation capture (3C). And the expression of coding gene regulated by super-enhancer (SE) was detected by real-time PCR. We observed a significantly different pattern of the genome organization upon rs6854845 generation in colon epithelial cells but not in colon cancer cells. Moreover, we observed the shifted enrichment of H3K4me1 and H3K27ac at the SE (chr4:75.7M-76.0 M) where rs6854845 located. Furthermore, we observed that the transcription of the gene clusters regulated by SE were affected by rs6854845 in colon cells. Overall, our results demonstrated that SNP rs6854845 located in SE could destroy the long-range chromosomal interaction between SE and target gene clusters thereby affecting the transcription of these genes.
Collapse
Affiliation(s)
- Zhuangzhi Cong
- Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, Shanghai 200438, PR China
| | - Qinghua Li
- Department of Hepatobiliary Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, PR China
| | - Yongkang Yang
- Department of Hepatobiliary Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, PR China
| | - Xinlai Guo
- Department of Hepatobiliary Surgery, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji-Mo Road, Shanghai, 200120, PR China
| | - Longjiu Cui
- Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, Shanghai 200438, PR China
| | - Tiangeng You
- Department of Biliary Surgery, Eastern Hepatobiliary Surgery Hospital, The Second Military Medical University, 225 Changhai Road, Shanghai 200438, PR China.
| |
Collapse
|
41
|
Pyfrom SC, Luo H, Payton JE. PLAIDOH: a novel method for functional prediction of long non-coding RNAs identifies cancer-specific LncRNA activities. BMC Genomics 2019; 20:137. [PMID: 30767760 PMCID: PMC6377765 DOI: 10.1186/s12864-019-5497-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/29/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Long non-coding RNAs (lncRNAs) exhibit remarkable cell-type specificity and disease association. LncRNA's functional versatility includes epigenetic modification, nuclear domain organization, transcriptional control, regulation of RNA splicing and translation, and modulation of protein activity. However, most lncRNAs remain uncharacterized due to a shortage of predictive tools available to guide functional experiments. RESULTS To address this gap for lymphoma-associated lncRNAs identified in our studies, we developed a new computational method, Predicting LncRNA Activity through Integrative Data-driven 'Omics and Heuristics (PLAIDOH), which has several unique features not found in other methods. PLAIDOH integrates transcriptome, subcellular localization, enhancer landscape, genome architecture, chromatin interaction, and RNA-binding (eCLIP) data and generates statistically defined output scores. PLAIDOH's approach identifies and ranks functional connections between individual lncRNA, coding gene, and protein pairs using enhancer, transcript cis-regulatory, and RNA-binding protein interactome scores that predict the relative likelihood of these different lncRNA functions. When applied to 'omics datasets that we collected from lymphoma patients, or to publicly available cancer (TCGA) or ENCODE datasets, PLAIDOH identified and prioritized well-known lncRNA-target gene regulatory pairs (e.g., HOTAIR and HOX genes, PVT1 and MYC), validated hits in multiple lncRNA-targeted CRISPR screens, and lncRNA-protein binding partners (e.g., NEAT1 and NONO). Importantly, PLAIDOH also identified novel putative functional interactions, including one lymphoma-associated lncRNA based on analysis of data from our human lymphoma study. We validated PLAIDOH's predictions for this lncRNA using knock-down and knock-out experiments in lymphoma cell models. CONCLUSIONS Our study demonstrates that we have developed a new method for the prediction and ranking of functional connections between individual lncRNA, coding gene, and protein pairs, which were validated by genetic experiments and comparison to published CRISPR screens. PLAIDOH expedites validation and follow-on mechanistic studies of lncRNAs in any biological system. It is available at https://github.com/sarahpyfrom/PLAIDOH .
Collapse
Affiliation(s)
- Sarah C. Pyfrom
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Hong Luo
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Jacqueline E. Payton
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
42
|
Ballinger TJ, Bouwman BAM, Mirzazadeh R, Garnerone S, Crosetto N, Semple CA. Modeling double strand break susceptibility to interrogate structural variation in cancer. Genome Biol 2019; 20:28. [PMID: 30736820 PMCID: PMC6368699 DOI: 10.1186/s13059-019-1635-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 01/17/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Structural variants (SVs) are known to play important roles in a variety of cancers, but their origins and functional consequences are still poorly understood. Many SVs are thought to emerge from errors in the repair processes following DNA double strand breaks (DSBs). RESULTS We used experimentally quantified DSB frequencies in cell lines with matched chromatin and sequence features to derive the first quantitative genome-wide models of DSB susceptibility. These models are accurate and provide novel insights into the mutational mechanisms generating DSBs. Models trained in one cell type can be successfully applied to others, but a substantial proportion of DSBs appear to reflect cell type-specific processes. Using model predictions as a proxy for susceptibility to DSBs in tumors, many SV-enriched regions appear to be poorly explained by selectively neutral mutational bias alone. A substantial number of these regions show unexpectedly high SV breakpoint frequencies given their predicted susceptibility to mutation and are therefore credible targets of positive selection in tumors. These putatively positively selected SV hotspots are enriched for genes previously shown to be oncogenic. In contrast, several hundred regions across the genome show unexpectedly low levels of SVs, given their relatively high susceptibility to mutation. These novel coldspot regions appear to be subject to purifying selection in tumors and are enriched for active promoters and enhancers. CONCLUSIONS We conclude that models of DSB susceptibility offer a rigorous approach to the inference of SVs putatively subject to selection in tumors.
Collapse
Affiliation(s)
- Tracy J. Ballinger
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU UK
| | - Britta A. M. Bouwman
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Reza Mirzazadeh
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Silvano Garnerone
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Nicola Crosetto
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Colin A. Semple
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh, EH4 2XU UK
| |
Collapse
|
43
|
Differentiated super-enhancers in lung cancer cells. SCIENCE CHINA-LIFE SCIENCES 2019; 62:1218-1228. [PMID: 30635833 DOI: 10.1007/s11427-018-9319-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 08/04/2018] [Indexed: 10/27/2022]
Abstract
Super-enhancers (SEs) are regulatory elements with enriched accumulation of key transcription factors. Few studies were done investigating SEs in lung cancers. Here we analyzed epigenetic profiling data to identify SEs in lung cancer cell lines. Enhancers were classified as SEs and typical enhancers (TEs). Most of the TEs were overlapped between normal cell and cancer cells. A great portion of SEs were differentiated comparing these cells. Analysis of GO terms associated with SEs revealed SE remodeling (lost on some sites while gain on others) between normal and lung cancer cells. By comparing the average number of SEs in each GO term in cancer cells with the number in control cells, surprisingly, no GO terms with significantly increased SE number in cancer condition were observed. On the contrary, in aspects such as "cell-cell adhesion", "receptor activity" and "negative regulation of canonical Wnt signaling pathway", the related SEs were significantly reduced in cancer cells. These findings suggest that in lung cancer, cells may not gain decisive gene expression in the related aspect, instead, they may have lost control of the fateful genes. Taken together, our work with the usability of omics data identified SEs in lung cancer cells and further showed cancer-specific features of SE-related terms.
Collapse
|
44
|
Wang J, Dai X, Berry LD, Cogan JD, Liu Q, Shyr Y. HACER: an atlas of human active enhancers to interpret regulatory variants. Nucleic Acids Res 2019; 47:D106-D112. [PMID: 30247654 PMCID: PMC6323890 DOI: 10.1093/nar/gky864] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/07/2018] [Accepted: 09/12/2018] [Indexed: 12/19/2022] Open
Abstract
Recent studies have shown that disease-susceptibility variants frequently lie in cell-type-specific enhancer elements. To identify, interpret, and prioritize such risk variants, we must identify the enhancers active in disease-relevant cell types, their upstream transcription factor (TF) binding, and their downstream target genes. To address this need, we built HACER (http://bioinfo.vanderbilt.edu/AE/HACER/), an atlas of Human ACtive Enhancers to interpret Regulatory variants. The HACER atlas catalogues and annotates in-vivo transcribed cell-type-specific enhancers, as well as placing enhancers within transcriptional regulatory networks by integrating ENCODE TF ChIP-Seq and predicted/validated chromatin interaction data. We demonstrate the utility of HACER in (i) offering a mechanistic hypothesis to explain the association of SNP rs614367 with ER-positive breast cancer risk, (ii) exploring tumor-specific enhancers in selective MYC dysregulation and (iii) prioritizing/annotating non-coding regulatory regions targeting CCND1. HACER provides a valuable resource for studies of GWAS, non-coding variants, and enhancer-mediated regulation.
Collapse
Affiliation(s)
- Jing Wang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Xizhen Dai
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lynne D Berry
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joy D Cogan
- Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
45
|
Jiang Y, Qian F, Bai X, Liu Y, Wang Q, Ai B, Han X, Shi S, Zhang J, Li X, Tang Z, Pan Q, Wang Y, Wang F, Li C. SEdb: a comprehensive human super-enhancer database. Nucleic Acids Res 2019; 47:D235-D243. [PMID: 30371817 PMCID: PMC6323980 DOI: 10.1093/nar/gky1025] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/21/2022] Open
Abstract
Super-enhancers are important for controlling and defining the expression of cell-specific genes. With research on human disease and biological processes, human H3K27ac ChIP-seq datasets are accumulating rapidly, creating the urgent need to collect and process these data comprehensively and efficiently. More importantly, many studies showed that super-enhancer-associated single nucleotide polymorphisms (SNPs) and transcription factors (TFs) strongly influence human disease and biological processes. Here, we developed a comprehensive human super-enhancer database (SEdb, http://www.licpathway.net/sedb) that aimed to provide a large number of available resources on human super-enhancers. The database was annotated with potential functions of super-enhancers in the gene regulation. The current version of SEdb documented a total of 331 601 super-enhancers from 542 samples. Especially, unlike existing super-enhancer databases, we manually curated and classified 410 available H3K27ac samples from >2000 ChIP-seq samples from NCBI GEO/SRA. Furthermore, SEdb provides detailed genetic and epigenetic annotation information on super-enhancers. Information includes common SNPs, motif changes, expression quantitative trait locus (eQTL), risk SNPs, transcription factor binding sites (TFBSs), CRISPR/Cas9 target sites and Dnase I hypersensitivity sites (DHSs) for in-depth analyses of super-enhancers. SEdb will help elucidate super-enhancer-related functions and find potential biological effects.
Collapse
Affiliation(s)
- Yong Jiang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Fengcui Qian
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xuefeng Bai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yuejuan Liu
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Qiuyu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Bo Ai
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xiaole Han
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Shanshan Shi
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Jian Zhang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Xuecang Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Zhidong Tang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Qi Pan
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Yuezhu Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Fan Wang
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| | - Chunquan Li
- School of Medical Informatics, Daqing Campus, Harbin Medical University, Daqing 163319, China
| |
Collapse
|
46
|
Kang R, Zhang Y, Huang Q, Meng J, Ding R, Chang Y, Xiong L, Guo Z. EnhancerDB: a resource of transcriptional regulation in the context of enhancers. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2019; 2019:5298788. [PMID: 30689845 PMCID: PMC6344666 DOI: 10.1093/database/bay141] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/09/2018] [Indexed: 01/24/2023]
Abstract
Enhancers can act as cis-regulatory elements to control transcriptional regulation by recruiting DNA-binding transcription factors (TFs) in a tissue-specific manner. Recent studies show that enhancers regulate not only protein-coding genes but also microRNAs (miRNAs), and mutations within the TF binding sites (TFBSs) located on enhancers will cause a variety of diseases such as cancer. However, a comprehensive resource to integrate these regulation elements for revealing transcriptional regulations in the context of enhancers is not currently available. Here, we introduce EnhancerDB, a web-accessible database to provide a resource to browse and search regulatory relationships identified in this study, including 131 054 581 TF–enhancer, 17 059 enhancer–miRNAs, 318 993 enhancer–genes, 4 639 558 TF–miRNAs, 1 059 695 TF–genes, 11 439 394 enhancer–single-nucleotide polymorphisms (SNPs) and 23 334 genes associated with expression quantitative trait loci (eQTL) SNP and expression profile of TF/gene/miRNA across multiple human tissues/cell lines. We also developed a tool that further allows users to define tissue-specific enhancers by setting the threshold score of tissue specificity of enhancers. In addition, links to external resources are also available at EnhancerDB.
Collapse
Affiliation(s)
- Ran Kang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu City, Sichuan Province, P.R. China
| | - Yiming Zhang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu City, Sichuan Province, P.R. China
| | - Qingqing Huang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu City, Sichuan Province, P.R. China
| | - Junhua Meng
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu City, Sichuan Province, P.R. China
| | - Ruofan Ding
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu City, Sichuan Province, P.R. China
| | - Yunjian Chang
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu City, Sichuan Province, P.R. China
| | - Lili Xiong
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu City, Sichuan Province, P.R. China
| | - Zhiyun Guo
- School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu City, Sichuan Province, P.R. China
| |
Collapse
|
47
|
Cai Z, Cui Y, Tan Z, Zhang G, Tan Z, Zhang X, Peng Y. RAEdb: a database of enhancers identified by high-throughput reporter assays. Database (Oxford) 2019; 2019:5280307. [PMID: 30624654 PMCID: PMC6323319 DOI: 10.1093/database/bay140] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/07/2018] [Accepted: 12/09/2018] [Indexed: 02/01/2023]
Abstract
High-throughput reporter assays have been recently developed to directly and quantitatively assess enhancer activity for thousands of regulatory elements. However, there is still no database to collect these enhancers. We developed RAEdb, the first database to collect enhancers identified by high-throughput reporter assays. RAEdb includes 538 320 enhancers derived from eight studies, most of which were from six human cell lines. An activity score was assigned to each enhancer based on reporter assays. Based on these enhancers, 7658 epromoters (promoters with enhancer activity) were identified and stored in the database. RAEdb provides two ways of searches: the first is to search studies by species and cell line; the other is to search enhancers or epromoters by position, activity score, sequence and gene. RAEdb also provides a genome browser to query, visualize and compare enhancers. All data in RAEdb is freely available for download.
Collapse
Affiliation(s)
- Zena Cai
- College of Biology, Hunan University, Changsha, China
| | - Ya Cui
- Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Zhiying Tan
- College of Computer Science and Electronic Engineering, Hunan University, Changsha, China
| | - Gaihua Zhang
- College of Life Sciences, Hunan Normal University, Changsha, China
| | - Zhongyang Tan
- College of Biology, Hunan University, Changsha, China
| | - Xinlei Zhang
- Suzhou Geneworks Biotechnology Co., Ltd., Suzhou, China
| | - Yousong Peng
- College of Biology, Hunan University, Changsha, China
| |
Collapse
|
48
|
Paraboschi EM, Cardamone G, Soldà G, Duga S, Asselta R. Interpreting Non-coding Genetic Variation in Multiple Sclerosis Genome-Wide Associated Regions. Front Genet 2018; 9:647. [PMID: 30619471 PMCID: PMC6304422 DOI: 10.3389/fgene.2018.00647] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 11/30/2018] [Indexed: 12/15/2022] Open
Abstract
Multiple sclerosis (MS) is the most common neurological disorder in young adults. Despite extensive studies, only a fraction of MS heritability has been explained, with association studies focusing primarily on protein-coding genes, essentially for the difficulty of interpreting non-coding features. However, non-coding RNAs (ncRNAs) and functional elements, such as super-enhancers (SE), are crucial regulators of many pathways and cellular mechanisms, and they have been implicated in a growing number of diseases. In this work, we searched for possible enrichments in non-coding elements at MS genome-wide associated loci, with the aim to highlight their possible involvement in the susceptibility to the disease. We first reconstructed the linkage disequilibrium (LD) structure of the Italian population using data of 727,478 single-nucleotide polymorphisms (SNPs) from 1,668 healthy individuals. The genomic coordinates of the obtained LD blocks were intersected with those of the top hits identified in previously published MS genome-wide association studies (GWAS). By a bootstrapping approach, we hence demonstrated a striking enrichment of non-coding elements, especially of circular RNAs (circRNAs) mapping in the 73 LD blocks harboring MS-associated SNPs. In particular, we found a total of 482 circRNAs (annotated in publicly available databases) vs. a mean of 194 ± 65 in the random sets of LD blocks, using 1,000 iterations. As a proof of concept of a possible functional relevance of this observation, we experimentally verified that the expression levels of a circRNA derived from an MS-associated locus, i.e., hsa_circ_0043813 from the STAT3 gene, can be modulated by the three genotypes at the disease-associated SNP. Finally, by evaluating RNA-seq data of two cell lines, SH-SY5Y and Jurkat cells, representing tissues relevant for MS, we identified 18 (two novel) circRNAs derived from MS-associated genes. In conclusion, this work showed for the first time that MS-GWAS top hits map in LD blocks enriched in circRNAs, suggesting circRNAs as possible novel contributors to the disease pathogenesis.
Collapse
Affiliation(s)
| | - Giulia Cardamone
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Giulia Soldà
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Stefano Duga
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| | - Rosanna Asselta
- Department of Biomedical Sciences, Humanitas University, Milan, Italy.,Humanitas Clinical and Research Center, Milan, Italy
| |
Collapse
|
49
|
Martinez MF, Medrano S, Brown RI, Tufan T, Shang S, Bertoncello N, Guessoum O, Adli M, Belyea BC, Sequeira-Lopez MLS, Gomez RA. Super-enhancers maintain renin-expressing cell identity and memory to preserve multi-system homeostasis. J Clin Invest 2018; 128:4787-4803. [PMID: 30130256 PMCID: PMC6205391 DOI: 10.1172/jci121361] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/14/2018] [Indexed: 02/06/2023] Open
Abstract
Renin cells are crucial for survival - they control fluid-electrolyte and blood pressure homeostasis, vascular development, regeneration, and oxygen delivery to tissues. During embryonic development, renin cells are progenitors for multiple cell types that retain the memory of the renin phenotype. When there is a threat to survival, those descendants are transformed and reenact the renin phenotype to restore homeostasis. We tested the hypothesis that the molecular memory of the renin phenotype resides in unique regions and states of these cells' chromatin. Using renin cells at various stages of stimulation, we identified regions in the genome where the chromatin is open for transcription, mapped histone modifications characteristic of active enhancers such as H3K27ac, and tracked deposition of transcriptional activators such as Med1, whose deletion results in ablation of renin expression and low blood pressure. Using the rank ordering of super-enhancers, epigenetic rewriting, and enhancer deletion analysis, we found that renin cells harbor a unique set of super-enhancers that determine their identity. The most prominent renin super-enhancer may act as a chromatin sensor of signals that convey the physiologic status of the organism, and is responsible for the transformation of renin cell descendants to the renin phenotype, a fundamental process to ensure homeostasis.
Collapse
Affiliation(s)
| | | | | | - Turan Tufan
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | - Stephen Shang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | - Omar Guessoum
- Child Health Research Center
- Department of Pediatrics
- Department of Biology, and
| | - Mazhar Adli
- Child Health Research Center
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia, USA
| | | | | | - R. Ariel Gomez
- Child Health Research Center
- Department of Pediatrics
- Department of Biology, and
| |
Collapse
|
50
|
Cossec JC, Theurillat I, Chica C, Búa Aguín S, Gaume X, Andrieux A, Iturbide A, Jouvion G, Li H, Bossis G, Seeler JS, Torres-Padilla ME, Dejean A. SUMO Safeguards Somatic and Pluripotent Cell Identities by Enforcing Distinct Chromatin States. Cell Stem Cell 2018; 23:742-757.e8. [PMID: 30401455 DOI: 10.1016/j.stem.2018.10.001] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/10/2018] [Accepted: 10/01/2018] [Indexed: 12/21/2022]
Abstract
Understanding general principles that safeguard cellular identity should reveal critical insights into common mechanisms underlying specification of varied cell types. Here, we show that SUMO modification acts to stabilize cell fate in a variety of contexts. Hyposumoylation enhances pluripotency reprogramming in vitro and in vivo, increases lineage transdifferentiation, and facilitates leukemic cell differentiation. Suppressing sumoylation in embryonic stem cells (ESCs) promotes their conversion into 2-cell-embryo-like (2C-like) cells. During reprogramming to pluripotency, SUMO functions on fibroblastic enhancers to retain somatic transcription factors together with Oct4, Sox2, and Klf4, thus impeding somatic enhancer inactivation. In contrast, in ESCs, SUMO functions on heterochromatin to silence the 2C program, maintaining both proper H3K9me3 levels genome-wide and repression of the Dux locus by triggering recruitment of the sumoylated PRC1.6 and Kap/Setdb1 repressive complexes. Together, these studies show that SUMO acts on chromatin as a glue to stabilize key determinants of somatic and pluripotent states.
Collapse
Affiliation(s)
- Jack-Christophe Cossec
- Nuclear Organization and Oncogenesis Unit, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015 Paris, France; INSERM, U993, 75015 Paris, France
| | - Ilan Theurillat
- Nuclear Organization and Oncogenesis Unit, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015 Paris, France; INSERM, U993, 75015 Paris, France; Sorbonne Université, Collège Doctoral, 75005 Paris, France
| | - Claudia Chica
- Bioinformatics and Biostatistics Hub - C3BI, USR 3756 Institut Pasteur & CNRS, 75015 Paris, France
| | - Sabela Búa Aguín
- Cellular Plasticity and Disease Modelling Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR3738, 75015 Paris, France
| | - Xavier Gaume
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
| | - Alexandra Andrieux
- Nuclear Organization and Oncogenesis Unit, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015 Paris, France; INSERM, U993, 75015 Paris, France
| | - Ane Iturbide
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, München, Germany
| | - Gregory Jouvion
- Experimental Neuropathology Unit, Institut Pasteur, 75015 Paris, France
| | - Han Li
- Cellular Plasticity and Disease Modelling Unit, Institut Pasteur, 75015 Paris, France; CNRS UMR3738, 75015 Paris, France
| | - Guillaume Bossis
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Jacob-Sebastian Seeler
- Nuclear Organization and Oncogenesis Unit, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015 Paris, France; INSERM, U993, 75015 Paris, France
| | | | - Anne Dejean
- Nuclear Organization and Oncogenesis Unit, Equipe Labellisée Ligue Nationale Contre le Cancer, Institut Pasteur, 75015 Paris, France; INSERM, U993, 75015 Paris, France.
| |
Collapse
|