1
|
Chang H, Lee KJ, Park M, Woo HN, Kim JH, Kang IK, Park H, Chon CH, Lee H, Jung HH. Cross-species RNAi therapy via AAV delivery alleviates neuropathic pain by targeting GCH1. Neurotherapeutics 2025; 22:e00511. [PMID: 39674763 PMCID: PMC12014335 DOI: 10.1016/j.neurot.2024.e00511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/16/2024] Open
Abstract
Tetrahydrobiopterin (BH4) expression is normally strictly controlled; however, its intracellular levels increase considerably following nerve damage. GTP cyclohydrolase I (GCH1) plays a crucial role in regulating BH4 concentration, with an upregulation observed in the dorsal root ganglion in cases of neuropathic pain. In this study, we aimed to develop and evaluate the clinical potential of an RNA interference-based adeno-associated virus (AAV) targeting GCH1 across various species to decrease BH4 levels and, consequently, alleviate neuropathic pain symptoms. We identified universal small-interfering RNA sequences effective across species and developed an AAV-u-shRNA that successfully suppressed GCH1 expression with minimal off-target effects. Male Sprague Dawley rats were divided into four groups: normal, spared nerve injury, AAV-shCON, and AAV-u-shGCH1. The rats were sacrificed on post-injection day 28 to collect blood for BH4 level assessment. The AAV-u-shGCH1 group demonstrated remarkable improvement in the mechanical withdrawal threshold by PID 28, significantly outperforming the normal, spared nerve injury, and AAV-shCON groups. Plasma BH4 levels confirmed that AAV-u-shGCH1 effectively reduced neuropathic pain by inhibiting BH4 synthesis in vivo, introducing a novel, multispecies-compatible therapeutic strategy. Our results suggest that a single application of AAV-u-shGCH1 could offer a viable solution for neuropathic pain relief.
Collapse
Affiliation(s)
- Heesue Chang
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kyoung Jin Lee
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Minkyung Park
- Division of Systems Neuroscience, Department of Psychiatry, Columbia University Irving Medical Center (CUIMC), and Research Foundation for Mental Hygiene, Inc. (RFMH), New York State Psychiatric Institute (NYSPI), New York, NY, 10032, USA
| | - Ha-Na Woo
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Biochemistry & Molecular Biology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Ji Hyun Kim
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Republic of Korea; Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Im Kyeung Kang
- Department of Microbiology, University of Ulsan College of Medicine, Seoul, Republic of Korea; Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | | | - Heuiran Lee
- Bio-Medical Institute of Technology, University of Ulsan College of Medicine, Seoul, Republic of Korea; Department of Microbiology, Asan Medical Center, College of Medicine, University of Ulsan, Seoul, Republic of Korea.
| | - Hyun Ho Jung
- Department of Neurosurgery, Yonsei University College of Medicine, Seoul, Republic of Korea; Department of Neurosurgery, Brain Research institute, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
2
|
Oe S, Kakizaki R, Sakamoto S, Sato T, Hayashi M, Isozaki H, Nonaka M, Iwashita H, Hayashi S, Koike T, Seki-Omura R, Nakano Y, Sato Y, Hirahara Y, Kitada M. MicroRNA-505-5p/-3p Regulates the Proliferation, Invasion, Apoptosis, and Temozolomide Resistance in Mesenchymal Glioma Stem Cells by Targeting AUF1. Mol Carcinog 2025; 64:279-289. [PMID: 39513659 DOI: 10.1002/mc.23842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024]
Abstract
Mesenchymal glioma stem cells (MES-GSCs) are a major subtype of GSCs that reside within glioma tissues and contribute to metastasis, therapy resistance, and glioma recurrence. However, the precise molecular mechanisms governing MES-GSC functions remain elusive. Our findings revealed that expression levels of miR-505-5p/-3p are elevated in MES-GSCs compared with those in proneural (PN)-GSCs, glioma cell lines, and normal brain tissue and that miR-505-5p/-3p expression levels are decreased in differentiated MES-GSCs. We assumed that miR-505-5p/-3p would play distinctive roles in MES-GSCs and performed loss-of-function experiments targeting miR-505-5p/-3p. Knockdown of miR-505-5p/-3p increased proliferation and promoted differentiation in MES-GSCs while suppressing invasion, temozolomide resistance, and enhancing apoptosis in MES-GSCs. Mechanistically, miR-505-5p/-3p directly targets the 3' UTR of AUF1, leading to its repression in MES-GSCs. Notably, AUF1 expression levels were significantly lower in MES-GSCs compared with those in PN-GSCs, glioma cell lines, and normal brain tissues. Co-inhibition of AUF1 expression with miR-505-5p/-3p knockdown ameliorated the observed cellular phenotypes caused by miR-505-5p/-3p knockdown in MES-GSCs. These results suggest that miR-505-5p/-3p exerts MES-GSC-specific roles in regulating proliferation, differentiation, invasion, apoptosis, and temozolomide resistance by repressing AUF1 expression.
Collapse
Affiliation(s)
- Souichi Oe
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Rio Kakizaki
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Sumika Sakamoto
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Teruhide Sato
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Mikio Hayashi
- Department of Physiology, Institute of Biomedical Science, Kansai Medical University, Osaka, Hirakata, Japan
| | - Haruna Isozaki
- Department of Neurosurgery, Kansai Medical University, Osaka, Hirakata, Japan
| | - Masahiro Nonaka
- Department of Neurosurgery, Kansai Medical University, Osaka, Hirakata, Japan
| | - Hikaru Iwashita
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Shinichi Hayashi
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Taro Koike
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Ryohei Seki-Omura
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Yousuke Nakano
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Yuki Sato
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| | - Yukie Hirahara
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
- Faculty of Nursing, Kansai Medical University, Osaka, Hirakata, Japan
| | - Masaaki Kitada
- Department of Anatomy, Kansai Medical University, Osaka, Hirakata, Japan
| |
Collapse
|
3
|
Lazar S, Wurtzel JGT, Askari S, Cooper M, Zhao X, Ma P, Goldfinger LE. Argonaute2 modulates megakaryocyte development and sex-specific control of platelet protein expression and reactivity. Sci Rep 2025; 15:3590. [PMID: 39875491 PMCID: PMC11775343 DOI: 10.1038/s41598-025-88106-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/24/2025] [Indexed: 01/30/2025] Open
Abstract
Platelets are enriched in miRNAs and harbor Ago2 as the principal RNA silencing Argonaute. However, roles in thrombopoiesis and platelet function remain poorly understood. We generated megakaryocyte/platelet-specific Ago2-deleted (Ago2 KO) mice and assessed proteomic and functional effects. We predicted platelet hyperreactivity with Ago2 deletion due to large-scale upregulated protein expression. Platelet counts were normal. Mean volumes were increased, associated with larger, though fewer megakaryocytes. Ago2-deleted platelets from male mice showed hyperreactivity to thromboxane but not to other agonists compared to controls, whereas Ago2-deleted platelets from female mice showed normal reactivity. Ago2 KO mice displayed normal hemostasis and clot dynamics. Proteomes of Ago2-deleted and wild type platelets were mostly similar. However, Ago1 - undetectable in wild type platelets - was upregulated in Ago2-deleted platelets in both males and females, confirmed by immunoblotting. Female Ago2-deleted platelets selectively showed downregulation of a protein cohort established in breast cancer cells to be transcriptionally regulated by estrogen receptor-beta coupled to Ago2, whereas male Ago2-deleted platelets did not. Thus, Ago2 is important for platelet development and function, putatively partially rescued by upregulation of Ago1. Platelet reactivity controlled by Ago2 reflects sex-specific regulation of gene expression potentially at both transcriptional and translational levels in megakaryocytes and platelets.
Collapse
Affiliation(s)
- Sophia Lazar
- Department of Medicine, Division of Hematology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jeremy G T Wurtzel
- Department of Medicine, Division of Hematology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Shayan Askari
- Department of Medicine, Division of Hematology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Matthew Cooper
- Department of Medicine, Division of Hematology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Xuefei Zhao
- Department of Medicine, Division of Hematology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Peisong Ma
- Department of Medicine, Division of Hematology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Lawrence E Goldfinger
- Department of Medicine, Division of Hematology, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
- Cardeza Foundation for Hematologic Research, Thomas Jefferson University, 1020 Locust Street, Philadelphia, PA, 19107, USA.
| |
Collapse
|
4
|
Parashar D, Mukherjee T, Gupta S, Kumar U, Das K. MicroRNAs in extracellular vesicles: A potential role in cancer progression. Cell Signal 2024; 121:111263. [PMID: 38897529 DOI: 10.1016/j.cellsig.2024.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Intercellular communication, an essential biological process in multicellular organisms, is mediated by direct cell-to-cell contact and cell secretary molecules. Emerging evidence identifies a third mechanism of intercellular communication- the release of extracellular vesicles (EVs). EVs are membrane-enclosed nanosized bodies, released from cells into the extracellular environment, often found in all biofluids. The growing body of research indicates that EVs carry bioactive molecules in the form of proteins, DNA, RNAs, microRNAs (miRNAs), lipids, metabolites, etc., and upon transferring them, alter the phenotypes of the target recipient cells. Interestingly, the abundance of EVs is found to be significantly higher in different diseased conditions, most importantly cancer. In the past few decades, numerous studies have identified EV miRNAs as an important contributor in the pathogenesis of different types of cancer. However, the underlying mechanism behind EV miRNA-associated cancer progression and how it could be used as a targeted therapy remain ill-defined. The present review highlights how EV miRNAs influence essential processes in cancer, such as growth, proliferation, metastasis, angiogenesis, apoptosis, stemness, immune evasion, resistance to therapy, etc. A special emphasis has been given to the potential role of EV miRNAs as cancer biomarkers. The final section of the review delineates the ongoing clinical trials on the role of miRNAs in the progression of different types of cancer. Targeting EV miRNAs could be a potential therapeutic means in the treatment of different forms of cancer alongside conventional therapeutic approaches.
Collapse
Affiliation(s)
- Deepak Parashar
- Division of Hematology & Oncology, Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA.
| | - Tanmoy Mukherjee
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA.
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Umesh Kumar
- Department of Biosciences, Institute of Management Studies Ghaziabad (University Courses Campus), NH09, Adhyatmik Nagar, Ghaziabad 201015, Uttar Pradesh, India.
| | - Kaushik Das
- Biotechnology Research and Innovation Council-National Institute of Biomedical Genomics, Kalyani 741251, West Bengal, India.
| |
Collapse
|
5
|
Du W, Li Y, Wang X, Xie S, Ci H, Zhou J, Zhu N, Chen Z, Zheng Y, Jia H. Circular RNA circESYT2 serves as a microRNA-665 sponge to promote the progression of hepatocellular carcinoma through ENO2. Cancer Sci 2024; 115:2659-2672. [PMID: 38710213 PMCID: PMC11309938 DOI: 10.1111/cas.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024] Open
Abstract
Circular RNAs (circRNAs) have emerged as crucial regulators in tumor progression, yet their specific role in hepatocellular carcinoma (HCC) remains largely uncharacterized. In this study, we utilized high-transcriptome sequencing to identify the upregulation of circESYT2 (hsa_circ_002142) in HCC tissues. Functional experiments carried out in vivo and in vitro revealed that circESYT2 played a significant role in maintaining the growth and metastatic behaviors of HCC. Through integrative analysis, we identified enolase 2 (ENO2) as a potential target regulated by circESYT2 through the competitive endogenous RNA sponge mechanism. Additional gain- or loss-of-function experiments indicated that overexpression of circESYT2 led to a tumor-promoting effect, which could be reversed by transfection of microRNA-665 (miR-665) mimic or ENO2 knockdown in HCC cells. Furthermore, the direct interaction between miR-665 and circESYT2 and between miR-665 and ENO2 was confirmed using RNA immunoprecipitation, FISH, RNA pull-down, and dual-luciferase reporter assays, highlighting the involvement of the circESYT2/miR-665/ENO2 axis in promoting HCC progression. These findings shed light on the molecular characteristics of circESYT2 in HCC tissues and suggest its potential as a biomarker or therapeutic target for HCC treatment.
Collapse
Affiliation(s)
- Wei Du
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Ying Li
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Xufeng Wang
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Sunzhe Xie
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Hongfei Ci
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiaming Zhou
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Ningqi Zhu
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Zule Chen
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
| | - Yan Zheng
- Department of Pancreatic Surgery, Shanghai General Hospital, Shanghai Key Laboratory of Pancreatic Disease, Institute of Pancreatic DiseaseShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Huliang Jia
- Hepatobiliary Surgery, Department of General Surgery, Huashan HospitalFudan UniversityShanghaiChina
- Cancer Metastasis InstituteFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Bie Y, Zhang J, Chen J, Zhang Y, Huang M, Zhang L, Zhou X, Qiu Y. Design of antiviral AGO2-dependent short hairpin RNAs. Virol Sin 2024; 39:645-654. [PMID: 38734183 PMCID: PMC11401469 DOI: 10.1016/j.virs.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024] Open
Abstract
The increasing emergence and re-emergence of RNA virus outbreaks underlines the urgent need to develop effective antivirals. RNA interference (RNAi) is a sequence-specific gene silencing mechanism that is triggered by small interfering RNAs (siRNAs) or short hairpin RNAs (shRNAs), which exhibits significant promise for antiviral therapy. AGO2-dependent shRNA (agshRNA) generates a single-stranded guide RNA and presents significant advantages over traditional siRNA and shRNA. In this study, we applied a logistic regression algorithm to a previously published chemically siRNA efficacy dataset and built a machine learning-based model with high predictive power. Using this model, we designed siRNA sequences targeting diverse RNA viruses, including human enterovirus A71 (EV71), Zika virus (ZIKV), dengue virus 2 (DENV2), mouse hepatitis virus (MHV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and transformed them into agshRNAs. We validated the performance of our agshRNA design by evaluating antiviral efficacies of agshRNAs in cells infected with different viruses. Using the agshRNA targeting EV71 as an example, we showed that the anti-EV71 effect of agshRNA was more potent compared with the corresponding siRNA and shRNA. Moreover, the antiviral effect of agshRNA is dependent on AGO2-processed guide RNA, which can load into the RNA-induced silencing complex (RISC). We also confirmed the antiviral effect of agshRNA in vivo. Together, this work develops a novel antiviral strategy that combines machine learning-based algorithm with agshRNA design to custom design antiviral agshRNAs with high efficiency.
Collapse
Affiliation(s)
- Yuanyuan Bie
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jieling Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Jiyao Chen
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yumin Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Muhan Huang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Leike Zhang
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xi Zhou
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| | - Yang Qiu
- Key Laboratory of Virology and Biosafety, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
7
|
Wang F, Zhou C, Zhu Y, Keshavarzi M. The microRNA Let-7 and its exosomal form: Epigenetic regulators of gynecological cancers. Cell Biol Toxicol 2024; 40:42. [PMID: 38836981 PMCID: PMC11153289 DOI: 10.1007/s10565-024-09884-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/15/2024] [Indexed: 06/06/2024]
Abstract
Many types of gynecological cancer (GC) are often silent until they reach an advanced stage, and are therefore often diagnosed too late for effective treatment. Hence, there is a real need for more efficient diagnosis and treatment for patients with GC. During recent years, researchers have increasingly studied the impact of microRNAs cancer development, leading to a number of applications in detection and treatment. MicroRNAs are a particular group of tiny RNA molecules that regulate regular gene expression by affecting the translation process. The downregulation of numerous miRNAs has been observed in human malignancies. Let-7 is an example of a miRNA that controls cellular processes as well as signaling cascades to affect post-transcriptional gene expression. Recent research supports the hypothesis that enhancing let-7 expression in those cancers where it is downregulated may be a potential treatment option. Exosomes are tiny vesicles that move through body fluids and can include components like miRNAs (including let-7) that are important for communication between cells. Studies proved that exosomes are able to enhance tumor growth, angiogenesis, chemoresistance, metastasis, and immune evasion, thus suggesting their importance in GC management.
Collapse
Affiliation(s)
- Fei Wang
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Chundi Zhou
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China
| | - Yanping Zhu
- Haiyan People's Hospital, Zhejiang Province, Jiaxing, 314300, Zhejiang, China.
| | - Maryam Keshavarzi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Salama RM, Eissa N, Doghish AS, Abulsoud AI, Abdelmaksoud NM, Mohammed OA, Abdel Mageed SS, Darwish SF. Decoding the secrets of longevity: unraveling nutraceutical and miRNA-Mediated aging pathways and therapeutic strategies. FRONTIERS IN AGING 2024; 5:1373741. [PMID: 38605867 PMCID: PMC11007187 DOI: 10.3389/fragi.2024.1373741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/04/2024] [Indexed: 04/13/2024]
Abstract
MicroRNAs (miRNAs) are short RNA molecules that are not involved in coding for proteins. They have a significant function in regulating gene expression after the process of transcription. Their participation in several biological processes has rendered them appealing subjects for investigating age-related disorders. Increasing data indicates that miRNAs can be influenced by dietary variables, such as macronutrients, micronutrients, trace minerals, and nutraceuticals. This review examines the influence of dietary factors and nutraceuticals on the regulation of miRNA in relation to the process of aging. We examine the present comprehension of miRNA disruption in age-related illnesses and emphasize the possibility of dietary manipulation as a means of prevention or treatment. Consolidating animal and human research is essential to validate the significance of dietary miRNA control in living organisms, despite the abundance of information already provided by several studies. This review elucidates the complex interaction among miRNAs, nutrition, and aging, offering valuable insights into promising areas for further research and potential therapies for age-related disorders.
Collapse
Affiliation(s)
- Rania M. Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University, Cairo, Egypt
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi, United Arab Emirates
| | - Ahmed S. Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
| | - Ahmed I. Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Egypt
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | | | - Osama A. Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | - Sherif S. Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| | - Samar F. Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt
| |
Collapse
|
9
|
Sood C, Verma JK, Basak R, Kapoor A, Gupta S, Mukhopadhyay A. Leishmania highjack host lipid body for its proliferation in macrophages by overexpressing host Rab18 and TRAPPC9 by downregulating miR-1914-3p expression. PLoS Pathog 2024; 20:e1012024. [PMID: 38412149 PMCID: PMC10898768 DOI: 10.1371/journal.ppat.1012024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 02/05/2024] [Indexed: 02/29/2024] Open
Abstract
Lipids stored in lipid-bodies (LBs) in host cells are potential sources of fatty acids for pathogens. However, the mechanism of recruitment of LBs from the host cells by pathogens to acquire fatty acids is not known. Here, we have found that Leishmania specifically upregulates the expression of host Rab18 and its GEF, TRAPPC9 by downregulating the expression of miR-1914-3p by reducing the level of Dicer in macrophages via their metalloprotease gp63. Our results also show that miR-1914-3p negatively regulates the expression of Rab18 and its GEF in cells. Subsequently, Leishmania containing parasitophorous vacuoles (Ld-PVs) recruit and retain host Rab18 and TRAPPC9. Leishmania infection also induces LB biogenesis in host cells and recruits LBs on Ld-PVs and acquires FLC12-labeled fatty acids from LBs. Moreover, overexpression of miR-1914-3p in macrophages significantly inhibits the recruitment of LBs and thereby suppresses the multiplication of parasites in macrophages as parasites are unable to acquire fatty acids. These results demonstrate a novel mechanism how Leishmania acquire fatty acids from LBs for their growth in macrophages.
Collapse
Affiliation(s)
- Chandni Sood
- National Institute of Immunology, New Delhi, India
| | - Jitender Kumar Verma
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
- National Institute of Immunology, New Delhi, India
| | - Rituparna Basak
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Anjali Kapoor
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Swarnima Gupta
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
| | - Amitabha Mukhopadhyay
- Kusuma School of Biological Sciences, Indian Institute of Technology, Hauz Khas, New Delhi, India
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
10
|
Chen A, Halilovic L, Shay JH, Koch A, Mitter N, Jin H. Improving RNA-based crop protection through nanotechnology and insights from cross-kingdom RNA trafficking. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102441. [PMID: 37696727 PMCID: PMC10777890 DOI: 10.1016/j.pbi.2023.102441] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/21/2023] [Accepted: 08/06/2023] [Indexed: 09/13/2023]
Abstract
Spray-induced gene silencing (SIGS) is a powerful and eco-friendly method for crop protection. Based off the discovery of RNA uptake ability in many fungal pathogens, the application of exogenous RNAs targeting pathogen/pest genes results in gene silencing and infection inhibition. However, SIGS remains hindered by the rapid degradation of RNA in the environment. As extracellular vesicles are used by plants, animals, and microbes in nature to transport RNAs for cross-kingdom/species RNA interference between hosts and microbes/pests, nanovesicles and other nanoparticles have been used to prevent RNA degradation. Efforts examining the effect of nanoparticles on RNA stability and internalization have identified key attributes that can inform better nanocarrier designs for SIGS. Understanding sRNA biogenesis, cross-kingdom/species RNAi, and how plants and pathogens/pests naturally interact are paramount for the design of SIGS strategies. Here, we focus on nanotechnology advancements for the engineering of innovative RNA-based disease control strategies against eukaryotic pathogens and pests.
Collapse
Affiliation(s)
- Angela Chen
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Lida Halilovic
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Jia-Hong Shay
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA
| | - Aline Koch
- Institute of Plant Sciences Cell Biology and Plant Biochemistry, Plant RNA Transport, University of Regensburg, Regensburg, Germany
| | - Neena Mitter
- Queensland Alliance for Agriculture and Food Innovation, Centre for Horticultural Science, The University of Queensland, St Lucia, Queensland, 4072, Australia
| | - Hailing Jin
- Department of Microbiology and Plant Pathology, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA, USA.
| |
Collapse
|
11
|
Lopez-Orozco J, Fayad N, Khan JQ, Felix-Lopez A, Elaish M, Rohamare M, Sharma M, Falzarano D, Pelletier J, Wilson J, Hobman TC, Kumar A. The RNA Interference Effector Protein Argonaute 2 Functions as a Restriction Factor Against SARS-CoV-2. J Mol Biol 2023; 435:168170. [PMID: 37271493 PMCID: PMC10238125 DOI: 10.1016/j.jmb.2023.168170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 05/17/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Argonaute 2 (Ago2) is a key component of the RNA interference (RNAi) pathway, a gene-regulatory system that is present in most eukaryotes. Ago2 uses microRNAs (miRNAs) and small interfering RNAs (siRNAs) for targeting to homologous mRNAs which are then degraded or translationally suppressed. In plants and invertebrates, the RNAi pathway has well-described roles in antiviral defense, but its function in limiting viral infections in mammalian cells is less well understood. Here, we examined the role of Ago2 in replication of the betacoronavirus SARS-CoV-2, the etiologic agent of COVID-19. Microscopic analyses of infected cells revealed that a pool of Ago2 closely associates with viral replication sites and gene ablation studies showed that loss of Ago2 resulted in over 1,000-fold increase in peak viral titers. Replication of the alphacoronavirus 229E was also significantly increased in cells lacking Ago2. The antiviral activity of Ago2 was dependent on both its ability to bind small RNAs and its endonuclease function. Interestingly, in cells lacking Dicer, an upstream component of the RNAi pathway, viral replication was the same as in parental cells. This suggests that the antiviral activity of Ago2 is independent of Dicer processed miRNAs. Deep sequencing of infected cells by other groups identified several SARS-CoV-2-derived small RNAs that bind to Ago2. A mutant virus lacking the most abundant ORF7A-derived viral miRNA was found to be significantly less sensitive to Ago2-mediated restriction. This combined with our findings that endonuclease and small RNA-binding functions of Ago2 are required for its antiviral function, suggests that Ago2-small viral RNA complexes target nascent viral RNA produced at replication sites for cleavage. Further studies are required to elucidate the processing mechanism of the viral small RNAs that are used by Ago2 to limit coronavirus replication.
Collapse
Affiliation(s)
- Joaquin Lopez-Orozco
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Nawell Fayad
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Juveriya Qamar Khan
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Alberto Felix-Lopez
- Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Mohamed Elaish
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada
| | - Megha Rohamare
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Maansi Sharma
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Canada; Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Canada
| | - Jerry Pelletier
- Department of Biochemistry, McGill University, Montreal, Canada
| | - Joyce Wilson
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada
| | - Tom C Hobman
- Department of Cell Biology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada; Department of Medical Microbiology & Immunology, Faculty of Medicine & Dentistry, University of Alberta, Edmonton, Canada; Li Ka Shing Institute of Virology, University of Alberta, Edmonton, Canada.
| | - Anil Kumar
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Canada.
| |
Collapse
|
12
|
Shibata A, Shirohzu H, Iwakami Y, Abe T, Emura C, Aoki E, Ohgi T. Terminal bridging of siRNA duplex at the ribose 2' position controls strand bias and target sequence preference. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:468-477. [PMID: 37168798 PMCID: PMC10165404 DOI: 10.1016/j.omtn.2023.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Small interfering RNA (siRNA) and short hairpin RNA (shRNA) are widely used as RNA interference (RNAi) reagents. Recently, truncated shRNAs that trigger RNAi in a Dicer-independent manner have been developed. We generated a novel class of RNAi reagent, designated enforced strand bias (ESB) RNA, in which an siRNA duplex was chemically bridged between the 3' terminal overhang region of the guide strand and the 5' terminal nucleotide of the passenger strand. ESB RNA, which is chemically bridged at the 2' positions of ribose (2'-2' ESB RNA), functions in a Dicer-independent manner and was highly effective at triggering RNAi without the passenger strand-derived off-target effect. In addition, the 2'-2' ESB RNA exhibited a unique target sequence preference that differs from siRNA and silenced target sequences that could not be effectively suppressed by siRNA. Our results indicate that ESB RNA has the potential to be an effective RNAi reagent even when the target sequence is not suitable for siRNA.
Collapse
Affiliation(s)
- Atsushi Shibata
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
- Corresponding author Atsushi Shibata, Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan.
| | - Hisao Shirohzu
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
- Fukuoka Center for Disease Control and Prevention, Kurume, Fukuoka, Japan
| | - Yusuke Iwakami
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Tomoaki Abe
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Chisato Emura
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Eriko Aoki
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| | - Tadaaki Ohgi
- Division of R&D, Bonac Corporation, 1488-4 Aikawa, Kurume, Fukuoka 839-0861, Japan
| |
Collapse
|
13
|
Santos-França PL, David LA, Kassem F, Meng XQ, Cayouette M. Time to see: How temporal identity factors specify the developing mammalian retina. Semin Cell Dev Biol 2023; 142:36-42. [PMID: 35760728 DOI: 10.1016/j.semcdb.2022.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 06/08/2022] [Accepted: 06/09/2022] [Indexed: 11/30/2022]
Abstract
Understanding how retinal progenitor cells (RPCs) give rise to the variety of neural cell types of the retina has been a question of major interest over the last few decades. While environmental cues and transcription factor networks have been shown to control specific cell fate decisions, how RPCs alter fate output over time to control proper histogenesis remains poorly understood. In recent years, the identification of "temporal identity factors (TIFs)", which control RPC competence states to ensure that the right cell types are produced at the right time, has contributed to increasing our understanding of temporal patterning in the retina. Here, we review the different TIFs identified to date in the mammalian retina and discuss the underlying mechanisms by which they are thought to operate. We conclude by speculating on how identification of temporal patterning mechanisms might support the development of new therapeutic approaches against visual impairments.
Collapse
Affiliation(s)
- Pedro L Santos-França
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Molecular Biology Program, Université de Montréal, Montréal, QC, Canada
| | - Luke Ajay David
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Fatima Kassem
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Xiang Qi Meng
- Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Michel Cayouette
- Cellular Neurobiology Research Unit, Institut de recherches cliniques de Montréal (IRCM), Montréal, QC, Canada; Molecular Biology Program, Université de Montréal, Montréal, QC, Canada; Integrated Program in Neuroscience, Faculty of Medicine, McGill University, Montréal, QC, Canada; Department of Medicine, Université de Montréal, QC, Canada; Department of Anatomy and Cell Biology and Division of Experimental Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
14
|
Kobayashi M, Wakaguri H, Shimizu M, Higasa K, Matsuda F, Honjo T. Ago2 and a miRNA reduce Topoisomerase 1 for enhancing DNA cleavage in antibody diversification by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2023; 120:e2216918120. [PMID: 37094168 PMCID: PMC10161001 DOI: 10.1073/pnas.2216918120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 03/31/2023] [Indexed: 04/26/2023] Open
Abstract
Activation-induced cytidine deaminase (AID) is the essential enzyme for imprinting immunological memory through class switch recombination (CSR) and somatic hypermutation (SHM) of the immunoglobulin (Ig) gene. AID-dependent reduction of Topoisomerase 1 (Top1) promotes DNA cleavage that occurs upon Ig gene diversification, whereas the mechanism behind AID-induced Top1 reduction remains unclear. Here, we clarified the contribution of the microRNA-Ago2 complex in AID-dependent Top1 decrease. Ago2 binds to Top1 3'UTR with two regions of AID-dependent Ago2-binding sites (5'- and 3'dABs). Top1 3'UTR knockout (3'UTRKO) in B lymphoma cells leads to decreases in DNA break efficiency in the IgH gene accompanied by a reduction in CSR and SHM frequencies. Furthermore, AID-dependent Top1 protein reduction and Ago2-binding to Top1 mRNA are down-regulated in 3'UTRKO cells. Top1 mRNA in the highly translated fractions of the sucrose gradient is decreased in an AID-dependent and Top1 3'UTR-mediated manner, resulting in a decrease in Top1 protein synthesis. Both AID and Ago2 localize in the mRNA-binding protein fractions and they interact with each other. Furthermore, we found some candidate miRNAs which possibly bind to 5'- and 3'dAB in Top1 mRNA. Among them, miR-92a-3p knockdown induces the phenotypes of 3'UTRKO cells to wild-type cells whereas it does not impact on 3'UTRKO cells. Taken together, the Ago2-miR-92a-3p complex will be recruited to Top1 3'UTR in an AID-dependent manner and posttranscriptionally reduces Top1 protein synthesis. These consequences cause the increase in a non-B-DNA structure, enhance DNA cleavage by Top1 in the Ig gene and contribute to immunological memory formation.
Collapse
Affiliation(s)
- Maki Kobayashi
- Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Hiroyuki Wakaguri
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Masakazu Shimizu
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Koichiro Higasa
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| | - Tasuku Honjo
- Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto606-8501, Japan
| |
Collapse
|
15
|
Cressoni ACL, Penariol LBC, Padovan CC, Orellana MD, Rosa-E-Silva JC, Poli-Neto OB, Ferriani RA, de Paz CCP, Meola J. Downregulation of DROSHA: Could It Affect miRNA Biogenesis in Endometriotic Menstrual Blood Mesenchymal Stem Cells? Int J Mol Sci 2023; 24:ijms24065963. [PMID: 36983035 PMCID: PMC10057010 DOI: 10.3390/ijms24065963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 03/18/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Menstrual blood mesenchymal stem cells (MenSCs) have gained prominence in the endometriosis scientific community, given their multifunctional roles in regenerative medicine as a noninvasive source for future clinical applications. In addition, changes in post-transcriptional regulation via miRNAs have been explored in endometriotic MenSCs with a role in modulating proliferation, angiogenesis, differentiation, stemness, self-renewal, and the mesenchymal-epithelial transition process. In this sense, homeostasis of the miRNA biosynthesis pathway is essential for several cellular processes and is related to the self-renewal and differentiation of progenitor cells. However, no studies have investigated the miRNA biogenesis pathway in endometriotic MenSCs. In this study, we profiled the expression of eight central genes for the miRNA biosynthesis pathway under experimental conditions involving a two-dimensional culture of MenSCs obtained from healthy women (n = 10) and women with endometriosis (n = 10) using RT-qPCR and reported a two-fold decrease in DROSHA expression in the disease. In addition, miR-128-3p, miR-27a-3p, miR-27b-3p, miR-181a-5p, miR-181b-5p, miR-452-3p, miR-216a-5p, miR-216b-5p, and miR-93-5p, which have been associated with endometriosis, were identified through in silico analyses as negative regulators of DROSHA. Because DROSHA is essential for miRNA maturation, our findings may justify the identification of different profiles of miRNAs with DROSHA-dependent biogenesis in endometriosis.
Collapse
Affiliation(s)
- Ana Clara Lagazzi Cressoni
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Letícia B C Penariol
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Cristiana Carolina Padovan
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Maristela D Orellana
- Regional Blood Center, Medical School of Hemocenter Foundation of Ribeirão Preto, University of Sao Paulo, Ribeirão Preto, São Paulo 14051-140, Brazil
| | - Júlio Cesar Rosa-E-Silva
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Omero Benedicto Poli-Neto
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Rui Alberto Ferriani
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
- National Institute of Hormones and Women's Health (Hormona)-CNPq, Porto Alegre 90035-003, Brazil
| | - Cláudia Cristina Paro de Paz
- Department of Genetics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Juliana Meola
- Department of Gynecology and Obstetrics, Ribeirao Preto Medical School, University of Sao Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
- National Institute of Hormones and Women's Health (Hormona)-CNPq, Porto Alegre 90035-003, Brazil
| |
Collapse
|
16
|
Navarro-Calvo J, Esquiva G, Gómez-Vicente V, Valor LM. MicroRNAs in the Mouse Developing Retina. Int J Mol Sci 2023; 24:ijms24032992. [PMID: 36769311 PMCID: PMC9918188 DOI: 10.3390/ijms24032992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The retina is among the highest organized tissues of the central nervous system. To achieve such organization, a finely tuned regulation of developmental processes is required to form the retinal layers that contain the specialized neurons and supporting glial cells to allow precise phototransduction. MicroRNAs are a class of small RNAs with undoubtful roles in fundamental biological processes, including neurodevelopment of the brain and the retina. This review provides a short overview of the most important findings regarding microRNAs in the regulation of retinal development, from the developmental-dependent rearrangement of the microRNA expression program to the key roles of particular microRNAs in the differentiation and maintenance of retinal cell subtypes.
Collapse
Affiliation(s)
- Jorge Navarro-Calvo
- Unidad de Investigación, Hospital General Universitario Dr. Balmis, ISABIAL, 03010 Alicante, Spain
| | - Gema Esquiva
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Violeta Gómez-Vicente
- Department of Optics, Pharmacology and Anatomy, University of Alicante, 03690 Alicante, Spain
| | - Luis M. Valor
- Unidad de Investigación, Hospital General Universitario Dr. Balmis, ISABIAL, 03010 Alicante, Spain
- Correspondence: ; Tel.: +34-965-913-988
| |
Collapse
|
17
|
Ziętara KJ, Lejman J, Wojciechowska K, Lejman M. The Importance of Selected Dysregulated microRNAs in Diagnosis and Prognosis of Childhood B-Cell Precursor Acute Lymphoblastic Leukemia. Cancers (Basel) 2023; 15:428. [PMID: 36672378 PMCID: PMC9856444 DOI: 10.3390/cancers15020428] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is a frequent type of childhood hematological malignancy. The disease is classified into several subtypes according to genetic abnormalities. MicroRNAs (miRNAs) are involved in pathological processes (e.g., proliferation, apoptosis, differentiation). A miRNA is a group of short non-coding RNAs with relevant regulatory effects on gene expression achieved by suppression of the translation or degradation of messenger RNA (mRNA). These molecules act as tumor suppressors and/or oncogenes in the pathogenesis of pediatric leukemias. The characteristic features of miRNAs are their stable form and the possibility of secretion to the circulatory system. The role of miRNA in BCP-ALL pathogenesis is still emerging, but several studies have suggested using miRNA expression profiles as biomarkers for diagnosis, prognosis, and response to therapy in leukemia. The dysregulation of some miRNAs involved in childhood acute lymphoid leukemia, such as miR-155, miR-200c, miR-100, miR-181a, miR125b, and miR146a is discussed, showing their possible employment as therapeutic targets. In the current review, the capabilities of miRNAs in non-invasive diagnostics and their prognostic potential as biomarkers are presented.
Collapse
Affiliation(s)
- Karolina Joanna Ziętara
- Student Scientific Society, Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-093 Lublin, Poland
| | - Jan Lejman
- Independent Public Health Care Facility of The Ministry of Internal Affairs and Administration in Lublin, 20-331 Lublin, Poland
| | - Katarzyna Wojciechowska
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| | - Monika Lejman
- Independent Laboratory of Genetic Diagnostics, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
18
|
Structural Modifications of siRNA Improve Its Performance In Vivo. Int J Mol Sci 2023; 24:ijms24020956. [PMID: 36674473 PMCID: PMC9862127 DOI: 10.3390/ijms24020956] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/06/2023] Open
Abstract
The use of small interfering RNA (siRNA) in the clinic gives a wide range of possibilities for the treatment of previously incurable diseases. However, the main limitation for biomedical applications is their delivery to target cells and organs. Currently, delivery of siRNA to liver cells is a solved problem due to the bioconjugation of siRNA with N-acetylgalactosamine; other organs remain challenging for siRNA delivery to them. Despite the important role of the ligand in the composition of the bioconjugate, the structure and molecular weight of siRNA also play an important role in the delivery of siRNA. The basic principle is that siRNAs with smaller molecular weights are more efficient at entering cells, whereas siRNAs with larger molecular weights have advantages at the organism level. Here we review the relationships between siRNA structure and its biodistribution and activity to find new strategies for improving siRNA performance.
Collapse
|
19
|
Szydełko J, Matyjaszek-Matuszek B. MicroRNAs as Biomarkers for Coronary Artery Disease Related to Type 2 Diabetes Mellitus-From Pathogenesis to Potential Clinical Application. Int J Mol Sci 2022; 24:ijms24010616. [PMID: 36614057 PMCID: PMC9820734 DOI: 10.3390/ijms24010616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disease with still growing incidence among adults and young people worldwide. Patients with T2DM are more susceptible to developing coronary artery disease (CAD) than non-diabetic individuals. The currently used diagnostic methods do not ensure the detection of CAD at an early stage. Thus, extensive research on non-invasive, blood-based biomarkers is necessary to avoid life-threatening events. MicroRNAs (miRNAs) are small, endogenous, non-coding RNAs that are stable in human body fluids and easily detectable. A number of reports have highlighted that the aberrant expression of miRNAs may impair the diversity of signaling pathways underlying the pathophysiology of atherosclerosis, which is a key player linking T2DM with CAD. The preclinical evidence suggests the atheroprotective and atherogenic influence of miRNAs on every step of T2DM-induced atherogenesis, including endothelial dysfunction, endothelial to mesenchymal transition, macrophage activation, vascular smooth muscle cells proliferation/migration, platelet hyperactivity, and calcification. Among the 122 analyzed miRNAs, 14 top miRNAs appear to be the most consistently dysregulated in T2DM and CAD, whereas 10 miRNAs are altered in T2DM, CAD, and T2DM-CAD patients. This up-to-date overview aims to discuss the role of miRNAs in the development of diabetic CAD, emphasizing their potential clinical usefulness as novel, non-invasive biomarkers and therapeutic targets for T2DM individuals with a predisposition to undergo CAD.
Collapse
|
20
|
Zou L, Yang Y, Zhou B, Li W, Liu K, Li G, Miao H, Song X, Yang J, Geng Y, Li M, Bao R, Liu Y. tRF-3013b inhibits gallbladder cancer proliferation by targeting TPRG1L. Cell Mol Biol Lett 2022; 27:99. [PMID: 36401185 PMCID: PMC9673407 DOI: 10.1186/s11658-022-00398-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND tRNA-derived fragments (tRFs) are newly discovered noncoding RNAs and regulate tumor progression via diverse molecular mechanisms. However, the expression and biofunction of tRFs in gallbladder cancer (GBC) have not been reported yet. METHODS The expression of tRFs in GBC was detected by tRF and tiRNA sequencing in GBC tissues and adjacent tissues. The biological function of tRFs was investigated by cell proliferation assay, clonal formation assay, cell cycle assay, and xenotransplantation model in GBC cell lines. The molecular mechanism was discovered and verified by transcriptome sequencing, fluorescence in situ hybridization (FISH), target gene site prediction, and RNA binding protein immunoprecipitation (RIP). RESULTS tRF-3013b was significantly downregulated in GBC compared with para-cancer tissues. Decreased expression of tRF-3013b in GBC patients was correlated with poor overall survival. Dicer regulated the production of tRF-3013b, and its expression was positively correlated with tRF-3013b in GBC tissues. Functional experiments demonstrated that tRF-3013b inhibited GBC cell proliferation and induced cell-cycle arrest. Mechanically, tRF-3013b exerted RNA silencing effect on TPRG1L by binding to AGO3, and then inhibited NF-κB. TPRG1L overexpression could rescue the effects of tRF-3013b on GBC cell proliferation. CONCLUSIONS This study indicated that Dicer-induced tRF-3013b inhibited GBC proliferation by targeting TPRG1L and repressed NF-κB, pointing to tRF-3013b as a novel potential therapeutic target of GBC.
Collapse
Affiliation(s)
- Lu Zou
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Yang Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Biyu Zhou
- Department of Plastic and Reconstructive Surgery, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200127, China
| | - Weijian Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Ke Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Guoqiang Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Huijie Miao
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Xiaoling Song
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665, Kongjiang Road, Shanghai, 200092, China
| | - Jiahua Yang
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Yajun Geng
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China
| | - Maolan Li
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
| | - Runfa Bao
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
- Department of General Surgery, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665, Kongjiang Road, Shanghai, 200092, China.
| | - Yingbin Liu
- Department of Biliary-Pancreatic Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
- Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
- Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200032, China.
| |
Collapse
|
21
|
Nedorezova DD, Dubovichenko MV, Belyaeva EP, Grigorieva ED, Peresadina AV, Kolpashchikov DM. Specificity of oligonucleotide gene therapy (OGT) agents. Theranostics 2022; 12:7132-7157. [PMID: 36276652 PMCID: PMC9576606 DOI: 10.7150/thno.77830] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/11/2022] [Indexed: 11/24/2022] Open
Abstract
Oligonucleotide gene therapy (OGT) agents (e. g. antisense, deoxyribozymes, siRNA and CRISPR/Cas) are promising therapeutic tools. Despite extensive efforts, only few OGT drugs have been approved for clinical use. Besides the problem of efficient delivery to targeted cells, hybridization specificity is a potential limitation of OGT agents. To ensure tight binding, a typical OGT agent hybridizes to the stretch of 15-25 nucleotides of a unique targeted sequence. However, hybrids of such lengths tolerate one or more mismatches under physiological conditions, the problem known as the affinity/specificity dilemma. Here, we assess the scale of this problem by analyzing OGT hybridization-dependent off-target effects (HD OTE) in vitro, in animal models and clinical studies. All OGT agents except deoxyribozymes exhibit HD OTE in vitro, with most thorough evidence of poor specificity reported for siRNA and CRISPR/Cas9. Notably, siRNA suppress non-targeted genes due to (1) the partial complementarity to mRNA 3'-untranslated regions (3'-UTR), and (2) the antisense activity of the sense strand. CRISPR/Cas9 system can cause hundreds of non-intended dsDNA breaks due to low specificity of the guide RNA, which can limit therapeutic applications of CRISPR/Cas9 by ex-vivo formats. Contribution of this effects to the observed in vivo toxicity of OGT agents is unclear and requires further investigation. Locked or peptide nucleic acids improve OGT nuclease resistance but not specificity. Approaches that use RNA marker dependent (conditional) activation of OGT agents may improve specificity but require additional validation in cell culture and in vivo.
Collapse
Affiliation(s)
- Daria D. Nedorezova
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Mikhail V. Dubovichenko
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina P. Belyaeva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Ekaterina D. Grigorieva
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Arina V. Peresadina
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
| | - Dmitry M. Kolpashchikov
- Laboratory of Molecular Robotics and Biosensor Materials, International Institute SCAMT, ITMO University, 9 Lomonosov Str., St. Petersburg, 191002, Russian Federation
- Chemistry Department, University of Central Florida, Orlando, FL 32816-2366, USA
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
22
|
Diallo I, Ho J, Lambert M, Benmoussa A, Husseini Z, Lalaouna D, Massé E, Provost P. A tRNA-derived fragment present in E. coli OMVs regulates host cell gene expression and proliferation. PLoS Pathog 2022; 18:e1010827. [PMID: 36108089 PMCID: PMC9514646 DOI: 10.1371/journal.ppat.1010827] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 09/27/2022] [Accepted: 08/22/2022] [Indexed: 11/18/2022] Open
Abstract
RNA-sequencing has led to a spectacular increase in the repertoire of bacterial sRNAs and improved our understanding of their biological functions. Bacterial sRNAs have also been found in outer membrane vesicles (OMVs), raising questions about their potential involvement in bacteria-host relationship, but few studies have documented this issue. Recent RNA-Sequencing analyses of bacterial RNA unveiled the existence of abundant very small RNAs (vsRNAs) shorter than 16 nt. These especially include tRNA fragments (tRFs) that are selectively loaded in OMVs and are predicted to target host mRNAs. Here, in Escherichia coli (E. coli), we report the existence of an abundant vsRNA, Ile-tRF-5X, which is selectively modulated by environmental stress, while remaining unaffected by inhibition of transcription or translation. Ile-tRF-5X is released through OMVs and can be transferred to human HCT116 cells, where it promoted MAP3K4 expression. Our findings provide a novel perspective and paradigm on the existing symbiosis between bacteria and human cells. We previously outlined by RNA-Sequencing (RNA-seq) the existence of abundant very small (<16 nt) bacterial and eukaryote RNA (vsRNA) population with potential regulatory functions. However, it is not exceptional to see vsRNA species removed from the RNA-seq libraries or datasets because being considered as random degradation products. As a proof of concept, we present in this study a 13 nt in length isoleucine tRNA-derived fragment (Ile-tRF-5X) which is selectively modulated by nutritional and thermal stress while remaining unaffected by transcription and translation inhibitions. We also showed that OMVs and their Ile-tRF-5X vsRNAs are delivered into human HCT116 cells and both can promote host cell gene expression and proliferation. Ile-tRF-5X appears to regulate gene silencing properties of miRNAs by competition. Our findings provide a novel perspective and paradigm on the existing symbiosis between hosts and bacteria but also brings a new insight of host-pathogen interactions mediated by tRFs which remain so far poorly characterized in bacteria.
Collapse
Affiliation(s)
- Idrissa Diallo
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jeffrey Ho
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Marine Lambert
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Abderrahim Benmoussa
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Zeinab Husseini
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - David Lalaouna
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Eric Massé
- CRCHUS, RNA Group, Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Patrick Provost
- CHU de Québec-Université Laval Research Center/CHUL Pavilion, Department of Microbiology, Infectious Diseases and Immunology, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
- * E-mail:
| |
Collapse
|
23
|
Mendonca A, Thandapani P, Nagarajan P, Venkatesh S, Sundaresan S. Role of microRNAs in regulation of insulin secretion and insulin signaling involved in type 2 diabetes mellitus. J Biosci 2022. [DOI: 10.1007/s12038-022-00295-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
24
|
Morais RDVS, Sogorb-González M, Bar C, Timmer NC, Van der Bent ML, Wartel M, Vallès A. Functional Intercellular Transmission of miHTT via Extracellular Vesicles: An In Vitro Proof-of-Mechanism Study. Cells 2022; 11:2748. [PMID: 36078156 PMCID: PMC9455173 DOI: 10.3390/cells11172748] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/11/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disorder caused by GAG expansion in exon 1 of the huntingtin (HTT) gene. AAV5-miHTT is an adeno-associated virus serotype 5-based vector expressing an engineered HTT-targeting microRNA (miHTT). Preclinical studies demonstrate the brain-wide spread of AAV5-miHTT following a single intrastriatal injection, which is partly mediated by neuronal transport. miHTT has been previously associated with extracellular vesicles (EVs), but whether EVs mediate the intercellular transmission of miHTT remains unknown. A contactless culture system was used to evaluate the transport of miHTT, either from a donor cell line overexpressing miHTT or AAV5-miHTT transduced neurons. Transfer of miHTT to recipient (HEK-293T, HeLa, and HD patient-derived neurons) cells was observed, which significantly reduced HTT mRNA levels. miHTT was present in EV-enriched fractions isolated from culture media. Immunocytochemical and in situ hybridization experiments showed that the signal for miHTT and EV markers co-localized, confirming the transport of miHTT within EVs. In summary, we provide evidence that an engineered miRNA-miHTT-is loaded into EVs, transported across extracellular space, and taken up by neighboring cells, and importantly, that miHTT is active in recipient cells downregulating HTT expression. This represents an additional mechanism contributing to the widespread biodistribution of AAV5-miHTT.
Collapse
Affiliation(s)
- Roberto D. V. S. Morais
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - Marina Sogorb-González
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Citlali Bar
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - Nikki C. Timmer
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - M. Leontien Van der Bent
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - Morgane Wartel
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| | - Astrid Vallès
- Department of Research and Development, uniQure Biopharma B.V., 1105 BP Amsterdam, The Netherlands
| |
Collapse
|
25
|
Therapeutic Strategies in Huntington’s Disease: From Genetic Defect to Gene Therapy. Biomedicines 2022; 10:biomedicines10081895. [PMID: 36009443 PMCID: PMC9405755 DOI: 10.3390/biomedicines10081895] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 12/14/2022] Open
Abstract
Despite the identification of an expanded CAG repeat on exon 1 of the huntingtin gene located on chromosome 1 as the genetic defect causing Huntington’s disease almost 30 years ago, currently approved therapies provide only limited symptomatic relief and do not influence the age of onset or disease progression rate. Research has identified various intricate pathogenic cascades which lead to neuronal degeneration, but therapies interfering with these mechanisms have been marked by many failures and remain to be validated. Exciting new opportunities are opened by the emerging techniques which target the mutant protein DNA and RNA, allowing for “gene editing”. Although some issues relating to “off-target” effects or immune-mediated side effects need to be solved, these strategies, combined with stem cell therapies and more traditional approaches targeting specific pathogenic cascades, such as excitotoxicity and bioavailability of neurotrophic factors, could lead to significant improvement of the outcomes of treated Huntington’s disease patients.
Collapse
|
26
|
Rojas-Pirela M, Andrade-Alviárez D, Medina L, Castillo C, Liempi A, Guerrero-Muñoz J, Ortega Y, Maya JD, Rojas V, Quiñones W, Michels PA, Kemmerling U. MicroRNAs: master regulators in host-parasitic protist interactions. Open Biol 2022; 12:210395. [PMID: 35702995 PMCID: PMC9198802 DOI: 10.1098/rsob.210395] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
MicroRNAs (miRNAs) are a group of small non-coding RNAs present in a wide diversity of organisms. MiRNAs regulate gene expression at a post-transcriptional level through their interaction with the 3' untranslated regions of target mRNAs, inducing translational inhibition or mRNA destabilization and degradation. Thus, miRNAs regulate key biological processes, such as cell death, signal transduction, development, cellular proliferation and differentiation. The dysregulation of miRNAs biogenesis and function is related to the pathogenesis of diseases, including parasite infection. Moreover, during host-parasite interactions, parasites and host miRNAs determine the probability of infection and progression of the disease. The present review is focused on the possible role of miRNAs in the pathogenesis of diseases of clinical interest caused by parasitic protists. In addition, the potential role of miRNAs as targets for the design of drugs and diagnostic and prognostic markers of parasitic diseases is also discussed.
Collapse
Affiliation(s)
- Maura Rojas-Pirela
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Diego Andrade-Alviárez
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Lisvaneth Medina
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Christian Castillo
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Núcleo de Investigación Aplicada en Ciencias Veterinarias y Agronómicas, Facultad de Medicina Veterinaria y Agronomía, Universidad de Las Américas, Chile
| | - Ana Liempi
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Jesús Guerrero-Muñoz
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Yessica Ortega
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile,Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida, Venezuela
| | - Juan Diego Maya
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| | - Verónica Rojas
- Instituto de Biología, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile
| | - Wilfredo Quiñones
- Laboratorio de Enzimología de Parásitos, Facultad de Ciencias, Universidad de Los Andes, Mérida, Venezuela
| | - Paul A. Michels
- Centre for Immunity, Infection and Evolution and Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Ulrike Kemmerling
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago de Chile 8380453, Chile
| |
Collapse
|
27
|
Alsing S, Doktor TK, Askou AL, Jensen EG, Ahmadov U, Kristensen LS, Andresen BS, Aagaard L, Corydon TJ. VEGFA-targeting miR-agshRNAs combine efficacy with specificity and safety for retinal gene therapy. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:58-76. [PMID: 35356684 PMCID: PMC8933642 DOI: 10.1016/j.omtn.2022.02.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/25/2022] [Indexed: 11/09/2022]
Abstract
Retinal gene therapy using RNA interference (RNAi) to silence targeted genes requires both efficacy and safety. Short hairpin RNAs (shRNAs) are useful for RNAi, but high expression levels and activity from the co-delivered passenger strand may cause undesirable cellular responses. Ago2-dependent shRNAs (agshRNAs) produce no passenger strand activity. To enhance efficacy and to investigate improvements in safety, we have generated VEGFA-targeting agshRNAs and microRNA (miRNA)-embedded agshRNAs (miR-agshRNAs) and inserted these RNAi effectors in Pol II/III-driven expression cassettes and lentiviral vectors (LVs). Compared with corresponding shRNAs, agshRNAs and miR-agshRNAs increased specificity and safety, while retaining a high knockdown efficacy and abolishing passenger strand activity. The agshRNAs also caused significantly smaller reductions in cell viability and reduced competition with the processing of endogenous miR21 compared with their shRNA counterparts. RNA sequencing (RNA-seq) analysis of LV-transduced ARPE19 cells revealed that expression of shRNAs in general leads to more changes in gene expression levels compared with their agshRNA counterparts and activation of immune-related pathways. In mice, subretinal delivery of LVs encoding tissue-specific miR-agshRNAs resulted in retinal pigment epithelium (RPE)-restricted expression and significant knockdown of Vegfa in transduced RPE cells. Collectively, our data suggest that agshRNAs and miR-agshRNA possess important advantages over shRNAs, thereby posing a clinically relevant approach with respect to efficacy, specificity, and safety.
Collapse
|
28
|
Right on target: The next class of efficient, safe, and specific RNAi triggers. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 28:363-365. [PMID: 35505965 PMCID: PMC9035382 DOI: 10.1016/j.omtn.2022.03.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Crisafulli L, Ficara F. Micro-RNAs: A safety net to protect hematopoietic stem cell self-renewal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1693. [PMID: 34532984 PMCID: PMC9285953 DOI: 10.1002/wrna.1693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/24/2021] [Accepted: 08/25/2021] [Indexed: 11/05/2022]
Abstract
The hematopoietic system is sustained over time by a small pool of hematopoietic stem cells (HSCs). They reside at the apex of a complex hierarchy composed of cells with progressively more restricted lineage potential, regenerative capacity, and with different proliferation characteristics. Like other somatic stem cells, HSCs are endowed with long-term self-renewal and multipotent differentiation ability, to sustain the high turnover of mature cells such as erythrocytes or granulocytes, and to rapidly respond to acute peripheral stresses including bleeding, infections, or inflammation. Maintenance of both attributes over time, and of the proper balance between these opposite features, is crucial to ensure the homeostasis of the hematopoietic system. Micro-RNAs (miRNAs) are short non-coding RNAs that regulate gene expression posttranscriptionally upon binding to specific mRNA targets. In the past 10 years they have emerged as important players for preserving the HSC pool by acting on several biological mechanisms, such as maintenance of the quiescent state while preserving proliferation ability, prevention of apoptosis, premature differentiation, lineage skewing, excessive expansion, or retention within the BM niche. miRNA-mediated posttranscriptional fine-tuning of all these processes constitutes a safety mechanism to protect HSCs, by complementing the action of transcription factors and of other regulators and avoiding unwanted expansion or aplasia. The current knowledge of miRNAs function in different aspects of HSC biology, including consequences of aberrant miRNA expression, will be reviewed; yet unsolved issues will be discussed. This article is categorized under: RNA in Disease and Development > RNA in Disease RNA in Disease and Development > RNA in Development.
Collapse
Affiliation(s)
- Laura Crisafulli
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| | - Francesca Ficara
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNRMilanItaly
- IRCCS Humanitas Research HospitalMilanItaly
| |
Collapse
|
30
|
Saiyed AN, Vasavada AR, Johar SRK. Recent trends in miRNA therapeutics and the application of plant miRNA for prevention and treatment of human diseases. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022; 8:24. [PMID: 35382490 PMCID: PMC8972743 DOI: 10.1186/s43094-022-00413-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/21/2022] [Indexed: 02/17/2023] Open
Abstract
Background Researchers now have a new avenue to investigate when it comes to miRNA-based therapeutics. miRNAs have the potential to be valuable biomarkers for disease detection. Variations in miRNA levels may be able to predict changes in normal physiological processes. At the epigenetic level, miRNA has been identified as a promising candidate for distinguishing and treating various diseases and defects. Main body In recent pharmacology, plants miRNA-based drugs have demonstrated a potential role in drug therapeutics. The purpose of this review paper is to discuss miRNA-based therapeutics, the role of miRNA in pharmacoepigenetics modulations, plant miRNA inter-kingdom regulation, and the therapeutic value and application of plant miRNA for cross-kingdom approaches. Target prediction and complementarity with host genes, as well as cross-kingdom gene interactions with plant miRNAs, are also revealed by bioinformatics research. We also show how plant miRNA can be transmitted from one species to another by crossing kingdom boundaries in this review. Despite several unidentified barriers to plant miRNA cross-transfer, plant miRNA-based gene regulation in trans-kingdom gene regulation may soon be valued as a possible approach in plant-based drug therapeutics. Conclusion This review summarised the biochemical synthesis of miRNAs, pharmacoepigenetics, drug therapeutics and miRNA transkingdom transfer.
Collapse
Affiliation(s)
- Atiyabanu N. Saiyed
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
- Ph.D. scholar of Manipal Academy of Higher Education, Manipal, Karnataka India
| | - Abhay R. Vasavada
- Department of Cell and Molecular Biology, Iladevi Cataract and IOL Research Centre, Ahmedabad, Gujarat India
| | - S. R. Kaid Johar
- Department of Zoology, BMTC, Human Genetics, USSC, Gujarat University, Ahmedabad, Gujarat India
| |
Collapse
|
31
|
Hussein M, Andrade dos Ramos Z, Berkhout B, Herrera-Carrillo E. In Silico Prediction and Selection of Target Sequences in the SARS-CoV-2 RNA Genome for an Antiviral Attack. Viruses 2022; 14:v14020385. [PMID: 35215977 PMCID: PMC8880226 DOI: 10.3390/v14020385] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/10/2022] Open
Abstract
The SARS-CoV-2 pandemic has urged the development of protective vaccines and the search for specific antiviral drugs. The modern molecular biology tools provides alternative methods, such as CRISPR-Cas and RNA interference, that can be adapted as antiviral approaches, and contribute to this search. The unique CRISPR-Cas13d system, with the small crRNA guide molecule, mediates a sequence-specific attack on RNA, and can be developed as an anti-coronavirus strategy. We analyzed the SARS-CoV-2 genome to localize the hypothetically best crRNA-annealing sites of 23 nucleotides based on our extensive expertise with sequence-specific antiviral strategies. We considered target sites of which the sequence is well-conserved among SARS-CoV-2 isolates. As we should prepare for a potential future outbreak of related viruses, we screened for targets that are conserved between SARS-CoV-2 and SARS-CoV. To further broaden the search, we screened for targets that are conserved between SARS-CoV-2 and the more distantly related MERS-CoV, as well as the four other human coronaviruses (OC43, 229E, NL63, HKU1). Finally, we performed a search for pan-corona target sequences that are conserved among all these coronaviruses, including the new Omicron variant, that are able to replicate in humans. This survey may contribute to the design of effective, safe, and escape-proof antiviral strategies to prepare for future pandemics.
Collapse
Affiliation(s)
| | | | - Ben Berkhout
- Correspondence: (B.B.); (E.H.-C.); Tel.: +31-20-566-4822 (B.B.); +31-20-566-4865 (E.H.-C.)
| | - Elena Herrera-Carrillo
- Correspondence: (B.B.); (E.H.-C.); Tel.: +31-20-566-4822 (B.B.); +31-20-566-4865 (E.H.-C.)
| |
Collapse
|
32
|
Hill A, van Leeuwen D, Schlösser V, Behera A, Mateescu B, Hall J. Chemically synthesized, self-assembling small interfering RNA-prohead RNA molecules trigger Dicer-independent gene silencing. Chemistry 2021; 28:e202103995. [PMID: 34879171 PMCID: PMC9305526 DOI: 10.1002/chem.202103995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Indexed: 11/07/2022]
Abstract
RNA interference (RNAi) mediated by small interfering RNA (siRNA) duplexes is a powerful therapeutic modality, but the translation of siRNAs from the bench into clinical application has been hampered by inefficient delivery in vivo. An innovative delivery strategy involves fusing siRNAs to a three‐way junction (3WJ) motif derived from the phi29 bacteriophage prohead RNA (pRNA). Chimeric siRNA‐3WJ molecules are presumed to enter the RNAi pathway through Dicer cleavage. Here, we fused siRNAs to the phi29 3WJ and two phylogenetically related 3WJs. We confirmed that the siRNA‐3WJs are substrates for Dicer in vitro. However, our results reveal that siRNA‐3WJs transfected into Dicer‐deficient cell lines trigger potent gene silencing. Interestingly, siRNA‐3WJs transfected into an Argonaute 2‐deficient cell line also retain some gene silencing activity. siRNA‐3WJs are most efficient when the antisense strand of the siRNA duplex is positioned 5′ of the 3WJ (5′‐siRNA‐3WJ) relative to 3′ of the 3WJ (3′‐siRNA‐3WJ). This work sheds light on the functional properties of siRNA‐3WJs and offers a design rule for maximizing their potency in the human RNAi pathway.
Collapse
Affiliation(s)
- Alyssa Hill
- ETH Zurich D-CHAB: Eidgenossische Technische Hochschule Zurich Departement Chemie und Angewandte Biowissenschaften, Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, SWITZERLAND
| | - Daniël van Leeuwen
- ETH Zürich D-BIOL: Eidgenossische Technische Hochschule Zurich Departement Biologie, Department of Biology, SWITZERLAND
| | - Verena Schlösser
- ETH Zurich D-CHAB: Eidgenossische Technische Hochschule Zurich Departement Chemie und Angewandte Biowissenschaften, Department of Chemistry and Applied Biosciences, SWITZERLAND
| | - Alok Behera
- ETH Zurich D-CHAB: Eidgenossische Technische Hochschule Zurich Departement Chemie und Angewandte Biowissenschaften, Department of Chemistry and Applied Biosciences, SWITZERLAND
| | - Bogdan Mateescu
- ETH Zürich D-BIOL: Eidgenossische Technische Hochschule Zurich Departement Biologie, Department of Biology, SWITZERLAND
| | - Jonathan Hall
- ETH Zurich D-CHAB: Eidgenossische Technische Hochschule Zurich Departement Chemie und Angewandte Biowissenschaften, Department of Chemistry and Applied Biosciences, SWITZERLAND
| |
Collapse
|
33
|
Sogorb-Gonzalez M, Vendrell-Tornero C, Snapper J, Stam A, Keskin S, Miniarikova J, Spronck EA, de Haan M, Nieuwland R, Konstantinova P, van Deventer SJ, Evers MM, Vallès A. Secreted therapeutics: monitoring durability of microRNA-based gene therapies in the central nervous system. Brain Commun 2021; 3:fcab054. [PMID: 34704020 PMCID: PMC8093922 DOI: 10.1093/braincomms/fcab054] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 01/20/2021] [Accepted: 02/11/2021] [Indexed: 01/08/2023] Open
Abstract
The preclinical development of microRNA-based gene therapies for inherited neurodegenerative diseases is accompanied by translational challenges. Due to the inaccessibility of the brain to periodically evaluate therapy effects, accessible and reliable biomarkers indicative of dosing, durability and therapeutic efficacy in the central nervous system are very much needed. This is particularly important for viral vector-based gene therapies, in which a one-time administration results in long-term expression of active therapeutic molecules in the brain. Recently, extracellular vesicles have been identified as carriers of RNA species, including microRNAs, and proteins in all biological fluids, whilst becoming potential sources of biomarkers for diagnosis. In this study, we investigated the secretion and potential use of circulating miRNAs associated with extracellular vesicles as suitable sources to monitor the expression and durability of gene therapies in the brain. Neuronal cells derived from induced pluripotent stem cells were treated with adeno-associated viral vector serotype 5 carrying an engineered microRNA targeting huntingtin or ataxin3 gene sequences, the diseases-causing genes of Huntington disease and spinocerebellar ataxia type 3, respectively. After treatment, the secretion of mature engineered microRNA molecules was confirmed, with extracellular microRNA levels correlating with viral dose and cellular microRNA expression in neurons. We further investigated the detection of engineered microRNAs over time in the CSF of non-human primates after a single intrastriatal injection of adeno-associated viral vector serotype 5 carrying a huntingtin-targeting engineered microRNA. Quantifiable engineered microRNA levels enriched in extracellular vesicles were detected in the CSF up to two years after brain infusion. Altogether, these results confirm the long-term expression of adeno-associated viral vector serotype 5-delivered microRNAs and support the use of extracellular vesicle-associated microRNAs as novel translational pharmacokinetic markers in ongoing clinical trials of gene therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Marina Sogorb-Gonzalez
- Department of Research and Development, uniQure Biopharma N.V., Amsterdam, 1105 BP, The Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Carlos Vendrell-Tornero
- Department of Research and Development, uniQure Biopharma N.V., Amsterdam, 1105 BP, The Netherlands
| | - Jolanda Snapper
- Department of Research and Development, uniQure Biopharma N.V., Amsterdam, 1105 BP, The Netherlands
| | - Anouk Stam
- Department of Research and Development, uniQure Biopharma N.V., Amsterdam, 1105 BP, The Netherlands
| | - Sonay Keskin
- Department of Research and Development, uniQure Biopharma N.V., Amsterdam, 1105 BP, The Netherlands
| | - Jana Miniarikova
- Department of Research and Development, uniQure Biopharma N.V., Amsterdam, 1105 BP, The Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Elisabeth A Spronck
- Department of Research and Development, uniQure Biopharma N.V., Amsterdam, 1105 BP, The Netherlands
| | - Martin de Haan
- Department of Research and Development, uniQure Biopharma N.V., Amsterdam, 1105 BP, The Netherlands
| | - Rienk Nieuwland
- Laboratory of Experimental Clinical Chemistry, and Vesicles Observation Center, Amsterdam UMC, University of Amsterdam, Amsterdam, 1105 AZ, The Netherlands
| | - Pavlina Konstantinova
- Department of Research and Development, uniQure Biopharma N.V., Amsterdam, 1105 BP, The Netherlands
| | - Sander J van Deventer
- Department of Research and Development, uniQure Biopharma N.V., Amsterdam, 1105 BP, The Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, 2333 ZA, The Netherlands
| | - Melvin M Evers
- Department of Research and Development, uniQure Biopharma N.V., Amsterdam, 1105 BP, The Netherlands
| | - Astrid Vallès
- Department of Research and Development, uniQure Biopharma N.V., Amsterdam, 1105 BP, The Netherlands
| |
Collapse
|
34
|
Herrera-Carrillo E, Gao Z, Berkhout B. CRISPR therapy towards an HIV cure. Brief Funct Genomics 2021; 19:201-208. [PMID: 31711197 DOI: 10.1093/bfgp/elz021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Tools based on RNA interference (RNAi) and the recently developed clustered regularly short palindromic repeats (CRISPR) system enable the selective modification of gene expression, which also makes them attractive therapeutic reagents for combating HIV infection and other infectious diseases. Several parallels can be drawn between the RNAi and CRISPR-Cas9 platforms. An ideal RNAi or CRISPR-Cas9 therapeutic strategy for treating infectious or genetic diseases should exhibit potency, high specificity and safety. However, therapeutic applications of RNAi and CRISPR-Cas9 have been challenged by several major limitations, some of which can be overcome by optimal design of the therapy or the design of improved reagents. In this review, we will discuss some advantages and limitations of anti-HIV strategies based on RNAi and CRISPR-Cas9 with a focus on the efficiency, specificity, off-target effects and delivery methods.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Department of Medical Microbiology Laboratory of Experimental Virology Amsterdam UMC, AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Zongliang Gao
- Department of Medical Microbiology Laboratory of Experimental Virology Amsterdam UMC, AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Department of Medical Microbiology Laboratory of Experimental Virology Amsterdam UMC, AMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|
35
|
Zhang G, Zhang C, Sun J, Xiong Y, Wang L, Chen D. Phytochemical Regulation of RNA in Treating Inflammatory Bowel Disease and Colon Cancer: Inspirations from Cell and Animal Studies. J Pharmacol Exp Ther 2021; 376:464-472. [PMID: 33397676 DOI: 10.1124/jpet.120.000354] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022] Open
Abstract
Recent studies suggest an important role for RNA, especially noncoding RNA, in inflammatory bowel disease (IBD) and colon cancer. Drug development based on regulating RNA rather than protein is a promising new area. Phytochemicals are naturally occurring plant-derived compounds with chemical diversity, biologic activity, easy availability, and low toxicity. Many phytochemicals have been shown to exert protective effects on IBD and colon cancer through modulation of RNAs. The aim of this study was to summarize the advancements of phytochemicals in regulating RNA for the treatment of IBD and colon cancer. This review involves many phytochemicals, including polyphenols, flavones, and alkaloids, which can influence various types of RNAs, including microRNA, long noncoding RNA, as well as messenger RNA, by influencing a variety of upstream molecules or regulating epigenetic processes. The limitation for many current studies is that the specific mechanisms of phytochemicals regulating RNA have not been fully uncovered. Accompanied by more identified functions of RNAs, especially noncoding RNA functions, the screening of RNA-regulating phytochemicals has presented challenges as well as opportunities for the prevention and treatment of IBD and colon cancer. SIGNIFICANCE STATEMENT: Noncoding RNAs, which constitute the majority of the human transcriptional genome, play a key role in the disease state and are considered as important therapeutic targets in inflammatory bowel disease (IBD) and colon cancer. Recent studies have shown that phytochemicals regulate the expression of many noncoding RNAs involved in IBD and colon cancer. Therefore, identifying the specific molecular mechanism of phytochemicals regulating noncoding RNA in disease models may result in novel and effective therapeutic opportunities.
Collapse
Affiliation(s)
- Guolin Zhang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Chi Zhang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Jia'ao Sun
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Yongjian Xiong
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Liang Wang
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| | - Dapeng Chen
- Comparative Medicine Department of Researching and Teaching, Dalian Medical University, Dalian City, China (G.Z., C.Z., J.S., L.W., D.C.) and Central Laboratory, First Affiliated Hospital of Dalian Medical University, Dalian, China (Y.X.)
| |
Collapse
|
36
|
Berkhout B, Herrera-Carrillo E. Design and Evaluation of AgoshRNAs with 3'-Terminal HDV Ribozymes to Enhance the Silencing Activity. Methods Mol Biol 2021; 2167:225-252. [PMID: 32712923 DOI: 10.1007/978-1-0716-0716-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Since the first application of RNA interference (RNAi) in mammalian cells, the expression of short hairpin RNA (shRNA) molecules for targeted gene silencing has become a benchmark technology. Plasmid and viral vector systems can be used to express shRNA precursor transcripts that are processed by the cellular RNAi pathway to trigger sequence-specific gene knockdown. Intensive RNAi investigations documented that only a small percentage of computationally predicted target sequences can be used for efficient gene silencing, in part because not all shRNA designs are active. Many factors influence the shRNA activity and guidelines for optimal shRNA design have been proposed. We recently described an alternatively processed shRNA molecule termed AgoshRNA with a ~18 base pairs (bp) stem and a 3-5 nucleotides (nt) loop. This molecule is alternatively processed by the Argonaute (Ago) protein into a single guide RNA strand that efficiently induces the RNAi mechanism. The design rules proposed for regular shRNAs do not apply to AgoshRNA molecules and therefore new rules had to be defined. We optimized the AgoshRNA design and managed to create a set of active AgoshRNAs targeted against the human immunodeficiency virus (HIV). In an attempt to enhance the silencing activity of the AgoshRNA molecules, we included the hepatitis delta virus (HDV) ribozyme at the 3' terminus, which generates a uniform 3' end instead of a 3' U-tail of variable length. We evaluated the impact of this 3'-end modification on AgoshRNA processing and its gene silencing activity and we demonstrate that this novel AgoshRNA-HDV design exhibits enhanced antiviral activity.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
37
|
Annese T, Tamma R, De Giorgis M, Ribatti D. microRNAs Biogenesis, Functions and Role in Tumor Angiogenesis. Front Oncol 2020; 10:581007. [PMID: 33330058 PMCID: PMC7729128 DOI: 10.3389/fonc.2020.581007] [Citation(s) in RCA: 151] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/27/2020] [Indexed: 12/19/2022] Open
Abstract
microRNAs (miRNAs) are small non-coding RNA molecules, evolutionary conserved. They target more than one mRNAs, thus influencing multiple molecular pathways, but also mRNAs may bind to a variety of miRNAs, either simultaneously or in a context-dependent manner. miRNAs biogenesis, including miRNA transcription, processing by Drosha and Dicer, transportation, RISC biding, and miRNA decay, are finely controlled in space and time. miRNAs are critical regulators in various biological processes, such as differentiation, proliferation, apoptosis, and development in both health and disease. Their dysregulation is involved in tumor initiation and progression. In tumors, they can act as onco-miRNAs or oncosuppressor-miRNA participating in distinct cellular pathways, and the same miRNA can perform both activities depending on the context. In tumor progression, the angiogenic switch is fundamental. miRNAs derived from tumor cells, endothelial cells, and cells of the surrounding microenvironment regulate tumor angiogenesis, acting as pro-angiomiR or anti-angiomiR. In this review, we described miRNA biogenesis and function, and we update the non-classical aspects of them. The most recent role in the nucleus, as transcriptional gene regulators and the different mechanisms by which they could be dysregulated, in tumor initiation and progression, are treated. In particular, we describe the role of miRNAs in sprouting angiogenesis, vessel co-option, and vasculogenic mimicry. The role of miRNAs in lymphoma angiogenesis is also discussed despite the scarcity of data. The information presented in this review reveals the need to do much more to discover the complete miRNA network regulating angiogenesis, not only using high-throughput computational analysis approaches but also morphological ones.
Collapse
Affiliation(s)
- Tiziana Annese
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Michelina De Giorgis
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| | - Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, Section of Human Anatomy and Histology, University of Bari Medical School, Bari, Italy
| |
Collapse
|
38
|
Genome-wide identification of Argonautes in Solanaceae with emphasis on potato. Sci Rep 2020; 10:20577. [PMID: 33239724 PMCID: PMC7689493 DOI: 10.1038/s41598-020-77593-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Regulatory small RNAs (sRNAs) play important roles in many fundamental processes in plant biology such as development, fertilization and stress responses. The AGO protein family has here a central importance in gene regulation based on their capacity to associate with sRNAs followed by mRNA targeting in a sequence-complementary manner. The present study explored Argonautes (AGOs) in the Solanaceae family, with emphasis on potato, Solanum tuberosum (St). A genome-wide monitoring was performed to provide a deeper insight into gene families, genomic localization, gene structure and expression profile against the potato late blight pathogen Phytophthora infestans. Among 15 species in the Solanaceae family we found a variation from ten AGOs in Nicotiana obtusifolia to 17 in N. tabacum. Comprehensive analyses of AGO phylogeny revealed duplication of AGO1, AGO10 and AGO4 paralogs during early radiation of Solanaceae. Fourteen AGOs were identified in potato. Orthologs of AGO8 and AGO9 were missing in the potato genome. However, AGO15 earlier annotated in tomato was identified. StAGO15 differs from the other paralogs having residues of different physico-chemical properties at functionally important amino acid positions. Upon pathogen challenge StAGO15 was significantly activated and hence may play a prominent role in sRNA-based regulation of potato defense.
Collapse
|
39
|
Martier R, Konstantinova P. Gene Therapy for Neurodegenerative Diseases: Slowing Down the Ticking Clock. Front Neurosci 2020; 14:580179. [PMID: 33071748 PMCID: PMC7530328 DOI: 10.3389/fnins.2020.580179] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/31/2020] [Indexed: 12/13/2022] Open
Abstract
Gene therapy is an emerging and powerful therapeutic tool to deliver functional genetic material to cells in order to correct a defective gene. During the past decades, several studies have demonstrated the potential of AAV-based gene therapies for the treatment of neurodegenerative diseases. While some clinical studies have failed to demonstrate therapeutic efficacy, the use of AAV as a delivery tool has demonstrated to be safe. Here, we discuss the past, current and future perspectives of gene therapies for neurodegenerative diseases. We also discuss the current advances on the newly emerging RNAi-based gene therapies which has been widely studied in preclinical model and recently also made it to the clinic.
Collapse
Affiliation(s)
- Raygene Martier
- Department of Research and Development, uniQure Biopharma B.V., Amsterdam, Netherlands
| | - Pavlina Konstantinova
- Department of Research and Development, uniQure Biopharma B.V., Amsterdam, Netherlands
| |
Collapse
|
40
|
Lundstrom K. Viral Vectors Applied for RNAi-Based Antiviral Therapy. Viruses 2020; 12:v12090924. [PMID: 32842491 PMCID: PMC7552024 DOI: 10.3390/v12090924] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 12/12/2022] Open
Abstract
RNA interference (RNAi) provides the means for alternative antiviral therapy. Delivery of RNAi in the form of short interfering RNA (siRNA), short hairpin RNA (shRNA) and micro-RNA (miRNA) have demonstrated efficacy in gene silencing for therapeutic applications against viral diseases. Bioinformatics has played an important role in the design of efficient RNAi sequences targeting various pathogenic viruses. However, stability and delivery of RNAi molecules have presented serious obstacles for reaching therapeutic efficacy. For this reason, RNA modifications and formulation of nanoparticles have proven useful for non-viral delivery of RNAi molecules. On the other hand, utilization of viral vectors and particularly self-replicating RNA virus vectors can be considered as an attractive alternative. In this review, examples of antiviral therapy applying RNAi-based approaches in various animal models will be described. Due to the current coronavirus pandemic, a special emphasis will be dedicated to targeting Coronavirus Disease-19 (COVID-19).
Collapse
|
41
|
Sheng P, Flood KA, Xie M. Short Hairpin RNAs for Strand-Specific Small Interfering RNA Production. Front Bioeng Biotechnol 2020; 8:940. [PMID: 32850763 PMCID: PMC7427337 DOI: 10.3389/fbioe.2020.00940] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
RNA interference (RNAi) is an effective mechanism for inhibiting gene expression at the post-transcriptional level. Expression of a messenger RNA (mRNA) can be inhibited by a ∼22-nucleotide (nt) small interfering (si)RNA with the corresponding reverse complementary sequence. Typically, a duplex of siRNA, composed of the desired siRNA and a passenger strand, is processed from a short hairpin RNA (shRNA) precursor by Dicer. Subsequently, one strand of the siRNA duplex is associated with Argonaute (Ago) protein for RNAi. Although RNAi is widely used, the off-target effect induced by the passenger strand remains a potential problem. Here, based on current understanding of endogenous precursor microRNA (pre-miRNA) hairpins, called Ago-shRNA and m7G-capped pre-miRNA, we discuss the principles of shRNA designs that produce a single siRNA from one strand of the hairpin.
Collapse
Affiliation(s)
- Peike Sheng
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States.,UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Krystal A Flood
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States.,UF Health Cancer Center, University of Florida, Gainesville, FL, United States
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL, United States.,UF Health Cancer Center, University of Florida, Gainesville, FL, United States.,UF Genetics Institute, University of Florida, Gainesville, FL, United States
| |
Collapse
|
42
|
Zolini AM, Block J, Rabaglino MB, Rincon G, Hoelker M, Bromfield JJ, Salilew-Wondim D, Hansen PJ. Genes associated with survival of female bovine blastocysts produced in vivo. Cell Tissue Res 2020; 382:665-678. [PMID: 32710275 DOI: 10.1007/s00441-020-03257-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/06/2020] [Indexed: 12/11/2022]
Abstract
The objective was to characterize the transcriptome profile of in vivo-derived female embryos competent to establish and maintain gestation. Blastocysts from superovulated heifers were bisected to generate two demi-embryos. One demi-embryo was transferred into a synchronized recipient and the other part was used for RNA-seq analysis. Data on transcript abundance was analyzed for 4 demi-embryos that established and maintained pregnancy to day 60 (designated as PP) and 3 that did not result in a pregnancy at day 30 (designated as NP). Using a false discovery rate of P < 0.10 as cutoff, a total of 155 genes were differentially expressed between PP and NP embryos, of which 73 genes were upregulated and 82 genes were downregulated in the PP group. The functional cluster with the greatest enrichment score for embryos that survived, representing 28 genes (48% of the annotated genes), was related to membrane proteins, particularly those related to olfaction and neural development and function. The functional cluster with the greatest enrichment score for downregulated genes in embryos that survived included terms related to oxidative phosphorylation, mitochondrial function, and transmembrane proteins. In conclusion, competence of in vivo-derived female bovine embryos to survive after transfer is associated with increased expression of genes encoding transmembrane proteins, perhaps indicative of differentiation of the inner cell mass to epiblast, and decreased expression of genes involved in oxidative phosphorylation, perhaps indicative of reduced metabolic activity.
Collapse
Affiliation(s)
- A M Zolini
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA
| | - J Block
- Zoetis Inc., Kalamazoo, MI, 49007, USA
| | - M B Rabaglino
- Instituto de Investigación en Ciencias de la Salud, CONICET, Córdoba, Argentina
- Quantitative Genetics, Bioinformatics and Computational Biology Group, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - G Rincon
- Zoetis Inc., Kalamazoo, MI, 49007, USA
| | - M Hoelker
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - J J Bromfield
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA
| | - D Salilew-Wondim
- Institute of Animal Science, Animal Breeding and Husbandry, University of Bonn, Bonn, Germany
- Teaching and Research Station Frankenforst, Faculty of Agriculture, University of Bonn, Königswinter, Germany
- Center of Integrated Dairy Research, University of Bonn, Bonn, Germany
| | - P J Hansen
- Department of Animal Sciences, D.H. Barron Reproductive and Perinatal Biology Research Program, and Genetics Institute, University of Florida, PO Box 110910, Gainesville, FL, 32611-0910, USA.
| |
Collapse
|
43
|
Evers MM, Konstantinova P. AAV5-miHTT gene therapy for Huntington disease: lowering both huntingtins. Expert Opin Biol Ther 2020; 20:1121-1124. [PMID: 32658606 DOI: 10.1080/14712598.2020.1792880] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Melvin M Evers
- Research, uniQure biopharma B.V , Amsterdam, The Netherlands
| | | |
Collapse
|
44
|
Jabandziev P, Bohosova J, Pinkasova T, Kunovsky L, Slaby O, Goel A. The Emerging Role of Noncoding RNAs in Pediatric Inflammatory Bowel Disease. Inflamm Bowel Dis 2020; 26:985-993. [PMID: 32009179 PMCID: PMC7301403 DOI: 10.1093/ibd/izaa009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Indexed: 12/19/2022]
Abstract
Prevalence of inflammatory bowel disease (IBD), a chronic inflammatory disorder of the gut, has been on the rise in recent years-not only in the adult population but also especially in pediatric patients. Despite the absence of curative treatments, current therapeutic options are able to achieve long-term remission in a significant proportion of cases. To this end, however, there is a need for biomarkers enabling accurate diagnosis, prognosis, and prediction of response to therapies to facilitate a more individualized approach to pediatric IBD patients. In recent years, evidence has continued to evolve concerning noncoding RNAs (ncRNAs) and their roles as integral factors in key immune-related cellular pathways. Specific deregulation patterns of ncRNAs have been linked to pathogenesis of various diseases, including pediatric IBD. In this article, we provide an overview of current knowledge on ncRNAs, their altered expression profiles in pediatric IBD patients, and how these are emerging as potentially valuable clinical biomarkers as we enter an era of personalized medicine.
Collapse
Affiliation(s)
- Petr Jabandziev
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Julia Bohosova
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Tereza Pinkasova
- Department of Pediatrics, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Lumir Kunovsky
- Department of Gastroenterology and Internal Medicine, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Department of Surgery, University Hospital Brno, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Ondrej Slaby
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Ajay Goel
- Department of Molecular Diagnostics and Experimental Therapeutics, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, California, USA
| |
Collapse
|
45
|
van Eijndhoven MAJ, Baglio SR, Pegtel DM. Packaging RNA drugs into extracellular vesicles. Nat Biomed Eng 2020; 4:6-8. [PMID: 31937943 DOI: 10.1038/s41551-019-0514-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Monique A J van Eijndhoven
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S Rubina Baglio
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
46
|
Hentzschel F, Mitesser V, Fraschka SAK, Krzikalla D, Carrillo EH, Berkhout B, Bártfai R, Mueller AK, Grimm D. Gene knockdown in malaria parasites via non-canonical RNAi. Nucleic Acids Res 2020; 48:e2. [PMID: 31680162 PMCID: PMC7145648 DOI: 10.1093/nar/gkz927] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/01/2019] [Accepted: 10/07/2019] [Indexed: 12/13/2022] Open
Abstract
The lack of endogenous RNAi machinery in the malaria parasite Plasmodium hampers gene annotation and hence antimalarial drug and vaccine development. Here, we engineered rodent Plasmodium berghei to express a minimal, non-canonical RNAi machinery that solely requires Argonaute 2 (Ago2) and a modified short hairpin RNA, so-called AgoshRNA. Using this strategy, we achieved robust and specific gene knockdown throughout the entire parasite life cycle. We also successfully silenced the endogenous gene perforin-like protein 2, phenocopying a full gene knockout. Transcriptionally restricting Ago2 expression to the liver stage further enabled us to perform a stage-specific gene knockout. The RNAi-competent Plasmodium lines reported here will be a valuable resource for loss-of-function phenotyping of the many uncharacterized genes of Plasmodium in low or high throughput, without the need to engineer the target gene locus. Thereby, our new strategy and transgenic Plasmodium lines will ultimately benefit the discovery of urgently needed antimalarial drug and vaccine candidates. Generally, the ability to render RNAi-negative organisms RNAi-competent by mere introduction of two components, Ago2 and AgoshRNA, is a unique paradigm that should find broad applicability in other species.
Collapse
Affiliation(s)
- Franziska Hentzschel
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Vera Mitesser
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | | | - Daria Krzikalla
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Elena Herrera Carrillo
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 15, K3-110, 1105 AZ Amsterdam, The Netherlands
| | - Ben Berkhout
- Amsterdam UMC, University of Amsterdam, Department of Medical Microbiology, Meibergdreef 15, K3-110, 1105 AZ Amsterdam, The Netherlands
| | - Richárd Bártfai
- Radboud University, Dept. of Molecular Biology, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Ann-Kristin Mueller
- Heidelberg University Hospital, Center for Infectious Diseases / Parasitology, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg
| | - Dirk Grimm
- Heidelberg University Hospital, Center for Infectious Diseases / Virology, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,BioQuant Center, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.,German Center for Infection Research (DZIF), partner site Heidelberg.,German Center for Cardiovascular Research (DZHK), partner site Heidelberg
| |
Collapse
|
47
|
Ida H, Tanabe T, Tachibana A. Improved cancer inhibition by miR-143 with a longer passenger strand than natural miR-143. Biochem Biophys Res Commun 2020; 524:810-815. [PMID: 32037092 DOI: 10.1016/j.bbrc.2020.02.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 02/01/2020] [Indexed: 01/25/2023]
Abstract
We improved miR-143, which inhibits the growth of cancer cells, by the replacement of the passenger strand. As a result, new miR-143 variants were developed with a single mismatch at the 4th position from the 3'-terminal of the guide strand and an RNA passenger strand with a G-rich flanking DNA region. A reporter gene assay showed that the 80% inhibitory concentration of the new miR-143, long miR-143, was 69 pM, which was three times lower than that of natural miR-143. Long miR-143 inhibited the growth of two cancer cell lines, HeLa-S3 and MIAPaCa-2, more effectively than natural miR-143. This method could be applied to other miRNA families and should be useful for the development of miRNA drugs.
Collapse
Affiliation(s)
- Hiroyuki Ida
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Toshizumi Tanabe
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan
| | - Akira Tachibana
- Department of Bioengineering, Graduate School of Engineering, Osaka City University, Sugimoto 3-3-138, Sumiyoshi-ku, Osaka, 558-8585, Japan.
| |
Collapse
|
48
|
Kimura Y, Shu Z, Ito M, Abe N, Nakamoto K, Tomoike F, Shuto S, Ito Y, Abe H. Intracellular build-up RNAi with single-strand circular RNAs as siRNA precursors. Chem Commun (Camb) 2020; 56:466-469. [DOI: 10.1039/c9cc04872c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We herein report a new approach for RNA interference, so-called “build-up RNAi” approach, where single-strand circular RNAs with a photocleavable unit or disulfide moiety were used as siRNA precursors.
Collapse
Affiliation(s)
- Yasuaki Kimura
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Zhaoma Shu
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Mika Ito
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12, Nishi-6, Kita-ku
- Sapporo 060-0812
- Japan
| | - Naoko Abe
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Kosuke Nakamoto
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Fumiaki Tomoike
- Research Center for Materials Science
- Nagoya University
- Nagoya 464-8602
- Japan
| | - Satoshi Shuto
- Faculty of Pharmaceutical Sciences
- Hokkaido University
- Kita-12, Nishi-6, Kita-ku
- Sapporo 060-0812
- Japan
| | - Yoshihiro Ito
- Emergent Bioengineering Materials Research Team
- RIKEN Center for Emergent Matter Science
- Wako-Shi
- Japan
| | - Hiroshi Abe
- Department of Chemistry
- Graduate School of Science
- Nagoya University
- Nagoya 464-8602
- Japan
| |
Collapse
|
49
|
Stavast CJ, Erkeland SJ. The Non-Canonical Aspects of MicroRNAs: Many Roads to Gene Regulation. Cells 2019; 8:cells8111465. [PMID: 31752361 PMCID: PMC6912820 DOI: 10.3390/cells8111465] [Citation(s) in RCA: 246] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/14/2019] [Accepted: 11/16/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are critical regulators of gene expression. As miRNAs are frequently deregulated in many human diseases, including cancer and immunological disorders, it is important to understand their biological functions. Typically, miRNA-encoding genes are transcribed by RNA Polymerase II and generate primary transcripts that are processed by RNase III-endonucleases DROSHA and DICER into small RNAs of approximately 21 nucleotides. All miRNAs are loaded into Argonaute proteins in the RNA-induced silencing complex (RISC) and act as post-transcriptional regulators by binding to the 3'- untranslated region (UTR) of mRNAs. This seed-dependent miRNA binding inhibits the translation and/or promotes the degradation of mRNA targets. Surprisingly, recent data presents evidence for a target-mediated decay mechanism that controls the level of specific miRNAs. In addition, several non-canonical miRNA-containing genes have been recently described and unexpected functions of miRNAs have been identified. For instance, several miRNAs are located in the nucleus, where they are involved in the transcriptional activation or silencing of target genes. These epigenetic modifiers are recruited by RISC and guided by miRNAs to specific loci in the genome. Here, we will review non-canonical aspects of miRNA biology, including novel regulators of miRNA expression and functions of miRNAs in the nucleus.
Collapse
|
50
|
Martier R, Sogorb-Gonzalez M, Stricker-Shaver J, Hübener-Schmid J, Keskin S, Klima J, Toonen LJ, Juhas S, Juhasova J, Ellederova Z, Motlik J, Haas E, van Deventer S, Konstantinova P, Nguyen HP, Evers MM. Development of an AAV-Based MicroRNA Gene Therapy to Treat Machado-Joseph Disease. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:343-358. [PMID: 31828177 PMCID: PMC6889651 DOI: 10.1016/j.omtm.2019.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 10/22/2019] [Indexed: 01/06/2023]
Abstract
Spinocerebellar ataxia type 3 (SCA3), or Machado-Joseph disease (MJD), is a progressive neurodegenerative disorder caused by a CAG expansion in the ATXN3 gene. The expanded CAG repeat is translated into a prolonged polyglutamine repeat in the ataxin-3 protein and accumulates within inclusions, acquiring toxic properties, which results in degeneration of the cerebellum and brain stem. In the current study, a non-allele-specific ATXN3 silencing approach was investigated using artificial microRNAs engineered to target various regions of the ATXN3 gene (miATXN3). The miATXN3 candidates were screened in vitro based on their silencing efficacy on a luciferase (Luc) reporter co-expressing ATXN3. The three best miATXN3 candidates were further tested for target engagement and potential off-target activity in induced pluripotent stem cells (iPSCs) differentiated into frontal brain-like neurons and in a SCA3 knockin mouse model. Besides a strong reduction of ATXN3 mRNA and protein, small RNA sequencing revealed efficient guide strand processing without passenger strands being produced. We used different methods to predict alteration of off-target genes upon AAV5-miATXN3 treatment and found no evidence for unwanted effects. Furthermore, we demonstrated in a large animal model, the minipig, that intrathecal delivery of AAV5 can transduce the main areas affected in SCA3 patients. These results proved a strong basis to move forward to investigate distribution, efficacy, and safety of AAV5-miATXN3 in large animals.
Collapse
Affiliation(s)
- Raygene Martier
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Marina Sogorb-Gonzalez
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Janice Stricker-Shaver
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | | | - Sonay Keskin
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Jiri Klima
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Lodewijk J Toonen
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Zdenka Ellederova
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Libechov, Czech Republic
| | - Eva Haas
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Tuebingen, Germany
| | - Sander van Deventer
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands.,Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, the Netherlands
| | - Pavlina Konstantinova
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| | - Huu Phuc Nguyen
- Department of Human Genetics, Medical Faculty, Ruhr University Bochum, Bochum, Germany
| | - Melvin M Evers
- Department of Research & Development, uniQure Biopharma B.V., Amsterdam, the Netherlands
| |
Collapse
|