1
|
Hernández-Urrieta J, Álvarez JM, O’Brien JA. Exploring Alternative Splicing in Response to Salinity: A Tissue-Level Comparative Analysis Using Arabidopsis thaliana Public Transcriptomic Data. PLANTS (BASEL, SWITZERLAND) 2025; 14:1064. [PMID: 40219132 PMCID: PMC11991229 DOI: 10.3390/plants14071064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Abstract
Increased soil salinity is a major threat to global agriculture and food security, caused mainly by anthropogenic activities and changing climatic cycles. Plants responses to salinity involve multiple regulatory layers, from transcriptome reprogramming to proteomic and metabolomic changes. Alternative splicing (AS) plays a role in coordinating the response to salinity, yet its extent, tissue, and condition specificity, remain poorly understood aspects. In this study, we used 52 publicly available RNA-seq datasets of salinity treatment to identify differential alternative splicing (DAS) events and genes participating in the response to this stimulus. Our findings reveal that either independently or coordinately, AS can regulate up to 20% of the transcriptome detected in Arabidopsis, with treatment intensity being the most determining factor. Moreover, we show that AS regulation was highly tissue-specific, with roots displaying strong AS-mediated stress responses. Furthermore, cross-stress comparisons showed that roots have a core set of AS-regulated genes associated with stress response and development, with functionally distinct sets of genes when comparing salt with other stresses, while also conserving a relevant condition-specific response. We demonstrate the need to integrate AS analysis to better understand plant adaptation mechanisms and highlight the key role of AS in salinity responses, revealing shared AS regulation between salt, heat, and drought responses.
Collapse
Affiliation(s)
- Jesús Hernández-Urrieta
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile
| | - José Miguel Álvarez
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago 8370251, Chile;
- ANID–Millennium Science Initiative–Millennium Institute for Integrative Biology (iBIO), Santiago 7500565, Chile
- ANID–Millenium Science Initiative Program–Millenium Nucleus in Data Science for Plant Resilience (Phytolearning), Santiago 8370186, Chile
| | - José Antonio O’Brien
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Avenida Libertador Bernardo O’Higgins 340, Santiago 8331150, Chile;
- Departamento de Fruticultura y Enología, Facultad de Agronomía y Sistemas Naturales, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Santiago 7820244, Chile
| |
Collapse
|
2
|
Sivakumar P, Pandey S, Ramesha A, Davda JN, Singh A, Kumar C, Gala H, Subbiah V, Adicherla H, Dhawan J, Aravind L, Siddiqi I. Sporophyte-directed gametogenesis in Arabidopsis. NATURE PLANTS 2025; 11:398-409. [PMID: 40087543 DOI: 10.1038/s41477-025-01932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 01/30/2025] [Indexed: 03/17/2025]
Abstract
Plants alternate between diploid sporophyte and haploid gametophyte generations1. In mosses, which retain features of ancestral land plants, the gametophyte is dominant and has an independent existence. However, in flowering plants the gametophyte has undergone evolutionary reduction to just a few cells enclosed within the sporophyte. The gametophyte is thought to retain genetic control of its development even after reduction2. Here we show that male gametophyte development in Arabidopsis, long considered to be autonomous, is also under genetic control of the sporophyte via a repressive mechanism that includes large-scale regulation of protein turnover. We identify an Arabidopsis gene SHUKR as an inhibitor of male gametic gene expression. SHUKR is unrelated to proteins of known function and acts sporophytically in meiosis to control gametophyte development by negatively regulating expression of a large set of genes specific to postmeiotic gametogenesis. This control emerged late in evolution as SHUKR homologues are found only in eudicots. We show that SHUKR is rapidly evolving under positive selection, suggesting that variation in control of protein turnover during male gametogenesis has played an important role in evolution within eudicots.
Collapse
Affiliation(s)
- Prakash Sivakumar
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Saurabh Pandey
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
- databaum GmbH, Hamburg, Germany
| | - A Ramesha
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | | | - Aparna Singh
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
- Department of Botany, MMV, Banaras Hindu University, Varanasi, India
| | - Chandan Kumar
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
- University of Texas at Austin, Austin, TX, USA
| | - Hardik Gala
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
| | | | | | - Jyotsna Dhawan
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India
| | - L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Imran Siddiqi
- Centre for Cellular and Molecular Biology, CSIR, Hyderabad, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
3
|
Guo W, Schreiber M, Marosi VB, Bagnaresi P, Jørgensen ME, Braune KB, Chalmers K, Chapman B, Dang V, Dockter C, Fiebig A, Fincher GB, Fricano A, Fuller J, Haaning A, Haberer G, Himmelbach A, Jayakodi M, Jia Y, Kamal N, Langridge P, Li C, Lu Q, Lux T, Mascher M, Mayer KFX, McCallum N, Milne L, Muehlbauer GJ, Nielsen MTS, Padmarasu S, Pedas PR, Pillen K, Pozniak C, Rasmussen MW, Sato K, Schmutzer T, Scholz U, Schüler D, Šimková H, Skadhauge B, Stein N, Thomsen NW, Voss C, Wang P, Wonneberger R, Zhang XQ, Zhang G, Cattivelli L, Spannagl M, Bayer M, Simpson C, Zhang R, Waugh R. A barley pan-transcriptome reveals layers of genotype-dependent transcriptional complexity. Nat Genet 2025; 57:441-450. [PMID: 39901014 PMCID: PMC11821519 DOI: 10.1038/s41588-024-02069-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/20/2024] [Indexed: 02/05/2025]
Abstract
A pan-transcriptome describes the transcriptional and post-transcriptional consequences of genome diversity from multiple individuals within a species. We developed a barley pan-transcriptome using 20 inbred genotypes representing domesticated barley diversity by generating and analyzing short- and long-read RNA-sequencing datasets from multiple tissues. To overcome single reference bias in transcript quantification, we constructed genotype-specific reference transcript datasets (RTDs) and integrated these into a linear pan-genome framework to create a pan-RTD, allowing transcript categorization as core, shell or cloud. Focusing on the core (expressed in all genotypes), we observed significant transcript abundance variation among tissues and between genotypes driven partly by RNA processing, gene copy number, structural rearrangements and conservation of promotor motifs. Network analyses revealed conserved co-expression module::tissue correlations and frequent functional diversification. To complement the pan-transcriptome, we constructed a comprehensive cultivar (cv.) Morex gene-expression atlas and illustrate how these combined datasets can be used to guide biological inquiry.
Collapse
Affiliation(s)
- Wenbin Guo
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland
- Higentec Breeding Innovation (ZheJiang) Co., Ltd., Lishui, China
| | - Miriam Schreiber
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland
| | - Vanda B Marosi
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health (PGSB), Neuherberg, Germany
- School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Paolo Bagnaresi
- Council for Agriculture Research and Economics (CREA) Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
- CREA Research Centre for Olive, Fruit and Citrus Crops, Forlì, Italy
| | | | | | - Ken Chalmers
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| | - Brett Chapman
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Viet Dang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | | | - Anne Fiebig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Geoffrey B Fincher
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| | - Agostino Fricano
- Council for Agriculture Research and Economics (CREA) Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - John Fuller
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland
| | - Allison Haaning
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | - Georg Haberer
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health (PGSB), Neuherberg, Germany
| | - Axel Himmelbach
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Murukarthick Jayakodi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Texas A&M AgriLife Research Center at Dallas, Texas A&M University System, Dallas, TX, USA
- Department of Soil & Crop Sciences, Texas A&M University, College Station, TX, USA
| | - Yong Jia
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Nadia Kamal
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health (PGSB), Neuherberg, Germany
- Department of Molecular Life Sciences, Computational Plant Biology, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Peter Langridge
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia
| | - Chengdao Li
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
- College of Agriculture, Yangtze University, Jinzhou, China
- Department of Primary Industry and Regional Development Western Australia, South Perth, Western Australia, Australia
| | - Qiongxian Lu
- Carlsberg Research Laboratory (CRL), Copenhagen, Denmark
| | - Thomas Lux
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health (PGSB), Neuherberg, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Klaus F X Mayer
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health (PGSB), Neuherberg, Germany
| | - Nicola McCallum
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland
| | - Linda Milne
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland
| | - Gary J Muehlbauer
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN, USA
| | | | - Sudharsan Padmarasu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Pai Rosager Pedas
- Carlsberg Research Laboratory (CRL), Copenhagen, Denmark
- DLF, Roskilde, Denmark
| | - Klaus Pillen
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Curtis Pozniak
- Department of Plant Sciences and Crop Development Centre, University of Saskatchewan (USASK), Saskatoon, Saskatchewan, Canada
| | | | - Kazuhiro Sato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
- Kazusa DNA Research Institute, Kisarazu, Japan
| | - Thomas Schmutzer
- Chair of Plant Breeding, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Danuta Schüler
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Hana Šimková
- Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | | | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Chair of Crop Plant Genetics, Institute of Agricultural and Nutritional Sciences, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Nina W Thomsen
- Carlsberg Research Laboratory (CRL), Copenhagen, Denmark
| | - Cynthia Voss
- Carlsberg Research Laboratory (CRL), Copenhagen, Denmark
| | - Penghao Wang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Ronja Wonneberger
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Xiao-Qi Zhang
- Western Crop Genetics Alliance, Food Futures Institute/School of Agriculture, Murdoch University, Murdoch, Western Australia, Australia
| | - Guoping Zhang
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou, China
| | - Luigi Cattivelli
- Council for Agriculture Research and Economics (CREA) Research Centre for Genomics and Bioinformatics, Fiorenzuola d'Arda, Italy
| | - Manuel Spannagl
- Plant Genome and Systems Biology, Helmholtz Center Munich-German Research Center for Environmental Health (PGSB), Neuherberg, Germany
| | - Micha Bayer
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland.
| | - Craig Simpson
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland.
| | - Runxuan Zhang
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland.
| | - Robbie Waugh
- International Barley Hub (IBH)/James Hutton Institute (JHI), Dundee, Scotland.
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, South Australia, Australia.
- School of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
4
|
Corrigendum to: The Arabidopsis splicing factor PORCUPINE/SmE1 orchestrates temperature-dependent root development via auxin homeostasis maintenance. THE NEW PHYTOLOGIST 2025; 245:1330. [PMID: 39673189 DOI: 10.1111/nph.20352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
|
5
|
Song N, Wang J, Qin Q, Su A, Cheng Y, Si W, Cheng B, Fan J, Jiang H. ZmHSFA2B self-regulatory loop is critical for heat tolerance in maize. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:284-301. [PMID: 39522171 DOI: 10.1111/pbi.14497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
The growth and development of maize (Zea mays L.) are significantly impeded by prolonged exposure to high temperatures. Heat stress transcription factors (HSFs) play crucial roles in enabling plants to detect and respond to elevated temperatures. However, the genetic mechanisms underlying the responses of HSFs to heat stress in maize remain unclear. Thus, we aimed to investigate the role of ZmHSFA2B in regulating heat tolerance in maize. Here, we report that ZmHSFA2B has two splicing variants, ZmHSFA2B-I and ZmHSFA2B-II. ZmHSFA2B-I encodes full-length ZmHSFA2B (ZmHSFA2B-I), whereas ZmHSFA2B-II encodes a truncated ZmHSFA2B (ZmHSFA2B-II). Overexpression of ZmHSFA2B-I improved heat tolerance in maize and Arabidopsis thaliana, but it also resulted in growth retardation as a side effect. RNA-sequencing and CUT&Tag analyses identified ZmMBR1 as a putative target of ZmHSFA2B-I. Overexpression of ZmMBR1 also enhanced heat tolerance in Arabidopsis. ZmHSFA2B-II was primarily synthesized in response to heat stress and competitively interacted with ZmHSFA2B-I. This interaction consequently reduced the DNA-binding activities of ZmHSFA2B-I homodimers to the promoter of ZmMBR1. Subsequent investigations indicate that ZmHSFA2B-II limits the transactivation and tempers the function of ZmHSFA2B-I, thereby reducing the adverse effects of excessive ZmHSFA2B-I accumulation. Based on these observations, we propose that the alternative splicing of ZmHSFA2B generates a self-regulatory loop that fine-tunes heat stress response in maize.
Collapse
Affiliation(s)
- Nannan Song
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
- Anhui Provincial Academy of Forestry, Hefei, China
| | - Jing Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Qianqian Qin
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Anqi Su
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Yifeng Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Weina Si
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Beijiu Cheng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Jun Fan
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, China
| |
Collapse
|
6
|
Köster T, Venhuizen P, Lewinski M, Petrillo E, Marquez Y, Fuchs A, Ray D, Nimeth BA, Riegler S, Franzmeier S, Zheng H, Hughes T, Morris Q, Barta A, Staiger D, Kalyna M. At-RS31 orchestrates hierarchical cross-regulation of splicing factors and integrates alternative splicing with TOR-ABA pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.04.626797. [PMID: 39677721 PMCID: PMC11643119 DOI: 10.1101/2024.12.04.626797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Alternative splicing is essential for plants, enabling a single gene to produce multiple transcript variants to boost functional diversity and fine-tune responses to environmental and developmental cues. At-RS31, a plant-specific splicing factor in the Serine/Arginine (SR)-rich protein family, responds to light and the Target of Rapamycin (TOR) signaling pathway, yet its downstream targets and regulatory impact remain unknown.To identify At-RS31 targets, we applied individual-nucleotide resolution crosslinking and immunoprecipitation (iCLIP) and RNAcompete assays. Transcriptomic analyses of At-RS31 mutant and overexpressing plants further revealed its effects on alternative splicing.iCLIP identified 4,034 At-RS31 binding sites across 1,421 genes, enriched in CU-rich and CAGA RNA motifs. Comparative iCLIP and RNAcompete data indicate that the RS domain of At-RS31 may influence its binding specificity in planta, underscoring the value of combining in vivo and in vitro approaches. Transcriptomic analysis showed that At-RS31 modulates diverse splicing events, particularly intron retention and exitron splicing, and influences other splicing modulators, acting as a hierarchical regulator.By regulating stress-response genes and genes in both TOR and abscisic acid (ABA) signaling pathways, At-RS31 may help integrate these signals, balancing plant growth with environmental adaptability through alternative splicing.
Collapse
Affiliation(s)
- Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Peter Venhuizen
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Ezequiel Petrillo
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires, Argentina
| | - Yamile Marquez
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Armin Fuchs
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Debashish Ray
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Barbara A. Nimeth
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Stefan Riegler
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Sophie Franzmeier
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| | - Hong Zheng
- Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Timothy Hughes
- Donnelly Centre, University of Toronto, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - Quaid Morris
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Graduate Program in Computational Biology and Medicine, Weill-Cornell Graduate School, New York, NY, USA
| | - Andrea Barta
- Max Perutz Labs, Medical University Vienna, Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Maria Kalyna
- Institute of Molecular Plant Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences (BOKU), 1190 Vienna, Austria
| |
Collapse
|
7
|
Bhat SS, Asgari M, Mermet S, Mishra P, Kindgren P. The nuclear exosome subunit HEN2 acts independently of the core exosome to assist transcription in Arabidopsis. PLANT PHYSIOLOGY 2024; 196:2625-2637. [PMID: 39321187 PMCID: PMC11638103 DOI: 10.1093/plphys/kiae503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024]
Abstract
Regulation of gene expression is at the frontier of plant responses to various external stimuli including stress. RNA polymerase-based transcription and post-transcriptional degradation of RNA play vital roles in this regulation. Here, we show that HUA ENHANCER 2 (HEN2), a co-factor of the nuclear exosome complex, influences RNAPII transcription elongation in Arabidopsis (Arabidopsis thaliana) under cold conditions. Our results demonstrate that a hen2 mutant is cold sensitive and undergoes substantial transcriptional changes compared to wild type when exposed to cold conditions. We found an accumulation of 5' fragments from a subset of genes (including C-repeat binding factors 1-3 [CBF1-3]) that do not carry over to their 3' ends. In fact, hen2 mutants have lower levels of full-length mRNA for a subset of genes. This distinct 5'-end accumulation and 3'-end depletion was not observed in other NEXT complex members or core exosome mutants, highlighting HEN2's distinctive role. We further used RNAPII-associated nascent RNA to confirm that the transcriptional phenotype is a result of lower active transcription specifically at the 3' end of these genes in a hen2 mutant. Taken together, our data point to the unique role of HEN2 in maintaining RNAPII transcription dynamics especially highlighted under cold stress.
Collapse
Affiliation(s)
- Susheel Sagar Bhat
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umea, Sweden
| | - Mishaneh Asgari
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umea, Sweden
| | - Sarah Mermet
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umea, Sweden
| | - Priyanka Mishra
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umea, Sweden
| | - Peter Kindgren
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90187 Umea, Sweden
| |
Collapse
|
8
|
El Arbi N, Nardeli SM, Šimura J, Ljung K, Schmid M. The Arabidopsis splicing factor PORCUPINE/SmE1 orchestrates temperature-dependent root development via auxin homeostasis maintenance. THE NEW PHYTOLOGIST 2024; 244:1408-1421. [PMID: 39327913 DOI: 10.1111/nph.20153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/24/2024] [Indexed: 09/28/2024]
Abstract
Appropriate abiotic stress response is pivotal for plant survival and makes use of multiple signaling molecules and phytohormones to achieve specific and fast molecular adjustments. A multitude of studies has highlighted the role of alternative splicing in response to abiotic stress, including temperature, emphasizing the role of transcriptional regulation for stress response. Here we investigated the role of the core-splicing factor PORCUPINE (PCP) on temperature-dependent root development. We used marker lines and transcriptomic analyses to study the expression profiles of meristematic regulators and mitotic markers, and chemical treatments, as well as root hormone profiling to assess the effect of auxin signaling. The loss of PCP significantly alters RAM architecture in a temperature-dependent manner. Our results indicate that PCP modulates the expression of central meristematic regulators and is required to maintain appropriate levels of auxin in the RAM. We conclude that alternative pre-mRNA splicing is sensitive to moderate temperature fluctuations and contributes to root meristem maintenance, possibly through the regulation of phytohormone homeostasis and meristematic activity.
Collapse
Affiliation(s)
- Nabila El Arbi
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
| | - Sarah Muniz Nardeli
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007, Uppsala, Sweden
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Markus Schmid
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, SE-901 87, Umeå, Sweden
- Department of Plant Biology, Linnean Center for Plant Biology, Swedish University of Agricultural Sciences, S-75007, Uppsala, Sweden
| |
Collapse
|
9
|
Kara MF, Guo W, Zhang R, Denby K. LsRTDv1, a reference transcript dataset for accurate transcript-specific expression analysis in lettuce. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:370-386. [PMID: 39145419 DOI: 10.1111/tpj.16978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/20/2024] [Accepted: 07/31/2024] [Indexed: 08/16/2024]
Abstract
Accurate quantification of gene and transcript-specific expression, with the underlying knowledge of precise transcript isoforms, is crucial to understanding many biological processes. Analysis of RNA sequencing data has benefited from the development of alignment-free algorithms which enhance the precision and speed of expression analysis. However, such algorithms require a reference transcriptome. Here we generate a reference transcript dataset (LsRTDv1) for lettuce (cv. Saladin), combining long- and short-read sequencing with publicly available transcriptome annotations, and filtering to keep only transcripts with high-confidence splice junctions and transcriptional start and end sites. LsRTDv1 identifies novel genes (mostly long non-coding RNAs) and increases the number of transcript isoforms per gene in the lettuce genome from 1.4 to 2.7. We show that LsRTDv1 significantly increases the mapping rate of RNA-seq data from a lettuce time-series experiment (mock- and Botrytis cinerea-inoculated) and enables detection of genes that are differentially alternatively spliced in response to infection as well as transcript-specific expression changes. LsRTDv1 is a valuable resource for investigation of transcriptional and alternative splicing regulation in lettuce.
Collapse
Affiliation(s)
- Mehmet Fatih Kara
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| | - Wenbin Guo
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, James Hutton Institute, Dundee, DD2 5DA, UK
| | - Katherine Denby
- Biology Department, Centre for Novel Agricultural Products (CNAP), University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
10
|
Du Y, Cao L, Wang S, Guo L, Tan L, Liu H, Feng Y, Wu W. Differences in alternative splicing and their potential underlying factors between animals and plants. J Adv Res 2024; 64:83-98. [PMID: 37981087 PMCID: PMC11464654 DOI: 10.1016/j.jare.2023.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/16/2023] [Accepted: 11/14/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Alternative splicing (AS), a posttranscriptional process, contributes to the complexity of transcripts from a limited number of genes in a genome, and AS is considered a great source of genetic and phenotypic diversity in eukaryotes. In animals, AS is tightly regulated during the processes of cell growth and differentiation, and its dysregulation is involved in many diseases, including cancers. Likewise, in plants, AS occurs in all stages of plant growth and development, and it seems to play important roles in the rapid reprogramming of genes in response to environmental stressors. To date, the prevalence and functional roles of AS have been extensively reviewed in animals and plants. However, AS differences between animals and plants, especially their underlying molecular mechanisms and impact factors, are anecdotal and rarely reviewed. AIM OF REVIEW This review aims to broaden our understanding of AS roles in a variety of biological processes and provide insights into the underlying mechanisms and impact factors likely leading to AS differences between animals and plants. KEY SCIENTIFIC CONCEPTS OF REVIEW We briefly summarize the roles of AS regulation in physiological and biochemical activities in animals and plants. Then, we underline the differences in the process of AS between plants and animals and especially analyze the potential impact factors, such as gene exon/intron architecture, 5'/3' untranslated regions (UTRs), spliceosome components, chromatin dynamics and transcription speeds, splicing factors [serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs)], noncoding RNAs, and environmental stimuli, which might lead to the differences. Moreover, we compare the nonsense-mediated mRNA decay (NMD)-mediated turnover of the transcripts with a premature termination codon (PTC) in animals and plants. Finally, we summarize the current AS knowledge published in animals versus plants and discuss the potential development of disease therapies and superior crops in the future.
Collapse
Affiliation(s)
- Yunfei Du
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Lu Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Lingling Tan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Hua Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China
| | - Ying Feng
- Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health (SINH), Chinese Academy of Sciences (CAS), Shanghai 200032, China.
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300, Hangzhou, China.
| |
Collapse
|
11
|
Melero I, Gómez-Cadenas A, González R, Elena SF. Transcriptional and hormonal profiling uncovers the interactions between plant developmental stages and RNA virus infection. J Gen Virol 2024; 105. [PMID: 39292505 PMCID: PMC11410048 DOI: 10.1099/jgv.0.002023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Arabidopsis thaliana is more susceptible to certain viruses during its later developmental stages. The differential responses and the mechanisms behind this development-dependent susceptibility to infection are still not fully understood. Here we explored the outcome of a viral infection at different host developmental stages by studying the response of A. thaliana to infection with turnip mosaic virus at three developmental stages: juvenile vegetative, bolting, and mature flowering plants. We found that infected plants at later stages downregulate cell wall biosynthetic genes and that this downregulation may be one factor facilitating viral spread and systemic infection. We also found that, despite being more susceptible to infection, infected mature flowering plants were more fertile (i.e. produce more viable seeds) than juvenile vegetative and bolting infected plants; that is, plants infected at the reproductive stage have greater fitness than plants infected at earlier developmental stages. Moreover, treatment of mature plants with salicylic acid increased resistance to infection at the cost of significantly reducing fertility. Together, these observations support a negative trade-off between viral susceptibility and plant fertility. Our findings point towards a development-dependent tolerance to infection.
Collapse
Affiliation(s)
- Izan Melero
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
| | - Aurelio Gómez-Cadenas
- Departamento de Biología, Bioquímica y Ciencias Naturales, Universitat Jaume I, 12071 Castelló, Spain
| | - Rubén González
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
- Present address: Institut Pasteur, Université Paris Cité, CNRS UMR3569, Viruses and RNA Interference Unit, 75015 Paris, France
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (CSIC - Universitat de València), Paterna, 46182 València, Spain
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
12
|
Bertran Garcia de Olalla E, Cerise M, Rodríguez-Maroto G, Casanova-Ferrer P, Vayssières A, Severing E, López Sampere Y, Wang K, Schäfer S, Formosa-Jordan P, Coupland G. Coordination of shoot apical meristem shape and identity by APETALA2 during floral transition in Arabidopsis. Nat Commun 2024; 15:6930. [PMID: 39138172 PMCID: PMC11322546 DOI: 10.1038/s41467-024-51341-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 08/06/2024] [Indexed: 08/15/2024] Open
Abstract
Plants flower in response to environmental signals. These signals change the shape and developmental identity of the shoot apical meristem (SAM), causing it to form flowers and inflorescences. We show that the increases in SAM width and height during floral transition correlate with changes in size of the central zone (CZ), defined by CLAVATA3 expression, and involve a transient increase in the height of the organizing center (OC), defined by WUSCHEL expression. The APETALA2 (AP2) transcription factor is required for the rapid increases in SAM height and width, by maintaining the width of the OC and increasing the height and width of the CZ. AP2 expression is repressed in the SAM at the end of floral transition, and extending the duration of its expression increases SAM width. Transcriptional repression by SUPPRESSOR OF OVEREXPRESSION OF CONSTANS1 (SOC1) represents one of the mechanisms reducing AP2 expression during floral transition. Moreover, AP2 represses SOC1 transcription, and we find that reciprocal repression of SOC1 and AP2 contributes to synchronizing precise changes in meristem shape with floral transition.
Collapse
Affiliation(s)
- Enric Bertran Garcia de Olalla
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, CNRS, INRAE, INRIA, Lyon, France
| | - Martina Cerise
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Gabriel Rodríguez-Maroto
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pau Casanova-Ferrer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alice Vayssières
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Edouard Severing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Department of Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 4, PB, Wageningen, The Netherlands
| | - Yaiza López Sampere
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kang Wang
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Sabine Schäfer
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Pau Formosa-Jordan
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
13
|
Hou Y, Li Q, Zhou H, Kafle S, Li W, Tan L, Liang J, Meng L, Xin H. SMRT sequencing of a full-length transcriptome reveals cold induced alternative splicing in Vitis amurensis root. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108863. [PMID: 38917739 DOI: 10.1016/j.plaphy.2024.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/31/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
Alternative splicing enhances diversity at the transcriptional and protein levels that widely involved in plant response to biotic and abiotic stresses. V. amurensis is an extremely cold-tolerant wild grape variety, however, studies on alternative splicing (AS) in amur grape at low temperatures are currently poorly understood. In this study, we analyzed full-length transcriptome and RNA seq data at 0, 2, and 24 h after cold stress in V. amurensis roots. Following quality control and correction, 221,170 high-quality full-length non-concatemer (FLNC) reads were identified. A total of 16,181 loci and 30,733 isoforms were identified. These included 22,868 novel isoforms from annotated genes and 2815 isoforms from 2389 novel genes. Among the distinguished novel isoforms, 673 Long non-coding RNAs (LncRNAs) and 18,164 novel isoforms open reading frame (ORF) region were found. A total of 2958 genes produced 8797 AS events, of which 189 genes were involved in the low-temperature response. Twelve transcription factors show AS during cold treatment and VaMYB108 was selected for initial exploration. Two transcripts, Chr05.63.1 (VaMYB108short) and Chr05.63.2 (VaMYB108normal) of VaMYB108, display up-regulated expression after cold treatment in amur grape roots and are both localized in the nucleus. Only VaMYB108normal exhibits transcriptional activation activity. Overexpression of either VaMYB108short or VaMYB108normal in grape roots leads to increased expression of the other transcript and both increased chilling resistance of amur grape roots. The results improve and supplement the genome annotations and provide insights for further investigation into AS mechanisms during cold stress in V. amurensis.
Collapse
Affiliation(s)
- Yujun Hou
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qingyun Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Zhou
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Subash Kafle
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenjuan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lisha Tan
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Ju Liang
- Turpan Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Xinjiang, 830091, China
| | - Lin Meng
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Haiping Xin
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China; Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China.
| |
Collapse
|
14
|
Jiang Y, Yue Y, Lu C, Latif MZ, Liu H, Wang Z, Yin Z, Li Y, Ding X. AtSNU13 modulates pre-mRNA splicing of RBOHD and ALD1 to regulate plant immunity. BMC Biol 2024; 22:153. [PMID: 38982460 PMCID: PMC11234627 DOI: 10.1186/s12915-024-01951-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024] Open
Abstract
Pre-mRNA splicing is a significant step for post-transcriptional modifications and functions in a wide range of physiological processes in plants. Human NHP2L binds to U4 snRNA during spliceosome assembly; it is involved in RNA splicing and mediates the development of human tumors. However, no ortholog has yet been identified in plants. Therefore, we report At4g12600 encoding the ortholog NHP2L protein, and AtSNU13 associates with the component of the spliceosome complex; the atsnu13 mutant showed compromised resistance in disease resistance, indicating that AtSNU13 is a positive regulator of plant immunity. Compared to wild-type plants, the atsnu13 mutation resulted in altered splicing patterns for defense-related genes and decreased expression of defense-related genes, such as RBOHD and ALD1. Further investigation shows that AtSNU13 promotes the interaction between U4/U6.U5 tri-snRNP-specific 27 K and the motif in target mRNAs to regulate the RNA splicing. Our study highlights the role of AtSNU13 in regulating plant immunity by affecting the pre-mRNA splicing of defense-related genes.
Collapse
Affiliation(s)
- Yanke Jiang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yingzhe Yue
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Chongchong Lu
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Muhammad Zunair Latif
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Haifeng Liu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Zhaoxu Wang
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Ziyi Yin
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Yang Li
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China
| | - Xinhua Ding
- State Key Laboratory of Crop Biology, Shandong Provincial Key Laboratory for Biology of Vegetable Diseases and Insect Pests, College of Plant Protection, Shandong Agricultural University, Tai an, Shandong, 271018, China.
| |
Collapse
|
15
|
Chenna S, Ivanov M, Nielsen TK, Chalenko K, Olsen E, Jørgensen K, Sandelin A, Marquardt S. A data-driven genome annotation approach for cassava. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 38831668 DOI: 10.1111/tpj.16856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 05/13/2024] [Accepted: 05/17/2024] [Indexed: 06/05/2024]
Abstract
Genome annotation files play a critical role in dictating the quality of downstream analyses by providing essential predictions for gene positions and structures. These files are pivotal in decoding the complex information encoded within DNA sequences. Here, we generated experimental data resolving RNA 5'- and 3'-ends as well as full-length RNAs for cassava TME12 sticklings in ambient temperature and cold. We used these data to generate genome annotation files using the TranscriptomeReconstructoR (TR) tool. A careful comparison to high-quality genome annotations suggests that our new TR genome annotations identified additional genes, resolved the transcript boundaries more accurately and identified additional RNA isoforms. We enhanced existing cassava genome annotation files with the information from TR that maintained the different transcript models as RNA isoforms. The resultant merged annotation was subsequently utilized for comprehensive analysis. To examine the effects of genome annotation files on gene expression studies, we compared the detection of differentially expressed genes during cold using the same RNA-seq data but alternative genome annotation files. We found that our merged genome annotation that included cold-specific TR gene models identified about twice as many cold-induced genes. These data indicate that environmentally induced genes may be missing in off-the-shelf genome annotation files. In conclusion, TR offers the opportunity to enhance crop genome annotations with implications for the discovery of differentially expressed candidate genes during plant-environment interactions.
Collapse
Affiliation(s)
- Swetha Chenna
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Maxim Ivanov
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Tue Kjærgaard Nielsen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Karina Chalenko
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Evy Olsen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Kirsten Jørgensen
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| | - Albin Sandelin
- Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK2200, Denmark
- Biotech Research and Innovation Centre, University of Copenhagen, Ole Maaløes Vej 5, Copenhagen N, DK2200, Denmark
| | - Sebastian Marquardt
- Department of Plant and Environmental Sciences, Copenhagen Plant Science Centre, University of Copenhagen, Thorvaldsensvej 40, Frederiskberg C, 1871, Denmark
| |
Collapse
|
16
|
Xu D, Leister D, Kleine T. Identification of a highly drought-resistant pp7l hda6 mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1341576. [PMID: 38887464 PMCID: PMC11180769 DOI: 10.3389/fpls.2024.1341576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 05/09/2024] [Indexed: 06/20/2024]
Abstract
Plants have developed efficient strategies to counteract drought stress, including stomata closure, significant changes in nuclear gene expression, and epigenetic mechanisms. Previously, we identified Arabidopsis thaliana PROTEIN PHOSPHATASE7-LIKE (PP7L) as an extrachloroplastic protein that promotes chloroplast development. In addition, it was shown that PP7L is involved in high light and salt tolerance. Here, we demonstrate that the pp7l mutant can withstand prolonged periods of drought stress. Interestingly, despite impaired growth under standard growth conditions, photosynthetic efficiency recovers in pp7l mutant plants experiencing drought conditions. To assess the (post)transcriptional changes occurring in the pp7l mutant under different durations of drought exposure, we used an RNA-sequencing technique that allows the simultaneous detection of organellar and nuclear transcripts. Compared with the previously reported drought-responsive changes in the wild type, the drought-responsive changes in organellar and nuclear transcripts detected in the pp7l mutant were negligible. Our analysis of the data generated in this study and review and analysis of previous literature motivated us to create a pp7l hda6 (histone deacetylase 6) mutant, which exhibits remarkable drought resistance. Notably, the growth penalty associated with pp7l was alleviated in the double mutant, ruling out a dwarf effect on the drought-tolerant trait of this genotype. Future studies may consider that multiple loci and factors are involved in stress resistance and explore combinations of these factors to create even more resilient plants.
Collapse
Affiliation(s)
| | | | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
17
|
Kim N, Lee J, Yeom SI, Kang NJ, Kang WH. The landscape of abiotic and biotic stress-responsive splice variants with deep RNA-seq datasets in hot pepper. Sci Data 2024; 11:381. [PMID: 38615136 PMCID: PMC11016105 DOI: 10.1038/s41597-024-03239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/05/2024] [Indexed: 04/15/2024] Open
Abstract
Alternative splicing (AS) is a widely observed phenomenon in eukaryotes that plays a critical role in development and stress responses. In plants, the large number of RNA-seq datasets in response to different environmental stressors can provide clues for identification of condition-specific and/or common AS variants for preferred agronomic traits. We report RNA-seq datasets (350.7 Gb) from Capsicum annuum inoculated with one of three bacteria, one virus, or one oomycete and obtained additional existing transcriptome datasets. In this study, we investigated the landscape of AS in response to environmental stressors, signaling molecules, and tissues from 425 total samples comprising 841.49 Gb. In addition, we identified genes that undergo AS under specific and shared stress conditions to obtain potential genes that may be involved in enhancing tolerance to stressors. We uncovered 1,642,007 AS events and identified 4,354 differential alternative splicing genes related to environmental stressors, tissues, and signaling molecules. This information and approach provide useful data for basic-research focused on enhancing tolerance to environmental stressors in hot pepper or establishing breeding programs.
Collapse
Affiliation(s)
- Nayoung Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, South Korea
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Junesung Lee
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
| | - Seon-In Yeom
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea
| | - Nam-Jun Kang
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea
| | - Won-Hee Kang
- Division of Applied Life Science (BK21 Four), Gyeongsang National University, Jinju, South Korea.
- Department of Horticulture, Institute of Agriculture & Life Science, Gyeongsang National University, Jinju, South Korea.
| |
Collapse
|
18
|
Lewinski M, Brüggemann M, Köster T, Reichel M, Bergelt T, Meyer K, König J, Zarnack K, Staiger D. Mapping protein-RNA binding in plants with individual-nucleotide-resolution UV cross-linking and immunoprecipitation (plant iCLIP2). Nat Protoc 2024; 19:1183-1234. [PMID: 38278964 DOI: 10.1038/s41596-023-00935-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/20/2023] [Indexed: 01/28/2024]
Abstract
Despite crucial roles of RNA-binding proteins (RBPs) in plant physiology and development, methods for determining their transcriptome-wide binding landscape are less developed than those used in other model organisms. Cross-linking and immunoprecipitation (CLIP) methods (based on UV-mediated generation of covalent bonds between RNAs and cognate RBPs in vivo, purification of the cross-linked complexes and identification of the co-purified RNAs by high-throughput sequencing) have been applied mainly in mammalian cells growing in monolayers or in translucent tissue. We have developed plant iCLIP2, an efficient protocol for performing individual-nucleotide-resolution CLIP (iCLIP) in plants, tailored to overcome the experimental hurdles posed by plant tissue. We optimized the UV dosage to efficiently cross-link RNA and proteins in plants and expressed epitope-tagged RBPs under the control of their native promoters in loss-of-function mutants. We select epitopes for which nanobodies are available, allowing stringent conditions for immunopurification of the RNA-protein complexes to be established. To overcome the inherently high RNase content of plant cells, RNase inhibitors are added and the limited RNA fragmentation step is modified. We combine the optimized isolation of RBP-bound RNAs with iCLIP2, a streamlined protocol that greatly enhances the efficiency of library preparation for high-throughput sequencing. Plant researchers with experience in molecular biology and handling of RNA can complete this iCLIP2 protocol in ~5 d. Finally, we describe a bioinformatics workflow to determine targets of Arabidopsis RBPs from iCLIP data, covering all steps from downloading sequencing reads to identifying cross-linking events ( https://github.com/malewins/Plant-iCLIPseq ), and present the R/Bioconductor package BindingSiteFinder to extract reproducible binding sites ( https://bioconductor.org/packages/release/bioc/html/BindingSiteFinder.html ).
Collapse
Affiliation(s)
- Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Mirko Brüggemann
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Thorsten Bergelt
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Katja Meyer
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Julian König
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
19
|
Lewinski M, Steffen A, Kachariya N, Elgner M, Schmal C, Messini N, Köster T, Reichel M, Sattler M, Zarnack K, Staiger D. Arabidopsis thaliana GLYCINE RICH RNA-BINDING PROTEIN 7 interaction with its iCLIP target LHCB1.1 correlates with changes in RNA stability and circadian oscillation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:203-224. [PMID: 38124335 DOI: 10.1111/tpj.16601] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023]
Abstract
The importance of RNA-binding proteins (RBPs) for plant responses to environmental stimuli and development is well documented. Insights into the portfolio of RNAs they recognize, however, clearly lack behind the understanding gathered in non-plant model organisms. Here, we characterize binding of the circadian clock-regulated Arabidopsis thaliana GLYCINE-RICH RNA-BINDING PROTEIN 7 (AtGRP7) to its target transcripts. We identified novel RNA targets from individual-nucleotide resolution UV crosslinking and immunoprecipitation (iCLIP) data using an improved bioinformatics pipeline that will be broadly applicable to plant RBP iCLIP data. 2705 transcripts with binding sites were identified in plants expressing AtGRP7-GFP that were not recovered in plants expressing an RNA-binding dead variant or GFP alone. A conserved RNA motif enriched in uridine residues was identified at the AtGRP7 binding sites. NMR titrations confirmed the preference of AtGRP7 for RNAs with a central U-rich motif. Among the bound RNAs, circadian clock-regulated transcripts were overrepresented. Peak abundance of the LHCB1.1 transcript encoding a chlorophyll-binding protein was reduced in plants overexpressing AtGRP7 whereas it was elevated in atgrp7 mutants, indicating that LHCB1.1 was regulated by AtGRP7 in a dose-dependent manner. In plants overexpressing AtGRP7, the LHCB1.1 half-life was shorter compared to wild-type plants whereas in atgrp7 mutant plants, the half-life was significantly longer. Thus, AtGRP7 modulates circadian oscillations of its in vivo binding target LHCB1.1 by affecting RNA stability.
Collapse
Affiliation(s)
- Martin Lewinski
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Alexander Steffen
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Nitin Kachariya
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, Germany
- Department of Bioscience, Bavarian NMR Center, Technical University of Munich, TUM School of Natural Sciences, Garching, 85747, Germany
| | - Mareike Elgner
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Christoph Schmal
- Institute for Theoretical Biology, Humboldt-Universität zu Berlin and Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Niki Messini
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, Germany
- Department of Bioscience, Bavarian NMR Center, Technical University of Munich, TUM School of Natural Sciences, Garching, 85747, Germany
| | - Tino Köster
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Marlene Reichel
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg, 85764, Germany
- Department of Bioscience, Bavarian NMR Center, Technical University of Munich, TUM School of Natural Sciences, Garching, 85747, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) & Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt, Germany
| | - Dorothee Staiger
- RNA Biology and Molecular Physiology, Faculty of Biology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
20
|
Fan C, Lyu M, Zeng B, He Q, Wang X, Lu MZ, Liu B, Liu J, Esteban E, Pasha A, Provart NJ, Wang H, Zhang J. Profiling of the gene expression and alternative splicing landscapes of Eucalyptus grandis. PLANT, CELL & ENVIRONMENT 2024; 47:1363-1378. [PMID: 38221855 DOI: 10.1111/pce.14814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/05/2023] [Accepted: 01/01/2024] [Indexed: 01/16/2024]
Abstract
Eucalyptus is a widely planted hardwood tree species due to its fast growth, superior wood properties and adaptability. However, the post-transcriptional regulatory mechanisms controlling tissue development and stress responses in Eucalyptus remain poorly understood. In this study, we performed a comprehensive analysis of the gene expression profile and the alternative splicing (AS) landscape of E. grandis using strand-specific RNA-Seq, which encompassed 201 libraries including different organs, developmental stages, and environmental stresses. We identified 10 416 genes (33.49%) that underwent AS, and numerous differentially expressed and/or differential AS genes involved in critical biological processes, such as primary-to-secondary growth transition of stems, adventitious root formation, aging and responses to phosphorus- or boron-deficiency. Co-expression analysis of AS events and gene expression patterns highlighted the potential upstream regulatory role of AS events in multiple processes. Additionally, we highlighted the lignin biosynthetic pathway to showcase the potential regulatory functions of AS events in the KNAT3 and IRL3 genes within this pathway. Our high-quality expression atlas and AS landscape serve as valuable resources for unravelling the genetic control of woody plant development, long-term adaptation, and understanding transcriptional diversity in Eucalyptus. Researchers can conveniently access these resources through the interactive ePlant browser (https://bar.utoronto.ca/eplant_eucalyptus).
Collapse
Affiliation(s)
- Chunjie Fan
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Mingjie Lyu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
- Institute of Crop Germplasm and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, China
| | - Bingshan Zeng
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Qiang He
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoping Wang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of State Forestry and Grassland Administration on Tropical Forestry, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Meng-Zhu Lu
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Bobin Liu
- Jiansu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, School of Wetlands, Yancheng Teachers University, Yancheng, China
| | - Jun Liu
- National Key Facility for Crop Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Eddi Esteban
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Asher Pasha
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas J Provart
- Department of Cell and Systems Biology, Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Ontario, Canada
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jin Zhang
- State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, Zhejiang, China
| |
Collapse
|
21
|
Robson JK, Tidy AC, Thomas SG, Wilson ZA. Environmental regulation of male fertility is mediated through Arabidopsis transcription factors bHLH89, 91, and 10. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1934-1947. [PMID: 38066689 PMCID: PMC10967248 DOI: 10.1093/jxb/erad480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 12/08/2023] [Indexed: 03/28/2024]
Abstract
Formation of functional pollen and successful fertilization rely on the spatial and temporal regulation of anther and pollen development. This process responds to environmental cues to maintain optimal fertility despite climatic changes. Arabidopsis transcription factors basic helix-loop-helix (bHLH) 10, 89, and 91 were previously thought to be functionally redundant in their control of male reproductive development, however here we show that they play distinct roles in the integration of light signals to maintain pollen development under different environmental conditions. Combinations of the double and triple bHLH10,89,91 mutants were analysed under normal (200 μmol m-2 s-1) and low (50 μmol m-2 s-1) light conditions to determine the impact on fertility. Transcriptomic analysis of a new conditionally sterile bhlh89,91 double mutant shows differential regulation of genes related to sexual reproduction, hormone signal transduction, and lipid storage and metabolism under low light. Here we have shown that bHLH89 and bHLH91 play a role in regulating fertility in response to light, suggesting that they function in mitigating environmental variation to ensure fertility is maintained under environmental stress.
Collapse
Affiliation(s)
- Jordan K Robson
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK
| | - Alison C Tidy
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK
| | - Stephen G Thomas
- Sustainable Soils and Crops, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Zoe A Wilson
- Division of Plant & Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicester LE12 5RD, UK
| |
Collapse
|
22
|
Corrêa RL, Kutnjak D, Ambrós S, Bustos M, Elena SF. Identification of epigenetically regulated genes involved in plant-virus interaction and their role in virus-triggered induced resistance. BMC PLANT BIOLOGY 2024; 24:172. [PMID: 38443837 PMCID: PMC10913459 DOI: 10.1186/s12870-024-04866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Plant responses to a wide range of stresses are known to be regulated by epigenetic mechanisms. Pathogen-related investigations, particularly against RNA viruses, are however scarce. It has been demonstrated that Arabidopsis thaliana plants defective in some members of the RNA-directed DNA methylation (RdDM) or histone modification pathways presented differential susceptibility to the turnip mosaic virus. In order to identify genes directly targeted by the RdDM-related RNA Polymerase V (POLV) complex and the histone demethylase protein JUMONJI14 (JMJ14) during infection, the transcriptomes of infected mutant and control plants were obtained and integrated with available chromatin occupancy data for various epigenetic proteins and marks. RESULTS A comprehensive list of virus-responsive gene candidates to be regulated by the two proteins was obtained. Twelve genes were selected for further characterization, confirming their dynamic regulation during the course of infection. Several epigenetic marks on their promoter sequences were found using in silico data, raising confidence that the identified genes are actually regulated by epigenetic mechanisms. The altered expression of six of these genes in mutants of the methyltransferase gene CURLY LEAF and the histone deacetylase gene HISTONE DEACETYLASE 19 suggests that some virus-responsive genes may be regulated by multiple coordinated epigenetic complexes. A temporally separated multiple plant virus infection experiment in which plants were transiently infected with one virus and then infected by a second one was designed to investigate the possible roles of the identified POLV- and JMJ14-regulated genes in wild-type (WT) plants. Plants that had previously been stimulated with viruses were found to be more resistant to subsequent virus challenge than control plants. Several POLV- and JMJ14-regulated genes were found to be regulated in virus induced resistance in WT plants, with some of them poisoned to be expressed in early infection stages. CONCLUSIONS A set of confident candidate genes directly regulated by the POLV and JMJ14 proteins during virus infection was identified, with indications that some of them may be regulated by multiple epigenetic modules. A subset of these genes may also play a role in the tolerance of WT plants to repeated, intermittent virus infections.
Collapse
Affiliation(s)
- Régis L Corrêa
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cientificas (CSIC) - Universitat de València (UV), Paterna, Valencia, 46980, Spain.
- Department of Genetics, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro, 21941-590, Brazil.
| | - Denis Kutnjak
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cientificas (CSIC) - Universitat de València (UV), Paterna, Valencia, 46980, Spain
- Department of Biotechnology and Systems Biology, National Institute of Biology, Ljubljana, 1000, Slovenia
| | - Silvia Ambrós
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cientificas (CSIC) - Universitat de València (UV), Paterna, Valencia, 46980, Spain
| | - Mónica Bustos
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cientificas (CSIC) - Universitat de València (UV), Paterna, Valencia, 46980, Spain
| | - Santiago F Elena
- Institute for Integrative Systems Biology (I2SysBio), Consejo Superior de Investigaciones Cientificas (CSIC) - Universitat de València (UV), Paterna, Valencia, 46980, Spain
- The Santa Fe Institute, Santa Fe, NM, 87501, USA
| |
Collapse
|
23
|
Wu ZH, He LL, Wang CC, Liang C, Li HY, Zhong DW, Dong ZX, Zhang LJ, Zhang XQ, Ge LF, Chen S. Unveiling unique alternative splicing responses to low temperature in Zoysia japonica through ZjRTD1.0, a high-quality reference transcript dataset. PHYSIOLOGIA PLANTARUM 2024; 176:e14280. [PMID: 38644527 DOI: 10.1111/ppl.14280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/29/2024] [Accepted: 03/09/2024] [Indexed: 04/23/2024]
Abstract
Inadequate reference databases in RNA-seq analysis can hinder data utilization and interpretation. In this study, we have successfully constructed a high-quality reference transcript dataset, ZjRTD1.0, for Zoysia japonica, a widely-used turfgrass with exceptional tolerance to various abiotic stress, including low temperatures and salinity. This dataset comprises 113,089 transcripts from 57,143 genes. BUSCO analysis demonstrates exceptional completeness (92.4%) in ZjRTD1.0, with reduced proportions of fragmented (3.3%) and missing (4.3%) orthologs compared to prior datasets. ZjRTD1.0 enables more precise analyses, including transcript quantification and alternative splicing assessments using public datasets, which identified a substantial number of differentially expressed transcripts (DETs) and differential alternative splicing (DAS) events, leading to several novel findings on Z. japonica's responses to abiotic stresses. First, spliceosome gene expression influenced alternative splicing significantly under abiotic stress, with a greater impact observed during low-temperature stress. Then, a significant positive correlation was found between the number of differentially expressed genes (DEGs) encoding protein kinases and the frequency of DAS events, suggesting the role of protein phosphorylation in regulating alternative splicing. Additionally, our results suggest possible involvement of serine/arginine-rich (SR) proteins and heterogeneous nuclear ribonucleoproteins (hnRNPs) in generating inclusion/exclusion isoforms under low-temperature stress. Furthermore, our investigation revealed a significantly enhanced overlap between DEGs and differentially alternatively spliced genes (DASGs) in response to low-temperature stress, suggesting a unique co-regulatory mechanism governing transcription and splicing in the context of low-temperature response. In conclusion, we have proven that ZjRTD1.0 will serve as a reliable and useful resource for future transcriptomic analyses in Z. japonica.
Collapse
Affiliation(s)
- Zhi-Hao Wu
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Liang-Liang He
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Cong-Cong Wang
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Chen Liang
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Han-Ying Li
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Dan-Wen Zhong
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Zhao-Xia Dong
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Li-Juan Zhang
- Shenzhen Tourism College of Jinan University, Shenzhen, Guangdong, China
| | - Xiang-Qian Zhang
- College of Food Science and Engineering, Foshan University, Foshan, Guangdong, China
| | - Liang-Fa Ge
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| | - Shu Chen
- Department of Grass Science, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Research Center for Grassland Science, Guangzhou, China
| |
Collapse
|
24
|
Lei Y, Yu Y, Fu W, Zhu T, Wu C, Zhang Z, Yu Z, Song X, Xu J, Liang Z, Lü P, Li C. BCL7A and BCL7B potentiate SWI/SNF-complex-mediated chromatin accessibility to regulate gene expression and vegetative phase transition in plants. Nat Commun 2024; 15:935. [PMID: 38296999 PMCID: PMC10830565 DOI: 10.1038/s41467-024-45250-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/19/2024] [Indexed: 02/02/2024] Open
Abstract
Switch defective/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes are multi-subunit machineries that establish and maintain chromatin accessibility and gene expression by regulating chromatin structure. However, how the remodeling activities of SWI/SNF complexes are regulated in eukaryotes remains elusive. B-cell lymphoma/leukemia protein 7 A/B/C (BCL7A/B/C) have been reported as subunits of SWI/SNF complexes for decades in animals and recently in plants; however, the role of BCL7 subunits in SWI/SNF function remains undefined. Here, we identify a unique role for plant BCL7A and BCL7B homologous subunits in potentiating the genome-wide chromatin remodeling activities of SWI/SNF complexes in plants. BCL7A/B require the catalytic ATPase BRAHMA (BRM) to assemble with the signature subunits of the BRM-Associated SWI/SNF complexes (BAS) and for genomic binding at a subset of target genes. Loss of BCL7A and BCL7B diminishes BAS-mediated genome-wide chromatin accessibility without changing the stability and genomic targeting of the BAS complex, highlighting the specialized role of BCL7A/B in regulating remodeling activity. We further show that BCL7A/B fine-tune the remodeling activity of BAS complexes to generate accessible chromatin at the juvenility resetting region (JRR) of the microRNAs MIR156A/C for plant juvenile identity maintenance. In summary, our work uncovers the function of previously elusive SWI/SNF subunits in multicellular eukaryotes and provides insights into the mechanisms whereby plants memorize the juvenile identity through SWI/SNF-mediated control of chromatin accessibility.
Collapse
Affiliation(s)
- Yawen Lei
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yaoguang Yu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wei Fu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Zhu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Caihong Wu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhihao Zhang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zewang Yu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xin Song
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jianqu Xu
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhenwei Liang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Peitao Lü
- College of Horticulture, FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chenlong Li
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
25
|
James AB, Sharples C, Laird J, Armstrong EM, Guo W, Tzioutziou N, Zhang R, Brown JWS, Nimmo HG, Jones MA. REVEILLE2 thermosensitive splicing: a molecular basis for the integration of nocturnal temperature information by the Arabidopsis circadian clock. THE NEW PHYTOLOGIST 2024; 241:283-297. [PMID: 37897048 DOI: 10.1111/nph.19339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023]
Abstract
Cold stress is one of the major environmental factors that limit growth and yield of plants. However, it is still not fully understood how plants account for daily temperature fluctuations, nor how these temperature changes are integrated with other regulatory systems such as the circadian clock. We demonstrate that REVEILLE2 undergoes alternative splicing after chilling that increases accumulation of a transcript isoform encoding a MYB-like transcription factor. We explore the biological function of REVEILLE2 in Arabidopsis thaliana using a combination of molecular genetics, transcriptomics, and physiology. Disruption of REVEILLE2 alternative splicing alters regulatory gene expression, impairs circadian timing, and improves photosynthetic capacity. Changes in nuclear gene expression are particularly apparent in the initial hours following chilling, with chloroplast gene expression subsequently upregulated. The response of REVEILLE2 to chilling extends our understanding of plants immediate response to cooling. We propose that the circadian component REVEILLE2 restricts plants responses to nocturnal reductions in temperature, thereby enabling appropriate responses to daily environmental changes.
Collapse
Affiliation(s)
- Allan B James
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Chantal Sharples
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Universitaetsstrasse 25, 33615, Bielefeld, Germany
| | - Janet Laird
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Emily May Armstrong
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Wenbin Guo
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Nikoleta Tzioutziou
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - John W S Brown
- Plant Sciences Division, College of Life Sciences, University of Dundee, Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Hugh G Nimmo
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matthew A Jones
- School of Molecular Biosciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
26
|
Kanno T, Chiou P, Wu MT, Lin WD, Matzke A, Matzke M. A GFP splicing reporter in a coilin mutant background reveals links between alternative splicing, siRNAs, and coilin function in Arabidopsis thaliana. G3 (BETHESDA, MD.) 2023; 13:jkad175. [PMID: 37539868 PMCID: PMC10542627 DOI: 10.1093/g3journal/jkad175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 02/25/2023] [Accepted: 06/30/2023] [Indexed: 08/05/2023]
Abstract
Coilin is a scaffold protein essential for the structure of Cajal bodies, which are nucleolar-associated, nonmembranous organelles that coordinate the assembly of nuclear ribonucleoproteins (RNPs) including spliceosomal snRNPs. To study coilin function in plants, we conducted a genetic suppressor screen using a coilin (coi1) mutant in Arabidopsis thaliana and performed an immunoprecipitation-mass spectrometry analysis on coilin protein. The coi1 mutations modify alternative splicing of a GFP reporter gene, resulting in a hyper-GFP phenotype in young coi1 seedlings relative to the intermediate wild-type level. As shown here, this hyper-GFP phenotype is extinguished in older coi1 seedlings by posttranscriptional gene silencing triggered by siRNAs derived from aberrant splice variants of GFP pre-mRNA. In the coi1 suppressor screen, we identified suppressor mutations in WRAP53, a putative coilin-interacting protein; SMU2, a predicted splicing factor; and ZCH1, an incompletely characterized zinc finger protein. These suppressor mutations return the hyper-GFP fluorescence of young coi1 seedlings to the intermediate wild-type level. Additionally, coi1 zch1 mutants display more extensive GFP silencing and elevated levels of GFP siRNAs, suggesting the involvement of wild-type ZCH1 in siRNA biogenesis or stability. The immunoprecipitation-mass spectrometry analysis reinforced the roles of coilin in pre-mRNA splicing, nucleolar chromatin structure, and rRNA processing. The participation of coilin in these processes, at least some of which incorporate small RNAs, supports the hypothesis that coilin provides a chaperone for small RNA trafficking. Our study demonstrates the usefulness of the GFP splicing reporter for investigating alternative splicing, ribosome biogenesis, and siRNA-mediated silencing in the context of coilin function.
Collapse
Affiliation(s)
- Tatsuo Kanno
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Phebe Chiou
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Ming-Tsung Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
- Genenet Technology (UK) Limited, 128 City Road, London EC1V 2NX, UK
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Antonius Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| | - Marjori Matzke
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
27
|
Xu D, Tang Q, Xu P, Schäffner AR, Leister D, Kleine T. Response of the organellar and nuclear (post)transcriptomes of Arabidopsis to drought. FRONTIERS IN PLANT SCIENCE 2023; 14:1220928. [PMID: 37528975 PMCID: PMC10387551 DOI: 10.3389/fpls.2023.1220928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 06/28/2023] [Indexed: 08/03/2023]
Abstract
Plants have evolved sophisticated mechanisms to cope with drought, which involve massive changes in nuclear gene expression. However, little is known about the roles of post-transcriptional processing of nuclear or organellar transcripts and how meaningful these changes are. To address these issues, we used RNA-sequencing after ribosomal RNA depletion to monitor (post)transcriptional changes during different times of drought exposure in Arabidopsis Col-0. Concerning the changes detected in the organellar transcriptomes, chloroplast transcript levels were globally reduced, editing efficiency dropped, but splicing was not affected. Mitochondrial transcripts were slightly elevated, while editing and splicing were unchanged. Conversely, alternative splicing (AS) affected nearly 1,500 genes (9% of expressed nuclear genes). Of these, 42% were regulated solely at the level of AS, representing transcripts that would have gone unnoticed in a microarray-based approach. Moreover, we identified 927 isoform switching events. We provide a table of the most interesting candidates, and as proof of principle, increased drought tolerance of the carbonic anhydrase ca1 and ca2 mutants is shown. In addition, altering the relative contributions of the spliced isoforms could increase drought resistance. For example, our data suggest that the accumulation of a nonfunctional FLM (FLOWERING LOCUS M) isoform and not the ratio of FLM-ß and -δ isoforms may be responsible for the phenotype of early flowering under long-day drought conditions. In sum, our data show that AS enhances proteome diversity to counteract drought stress and represent a valuable resource that will facilitate the development of new strategies to improve plant performance under drought.
Collapse
Affiliation(s)
- Duorong Xu
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Qian Tang
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Ping Xu
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Anton R. Schäffner
- Department of Environmental Sciences, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, München, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| |
Collapse
|
28
|
Jung H, Park HJ, Jo SH, Lee A, Lee HJ, Kim HS, Jung C, Cho HS. Nuclear OsFKBP20-1b maintains SR34 stability and promotes the splicing of retained introns upon ABA exposure in rice. THE NEW PHYTOLOGIST 2023; 238:2476-2494. [PMID: 36942934 DOI: 10.1111/nph.18892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/16/2023] [Indexed: 05/19/2023]
Abstract
Alternative splicing (AS) is a critical means by which plants respond to changes in the environment, but few splicing factors contributing to AS have been reported and functionally characterized in rice (Oryza sativa L.). Here, we explored the function and molecular mechanism of the spliceosome-associated protein OsFKBP20-1b during AS. We determined the AS landscape of wild-type and osfkbp20-1b knockout plants upon abscisic acid (ABA) treatment by transcriptome deep sequencing. To capture the dynamics of translating intron-containing mRNAs, we blocked transcription with cordycepin and performed polysome profiling. We also analyzed whether OsFKBP20-1b and the splicing factors OsSR34 and OsSR45 function together in AS using protoplast transfection assays. We show that OsFKBP20-1b interacts with OsSR34 and regulates its stability, suggesting a role as a chaperone-like protein in the spliceosome. OsFKBP20-1b facilitates the splicing of mRNAs with retained introns after ABA treatment; some of these mRNAs are translatable and encode functional transcriptional regulators of stress-responsive genes. In addition, interacting proteins, OsSR34 and OsSR45, regulate the splicing of the same retained introns as OsFKBP20-1b after ABA treatment. Our findings reveal that spliceosome-associated immunophilin functions in alternative RNA splicing in rice by positively regulating the splicing of retained introns to limit ABA response.
Collapse
Affiliation(s)
- Haemyeong Jung
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyun Ji Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
| | - Seung Hee Jo
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Areum Lee
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Functional Genomics, KRIBB School of Bioscience, UST, Daejeon, 34113, South Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| | - Choonkyun Jung
- Department of International Agricultural Technology and Crop Biotechnology Institute/Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, South Korea
- Department of Agriculture, Forestry, and Bioresources and Integrated Major in Global Smart Farm, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, South Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, South Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology (UST), Daejeon, 34113, South Korea
| |
Collapse
|
29
|
Wang T, Wang X, Wang H, Yu C, Xiao C, Zhao Y, Han H, Zhao S, Shao Q, Zhu J, Zhao Y, Wang P, Ma C. Arabidopsis SRPKII family proteins regulate flowering via phosphorylation of SR proteins and effects on gene expression and alternative splicing. THE NEW PHYTOLOGIST 2023; 238:1889-1907. [PMID: 36942955 DOI: 10.1111/nph.18895] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/07/2023] [Indexed: 05/04/2023]
Abstract
Alternative splicing of pre-mRNAs is crucial for plant growth and development. Serine/arginine-rich (SR) proteins are a conserved family of RNA-binding proteins that are critical for both constitutive and alternative splicing. However, how phosphorylation of SR proteins regulates gene transcription and alternative splicing during plant development is poorly understood. We found that the Arabidopsis thaliana L. SR protein-specific kinase II family proteins (SRPKIIs) play an important role in plant development, including flowering. SRPKIIs regulate the phosphorylation status of a subset of specific SR proteins, including SR45 and SC35, which subsequently mediates their subcellular localization. A phospho-dead SR45 mutant inhibits the assembly of the apoptosis-and splicing-associated protein complex and thereby upregulates the expression of FLOWERING LOCUS C (FLC) via epigenetic modification. The splicing efficiency of FLC introns was significantly increased in the shoot apex of the srpkii mutant. Transcriptomic analysis revealed that SRPKIIs regulate the alternative splicing of c. 400 genes, which largely overlap with those regulated by SR45 and SC35-SCL family proteins. In summary, we found that Arabidopsis SRPKIIs specifically affect the phosphorylation status of a subset SR proteins and regulate the expression and alternative splicing of FLC to control flowering time.
Collapse
Affiliation(s)
- Tongtong Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan, Shandong, 250014, China
| | - Xiaofeng Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan, Shandong, 250014, China
| | - Haiyan Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan, Shandong, 250014, China
| | - Chao Yu
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan, Shandong, 250014, China
| | - Chengyun Xiao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan, Shandong, 250014, China
| | - Yiwu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan, Shandong, 250014, China
| | - Huanan Han
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan, Shandong, 250014, China
| | - Shuangshuang Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan, Shandong, 250014, China
| | - Qun Shao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan, Shandong, 250014, China
| | - Jianhua Zhu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, 20742, USA
| | - Yanxiu Zhao
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan, Shandong, 250014, China
| | - Pingping Wang
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan, Shandong, 250014, China
| | - Changle Ma
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Wenhua East Road 88, Jinan, Shandong, 250014, China
| |
Collapse
|
30
|
Bazin J, Elvira-Matelot E, Blein T, Jauvion V, Bouteiller N, Cao J, Crespi MD, Vaucheret H. Synergistic action of the Arabidopsis spliceosome components PRP39a and SmD1b in promoting posttranscriptional transgene silencing. THE PLANT CELL 2023; 35:1917-1935. [PMID: 36970782 PMCID: PMC10226559 DOI: 10.1093/plcell/koad091] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 05/30/2023]
Abstract
Besides regulating splicing, the conserved spliceosome component SmD1 (Small nuclear ribonucleoprotein D1)b promotes posttranscriptional silencing of sense transgenes (S-PTGS [post-transcriptional genesilencing]). Here, we show that the conserved spliceosome component PRP39 (Pre-mRNA-processing factor 39)a also plays a role in S-PTGS in Arabidopsis thaliana. However, PRP39a and SmD1b actions appear distinct in both splicing and S-PTGS. Indeed, RNAseq-based analysis of expression level and alternative splicing in prp39a and smd1b mutants identified different sets of deregulated transcripts and noncoding RNAs. Moreover, double mutant analyses involving prp39a or smd1b and RNA quality control (RQC) mutants revealed distinct genetic interactions for SmD1b and PRP39a with nuclear RQC machineries, suggesting nonredundant roles in the RQC/PTGS interplay. Supporting this hypothesis, a prp39a smd1b double mutant exhibited enhanced suppression of S-PTGS compared to the single mutants. Because the prp39a and smd1b mutants (i) showed no major changes in the expression of PTGS or RQC components or in small RNA production and (ii) do not alter PTGS triggered by inverted-repeat transgenes directly producing dsRNA (IR-PTGS), PRP39a, and SmD1b appear to synergistically promote a step specific to S-PTGS. We propose that, independently from their specific roles in splicing, PRP39a and SmD1b limit 3'-to-5' and/or 5'-to-3' degradation of transgene-derived aberrant RNAs in the nucleus, thus favoring the export of aberrant RNAs to the cytoplasm where their conversion into double-stranded RNA (dsRNA) initiates S-PTGS.
Collapse
Affiliation(s)
- Jérémie Bazin
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Universités Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cité, Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Emilie Elvira-Matelot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Thomas Blein
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Universités Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cité, Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Vincent Jauvion
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Nathalie Bouteiller
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Jun Cao
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Martin D Crespi
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Universités Paris-Sud, Evry, Paris-Diderot, Sorbonne Paris-Cité, Paris-Saclay, Bâtiment 630, 91405 Orsay, France
| | - Hervé Vaucheret
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| |
Collapse
|
31
|
Petrillo E. Do not panic: An intron-centric guide to alternative splicing. THE PLANT CELL 2023; 35:1752-1761. [PMID: 36648241 PMCID: PMC10226583 DOI: 10.1093/plcell/koad009] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/05/2022] [Accepted: 01/11/2023] [Indexed: 05/30/2023]
Abstract
This review is an attempt to establish concepts of splicing and alternative splicing giving proper relevance to introns, the key actors in this mechanism. It might also work as a guide for those who found their favorite gene undergoes alternative splicing and could benefit from gaining a theoretical framework to understand the possible impacts of this process. This is not a thorough review of all the work in the field, but rather a critical review of some of the most relevant work done to understand the underlying mechanisms of splicing and the key questions that remain unanswered such as: What is the physiological relevance of alternative splicing? What are the functions of the different outcomes? To what extent do different alternative splicing types contribute to the proteome? Intron retention is the most frequent alternative splicing event in plants and, although scientifically neglected, it is also common in animals. This is a heterogeneous type of alternative splicing that includes different sub-types with features that have distinctive consequences in the resulting transcripts. Remarkably, intron retention can be a dead end for a transcript, but it could also be a stable intermediate whose processing is resumed upon a particular signal or change in the cell status. New sequencing technologies combined with the study of intron lariats in different conditions might help to answer key questions and could help us to understand the actual relevance of introns in gene expression regulation.
Collapse
Affiliation(s)
- Ezequiel Petrillo
- Facultad de Ciencias Exactas y Naturales, Departamento de Fisiología, Biología, Molecular, y Celular, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), C1428EHA Buenos Aires, Argentina
| |
Collapse
|
32
|
Misra CS, Sousa AGG, Barros PM, Kermanov A, Becker JD. Cell-type-specific alternative splicing in the Arabidopsis germline. PLANT PHYSIOLOGY 2023; 192:85-101. [PMID: 36515615 PMCID: PMC10152659 DOI: 10.1093/plphys/kiac574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 09/30/2022] [Accepted: 11/23/2022] [Indexed: 05/03/2023]
Abstract
During sexual reproduction in flowering plants, the two haploid sperm cells (SCs) embedded within the cytoplasm of a growing pollen tube are carried to the embryo sac for double fertilization. Pollen development in flowering plants is a dynamic process that encompasses changes at transcriptome and epigenome levels. While the transcriptome of pollen and SCs in Arabidopsis (Arabidopsis thaliana) is well documented, previous analyses have mostly been based on gene-level expression. In-depth transcriptome analysis, particularly the extent of alternative splicing (AS) at the resolution of SC and vegetative nucleus (VN), is still lacking. Therefore, we performed RNA-seq analysis to generate a spliceome map of Arabidopsis SCs and VN isolated from mature pollen grains. Based on our de novo transcriptome assembly, we identified 58,039 transcripts, including 9,681 novel transcripts, of which 2,091 were expressed in SCs and 3,600 in VN. Four hundred and sixty-eight genes were regulated both at gene and splicing levels, with many having functions in mRNA splicing, chromatin modification, and protein localization. Moreover, a comparison with egg cell RNA-seq data uncovered sex-specific regulation of transcription and splicing factors. Our study provides insights into a gamete-specific AS landscape at unprecedented resolution.
Collapse
Affiliation(s)
- Chandra Shekhar Misra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | | | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
| | - Anton Kermanov
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| | - Jörg D Becker
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), 2780-157 Oeiras, Portugal
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal
| |
Collapse
|
33
|
Laskar P, Hazra A, Pal A, Kundu A. Deciphering the role of alternative splicing as modulators of defense response in the MYMIV- Vigna mungo pathosystem. PHYSIOLOGIA PLANTARUM 2023; 175:e13922. [PMID: 37114622 DOI: 10.1111/ppl.13922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 06/19/2023]
Abstract
Alternative splicing (AS) is a crucial regulatory mechanism that impacts transcriptome and proteome complexity under stressful situations. Although its role in abiotic stresses is somewhat understood, our understanding of the mechanistic regulation of pre-mRNA splicing in plant-pathogen interaction is meagre. To comprehend this unexplored immune reprogramming mechanism, transcriptome profiles of Mungbean Yellow Mosaic India Virus (MYMIV)-resistant and susceptible Vigna mungo genotypes were analysed for AS genes that may underlie the resistance mechanism. Results revealed a repertoire of AS-isoforms accumulated during pathogenic infestation, with intron retention being the most common AS mechanism. Identification of 688 differential alternatively spliced (DAS) genes in the resistant host elucidates its robust antiviral response, whereas 322 DAS genes were identified in the susceptible host. Enrichment analyses confirmed DAS transcripts pertaining to stress, signalling, and immune system pathways have undergone maximal perturbations. Additionally, a strong regulation of the splicing factors has been observed both at transcriptional and post-transcriptional levels. qPCR validation of candidate DAS transcripts with induced expression upon MYMIV-infection demonstrated a competent immune response in the resistant background. The AS-impacted genes resulted either in partial/complete loss of functional domains or altered sensitivity to miRNA-mediated gene silencing. A complex regulatory module, miR7517-ATAF2, has been identified in an aberrantly spliced ATAF2 isoform that exposes an intronic miR7517 binding site, thereby suppressing the negative regulator to enhance defense reaction. The present study establishes AS as a non-canonical immune reprogramming mechanism that operates in parallel, thereby offering an alternative strategy for developing yellow mosaic-resistant V. mungo cultivars. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Parbej Laskar
- Plant Genomics and Bioinformatics Laboratory, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata
| | - Anjan Hazra
- Agricultural and Ecological Research Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata
- Present Address: Department of Genetics, University of Calcutta, 35 Ballygunge Circular Road, Kolkata
| | - Amita Pal
- Division of Plant Biology, Bose Institute, Kolkata
| | - Anirban Kundu
- Plant Genomics and Bioinformatics Laboratory, Ramakrishna Mission Vivekananda Centenary College, Rahara, Kolkata
| |
Collapse
|
34
|
Fabian M, Gao M, Zhang XN, Shi J, Vrydagh L, Kim SH, Patel P, Hu AR, Lu H. The flowering time regulator FLK controls pathogen defense in Arabidopsis thaliana. PLANT PHYSIOLOGY 2023; 191:2461-2474. [PMID: 36662556 PMCID: PMC10069895 DOI: 10.1093/plphys/kiad021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 12/02/2022] [Accepted: 12/18/2022] [Indexed: 05/22/2023]
Abstract
Plant disease resistance is a complex process that is maintained in an intricate balance with development. Increasing evidence indicates the importance of posttranscriptional regulation of plant defense by RNA binding proteins. In a genetic screen for suppressors of Arabidopsis (Arabidopsis thaliana) accelerated cell death 6-1 (acd6-1), a small constitutive defense mutant whose defense level is grossly in a reverse proportion to plant size, we identified an allele of the canonical flowering regulatory gene FLOWERING LOCUS K HOMOLOGY DOMAIN (FLK) encoding a putative protein with triple K homology (KH) repeats. The KH repeat is an ancient RNA binding motif found in proteins from diverse organisms. The relevance of KH-domain proteins in pathogen resistance is largely unexplored. In addition to late flowering, the flk mutants exhibited decreased resistance to the bacterial pathogen Pseudomonas syringae and increased resistance to the necrotrophic fungal pathogen Botrytis cinerea. We further found that the flk mutations compromised basal defense and defense signaling mediated by salicylic acid (SA). Mutant analysis revealed complex genetic interactions between FLK and several major SA pathway genes. RNA-seq data showed that FLK regulates expression abundance of some major defense- and development-related genes as well as alternative splicing of a number of genes. Among the genes affected by FLK is ACD6, whose transcripts had increased intron retentions influenced by the flk mutations. Thus, this study provides mechanistic support for flk suppression of acd6-1 and establishes that FLK is a multifunctional gene involved in regulating pathogen defense and development of plants.
Collapse
Affiliation(s)
- Matthew Fabian
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Min Gao
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
- Biochemistry Program, Department of Biology, St Bonaventure University, St Bonaventure, New York 14778, USA
| | - Xiao-Ning Zhang
- Biochemistry Program, Department of Biology, St Bonaventure University, St Bonaventure, New York 14778, USA
| | - Jiangli Shi
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
- Department of Biology Education, Korea National University of Education, Chungbuk 28644, Korea
| | - Leah Vrydagh
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Sung-Ha Kim
- Department of Biology Education, Korea National University of Education, Chungbuk 28644, Korea
| | - Priyank Patel
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| | - Anna R Hu
- Biochemistry Program, Department of Biology, St Bonaventure University, St Bonaventure, New York 14778, USA
| | - Hua Lu
- Department of Biological Sciences, University of Maryland Baltimore County, 1000 Hilltop Circle, Baltimore, Maryland 21250, USA
| |
Collapse
|
35
|
Yin L, Zander M, Huang SSC, Xie M, Song L, Saldierna Guzmán JP, Hann E, Shanbhag BK, Ng S, Jain S, Janssen BJ, Clark NM, Walley JW, Beddoe T, Bar-Joseph Z, Lewsey MG, Ecker JR. Transcription Factor Dynamics in Cross-Regulation of Plant Hormone Signaling Pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531630. [PMID: 36945593 PMCID: PMC10028877 DOI: 10.1101/2023.03.07.531630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Cross-regulation between hormone signaling pathways is indispensable for plant growth and development. However, the molecular mechanisms by which multiple hormones interact and co-ordinate activity need to be understood. Here, we generated a cross-regulation network explaining how hormone signals are integrated from multiple pathways in etiolated Arabidopsis (Arabidopsis thaliana) seedlings. To do so we comprehensively characterized transcription factor activity during plant hormone responses and reconstructed dynamic transcriptional regulatory models for six hormones; abscisic acid, brassinosteroid, ethylene, jasmonic acid, salicylic acid and strigolactone/karrikin. These models incorporated target data for hundreds of transcription factors and thousands of protein-protein interactions. Each hormone recruited different combinations of transcription factors, a subset of which were shared between hormones. Hub target genes existed within hormone transcriptional networks, exhibiting transcription factor activity themselves. In addition, a group of MITOGEN-ACTIVATED PROTEIN KINASES (MPKs) were identified as potential key points of cross-regulation between multiple hormones. Accordingly, the loss of function of one of these (MPK6) disrupted the global proteome, phosphoproteome and transcriptome during hormone responses. Lastly, we determined that all hormones drive substantial alternative splicing that has distinct effects on the transcriptome compared with differential gene expression, acting in early hormone responses. These results provide a comprehensive understanding of the common features of plant transcriptional regulatory pathways and how cross-regulation between hormones acts upon gene expression.
Collapse
Affiliation(s)
- Lingling Yin
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Mark Zander
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Waksman Institute of Microbiology, Department of Plant Biology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Shao-shan Carol Huang
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Department of Biology, New York University, New York, NY 10003, USA
| | - Mingtang Xie
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Cibus, San Diego, CA 92121, USA
| | - Liang Song
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Department of Botany, The University of British Columbia, Vancouver, British Columbia, Canada
| | - J. Paola Saldierna Guzmán
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Department of Soil and Crop Sciences, Colorado State University, Fort Collins, Colorado, USA
| | - Elizabeth Hann
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Present address: Department of Chemical and Environmental Engineering, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA
| | - Bhuvana K. Shanbhag
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Sophia Ng
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Siddhartha Jain
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Bart J. Janssen
- The New Zealand Institute for Plant & Food Research Limited, Auckland, New Zealand
| | - Natalie M. Clark
- Proteomics Platform, Broad Institute of MIT and Harvard, Cambridge, MA, 02142 USA
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, 50011 USA
| | - Justin W. Walley
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA, 50011 USA
| | - Travis Beddoe
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Ziv Bar-Joseph
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Mathew G. Lewsey
- La Trobe Institute for Agriculture and Food, Department of Animal, Plant and Soil Sciences, School of Agriculture Biomedicine and Environment, AgriBio Building, La Trobe University, Melbourne, VIC 3086, Australia
- Australian Research Council Industrial Transformation Research Hub for Medicinal Agriculture, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Australian Research Council Centre of Excellence in Plants For Space, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Joseph R. Ecker
- Plant Biology Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Genomic Analysis Laboratory, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| |
Collapse
|
36
|
Willems P, Van Ruyskensvelde V, Maruta T, Pottie R, Fernández-Fernández ÁD, Pauwels J, Hannah MA, Gevaert K, Van Breusegem F, Van der Kelen K. Mutation of Arabidopsis SME1 and Sm core assembly improves oxidative stress resilience. Free Radic Biol Med 2023; 200:117-129. [PMID: 36870374 DOI: 10.1016/j.freeradbiomed.2023.02.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Alternative splicing is a key posttranscriptional gene regulatory process, acting in diverse adaptive and basal plant processes. Splicing of precursor-messenger RNA (pre-mRNA) is catalyzed by a dynamic ribonucleoprotein complex, designated the spliceosome. In a suppressor screen, we identified a nonsense mutation in the Smith (Sm) antigen protein SME1 to alleviate photorespiratory H2O2-dependent cell death in catalase deficient plants. Similar attenuation of cell death was observed upon chemical inhibition of the spliceosome, suggesting pre-mRNA splicing inhibition to be responsible for the observed cell death alleviation. Furthermore, the sme1-2 mutants showed increased tolerance to the reactive oxygen species inducing herbicide methyl viologen. Both an mRNA-seq and shotgun proteomic analysis in sme1-2 mutants displayed a constitutive molecular stress response, together with extensive alterations in pre-mRNA splicing of transcripts encoding metabolic enzymes and RNA binding proteins, even under unstressed conditions. Using SME1 as a bait to identify protein interactors, we provide experimental evidence for almost 50 homologs of the mammalian spliceosome-associated protein to reside in the Arabidopsis thaliana spliceosome complexes and propose roles in pre-mRNA splicing for four uncharacterized plant proteins. Furthermore, as for sme1-2, a mutant in the Sm core assembly protein ICLN resulted in a decreased sensitivity to methyl viologen. Taken together, these data show that both a perturbed Sm core composition and assembly results in the activation of a defense response and in enhanced resilience to oxidative stress.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium; Department of Biomolecular Medicine, Ghent University, Technologiepark 75, 9052, Ghent, Belgium; Center for Medical Biotechnology, VIB, Technologiepark 75, 9052, Ghent, Belgium.
| | - Valerie Van Ruyskensvelde
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| | - Takanori Maruta
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium; Department of Life Sciences, Faculty of Life and Environmental Sciences, Shimane University, 1060 Nishikawatsu-cho, Matsue, Shimane, 690-8504, Japan.
| | - Robin Pottie
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| | - Álvaro D Fernández-Fernández
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| | - Jarne Pauwels
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, 9052, Ghent, Belgium; Center for Medical Biotechnology, VIB, Technologiepark 75, 9052, Ghent, Belgium.
| | - Matthew A Hannah
- BASF Belgium Coordination Center, Innovation Center Gent, Technologiepark 101, 9052, Ghent, Belgium.
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, Technologiepark 75, 9052, Ghent, Belgium; Center for Medical Biotechnology, VIB, Technologiepark 75, 9052, Ghent, Belgium.
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| | - Katrien Van der Kelen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium; Center for Plant Systems Biology, VIB, Technologiepark 71, 9052, Ghent, Belgium.
| |
Collapse
|
37
|
Zhang H, Jia J, Zhai J. Plant Intron-Splicing Efficiency Database (PISE): exploring splicing of ∼1,650,000 introns in Arabidopsis, maize, rice, and soybean from ∼57,000 public RNA-seq libraries. SCIENCE CHINA. LIFE SCIENCES 2023; 66:602-611. [PMID: 36409390 DOI: 10.1007/s11427-022-2193-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022]
Abstract
Intron retention is the most common alternative splicing event in plants and plays a crucial role in the responses of plants to environmental signals. Despite a large number of RNA-seq libraries from different treatments and genetic mutants stored in public domains, a resource for querying the intron-splicing ratio of individual intron is still required. Here, we established the first-ever large-scale splicing efficiency database in any organism. Our database includes over 57,000 plant public RNA-seq libraries, comprising 25,283 from Arabidopsis, 17,789 from maize, 10,710 from rice, and 3,974 from soybean, and covers a total of 1.6 million introns in these four species. In addition, we manually curated and annotated all the mutant- and treatment-related libraries as well as their matched controls included in our library collection, and added graphics to display intron-splicing efficiency across various tissues, developmental stages, and stress-related conditions. The result is a large collection of 3,313 treatment conditions and 3,594 genetic mutants for discovering differentially regulated splicing efficiency. Our online database can be accessed at https://plantintron.com/ .
Collapse
Affiliation(s)
- Hong Zhang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jinbu Jia
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jixian Zhai
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China.
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, Department of Biology, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
38
|
Tanasa S, Shukla N, Cairo A, Ganji RS, Mikulková P, Valuchova S, Raxwal VK, Capitao C, Schnittger A, Zdráhal Z, Riha K. A complex role of Arabidopsis CDKD;3 in meiotic progression and cytokinesis. PLANT DIRECT 2023; 7:e477. [PMID: 36891158 PMCID: PMC9986724 DOI: 10.1002/pld3.477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
Meiosis is a specialized cell division that halves the number of chromosomes in two consecutive rounds of chromosome segregation. In angiosperm plants is meiosis followed by mitotic divisions to form rudimentary haploid gametophytes. In Arabidopsis, termination of meiosis and transition to gametophytic development are governed by TDM1 and SMG7 that mediate inhibition of translation. Mutants deficient in this mechanism do not form tetrads but instead undergo multiple cycles of aberrant nuclear divisions that are likely caused by the failure to downregulate cyclin dependent kinases during meiotic exit. A suppressor screen to identify genes that contribute to meiotic exit uncovered a mutation in cyclin-dependent kinase D;3 (CDKD;3) that alleviates meiotic defects in smg7 deficient plants. The CDKD;3 deficiency prevents aberrant meiotic divisions observed in smg7 mutants or delays their onset after initiation of cytokinesis, which permits formation of functional microspores. Although CDKD;3 acts as an activator of cyclin-dependent kinase A;1 (CDKA;1), the main cyclin dependent kinase that regulates meiosis, cdkd;3 mutation appears to promote meiotic exit independently of CDKA;1. Furthermore, analysis of CDKD;3 interactome revealed enrichment for proteins implicated in cytokinesis, suggesting a more complex function of CDKD;3 in cell cycle regulation.
Collapse
Affiliation(s)
- Sorin Tanasa
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
- National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Neha Shukla
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Albert Cairo
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Ranjani S. Ganji
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Pavlina Mikulková
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Sona Valuchova
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Vivek K. Raxwal
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Claudio Capitao
- Gregor Mendel Institute (GMI)Austrian Academy of SciencesViennaAustria
| | - Arp Schnittger
- Department of Developmental BiologyUniversity of HamburgHamburgGermany
| | - Zbyněk Zdráhal
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| | - Karel Riha
- Central European Institute of Technology (CEITEC) Masaryk UniversityBrnoCzech Republic
| |
Collapse
|
39
|
García-Campa L, Valledor L, Pascual J. The Integration of Data from Different Long-Read Sequencing Platforms Enhances Proteoform Characterization in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2023; 12:511. [PMID: 36771596 PMCID: PMC9920879 DOI: 10.3390/plants12030511] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
The increasing availability of massive omics data requires improving the quality of reference databases and their annotations. The combination of full-length isoform sequencing (Iso-Seq) with short-read transcriptomics and proteomics has been successfully used for increasing proteoform characterization, which is a main ongoing goal in biology. However, the potential of including Oxford Nanopore Technologies Direct RNA Sequencing (ONT-DRS) data has not been explored. In this paper, we analyzed the impact of combining Iso-Seq- and ONT-DRS-derived data on the identification of proteoforms in Arabidopsis MS proteomics data. To this end, we selected a proteomics dataset corresponding to senescent leaves and we performed protein searches using three different protein databases: AtRTD2 and AtRTD3, built from the homonymous transcriptomes, regarded as the most complete and up-to-date available for the species; and a custom hybrid database combining AtRTD3 with publicly available ONT-DRS transcriptomics data generated from Arabidopsis leaves. Our results show that the inclusion and combination of long-read sequencing data from Iso-Seq and ONT-DRS into a proteogenomic workflow enhances proteoform characterization and discovery in bottom-up proteomics studies. This represents a great opportunity to further investigate biological systems at an unprecedented scale, although it brings challenges to current protein searching algorithms.
Collapse
Affiliation(s)
- Lara García-Campa
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33003 Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, 33003 Oviedo, Spain
| | - Luis Valledor
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33003 Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, 33003 Oviedo, Spain
| | - Jesús Pascual
- Plant Physiology, Department of Organisms and Systems Biology, University of Oviedo, 33003 Oviedo, Spain
- University Institute of Biotechnology of Asturias, University of Oviedo, 33003 Oviedo, Spain
| |
Collapse
|
40
|
Ruggiero A, Punzo P, Van Oosten MJ, Cirillo V, Esposito S, Costa A, Maggio A, Grillo S, Batelli G. Transcriptomic and splicing changes underlying tomato responses to combined water and nutrient stress. FRONTIERS IN PLANT SCIENCE 2022; 13:974048. [PMID: 36507383 PMCID: PMC9732681 DOI: 10.3389/fpls.2022.974048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
Tomato is a horticultural crop of high economic and nutritional value. Suboptimal environmental conditions, such as limited water and nutrient availability, cause severe yield reductions. Thus, selection of genotypes requiring lower inputs is a goal for the tomato breeding sector. We screened 10 tomato varieties exposed to water deficit, low nitrate or a combination of both. Biometric, physiological and molecular analyses revealed different stress responses among genotypes, identifying T270 as severely affected, and T250 as tolerant to the stresses applied. Investigation of transcriptome changes caused by combined stress in roots and leaves of these two genotypes yielded a low number of differentially expressed genes (DEGs) in T250 compared to T270, suggesting that T250 tailors changes in gene expression to efficiently respond to combined stress. By contrast, the susceptible tomato activated approximately one thousand and two thousand genes in leaves and roots respectively, indicating a more generalized stress response in this genotype. In particular, developmental and stress-related genes were differentially expressed, such as hormone responsive factors and transcription factors. Analysis of differential alternative splicing (DAS) events showed that combined stress greatly affects the splicing landscape in both genotypes, highlighting the important role of AS in stress response mechanisms. In particular, several stress and growth-related genes as well as transcription and splicing factors were differentially spliced in both tissues. Taken together, these results reveal important insights into the transcriptional and post-transcriptional mechanisms regulating tomato adaptation to growth under reduced water and nitrogen inputs.
Collapse
Affiliation(s)
- Alessandra Ruggiero
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Paola Punzo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | | | - Valerio Cirillo
- Department of Agricultural Sciences, University of Naples, Federico II, Portici, Italy
| | - Salvatore Esposito
- CREA-CI, Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, Foggia, Italy
| | - Antonello Costa
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, University of Naples, Federico II, Portici, Italy
| | - Stefania Grillo
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| | - Giorgia Batelli
- CNR-IBBR, National Research Council of Italy, Institute of Biosciences and Bioresources, Research Division, Portici, Italy
| |
Collapse
|
41
|
Zhou T, He Y, Zeng X, Cai B, Qu S, Wang S. Comparative Analysis of Alternative Splicing in Two Contrasting Apple Cultivars Defense against Alternaria alternata Apple Pathotype Infection. Int J Mol Sci 2022; 23:ijms232214202. [PMID: 36430679 PMCID: PMC9693243 DOI: 10.3390/ijms232214202] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/03/2022] [Accepted: 11/14/2022] [Indexed: 11/19/2022] Open
Abstract
Alternaria blotch disease, caused by the Alternaria alternata apple pathotype (A. alternata AP), is one of the most serious fungal diseases in apples. Alternative splicing (AS), one of the pivotal post-transcriptional regulatory mechanisms, plays essential roles in various disease resistance responses. Here, we performed RNA-Seq for two apple cultivars (resistant cultivar 'Jonathan' (J) and susceptible cultivar 'Starking Delicious' (SD)) infected by A. alternata AP to further investigate their AS divergence. In total, 1454, 1780, 1367 and 1698 specifically regulated differential alternative splicing (DAS) events were detected in J36, J72, SD36 and SD72 groups, respectively. Retained intron (RI) was the dominant AS pattern. Conformably, 642, 764, 585 and 742 uniquely regulated differentially spliced genes (DSGs) were found during A. alternata AP infection. Comparative analysis of AS genes in differential splicing and expression levels suggested that only a small proportion of DSGs overlapped with differentially expressed genes (DEGs). Gene ontology (GO) enrichment analysis demonstrated that the DSGs were significantly enriched at multiple levels of gene expression regulation. Briefly, the specific AS was triggered in apple defense against A. alternata AP. Therefore, this study facilitates our understanding on the roles of AS regulation in response to A. alternata AP infection in apples.
Collapse
|
42
|
Zhang Y, Yang X, Van de Peer Y, Chen J, Marchal K, Shi T. Evolution of isoform-level gene expression patterns across tissues during lotus species divergence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:830-846. [PMID: 36123806 PMCID: PMC7613771 DOI: 10.1111/tpj.15984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 09/09/2022] [Indexed: 05/03/2023]
Abstract
Both gene duplication and alternative splicing (AS) drive the functional diversity of gene products in plants, yet the relative contributions of the two key mechanisms to the evolution of gene function are largely unclear. Here, we studied AS in two closely related lotus plants, Nelumbo lutea and Nelumbo nucifera, and the outgroup Arabidopsis thaliana, for both single-copy and duplicated genes. We show that most splicing events evolved rapidly between orthologs and that the origin of lineage-specific splice variants or isoforms contributed to gene functional changes during species divergence within Nelumbo. Single-copy genes contain more isoforms, have more AS events conserved across species, and show more complex tissue-dependent expression patterns than their duplicated counterparts. This suggests that expression divergence through isoforms is a mechanism to extend the expression breadth of genes with low copy numbers. As compared to isoforms of local, small-scale duplicates, isoforms of whole-genome duplicates are less conserved and display a less conserved tissue bias, pointing towards their contribution to subfunctionalization. Through comparative analysis of isoform expression networks, we identified orthologous genes of which the expression of at least some of their isoforms displays a conserved tissue bias across species, indicating a strong selection pressure for maintaining a stable expression pattern of these isoforms. Overall, our study shows that both AS and gene duplication contributed to the diversity of gene function during the evolution of lotus.
Collapse
Affiliation(s)
- Yue Zhang
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Yang
- Wuhan Institute of Landscape Architecture, Wuhan 430081, China
| | - Yves Van de Peer
- Department of Plant Biotechnology and Bioinformatics, Ghent University, and VIB Center for Plant Systems Biology, Ghent 9052, Belgium
- Centre for Microbial Ecology and Genomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
- College of Horticulture, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinming Chen
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- Corresponding author details: Jinming Chen: ; Kathleen Marchal: ; Tao Shi:
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University, and VIB Center for Plant Systems Biology, Ghent 9052, Belgium
- Department of Information Technology, IDLab, IMEC, Ghent University, Ghent 9052, Belgium
- Corresponding author details: Jinming Chen: ; Kathleen Marchal: ; Tao Shi:
| | - Tao Shi
- CAS Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Wuhan 430074, China
- Corresponding author details: Jinming Chen: ; Kathleen Marchal: ; Tao Shi:
| |
Collapse
|
43
|
Rodriguez Gallo MC, Li Q, Mehta D, Uhrig RG. Genome-scale analysis of Arabidopsis splicing-related protein kinase families reveals roles in abiotic stress adaptation. BMC PLANT BIOLOGY 2022; 22:496. [PMID: 36273172 PMCID: PMC9587599 DOI: 10.1186/s12870-022-03870-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 10/04/2022] [Indexed: 05/24/2023]
Abstract
Nearly 60 - 80 % of intron-containing plant genes undergo alternative splicing in response to either stress or plant developmental cues. RNA splicing is performed by a large ribonucleoprotein complex called the spliceosome in conjunction with associated subunits such as serine arginine (SR) proteins, all of which undergo extensive phosphorylation. In plants, there are three main protein kinase families suggested to phosphorylate core spliceosome subunits and related splicing factors based on orthology to human splicing-related kinases: the SERINE/ARGININE PROTEIN KINASES (SRPK), ARABIDOPSIS FUS3 COMPLEMENT (AFC), and Pre-mRNA PROCESSING FACTOR 4 (PRP4K) protein kinases. To better define the conservation and role(s) of these kinases in plants, we performed a genome-scale analysis of the three families across photosynthetic eukaryotes, followed by extensive transcriptomic and bioinformatic analysis of all Arabidopsis thaliana SRPK, AFC, and PRP4K protein kinases to elucidate their biological functions. Unexpectedly, this revealed the existence of SRPK and AFC phylogenetic groups with distinct promoter elements and patterns of transcriptional response to abiotic stress, while PRP4Ks possess no phylogenetic sub-divisions, suggestive of functional redundancy. We also reveal splicing-related kinase families are both diel and photoperiod regulated, implicating different orthologs as discrete time-of-day RNA splicing regulators. This foundational work establishes a number of new hypotheses regarding how reversible spliceosome phosphorylation contributes to both diel plant cell regulation and abiotic stress adaptation in plants.
Collapse
Affiliation(s)
- M C Rodriguez Gallo
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - Q Li
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - D Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada
| | - R G Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, T6G 2E9, Canada.
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
44
|
Yang L, Yang L, Zhao C, Liu J, Tong C, Zhang Y, Cheng X, Jiang H, Shen J, Xie M, Liu S. Differential alternative splicing genes and isoform co-expression networks of Brassica napus under multiple abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1009998. [PMID: 36311064 PMCID: PMC9608124 DOI: 10.3389/fpls.2022.1009998] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Alternative splicing (AS) is an important regulatory process that affects plant development and stress responses by greatly increasing the complexity of transcriptome and proteome. To understand how the AS landscape of B. napus changes in response to abiotic stresses, we investigated 26 RNA-seq libraries, including control and treatments with cold, dehydration, salt, and abscisic acid (ABA) at two different time points, to perform comparative alternative splicing analysis. Apparently, AS events increased under all stresses except dehydration for 1 h, and intron retention was the most common AS mode. In addition, a total of 357 differential alternative splicing (DAS) genes were identified under four abiotic stresses, among which 81 DAS genes existed in at least two stresses, and 276 DAS genes were presented under only one stress. A weighted gene co-expression network analysis (WGCNA) based on the splicing isoforms, rather than the genes, pinpointed out 23 co-expression modules associated with different abiotic stresses. Among them, a number of significant hub genes were also found to be DAS genes, which encode key isoforms involved in responses to single stress or multiple stresses, including RNA-binding proteins, transcription factors, and other important genes, such as RBP45C, LHY, MYB59, SCL30A, RS40, MAJ23.10, and DWF4. The splicing isoforms of candidate genes identified in this study could be a valuable resource for improving tolerance of B. napus against multiple abiotic stresses.
Collapse
Affiliation(s)
- Lingli Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Li Yang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Biosystematics Group, Wageningen University and Research, Wageningen, Netherlands
| | - Chuanji Zhao
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jie Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chaobo Tong
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuanyuan Zhang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaohui Cheng
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Meili Xie
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- The Key Laboratory of Biology and Genetic Improvement of Oil Crops, The Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
45
|
Cheng X, Zhao C, Gao L, Zeng L, Xu Y, Liu F, Huang J, Liu L, Liu S, Zhang X. Alternative splicing reprogramming in fungal pathogen Sclerotinia sclerotiorum at different infection stages on Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1008665. [PMID: 36311105 PMCID: PMC9597501 DOI: 10.3389/fpls.2022.1008665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Alternative splicing (AS) is an important post-transcriptional mechanism promoting the diversity of transcripts and proteins to regulate various life processes in eukaryotes. Sclerotinia stem rot is a major disease of Brassica napus caused by Sclerotinia sclerotiorum, which causes severe yield loss in B. napus production worldwide. Although many transcriptome studies have been carried out on the growth, development, and infection of S. sclerotiorum, the genome-wide AS events of S. sclerotiorum remain poorly understood, particularly at the infection stage. In this study, transcriptome sequencing was performed to systematically explore the genome-scale AS events of S. sclerotiorum at five important infection stages on a susceptible oilseed rape cultivar. A total of 130 genes were predicted to be involved in AS from the S. sclerotiorum genome, among which 98 genes were differentially expressed and may be responsible for AS reprogramming for its successful infection. In addition, 641 differential alternative splicing genes (DASGs) were identified during S. sclerotiorum infection, accounting for 5.76% of all annotated S. sclerotiorum genes, and 71 DASGs were commonly found at all the five infection stages. The most dominant AS type of S. sclerotiorum was found to be retained introns or alternative 3' splice sites. Furthermore, the resultant AS isoforms of 21 DASGs became pseudogenes, and 60 DASGs encoded different putative proteins with different domains. More importantly, 16 DASGs of S. sclerotiorum were found to have signal peptides and possibly encode putative effectors to facilitate the infection of S. sclerotiorum. Finally, about 69.27% of DASGs were found to be non-differentially expressed genes, indicating that AS serves as another important way to regulate the infection of S. sclerotiorum on plants besides the gene expression level. Taken together, this study provides a genome-wide landscape for the AS of S. sclerotiorum during infection as well as an important resource for further elucidating the pathogenic mechanisms of S. sclerotiorum.
Collapse
Affiliation(s)
- Xiaohui Cheng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chuanji Zhao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lixia Gao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Lingyi Zeng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yu Xu
- Hebei Provincial Academy of Ecological and Environmental Sciences, Shijiazhuang, China
| | - Fan Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Junyan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lijiang Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Shengyi Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiong Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture of the People’s Republic of China (PRC), Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
46
|
Ecotype-specific blockage of tasiARF production by two different RNA viruses in Arabidopsis. PLoS One 2022; 17:e0275588. [PMID: 36197942 PMCID: PMC9534422 DOI: 10.1371/journal.pone.0275588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/20/2022] [Indexed: 11/19/2022] Open
Abstract
Arabidopsis thaliana is one of the most studied model organisms of plant biology with hundreds of geographical variants called ecotypes. One might expect that this enormous genetic variety could result in differential response to pathogens. Indeed, we observed previously that the Bur ecotype develops much more severe symptoms (upward curling leaves and wavy leaf margins) upon infection with two positive-strand RNA viruses of different families (turnip vein-clearing virus, TVCV, and turnip mosaic virus, TuMV). To find the genes potentially responsible for the ecotype-specific response, we performed a differential expression analysis of the mRNA and sRNA pools of TVCV and TuMV-infected Bur and Col plants along with the corresponding mock controls. We focused on the genes and sRNAs that showed an induced or reduced expression selectively in the Bur virus samples in both virus series. We found that the two ecotypes respond to the viral infection differently, yet both viruses selectively block the production of the TAS3-derived small RNA specimen called tasiARF only in the virus-infected Bur plants. The tasiARF normally forms a gradient through the adaxial and abaxial parts of the leaf (being more abundant in the adaxial part) and post-transcriptionally regulates ARF4, a major leaf polarity determinant in plants. The lack of tasiARF-mediated silencing could lead to an ectopically expressed ARF4 in the adaxial part of the leaf where the misregulation of auxin-dependent signaling would result in an irregular growth of the leaf blade manifesting as upward curling leaf and wavy leaf margin. QTL mapping using Recombinant Inbred Lines (RILs) suggests that the observed symptoms are the result of a multigenic interaction that allows the symptoms to develop only in the Bur ecotype. The particular nature of genetic differences leading to the ecotype-specific symptoms remains obscure and needs further study.
Collapse
|
47
|
Rawoof A, Ahmad I, Islam K, Momo J, Kumar A, Jaiswal V, Ramchiary N. Integrated omics analysis identified genes and their splice variants involved in fruit development and metabolites production in Capsicum species. Funct Integr Genomics 2022; 22:1189-1209. [PMID: 36173582 DOI: 10.1007/s10142-022-00902-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022]
Abstract
To date, several transcriptomic studies during fruit development have been reported; however, no comprehensive integrated study on expression diversity, alternative splicing, and metabolomic profiling was reported in Capsicum. This study analyzed RNA-seq data and untargeted metabolomic profiling from early green (EG), mature green (MG), and breaker (Br) fruit stages from two Capsicum species, i.e., C. annuum (Cann) and C. frutescens (Cfrut) from Northeast India. A total of 117,416 and 96,802 alternatively spliced events (AltSpli-events) were identified from Cann and Cfrut, respectively. Among AltSpli-events, intron retention (IR; 32.2% Cann and 25.75% Cfrut) followed by alternative acceptor (AA; 15.4% Cann and 18.9% Cfrut) were the most abundant in Capsicum. Around 7600 genes expressed in at least one fruit stage of Cann and Cfrut were AltSpli. The study identified spliced variants of genes including transcription factors (TFs) potentially involved in fruit development/ripening (Aux/IAA 16-like, ETR, SGR1, ARF, CaGLK2, ETR, CaAGL1, MADS-RIN, FUL1, SEPALLATA1), carotenoid (PDS, CA1, CCD4, NCED3, xanthoxin dehydrogenase, CaERF82, CabHLH100, CaMYB3R-1, SGR1, CaWRKY28, CaWRKY48, CaWRKY54), and capsaicinoids or flavonoid biosynthesis (CaMYB48, CaWRKY51), which were significantly differentially spliced (DS) between consecutive Capsicum fruit stages. Also, this study observed that differentially expressed isoforms (DEiso) from 38 genes with differentially spliced events (DSE) were significantly enriched in various metabolic pathways such as starch and sucrose metabolism, amino acid metabolism, cysteine cutin suberin and wax biosynthesis, and carotenoid biosynthesis. Furthermore, the metabolomic profiling revealed that metabolites from aforementioned pathways such as carbohydrates (mainly sugars such as D-fructose, D-galactose, maltose, and sucrose), organic acids (carboxylic acids), and peptide groups significantly altered during fruit development. Taken together, our findings could help in alternative splicing-based targeted studies of candidate genes involved in fruit development and ripening in Capsicum crop.
Collapse
Affiliation(s)
- Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - John Momo
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Ajay Kumar
- Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kasaragod, 671316, Kerala, India
| | - Vandana Jaiswal
- Biotechnology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
48
|
Srikakulam N, Sridevi G, Pandi G. High-quality reference transcriptome construction improves RNA-seq quantification in Oryza sativa indica. Front Genet 2022; 13:995072. [PMID: 36246658 PMCID: PMC9558114 DOI: 10.3389/fgene.2022.995072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/02/2022] [Indexed: 11/13/2022] Open
Abstract
The Reference Transcriptomic Dataset (RTD) is an accurate and comprehensive collection of transcripts originating from a given organism. It holds the key to precise transcript quantification and downstream analysis of differential expressions and regulations. Currently, transcriptome annotations for most crop plants are far from complete. For example, Oryza sativa indica (O. sativa indica) is reported to have 40,759 transcripts in the Ensembl database without alternative transcript isoforms and alternative splicing (AS) events. To generate a high-quality RTD, we conducted RNA sequencing of rice leaf samples collected at various time points during Rhizoctonia solani infection. The obtained reads were analyzed by adopting the recently developed computational analysis pipeline to assemble the RTD with increased transcript and AS diversity for O. sativa indica (IndicaRTD). After stringent quality filtering, the newly constructed transcriptome annotation was comprised of 122,968 non-redundant transcripts from 53,695 genes. This study identified many novel transcripts compared to Ensembl deposited data that are important for regulating molecular and physiological processes in the plant system. Currently, the assembled IndicaRTD must allow fast quantification of transcript and gene expression with high precision.
Collapse
Affiliation(s)
- Nagesh Srikakulam
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- *Correspondence: Nagesh Srikakulam, ; Gopal Pandi,
| | - Ganapathi Sridevi
- Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
| | - Gopal Pandi
- Laboratory of RNA Biology and Epigenomics, Department of Plant Biotechnology, School of Biotechnology, Madurai Kamaraj University, Madurai, India
- *Correspondence: Nagesh Srikakulam, ; Gopal Pandi,
| |
Collapse
|
49
|
Niñoles R, Planes D, Arjona P, Ruiz-Pastor C, Chazarra R, Renard J, Bueso E, Forment J, Serrano R, Kranner I, Roach T, Gadea J. Comparative analysis of wild-type accessions reveals novel determinants of Arabidopsis seed longevity. PLANT, CELL & ENVIRONMENT 2022; 45:2708-2728. [PMID: 35672914 DOI: 10.1111/pce.14374] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/27/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Understanding the genetic factors involved in seed longevity is of paramount importance in agricultural and ecological contexts. The polygenic nature of this trait suggests that many of them remain undiscovered. Here, we exploited the contrasting seed longevity found amongst Arabidopsis thaliana accessions to further understand this phenomenon. Concentrations of glutathione were higher in longer-lived than shorter-lived accessions, supporting that redox poise plays a prominent role in seed longevity. However, high seed permeability, normally associated with shorter longevity, is also present in long-lived accessions. Dry seed transcriptome analysis indicated that the contribution to longevity of stored messenger RNA (mRNAs) is complex, including mainly accession-specific mechanisms. The detrimental effect on longevity caused by other factors may be counterbalanced by higher levels of specific mRNAs stored in dry seeds, for instance those of heat-shock proteins. Indeed, loss-of-function mutant analysis demonstrated that heat-shock factors HSF1A and 1B contributed to longevity. Furthermore, mutants of the stress-granule zinc-finger protein TZF9 or the spliceosome subunits MOS4 or MAC3A/MAC3B, extended seed longevity, positioning RNA as a novel player in the regulation of seed viability. mRNAs of proteins with putative relevance to longevity were also abundant in shorter-lived accessions, reinforcing the idea that resistance to ageing is determined by multiple factors.
Collapse
Affiliation(s)
- Regina Niñoles
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Dolores Planes
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Paloma Arjona
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Carmen Ruiz-Pastor
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Rubén Chazarra
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Joan Renard
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Eduardo Bueso
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Javier Forment
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ramón Serrano
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| | - Ilse Kranner
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Thomas Roach
- Department of Botany and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - José Gadea
- Department of Stress, Instituto de Biología Molecular y Celular de Plantas (IBMCP), Ciudad Politécnica de la Innovación (CPI), Universitat Politècnica de València (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Valencia, Spain
| |
Collapse
|
50
|
Gao H, Song W, Severing E, Vayssières A, Huettel B, Franzen R, Richter R, Chai J, Coupland G. PIF4 enhances DNA binding of CDF2 to co-regulate target gene expression and promote Arabidopsis hypocotyl cell elongation. NATURE PLANTS 2022; 8:1082-1093. [PMID: 35970973 PMCID: PMC9477738 DOI: 10.1038/s41477-022-01213-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 07/04/2022] [Indexed: 05/19/2023]
Abstract
How specificity is conferred within gene regulatory networks is an important problem in biology. The basic helix-loop-helix PHYTOCHROME-INTERACTING FACTORs (PIFs) and single zinc-finger CYCLING DOF FACTORs (CDFs) mediate growth responses of Arabidopsis to light and temperature. We show that these two classes of transcription factor (TF) act cooperatively. CDF2 and PIF4 are temporally and spatially co-expressed, they interact to form a protein complex and act in the same genetic pathway to promote hypocotyl cell elongation. Furthermore, PIF4 substantially strengthens genome-wide occupancy of CDF2 at a subset of its target genes. One of these, YUCCA8, encodes an auxin biosynthesis enzyme whose transcription is increased by PIF4 and CDF2 to contribute to hypocotyl elongation. The binding sites of PIF4 and CDF2 in YUCCA8 are closely spaced, and in vitro PIF4 enhances binding of CDF2. We propose that this occurs by direct protein interaction and because PIF4 binding alters DNA conformation. Thus, we define mechanisms by which PIF and CDF TFs cooperate to achieve regulatory specificity and promote cell elongation in response to light.
Collapse
Affiliation(s)
- He Gao
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wen Song
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - Edouard Severing
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Alice Vayssières
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Bruno Huettel
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Rainer Franzen
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - René Richter
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Jijie Chai
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
- Institute of Biochemistry, University of Cologne, Cologne, Germany
| | - George Coupland
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|