1
|
Vasisth R, Sriranga KR, Chitkara M, Gurao A, Singh LP, Dige MS, Sodhi M, Mukesh M, Kumar P, Singh P, Kataria RS. Serum Biochemical and Gene Expression Changes in the Spermatozoa of Buffalo Bulls Under Heat Stress. Biochem Genet 2025:10.1007/s10528-025-11122-2. [PMID: 40341517 DOI: 10.1007/s10528-025-11122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 04/24/2025] [Indexed: 05/10/2025]
Abstract
Environmental heat stress is a major concern in livestock production especially in water buffalo, which are more sensitive to heat stress. Buffalo bulls experiencing heat stress exhibit reduced feed intake and semen production, triggering stress responses at multiple levels. This comprehensive study delves into the understanding of the complex nature of heat stress responses in Murrah bulls through gene expression analysis. Murrah bulls were categorized into a seasonally non-affected (n = 6) and seasonally affected (n = 6) groups, on the basis of semen quality in different seasons, classified as hot summer, comfort and winter. The study has revealed that heat stress having an impact on physiological variables including scrotal temperature and respiration rate as well as serum antioxidants levels. Additionally, the expression of genes in response to heat stress and oxidative stress was analyzed in peripheral blood mononuclear cell of the categorized bulls. The study also includes expression analysis of targeted semen quality genes in spermatozoa of the target bulls. The seasonal fluctuations have been noticed to have an influence on the physiological, biochemical, and molecular levels among the bulls with varying semen quality under heat stress. Significant differences were observed in the scrotal infrared thermography and expression of heat shock proteins as well as leptin gene in the both groups, specifically during the summer season. The outcome of this study contributes to the holistic understanding of heat stress resilience in Murrah buffalo bulls and provides foundation for future strategies to improve their well-being and better reproductive efficiency under heat stress conditions.
Collapse
Affiliation(s)
- Rashi Vasisth
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
- ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | | | - Meenakshi Chitkara
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
- ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ankita Gurao
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Lalit Pratap Singh
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
- ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | | | - Monika Sodhi
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Manishi Mukesh
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India
| | - Pradeep Kumar
- ICAR-Central Institute for Research On Buffaloes, Hisar, Haryana, 125001, India
| | - Pawan Singh
- ICAR- National Dairy Research Institute, Karnal, Haryana, 132001, India
| | - Ranjit Singh Kataria
- ICAR- National Bureau of Animal Genetic Resources, Karnal, Haryana, 132001, India.
| |
Collapse
|
2
|
Donghia R, Di Nicola E, Tatoli R, Forte G, Lepore Signorile M, Bonfiglio C, Latrofa M, De Marco K, Manghisi A, Disciglio V, Fasano C, Sanese P, Cariola F, Buonadonna AL, Giannelli G, Grossi V, Simone C. The Protective Effect of FOXO3 rs2802292 G-Allele on Food Intake in a Southern Italian Cohort Affected by MASLD. Nutrients 2025; 17:1315. [PMID: 40284181 PMCID: PMC12030307 DOI: 10.3390/nu17081315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/27/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
Background: Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) is a cluster of conditions characterized by accumulations of fat, metabolic factors such as obesity, diabetes and high cholesterol. MASLD is now the leading cause of chronic liver disease worldwide, with a rapidly increasing trend. We aimed to demonstrate that genetic variants of rs2802292 SNP can influence the development of MASLD even after many years. Methods: We studied 650 participants from the NUTRIHEP cohort, both at baseline (2005-2006) and at first recall (2014-2018), and genotyped rs2802292. The validated European Prospective Investigation into Cancer and Nutrition (EPIC) questionnaire was administered during the visit, and each single food was assigned to one of 33 groups. Results: Associations of food intake at baseline with MASLD were found in the first recall, for each genotype, GG, GT, and TT, and several covariates were used to adjust models. Dressing fats other than olive oil resulted protection against MASLD in GG subjects, whereas seed oil, juices, and spirits resulted in protection against MASLD for GT subjects. An increased risk of MASLD was found for subjects with the TT genotype for white meat intake (OR = 1.018, p = 0.031, 1.002 to 1.035 95% C.I.), ready-to-eat dishes (OR = 1.015, p = 0.033, 1.001 to 1.029 95% C.I.), processed meat (OR = 1.093, p = 0.003, 1.031 to 1.158 95% C.I.), and processed fish (OR = 1.085, p = 0.037, 1.005 to 1.172 95% C.I.). Conclusions: Subjects with the TT genotype had a higher risk of developing MASLD than subjects with other genotypes. A healthier lifestyle is important to counteract liver disease.
Collapse
Affiliation(s)
- Rossella Donghia
- Data Science Unit, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (R.D.); (R.T.); (C.B.)
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Rossella Tatoli
- Data Science Unit, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (R.D.); (R.T.); (C.B.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Caterina Bonfiglio
- Data Science Unit, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (R.D.); (R.T.); (C.B.)
| | - Marialaura Latrofa
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Andrea Manghisi
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Filomena Cariola
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Antonia Lucia Buonadonna
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (E.D.N.); (G.F.); (M.L.S.); (M.L.); (K.D.M.); (A.M.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
3
|
O'Mahony C, Hidalgo-Lanussa O, Barreto GE. Unveiling FOXO3's metabolic contribution to menopause and Alzheimer's disease. Exp Gerontol 2025; 200:112679. [PMID: 39778695 DOI: 10.1016/j.exger.2025.112679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 01/03/2025] [Accepted: 01/05/2025] [Indexed: 01/11/2025]
Abstract
The increasing prevalence of Alzheimer's disease (AD) calls for a comprehensive exploration of its complex etiology, with a focus on sex-specific vulnerability, particularly the heightened susceptibility observed in postmenopausal women. Neurometabolic alterations during the endocrine transition emerge as early indicators of AD pathology, including reduced glucose metabolism and increased amyloid-beta (Aβ) deposition. The fluctuating endocrine environment, marked by declining estradiol levels and reduced estrogen receptor beta (ERβ) activity, further exacerbates this process. In this context, here we explore the potential of forkhead box O3 (FOXO3) as a critical mediator linking metabolic disturbances to hormonal decline. We propose that FOXO3 plays a key role in the intersection of menopause and AD, given its dysregulation in both AD patients and postmenopausal women, modulating cellular metabolism through interactions with the AMPK/AKT/PI3K pathways. This relationship highlights the intersection between hormonal changes and increased AD susceptibility. This review aims to open a discussion on FOXO3's contribution to the metabolic dysregulation seen in menopause and its impact on the progression of AD. Understanding the functional role of FOXO3 in menopause-associated metabolic changes could lead to targeted therapeutic strategies, offering novel insights for managing for this condition.
Collapse
Affiliation(s)
- Christopher O'Mahony
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - Oscar Hidalgo-Lanussa
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick V94 T9PX, Ireland.
| |
Collapse
|
4
|
Qiu X, Lu Y, Mu C, Tang P, Liu Y, Huang Y, Luo H, Liu JY, Li X. The Biomarkers in Extreme Longevity: Insights Gained from Metabolomics and Proteomics. Int J Med Sci 2024; 21:2725-2744. [PMID: 39512690 PMCID: PMC11539388 DOI: 10.7150/ijms.98778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/10/2024] [Indexed: 11/15/2024] Open
Abstract
The pursuit of extreme longevity is a popular topic. Advanced technologies such as metabolomics and proteomics have played a crucial role in unraveling complex molecular interactions and identifying novel longevity-related biomarkers in long-lived individuals. This review summarizes key longevity-related biomarkers identified through metabolomics, including high levels of omega-3 polyunsaturated fatty acids (PUFAs), short-chain fatty acids (SCFAs) and sphingolipids, as well as low levels of tryptophan. Proteomics analyses have highlighted longevity-related proteins such as apolipoprotein E (APOE) and pleiotrophin (PTN), along with lower S-nitrosylated and higher glycosylated proteins found from post-translational modification proteomics as potential biomarkers. We discuss the molecular mechanisms that could support the above biomarkers' potential for healthy longevity, including metabolic regulation, immune homeostasis maintenance, and resistance to cellular oxidative stress. Moreover, multi-omics studies of various long-lived cohorts are encompassed, focusing on how the integration of various omics technologies has contributed to the understanding of longevity. This comprehensive review aims to provide new biological insights and pave the way for promoting health span.
Collapse
Affiliation(s)
- Xiaorou Qiu
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Yixian Lu
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Chao Mu
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Peihua Tang
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Yueli Liu
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| | - Yongmei Huang
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Hui Luo
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
| | - Jun-Yan Liu
- CNTTI of the Institute of Life Sciences & Anesthesia Department of the Second Affiliated Hospital, Chongqing Medical University, Chongqing, 400016, China
- Basic Medicine Research and Innovation Center for Novel Target and Therapeutic Intervention, Chongqing Medical University, Chongqing, 400016, China
| | - Xuemeng Li
- Zhanjiang Key Laboratory of Human Microecology and Clinical Translation Research, the Marine Biomedical Research Institute, College of Basic Medicine, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524000, China
| |
Collapse
|
5
|
Forte G, Donghia R, Lepore Signorile M, Tatoli R, Bonfiglio C, Losito F, De Marco K, Manghisi A, Guglielmi FA, Disciglio V, Fasano C, Sanese P, Cariola F, Buonadonna AL, Grossi V, Giannelli G, Simone C. Exploring the Relationship of rs2802292 with Diabetes and NAFLD in a Southern Italian Cohort-Nutrihep Study. Int J Mol Sci 2024; 25:9512. [PMID: 39273459 PMCID: PMC11394752 DOI: 10.3390/ijms25179512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/15/2024] Open
Abstract
Background: The minor G-allele of FOXO3 rs2802292 is associated with human longevity. The aim of this study was to test the protective effect of the variant against the association with type 2 Diabetes and NAFLD. Methods: rs2802292 was genotyped in a large population of middle-aged subjects (n = 650) from a small city in Southern Italy. All participants were interviewed to collect information about lifestyle and dietary habits; clinical characteristics were recorded, and blood samples were collected from all subjects. The association between rs2802292 and NAFLD or diabetes was tested using a logistic model and mediation analysis adjusted for covariates. Results: Overall, the results indicated a statistical association between diabetes and rs2802292, especially for the TT genotype (OR = 2.14, 1.01 to 4.53 95% C.I., p = 0.05) or in any case for those who possess the G-allele (OR = 0.45, 0.25 to 0.81 95% C.I., p = 0.008). Furthermore, we found a mediation effect of rs2802292 on diabetes (as mediator) and NAFLD. There is no direct relationship between rs2802292 and NAFLD, but the effect is direct (β = 0.10, -0.003 to 0.12 95% C.I., p = 0.04) on diabetes, but only in TT genotypes. Conclusions: The data on our cohort indicate that the longevity-associated FOXO3 variant may have protective effects against diabetes and NAFLD.
Collapse
Affiliation(s)
- Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Rossella Donghia
- Data Science Unit, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (R.D.); (R.T.); (C.B.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Rossella Tatoli
- Data Science Unit, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (R.D.); (R.T.); (C.B.)
| | - Caterina Bonfiglio
- Data Science Unit, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (R.D.); (R.T.); (C.B.)
| | - Francesco Losito
- Gastroenterology Unit, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Andrea Manghisi
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Filomena Anna Guglielmi
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Filomena Cariola
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Antonia Lucia Buonadonna
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
| | - Gianluigi Giannelli
- Scientific Direction, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy;
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology, IRCCS “Saverio de Bellis” Research Hospital, 70013 Castellana Grotte, Italy; (G.F.); (M.L.S.); (K.D.M.); (A.M.); (F.A.G.); (V.D.); (C.F.); (P.S.); (F.C.); (A.L.B.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
6
|
Bierhoff H. [Genetics, epigenetics, and environmental factors in life expectancy-What role does nature-versus-nurture play in aging?]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2024; 67:521-527. [PMID: 38637469 PMCID: PMC11093831 DOI: 10.1007/s00103-024-03873-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/20/2024] [Indexed: 04/20/2024]
Abstract
In Germany and worldwide, the average age of the population is continuously rising. With this general increase in chronological age, the focus on biological age, meaning the actual health and fitness status, is becoming more and more important. The key question is to what extent the age-related decline in fitness is genetically predetermined or malleable by environmental factors and lifestyle.Many epigenetic studies in aging research have provided interesting insights in this nature-versus-nurture debate. In most model organisms, aging is associated with specific epigenetic changes, which can be countered by certain interventions like moderate caloric restriction or increased physical activity. Since these interventions also have positive effects on lifespan and health, epigenetics appears to be the interface between environmental factors and the aging process. This notion is supported by the fact that an epigenetic drift occurs through the life course of identical twins, which is related to the different manifestations of aging symptoms. Furthermore, biological age can be determined with high precision based on DNA methylation patterns, further emphasizing the importance of epigenetics in aging.This article provides an overview of the importance of genetic and epigenetic parameters for life expectancy. A major focus will be on the possibilities of maintaining a young epigenome through lifestyle and environmental factors, thereby slowing down biological aging.
Collapse
Affiliation(s)
- Holger Bierhoff
- Institut für Biochemie und Biophysik, Friedrich-Schiller-Universität Jena, Hans-Knöll-Straße 2, 07745, Jena, Deutschland.
- Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut (FLI), Jena, Deutschland.
| |
Collapse
|
7
|
Chan S, Wang Y, Luo Y, Zheng M, Xie F, Xue M, Yang X, Xue P, Zha C, Fang M. Differential Regulation of Male-Hormones-Related Enhancers Revealed by Chromatin Accessibility and Transcriptional Profiles in Pig Liver. Biomolecules 2024; 14:427. [PMID: 38672444 PMCID: PMC11048672 DOI: 10.3390/biom14040427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/28/2024] Open
Abstract
Surgical castration can effectively avoid boar taint and improve pork quality by removing the synthesis of androstenone in the testis, thereby reducing its deposition in adipose tissue. The expression of genes involved in testis-derived hormone metabolism was altered following surgical castration, but the upstream regulatory factors and underlying mechanism remain unclear. In this study, we systematically profiled chromatin accessibility and transcriptional dynamics in liver tissue of castrated and intact full-sibling Yorkshire pigs. First, we identified 897 differentially expressed genes and 6864 differential accessible regions (DARs) using RNA- and ATAC-seq. By integrating the RNA- and ATAC-seq results, 227 genes were identified, and a significant positive correlation was revealed between differential gene expression and the ATAC-seq signal. We constructed a transcription factor regulatory network after motif analysis of DARs and identified a candidate transcription factor (TF) SP1 that targeted the HSD3B1 gene, which was responsible for the metabolism of androstenone. Subsequently, we annotated DARs by incorporating H3K27ac ChIP-seq data, marking 2234 typical enhancers and 245 super enhancers involved in the regulation of all testis-derived hormones. Among these, four typical enhancers associated with HSD3B1 were identified. Furthermore, an in-depth investigation was conducted on the androstenone-related enhancers, and an androstenone-related mutation was identified in a newfound candidatetypical enhancer (andEN) with dual-luciferase assays. These findings provide further insights into how enhancers function as links between phenotypic and non-coding area variations. The discovery of upstream TF and enhancers of HSD3B1 contributes to understanding the regulatory networks of androstenone metabolism and provides an important foundation for improving pork quality.
Collapse
Affiliation(s)
- Shuheng Chan
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Yubei Wang
- Sanya Institute of China Agricultural University, Sanya 572025, China
| | - Yabiao Luo
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Meili Zheng
- Beijing General Station of Animal Husbandry, Beijing 100107, China
| | - Fuyin Xie
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Mingming Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Xiaoyang Yang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Pengxiang Xue
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Chengwan Zha
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
| | - Meiying Fang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, MOA Key Laboratory of Animal Genetics and Breeding, Beijing Key Laboratory for Animal Genetic Improvement, State Key Laboratory of Animal Biotech Breeding, Frontiers Science Center for Molecular Design Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (S.C.); (Y.L.); (P.X.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
| |
Collapse
|
8
|
Smulders L, Deelen J. Genetics of human longevity: From variants to genes to pathways. J Intern Med 2024; 295:416-435. [PMID: 37941149 DOI: 10.1111/joim.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The current increase in lifespan without an equivalent increase in healthspan poses a grave challenge to the healthcare system and a severe burden on society. However, some individuals seem to be able to live a long and healthy life without the occurrence of major debilitating chronic diseases, and part of this trait seems to be hidden in their genome. In this review, we discuss the findings from studies on the genetic component of human longevity and the main challenges accompanying these studies. We subsequently focus on results from genetic studies in model organisms and comparative genomic approaches to highlight the most important conserved longevity-associated pathways. By combining the results from studies using these different approaches, we conclude that only five main pathways have been consistently linked to longevity, namely (1) insulin/insulin-like growth factor 1 signalling, (2) DNA-damage response and repair, (3) immune function, (4) cholesterol metabolism and (5) telomere maintenance. As our current approaches to study the relevance of these pathways in humans are limited, we suggest that future studies on the genetics of human longevity should focus on the identification and functional characterization of rare genetic variants in genes involved in these pathways.
Collapse
Affiliation(s)
- Larissa Smulders
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
9
|
Pessa JC, Joutsen J, Sistonen L. Transcriptional reprogramming at the intersection of the heat shock response and proteostasis. Mol Cell 2024; 84:80-93. [PMID: 38103561 DOI: 10.1016/j.molcel.2023.11.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 12/19/2023]
Abstract
Cellular homeostasis is constantly challenged by a myriad of extrinsic and intrinsic stressors. To mitigate the stress-induced damage, cells activate transient survival programs. The heat shock response (HSR) is an evolutionarily well-conserved survival program that is activated in response to proteotoxic stress. The HSR encompasses a dual regulation of transcription, characterized by rapid activation of genes encoding molecular chaperones and concomitant global attenuation of non-chaperone genes. Recent genome-wide approaches have delineated the molecular depth of stress-induced transcriptional reprogramming. The dramatic rewiring of gene and enhancer networks is driven by key transcription factors, including heat shock factors (HSFs), that together with chromatin-modifying enzymes remodel the 3D chromatin architecture, determining the selection of either gene activation or repression. Here, we highlight the current advancements of molecular mechanisms driving transcriptional reprogramming during acute heat stress. We also discuss the emerging implications of HSF-mediated stress signaling in the context of physiological and pathological conditions.
Collapse
Affiliation(s)
- Jenny C Pessa
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jenny Joutsen
- Department of Pathology, Lapland Central Hospital, Lapland Wellbeing Services County, Rovaniemi, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| |
Collapse
|
10
|
Liu K, Liu J, Liu Y, Wang H, Wang Z, Liu J, Wen S. Association study of WNK1 genetic variants and essential hypertension risk in the Northern Han Chinese in Beijing. Front Genet 2023; 14:1234536. [PMID: 37779914 PMCID: PMC10541150 DOI: 10.3389/fgene.2023.1234536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Background: Essential hypertension (EH) is a complex disorder resulting from interaction of genetic and environmental factors. Lysine deficient protein kinase 1 (WNK1) plays a very important role in maintaining renal potassium, sodium and chlorine ions balance as well as the regulation of blood pressure, so the WNK1 gene is considered a key gene for EH. This study thus sought to evaluate possible genetic associations between the WNK1 genetic variants and EH risk in the Northern Han Chinese population in Beijing. Methods: This study included 476 hypertensive subjects and 491 normotensive subjects. A total of 12 tag SNVs of WNK1 gene were genotyped successfully by TaqMan assay. Comparisons of the genotypic and allelic frequency between cases and controls were made by using the chi-square test. Logistic regression analyses were performed under different genetic models, and haplotype analysis was also conducted. Results: A total of 12 SNVs were identified as the tag SNVs for WNK1 gene. Significant associations were observed between WNK1 gene rs7305099 variant and EH risk, and T allele influenced hypertension risk in a protective manner. After correcting for multiple testing using Bonferroni, the significance remained for the SNV of rs7305099 in three genetic models [allele comparison, p < 0.0002, OR = 0.627, 95%CI (0.491-0.801); homozygote comparison, p < 0.0003, OR = 0.278, 95%CI (0.140-0.552); additive model, p < 0.0003, OR = 0.279, 95%CI (0.140-0.553)]. In the haplotype analyses, we found that the haplotype A-A-A-C-G-G-G was significantly associated with increased risk for EH (p = 0.043, OR = 1.23). Conclusion: Our data suggested that the rs7305099 genetic variant and the haplotype A-A-A-C-G-G-G on WNK1 gene might be associated with the susceptibility of EH in the Northern Han Chinese population. These could provide evidences to the risk assessment, early prevention and individualized therapy of EH to some extent.
Collapse
Affiliation(s)
- Kuo Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Jielin Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Ya Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Hao Wang
- Department of Cardiology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, Henan, China
| | - Zuoguang Wang
- Department of Hypertension Research, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Jinghua Liu
- Department of Cardiology, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| | - Shaojun Wen
- Department of Hypertension Research, Beijing Anzhen Hospital, Beijing Institute of Heart Lung and Blood Vessel Diseases, Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Llargués-Sistac G, Bonjoch L, Castellvi-Bel S. HAP1, a new revolutionary cell model for gene editing using CRISPR-Cas9. Front Cell Dev Biol 2023; 11:1111488. [PMID: 36936678 PMCID: PMC10020200 DOI: 10.3389/fcell.2023.1111488] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/22/2023] [Indexed: 03/06/2023] Open
Abstract
The use of next-generation sequencing (NGS) technologies has been instrumental in the characterization of the mutational landscape of complex human diseases like cancer. But despite the enormous rise in the identification of disease candidate genetic variants, their functionality is yet to be fully elucidated in order to have a clear implication in patient care. Haploid human cell models have become the tool of choice for functional gene studies, since they only contain one copy of the genome and can therefore show the unmasked phenotype of genetic variants. Over the past few years, the human near-haploid cell line HAP1 has widely been consolidated as one of the favorite cell line models for functional genetic studies. Its rapid turnover coupled with the fact that only one allele needs to be modified in order to express the subsequent desired phenotype has made this human cell line a valuable tool for gene editing by CRISPR-Cas9 technologies. This review examines the recent uses of the HAP1 cell line model in functional genetic studies and high-throughput genetic screens using the CRISPR-Cas9 system. It covers its use in an attempt to develop new and relevant disease models to further elucidate gene function, and create new ways to understand the genetic basis of human diseases. We will cover the advantages and potential of the use of CRISPR-Cas9 technology on HAP1 to easily and efficiently study the functional interpretation of gene function and human single-nucleotide genetic variants of unknown significance identified through NGS technologies, and its implications for changes in clinical practice and patient care.
Collapse
Affiliation(s)
- Gemma Llargués-Sistac
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Barcelona, Spain
| | | | - Sergi Castellvi-Bel
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Gastroenterology Department, Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Barcelona, Spain
| |
Collapse
|
12
|
Feng Z, Huang P, Zhang J, Xia X, Zhang AM, Zeng T, Chen Q, Zhu C, Tan W, Zhang Y, Yue M. KIR2DL4/HLA-G polymorphisms were associated with HCV infection susceptibility among Chinese high-risk population. J Med Virol 2023; 95:e28645. [PMID: 36890645 DOI: 10.1002/jmv.28645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/10/2023]
Abstract
Killer-cell immunoglobulin-like receptors 2DL4 (KIR2DL4) and the human leukocyte antigen class I-G (HLA-G) display vital parts in immune responses against hepatitis C virus (HCV) infection. We select four potentially functional single nucleotide polymorphisms (SNPs) of KIR/HLA to explore the associations between KIR2DL4/HLA-G genetic variants and HCV infection results. In the present case-control study, a total of 2225 HCV-infected high-risk subjects, including 1778 paid blood donors (PBD) and 447 drug users were consecutively recruited before treatment from 2011 to 2018. KIR2DL4-rs660773, KIR2DL4-rs660437, HLA-G-rs9380142, and HLA-G-rs1707 SNPs were sorted as genotypes in the subdivided groups, involving 1095 uninfected controls subjects, 432 spontaneous HCV clearance subjects and 698 HCV persistent infection subjects. After genotyping experiments using the TaqMan-MGB assay, modified logistic regression was used to calculate the correlation among the SNPs and HCV infection. The SNPs were functionally annotated using bioinformatics analysis. Following adjusting by age, sex, alanine aminotransferase, aspartate aminotransferase, IFNL3-rs12979860, IFNL3-rs8099917, and the infection route, the logistic regression analysis discovered that KIR2DL4-rs660773 and HLA-G-rs9380142 were correlated with vulnerability to HCV infection (all p < 0.05). In a locus-dosage way, compared with subjects carrying the rs9380142-AA or rs660773-AA genotypes, subjects with rs9380142-AG or rs660773-AG/GG (all p < 0.05) were more vulnerable to HCV infection; the overall impact of their risk genotypes (rs9380142-AGrs660773-AG/GG) was correlated with an elevated incidence of HCV infection (ptrend < 0.001). In the Haplotype analysis, patients with haplotype AG were more likely to contract HCV compared to those with the highest common AA haplotype (p = 0.002) were higher in susceptibility to infect HCV. The SNPinfo web server estimated that rs660773 is a transcription factor binding site, whereas rs9380142 is a potential microRNA-binding site. In two Chinese high-risk population (PBD and drug uesrs), KIR2DL4 rs660773-G and HLA-G rs9380142-G alleles polymorphisms are related to HCV susceptibility. KIR2DL4/HLA-G pathway genes might affect the innate immune responses by regulating KIR2DL4/HLA-G transcription and translation play a potential role in HCV infection.
Collapse
Affiliation(s)
- Zepei Feng
- Department of Epidemiology and Biostatistics, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, China
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Peng Huang
- Department of Epidemiology and Biostatistics, Key Laboratory of Infectious Diseases, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Jinwei Zhang
- Department of Anesthesiology, Affiliated Drum Tower Hospital of Medical College of Nanjing University, Nanjing, China
| | - Xueshan Xia
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- School of Basic Medicine, Kunming Medical University, Kunming, China
| | - A-Mei Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Tian Zeng
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qiong Chen
- Institute of Epidemiology and Microbiology, Eastern Theater Command Centers for Disease Prevention and Control, Nanjing, China
| | - Chuanlong Zhu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- Department of Tropical Diseases, The Second Affiliated Hospital of Hainan Medical University, Hainan, China
| | - Weilong Tan
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Yun Zhang
- Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
- Institute of Epidemiology and Microbiology, Eastern Theater Command Centers for Disease Prevention and Control, Nanjing, China
| | - Ming Yue
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
13
|
Santo EE, Ribel‐Madsen R, Stroeken PJ, de Boer VCJ, Hansen NS, Commandeur M, Vaag AA, Versteeg R, Paik J, Westerhout EM. FOXO3A-short is a novel regulator of non-oxidative glucose metabolism associated with human longevity. Aging Cell 2023; 22:e13763. [PMID: 36617632 PMCID: PMC10014046 DOI: 10.1111/acel.13763] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/06/2022] [Accepted: 12/09/2022] [Indexed: 01/10/2023] Open
Abstract
Intronic single-nucleotide polymorphisms (SNPs) in FOXO3A are associated with human longevity. Currently, it is unclear how these SNPs alter FOXO3A functionality and human physiology, thereby influencing lifespan. Here, we identify a primate-specific FOXO3A transcriptional isoform, FOXO3A-Short (FOXO3A-S), encoding a major longevity-associated SNP, rs9400239 (C or T), within its 5' untranslated region. The FOXO3A-S mRNA is highly expressed in the skeletal muscle and has very limited expression in other tissues. We find that the rs9400239 variant influences the stability and functionality of the primarily nuclear protein(s) encoded by the FOXO3A-S mRNA. Assessment of the relationship between the FOXO3A-S polymorphism and peripheral glucose clearance during insulin infusion (Rd clamp) in a cohort of Danish twins revealed that longevity T-allele carriers have markedly faster peripheral glucose clearance rates than normal lifespan C-allele carriers. In vitro experiments in human myotube cultures utilizing overexpression of each allele showed that the C-allele represses glycolysis independently of PI3K signaling, while overexpression of the T-allele represses glycolysis only in a PI3K-inactive background. Supporting this finding inducible knockdown of the FOXO3A-S C-allele in cultured myotubes increases the glycolytic rate. We conclude that the rs9400239 polymorphism acts as a molecular switch which changes the identity of the FOXO3A-S-derived protein(s), which in turn alters the relationship between FOXO3A-S and insulin/PI3K signaling and glycolytic flux in the skeletal muscle. This critical difference endows carriers of the FOXO3A-S T-allele with consistently higher insulin-stimulated peripheral glucose clearance rates, which may contribute to their longer and healthier lifespans.
Collapse
Affiliation(s)
- Evan E. Santo
- Department of Pathology & Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Rasmus Ribel‐Madsen
- The Novo Nordisk Foundation Center for Basic Metabolic ResearchClinical PharmacologyCopenhagenDenmark
- The Danish Diabetes AcademyOdenseDenmark
| | - Peter J. Stroeken
- Department of Oncogenomics, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | | | - Ninna S. Hansen
- Department of Biomedical Sciences, Endocrinology and MetabolismUniversity of CopenhagenCopenhagenDenmark
| | - Maaike Commandeur
- Department of Oncogenomics, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Allan A. Vaag
- Department of Biomedical Sciences, Endocrinology and MetabolismUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical Sciences, Clinical Research CentreLund UniversityMalmöSweden
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| | - Jihye Paik
- Department of Pathology & Laboratory MedicineWeill Cornell MedicineNew YorkNew YorkUSA
| | - Ellen M. Westerhout
- Department of Oncogenomics, Academic Medical CenterUniversity of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
14
|
Association study to evaluate Foxo1 and Foxo3 gene polymorphisms in polycystic ovary syndrome: a preliminary case-control study and in silico analysis. Mol Biol Rep 2023; 50:3569-3580. [PMID: 36790598 DOI: 10.1007/s11033-023-08292-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/17/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is known as a multifactorial and multi-gene-mediated endocrine disorder among women of reproductive age. FoxO1 and FoxO3 are members of the forkhead transcriptional factors family that play a pivotal role in the function of ovaries. The current work is aimed at investigating the association between gene variants of FoxO1 and FoxO3 and the risk of PCOS in a sample of the Iranian population. METHODS AND RESULTS We recruited 200 women diagnosed with PCOS and 200 healthy women. Both polymerase PCR-RFLP and ARMS-PCR methods were used for genotyping. Sanger sequencing was recruited to confirm the genotyping results. The T allele of rs17592236 and the C allele of rs12585277 decreased PCOS risk by 29 and 28%, respectively. In contrast, the C allele of rs2253310 and G allele of rs2802292 increased the risk of PCOS by 1.39 and 1.63 folds, correspondingly. Bioinformatics results showed that some genes, including matrix metallopeptidase 9 (MMP-9), phosphoinositide-3-Kinase Regulatory Subunit 224 1 (PIK3R1), peroxisome proliferator-activated receptor Gamma (PPARG), and glycogen synthase 225 kinase-3 beta (GSK-3 beta) have significant interactions with FoxO1, suggesting that FoxO1 might have crucial roles in regulating different signaling pathways in ovarian cells. CONCLUSION We found that FoxO1 rs17592236C > T and rs12585277C > T had a protective role against PCOS, while FoxO3 rs2253310C > G and rs2802292G > T enhanced the risk of this metabolic disorder in our population. Additional studies on larger populations with varying races are needed to confirm these findings.
Collapse
|
15
|
Treaster S, Deelen J, Daane JM, Murabito J, Karasik D, Harris MP. Convergent genomics of longevity in rockfishes highlights the genetics of human life span variation. SCIENCE ADVANCES 2023; 9:eadd2743. [PMID: 36630509 PMCID: PMC9833670 DOI: 10.1126/sciadv.add2743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 12/09/2022] [Indexed: 05/16/2023]
Abstract
Longevity is a defining, heritable trait that varies dramatically between species. To resolve the genetic regulation of this trait, we have mined genomic variation in rockfishes, which range in longevity from 11 to over 205 years. Multiple shifts in rockfish longevity have occurred independently and in a short evolutionary time frame, thus empowering convergence analyses. Our analyses reveal a common network of genes under convergent evolution, encompassing established aging regulators such as insulin signaling, yet also identify flavonoid (aryl-hydrocarbon) metabolism as a pathway modulating longevity. The selective pressures on these pathways indicate the ancestral state of rockfishes was long lived and that the changes in short-lived lineages are adaptive. These pathways were also used to explore genome-wide association studies of human longevity, identifying the aryl-hydrocarbon metabolism pathway to be significantly associated with human survival to the 99th percentile. This evolutionary intersection defines and cross-validates a previously unappreciated genetic architecture that associates with the evolution of longevity across vertebrates.
Collapse
Affiliation(s)
- Stephen Treaster
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Joris Deelen
- Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Str. 9b, D-50931 Köln, Germany
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jacob M. Daane
- Department of Biology and Biochemistry, University of Houston, Houston TX, USA
| | - Joanne Murabito
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
- Framingham Heart Study, Framingham, MA, USA
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
- Marcus Institute for Aging Research, Hebrew Senior Life, Boston, MA, USA
| | - Matthew P. Harris
- Department of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
16
|
Chang ZS, He ZM, Xia JB. FoxO3 Regulates the Progress and Development of Aging and Aging-Related Diseases. Curr Mol Med 2023; 23:991-1006. [PMID: 36239722 DOI: 10.2174/1566524023666221014140817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022]
Abstract
Aging is an inevitable risk factor for many diseases, including cardiovascular diseases, neurodegenerative diseases, cancer, and diabetes. Investigation into the molecular mechanisms involved in aging and longevity will benefit the treatment of age-dependent diseases and the development of preventative medicine for agingrelated diseases. Current evidence has revealed that FoxO3, encoding the transcription factor (FoxO)3, a key transcription factor that integrates different stimuli in the intrinsic and extrinsic pathways and is involved in cell differentiation, protein homeostasis, stress resistance and stem cell status, plays a regulatory role in longevity and in age-related diseases. However, the precise mechanisms by which the FoxO3 transcription factor modulates aging and promotes longevity have been unclear until now. Here, we provide a brief overview of the mechanisms by which FoxO3 mediates signaling in pathways involved in aging and aging-related diseases, as well as the current knowledge on the role of the FoxO3 transcription factor in the human lifespan and its clinical prospects. Ultimately, we conclude that FoxO3 signaling pathways, including upstream and downstream molecules, may be underlying therapeutic targets in aging and age-related diseases.
Collapse
Affiliation(s)
- Zao-Shang Chang
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Zhi-Ming He
- Department of Physiology, School of Basic Medical Sciences, Shaoyang University, Shaoyang 422000, Hunan, China
| | - Jing-Bo Xia
- Guangdong Provincial Key Laboratory of Physical Activity and Health Promotion, Guangzhou Sport University, Guangzhou 510500, Guangdong, China
| |
Collapse
|
17
|
Castruita PA, Piña-Escudero SD, Rentería ME, Yokoyama JS. Genetic, Social, and Lifestyle Drivers of Healthy Aging and Longevity. CURRENT GENETIC MEDICINE REPORTS 2022; 10:25-34. [PMID: 38031561 PMCID: PMC10686287 DOI: 10.1007/s40142-022-00205-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2022] [Indexed: 10/14/2022]
Abstract
Purpose of Review "Healthy aging" is the state of the aging process in which a person can maintain physical, social, mental, and spiritual wellness. This literature review presents an overview of recent studies that explore how biological, social, and environmental factors contribute to healthy aging. Recent Findings A number of genome-wide association studies have been conducted recently for traits related to healthy aging, such as frailty index, healthspan, muscle strength, and parental longevity, leading to the discovery of dozens of genetic variants associated with these traits. In parallel, associations between healthy aging measures and multiple non-biological environmental elements have been identified as key moderators of the aging process, indirectly influencing day-to-day homeostatic processes. Summary Individual variations in lifespan and healthspan are influenced by genetic factors, with a heritability of ~ 25% in developed countries. Non-genetic risk variance is explained in part by social, cultural, and lifestyle conditions. Altogether, these factors contribute to a multifaceted state of wellness over time, shaping individual risk to frailty and resilience during the aging process. Notably, "Blue Zone" populations, which are characterized by an abundance in healthy lifestyles across generations, share some commonalities regarding determinants of health.
Collapse
Affiliation(s)
- Patricia Alejandra Castruita
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Health Equity Research Lab, San Francisco State University, San Francisco, CA, USA
| | - Stefanie Danielle Piña-Escudero
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Miguel E. Rentería
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
- Mental Health & Neuroscience Program, QIMR Berghofer Medical Research Insitute, Brisbane, QLD, Australia
| | - Jennifer S. Yokoyama
- Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurology, Weill Institute of Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
18
|
Wu Y, Liu M, Zhang R, Sun M, Wei Q, Zhao K, Wang M. Potentially functional genetic variants of the Notch signaling pathway genes predict survival of Chinese patients with Esophageal Squamous Cell Carcinoma. J Gene Med 2022; 24:e3438. [PMID: 35821600 DOI: 10.1002/jgm.3438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/20/2022] [Accepted: 05/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The Notch signaling pathway is involved in progression of esophageal squamous cell carcinoma (ESCC), but the roles of single nucleotide polymorphisms (SNPs) of the Notch signaling pathway genes in the process remain unknown. METHODS The present study included 1,009 patients with histopathologically diagnosed ESCC at Fudan University Shanghai Cancer Center (FUSCC). The two-stage multivariate Cox proportional hazards regression analysis was used to estimate associations between 13,248 SNPs in 103 Notch signaling pathway genes and overall survival of the patients. RESULTS We found that overall survival of the patients was significantly associated with genotypes of HDAC9 rs1729318 (AT+TT vs AA: HR = 1.44, 95% CI = 1.16-1.80, Pcombined = 0.001) and HDAC9 rs1339555498 (GT +TT vs GG: HR = 1.38, 95% CI = 1.10-1.74, Pcombined = 0.005). Further receiver operator characteristic (ROC) curve analysis indicated that the model with both available clinical factors and these two SNPs improved the area under the ROC curve, compared with the model with clinical factors only (1-year: 0.66 vs. 0.64, P = 0.034). Additional expression quantitative trait loci (eQTL) analysis showed that the rs1729318 T variant genotypes were associated with increased mRNA expression levels of HDAC9 in normal esophageal muscular tissue (P = 0.003). CONCLUSIONS The results suggest that these two potential functional SNPs on HDAC9 may serve as biomarkers for predicting survival of ESCC patients. However, further studies are needed to confirm these findings.
Collapse
Affiliation(s)
- Yuanna Wu
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| | - Ming Liu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.,Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Ruoxin Zhang
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.,School of Public Health, Fudan University, Key Laboratory of Public Health Safety, Ministry of Education, Shanghai, China
| | - Menghong Sun
- Department of Pathology, Tissue Bank, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, North Carolina, USA.,Department of Population Health Sciences, Duke University School of Medicine, Durham, North Carolina, USA
| | - Kuaile Zhao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China.,Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Mengyun Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, China
| |
Collapse
|
19
|
Himanen SV, Puustinen MC, Da Silva AJ, Vihervaara A, Sistonen L. HSFs drive transcription of distinct genes and enhancers during oxidative stress and heat shock. Nucleic Acids Res 2022; 50:6102-6115. [PMID: 35687139 PMCID: PMC9226494 DOI: 10.1093/nar/gkac493] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 11/13/2022] Open
Abstract
Reprogramming of transcription is critical for the survival under cellular stress. Heat shock has provided an excellent model to investigate nascent transcription in stressed cells, but the molecular mechanisms orchestrating RNA synthesis during other types of stress are unknown. We utilized PRO-seq and ChIP-seq to study how Heat Shock Factors, HSF1 and HSF2, coordinate transcription at genes and enhancers upon oxidative stress and heat shock. We show that pause-release of RNA polymerase II (Pol II) is a universal mechanism regulating gene transcription in stressed cells, while enhancers are activated at the level of Pol II recruitment. Moreover, besides functioning as conventional promoter-binding transcription factors, HSF1 and HSF2 bind to stress-induced enhancers to trigger Pol II pause-release from poised gene promoters. Importantly, HSFs act at distinct genes and enhancers in a stress type-specific manner. HSF1 binds to many chaperone genes upon oxidative and heat stress but activates them only in heat-shocked cells. Under oxidative stress, HSF1 localizes to a unique set of promoters and enhancers to trans-activate oxidative stress-specific genes. Taken together, we show that HSFs function as multi-stress-responsive factors that activate distinct genes and enhancers when encountering changes in temperature and redox state.
Collapse
Affiliation(s)
- Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Mikael C Puustinen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Alejandro J Da Silva
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| | - Anniina Vihervaara
- Department of Gene Technology, Science for Life Laboratory, KTH Royal Institute of Technology, 17165 Stockholm, Sweden
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, 20520 Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|
20
|
McIntyre RL, Liu YJ, Hu M, Morris BJ, Willcox BJ, Donlon TA, Houtkooper RH, Janssens GE. Pharmaceutical and nutraceutical activation of FOXO3 for healthy longevity. Ageing Res Rev 2022; 78:101621. [PMID: 35421606 DOI: 10.1016/j.arr.2022.101621] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Man Hu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Brian J Morris
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Bradley J Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Timothy A Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Ni P, Wang G, Wang Y, Liu K, Chen W, Xiao J, Fan H, Ma X, Li Z, Shen K, Xu Z, Yang L. Correlation of MIF-AS1 polymorphisms with the risk and prognosis of gastric cancer. Pathol Res Pract 2022; 233:153850. [DOI: 10.1016/j.prp.2022.153850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/05/2022] [Accepted: 03/17/2022] [Indexed: 12/24/2022]
|
22
|
Fischer F, Grigolon G, Benner C, Ristow M. Evolutionarily conserved transcription factors as regulators of longevity and targets for geroprotection. Physiol Rev 2022; 102:1449-1494. [PMID: 35343830 DOI: 10.1152/physrev.00017.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Aging is the single largest risk factor for many debilitating conditions, including heart diseases, stroke, cancer, diabetes, and neurodegenerative disorders. While far from understood in its full complexity, it is scientifically well-established that aging is influenced by genetic and environmental factors, and can be modulated by various interventions. One of aging's early hallmarks are aberrations in transcriptional networks, controlling for example metabolic homeostasis or the response to stress. Evidence in different model organisms abounds that a number of evolutionarily conserved transcription factors, which control such networks, can affect lifespan and healthspan across species. These transcription factors thus potentially represent conserved regulators of longevity and are emerging as important targets in the challenging quest to develop treatments to mitigate age-related diseases, and possibly even to slow aging itself. This review provides an overview of evolutionarily conserved transcription factors that impact longevity or age-related diseases in at least one multicellular model organism (nematodes, flies, or mice), and/or are tentatively linked to human aging. Discussed is the general evidence for transcriptional regulation of aging and disease, followed by a more detailed look at selected transcription factor families, the common metabolic pathways involved, and the targeting of transcription factors as a strategy for geroprotective interventions.
Collapse
Affiliation(s)
- Fabian Fischer
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Giovanna Grigolon
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Christoph Benner
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| | - Michael Ristow
- Energy Metabolism Laboratory, Institute of Translational Medicine, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH) Zurich, Schwerzenbach, Switzerland
| |
Collapse
|
23
|
Yu C, Hodge AM, Wong EM, Joo JE, Makalic E, Schmidt D, Buchanan DD, Hopper JL, Giles GG, Southey MC, Dugué PA. Association of FOXO3 Blood DNA Methylation with Cancer Risk, Cancer Survival, and Mortality. Cells 2021; 10:cells10123384. [PMID: 34943892 PMCID: PMC8699522 DOI: 10.3390/cells10123384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/22/2021] [Accepted: 11/26/2021] [Indexed: 12/29/2022] Open
Abstract
Genetic variants in FOXO3 are associated with longevity. Here, we assessed whether blood DNA methylation at FOXO3 was associated with cancer risk, survival, and mortality. We used data from eight prospective case–control studies of breast (n = 409 cases), colorectal (n = 835), gastric (n = 170), kidney (n = 143), lung (n = 332), prostate (n = 869), and urothelial (n = 428) cancer and B-cell lymphoma (n = 438). Case–control pairs were matched on age, sex, country of birth, and smoking (lung cancer study). Conditional logistic regression was used to assess associations between cancer risk and methylation at 45 CpGs of FOXO3 included on the HumanMethylation450 assay. Mixed-effects Cox models were used to estimate hazard ratios (HR) and 95% confidence intervals (CI) for associations with cancer survival (total n = 2286 deaths). Additionally, using data from 1088 older participants, we assessed associations of FOXO3 methylation with overall and cause-specific mortality (n = 354 deaths). Methylation at a CpG in the first exon region of FOXO3 (6:108882981) was associated with gastric cancer survival (HR = 2.39, 95% CI: 1.60–3.56, p = 1.9 × 10−5). Methylation at three CpGs in TSS1500 and gene body was associated with lung cancer survival (p < 6.1 × 10−5). We found no evidence of associations of FOXO3 methylation with cancer risk and mortality. Our findings may contribute to understanding the implication of FOXO3 in longevity.
Collapse
Affiliation(s)
- Chenglong Yu
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; (C.Y.); (E.M.W.); (G.G.G.); (M.C.S.)
| | - Allison M. Hodge
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia;
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC 3010, Australia; (E.M.); (J.L.H.)
| | - Ee Ming Wong
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; (C.Y.); (E.M.W.); (G.G.G.); (M.C.S.)
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jihoon Eric Joo
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia; (J.E.J.); (D.D.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC 3010, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC 3010, Australia; (E.M.); (J.L.H.)
| | - Daniel Schmidt
- Department of Data Science and AI, Faculty of Information Technology, Monash University, Clayton, VIC 3168, Australia;
| | - Daniel D. Buchanan
- Colorectal Oncogenomics Group, Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia; (J.E.J.); (D.D.B.)
- Victorian Comprehensive Cancer Centre, University of Melbourne Centre for Cancer Research, Parkville, VIC 3010, Australia
- Genomic Medicine and Family Cancer Clinic, Royal Melbourne Hospital, Parkville, VIC 3000, Australia
| | - John L. Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC 3010, Australia; (E.M.); (J.L.H.)
| | - Graham G. Giles
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; (C.Y.); (E.M.W.); (G.G.G.); (M.C.S.)
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia;
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC 3010, Australia; (E.M.); (J.L.H.)
| | - Melissa C. Southey
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; (C.Y.); (E.M.W.); (G.G.G.); (M.C.S.)
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia;
- Department of Clinical Pathology, Melbourne Medical School, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Pierre-Antoine Dugué
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC 3168, Australia; (C.Y.); (E.M.W.); (G.G.G.); (M.C.S.)
- Cancer Epidemiology Division, Cancer Council Victoria, Melbourne, VIC 3004, Australia;
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC 3010, Australia; (E.M.); (J.L.H.)
- Correspondence:
| |
Collapse
|
24
|
Zhang QZ, Wen F, Yang HL, Cao YY, Peng RG, Wang YM, Nie L, Qin YK, Wu JJ, Zhao X, Zi D. GADD45α alleviates the CDDP resistance of SK-OV3/cddp cells via redox-mediated DNA damage. Oncol Lett 2021; 22:720. [PMID: 34429760 PMCID: PMC8371983 DOI: 10.3892/ol.2021.12981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
Epithelial ovarian cancer has the highest mortality rate of all malignant ovarian cancer types. Great progress has been made in the treatment of ovarian cancer in recent years. However, drug resistance has led to a low level of 5-year survival rate of epithelial ovarian cancer, and the molecular mechanism of which remains unknown. The aim of the present study was to identify the role of redox status in the cisplatin (CDDP) resistance of ovarian cancer. CDDP-resistant SK-OV3 (SK-OV3/cddp) cells were prepared and their reactive oxygen species and glutathione levels were investigated. The effects of hydrogen peroxide on the CDDP sensitivity of the SK-OV3/cddp cells and their expression levels of the redox-associated protein growth arrest and DNA damage 45a (GADD45α) were also investigated. In addition, the impact of GADD45α overexpression on cell viability was evaluated in vitro and in vivo, and the levels of Ser-139 phosphorylated H2A histone family member X (γ-H2AX), which is associated with DNA damage, were detected. The results suggested that redox status affected the drug resistance of the ovarian cancer cells by increasing the expression of GADD45α. The overexpression of GADD45α reversed the CDDP resistance of the SK-OV3/cddp cells and increased the level of γ-H2AX. In conclusion, GADD45α alleviated the CDDP resistance of SK-OV3/cddp cells via the induction of redox-mediated DNA damage.
Collapse
Affiliation(s)
- Qi-Zhu Zhang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Fang Wen
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China.,Department of Obstetrics and Gynecology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550004, P.R. China
| | - Han-Lin Yang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yan-Yan Cao
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Ren Guo Peng
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuan-Mei Wang
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Lei Nie
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Yuan-Kun Qin
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Jin-Jian Wu
- Department of Obstetrics and Gynecology, Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| | - Xing Zhao
- National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guiyang, Guizhou 550004, P.R. China
| | - Dan Zi
- Department of Obstetrics and Gynecology, Guizhou Provincial People's Hospital, Guiyang, Guizhou 550004, P.R. China.,National and Guizhou Joint Engineering Laboratory for Cell Engineering and Biomedicine Technique, Center for Tissue Engineering and Stem Cell Research, Guizhou Province Key Laboratory of Regenerative Medicine, Guiyang, Guizhou 550004, P.R. China.,Key Laboratory of Medical Molecular Biology, Guizhou Medical University, Guiyang, Guizhou 550004, P.R. China
| |
Collapse
|
25
|
Klinpudtan N, Allsopp RC, Kabayama M, Godai K, Gondo Y, Masui Y, Akagi Y, Srithumsuk W, Sugimoto K, Akasaka H, Takami Y, Takeya Y, Yamamoto K, Ikebe K, Yasumoto S, Ogawa M, Ishizaki T, Arai Y, Rakugi H, Chen R, Willcox BJ, Willcox DC, Kamide K. The association between longevity associated FOXO3 allele and heart disease in Septuagenarians and Octogenarians: The SONIC study. J Gerontol A Biol Sci Med Sci 2021; 77:1542-1548. [PMID: 34254639 PMCID: PMC9373940 DOI: 10.1093/gerona/glab204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Indexed: 01/22/2023] Open
Abstract
The G allele of FOXO3 gene (single-nucleotide polymorphism; rs2802292) is strongly associated with human longevity. However, knowledge of the effect of FOXO3 in older populations, men or women, with heart disease is limited. This cross-sectional study in Japan included 1836 older adults in the 70- and 80-year-old groups. DNA samples isolated from buffy coat samples of peripheral blood were used to genotype FOXO3 (rs2802292). Self-reports were used to obtain heart disease data according to physician diagnosis. Multiple logistic regression was used to test the association by adjusting for the traditional risk factor of heart disease. The prevalence of heart disease in women FOXO3 G-allele carriers was higher than noncarriers (16.7% vs 11.6%, p = .022). The prevalence of coronary heart disease was lower for FOXO3 G carriers in the 70-year-old group for both sexes (men: 9.3% vs 4.3%, p = .042 and women: 10% vs 9%, p = .079, respectively). The G allele was negatively associated with heart disease after adjusting for diabetes, hypertension, dyslipidemia, and smoking in men (odds ratio [OR] = 0.70, 95% confidence intervals [CIs], 0.49–0.99, p = .046), although the association was weaker after full adjustment. In contrast, women carriers of the FOXO3 G allele showed a positive association with heart disease after total adjustment (OR = 1.49, 95% CI, 1.00–2.21, p = .049). In conclusion, the longevity-associated G allele of FOXO3 was observed to have contrasting associations with heart disease prevalence according to sex in older Japanese. To further confirm this association, a longitudinal study and a large sample size will be required.
Collapse
Affiliation(s)
- Nonglak Klinpudtan
- Department of Health Promotion System Sciences, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Richard C Allsopp
- Institute for Biogenesis Research, Department of Anatomy Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Mai Kabayama
- Department of Health Promotion System Sciences, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kayo Godai
- Department of Health Promotion System Sciences, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasuyuki Gondo
- Department of Clinical Thanatology and Geriatric Behavioral Science, Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Yukie Masui
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yuya Akagi
- Department of Health Promotion System Sciences, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Werayuth Srithumsuk
- Department of Health Promotion System Sciences, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Ken Sugimoto
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hiroshi Akasaka
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoichi Takami
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yasushi Takeya
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Koichi Yamamoto
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazunori Ikebe
- Department of Prosthodontics, Gerodontology and Oral Rehabilitation, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Saori Yasumoto
- Department of Clinical Thanatology and Geriatric Behavioral Science, Graduate School of Human Sciences, Osaka University, Osaka, Japan
| | - Madoka Ogawa
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Tatsuro Ishizaki
- Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Yasumichi Arai
- Center for Supercentenarian Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Hiromi Rakugi
- Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Randi Chen
- Kuakini Medical Center, Honolulu, Hawaii, USA
| | - Bradley J Willcox
- Kuakini Medical Center, Honolulu, Hawaii, USA.,Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii Honolulu, HI, USA
| | - D Craig Willcox
- Kuakini Medical Center, Honolulu, Hawaii, USA.,Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii Honolulu, HI, USA.,Okinawa International University, Okinawa, Japan
| | - Kei Kamide
- Department of Health Promotion System Sciences, Division of Health Sciences, Graduate School of Medicine, Osaka University, Osaka, Japan.,Department of Geriatric and General Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
26
|
Treaster S, Karasik D, Harris MP. Footprints in the Sand: Deep Taxonomic Comparisons in Vertebrate Genomics to Unveil the Genetic Programs of Human Longevity. Front Genet 2021; 12:678073. [PMID: 34163529 PMCID: PMC8215702 DOI: 10.3389/fgene.2021.678073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/12/2021] [Indexed: 01/09/2023] Open
Abstract
With the modern quality, quantity, and availability of genomic sequencing across species, as well as across the expanse of human populations, we can screen for shared signatures underlying longevity and lifespan. Knowledge of these mechanisms would be medically invaluable in combating aging and age-related diseases. The diversity of longevities across vertebrates is an opportunity to look for patterns of genetic variation that may signal how this life history property is regulated, and ultimately how it can be modulated. Variation in human longevity provides a unique window to look for cases of extreme lifespan within a population, as well as associations across populations for factors that influence capacity to live longer. Current large cohort studies support the use of population level analyses to identify key factors associating with human lifespan. These studies are powerful in concept, but have demonstrated limited ability to resolve signals from background variation. In parallel, the expanding catalog of sequencing and annotation from diverse species, some of which have evolved longevities well past a human lifespan, provides independent cases to look at the genomic signatures of longevity. Recent comparative genomic work has shown promise in finding shared mechanisms associating with longevity among distantly related vertebrate groups. Given the genetic constraints between vertebrates, we posit that a combination of approaches, of parallel meta-analysis of human longevity along with refined analysis of other vertebrate clades having exceptional longevity, will aid in resolving key regulators of enhanced lifespan that have proven to be elusive when analyzed in isolation.
Collapse
Affiliation(s)
- Stephen Treaster
- Department of Orthopaedics, Boston Children's Hospital, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| | - David Karasik
- Azrieli Faculty of Medicine, Bar-Ilan University, Ramat Gan, Israel.,Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, United States
| | - Matthew P Harris
- Department of Orthopaedics, Boston Children's Hospital, Boston, MA, United States.,Department of Genetics, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
27
|
Guo X, Zhang S, Yang H, Pei J, Wu X, Bao P, Liang C, Xiong L, Chu M, Lan X, Yan P. Bovine TMEM95 gene: Polymorphisms detecting in five Chinese indigenous cattle breeds and their association with growth traits. ELECTRON J BIOTECHN 2021. [DOI: 10.1016/j.ejbt.2021.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
28
|
Hartwig J, Loebel M, Steiner S, Bauer S, Karadeniz Z, Roeger C, Skurk C, Scheibenbogen C, Sotzny F. Metformin Attenuates ROS via FOXO3 Activation in Immune Cells. Front Immunol 2021; 12:581799. [PMID: 33953705 PMCID: PMC8089390 DOI: 10.3389/fimmu.2021.581799] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 03/31/2021] [Indexed: 12/16/2022] Open
Abstract
Forkhead box O 3 (FOXO3) is a transcription factor involved in cell metabolism, inflammation and longevity. Here, we investigated if metformin can activate FOXO3 in human immune cells and affects the subsequent level of reactive oxygen/nitrogen species (ROS/RNS) in immune cells. AMP-activated protein kinase (AMPK) and FOXO3 activation were investigated by immunoblot or flow cytometry (FC) analysis, respectively. FOXO3 target gene expression was quantified by real-time PCR. ROS/RNS measurement using dichlorodihydrofluorescein diacetate (DCFH-DA) dye was investigated by FC. The role of the FOXO3 single nucleotide polymorphisms (SNPs) rs12212067, rs2802292 and rs12206094 on ROS/RNS production was studied using allelic discrimination PCR. Metformin induced activation of AMPK (pT172) and FOXO3 (pS413). ROS/RNS level was reduced in immune cells after metformin stimulation accompanied by induction of the FOXO3 targets mitochondrial superoxide dismutase and cytochrome c. Studies in Foxo3 deficient (Foxo3-/- ) mouse splenocytes confirmed that metformin mediates its effects via Foxo3 as it attenuates ROS/RNS in myeloid cells of wildtype (WT) but not of Foxo3-/- mice. Our results suggest that FOXO3 can be activated by metformin leading to reduced ROS/RNS level in immune cells. This may add to the beneficial clinical effects of metformin observed in large cohort studies on longevity, cardiovascular and cancer risk.
Collapse
Affiliation(s)
- Jelka Hartwig
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität (FU) Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Madlen Loebel
- Science Center, Carl-Thiem-Klinikum Cottbus, Cottbus, Germany
| | - Sophie Steiner
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität (FU) Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sandra Bauer
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität (FU) Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| | - Zehra Karadeniz
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Roeger
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Carsten Skurk
- Department of Cardiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research) Partner Site Berlin, Berlin, Germany
| | - Carmen Scheibenbogen
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität (FU) Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Franziska Sotzny
- Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität (FU) Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
29
|
Baghdadi M, Hinterding HM, Partridge L, Deelen J. From mutation to mechanism: deciphering the molecular function of genetic variants linked to human ageing. Brief Funct Genomics 2021; 21:13-23. [PMID: 33690799 PMCID: PMC8789301 DOI: 10.1093/bfgp/elab005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 01/20/2023] Open
Abstract
Many of the leading causes of death in humans, such as cardiovascular disease, type 2 diabetes and Alzheimer’s disease are influenced by biological mechanisms that become dysregulated with increasing age. Hence, by targeting these ageing-related mechanisms, we may be able to improve health in old age. Ageing is partly heritable and genetic studies have been moderately successful in identifying genetic variants associated with ageing-related phenotypes (lifespan, healthspan and longevity). To decipher the mechanisms by which the identified variants influence ageing, studies that focus on their functional validation are vital. In this perspective, we describe the steps that could be taken in the process of functional validation: (1) in silico characterisation using bioinformatic tools; (2) in vitro characterisation using cell lines or organoids; and (3) in vivo characterisation studies using model organisms. For the in vivo characterisation, it is important to focus on translational phenotypes that are indicative of both healthspan and lifespan, such as the frailty index, to inform subsequent intervention studies. The depth of functional validation of a genetic variant depends on its location in the genome and conservation in model organisms. Moreover, some variants may prove to be hard to characterise due to context-dependent effects related to the experimental environment or genetic background. Future efforts to functionally characterise the (newly) identified genetic variants should shed light on the mechanisms underlying ageing and will help in the design of targeted interventions to improve health in old age.
Collapse
|
30
|
Calissi G, Lam EWF, Link W. Therapeutic strategies targeting FOXO transcription factors. Nat Rev Drug Discov 2021; 20:21-38. [PMID: 33173189 DOI: 10.1038/s41573-020-0088-2] [Citation(s) in RCA: 209] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
FOXO proteins are transcription factors that are involved in numerous physiological processes and in various pathological conditions, including cardiovascular disease, cancer, diabetes and chronic neurological diseases. For example, FOXO proteins are context-dependent tumour suppressors that are frequently inactivated in human cancers, and FOXO3 is the second most replicated gene associated with extreme human longevity. Therefore, pharmacological manipulation of FOXO proteins is a promising approach to developing therapeutics for cancer and for healthy ageing. In this Review, we overview the role of FOXO proteins in health and disease and discuss the pharmacological approaches to modulate FOXO function.
Collapse
Affiliation(s)
- Giampaolo Calissi
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, Imperial Centre for Translational and Experimental Medicine (ICTEM), London, UK
| | - Wolfgang Link
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
31
|
Rybtsova N, Berezina T, Kagansky A, Rybtsov S. Can Blood-Circulating Factors Unveil and Delay Your Biological Aging? Biomedicines 2020; 8:E615. [PMID: 33333870 PMCID: PMC7765271 DOI: 10.3390/biomedicines8120615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
According to the World Health Organization, the population of over 60 will double in the next 30 years in the developed countries, which will enforce a further raise of the retirement age and increase the burden on the healthcare system. Therefore, there is an acute issue of maintaining health and prolonging active working longevity, as well as implementation of early monitoring and prevention of premature aging and age-related disorders to avoid early disability. Traditional indicators of biological age are not always informative and often require extensive and expensive analysis. The study of blood factors is a simple and easily accessible way to assess individual health and supplement the traditional indicators of a person's biological age with new objective criteria. With age, the processes of growth and development, tissue regeneration and repair decline; they are gradually replaced by enhanced catabolism, inflammatory cell activity, and insulin resistance. The number of senescent cells supporting the inflammatory loop rises; cellular clearance by autophagy and mitophagy slows down, resulting in mitochondrial and cellular damage and dysfunction. Monitoring of circulated blood factors not only reflects these processes, but also allows suggesting medical intervention to prevent or decelerate the development of age-related diseases. We review the age-related blood factors discussed in recent publications, as well as approaches to slowing aging for healthy and active longevity.
Collapse
Affiliation(s)
- Natalia Rybtsova
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| | - Tatiana Berezina
- Department of Scientific Basis of Extreme Psychology, Moscow State University of Psychology and Education, 127051 Moscow, Russia;
| | - Alexander Kagansky
- Centre for Genomic and Regenerative Medicine, School of Biomedicine, Far Eastern Federal University, 690922 Vladivostok, Russia
| | - Stanislav Rybtsov
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK;
| |
Collapse
|
32
|
Chen R, Morris BJ, Donlon TA, Masaki KH, Willcox DC, Davy PM, Allsopp RC, Willcox BJ. FOXO3 longevity genotype mitigates the increased mortality risk in men with a cardiometabolic disease. Aging (Albany NY) 2020; 12:23509-23524. [PMID: 33260156 PMCID: PMC7762472 DOI: 10.18632/aging.202175] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/22/2020] [Indexed: 12/31/2022]
Abstract
FOXO3 is a prominent longevity gene. To date, no-one has examined whether longevity-associated FOXO3 genetic variants protect against mortality in all individuals, or only in those with aging-related diseases. We therefore tested longevity-associated FOXO3 single nucleotide polymorphisms in a haplotype block for association with mortality in 3,584 elderly American men of Japanese ancestry, 2,512 with and 1,072 without a cardiometabolic disease (CMD). At baseline (1991-1993), 1,010 CMD subjects had diabetes, 1,919 had hypertension, and 738 had coronary heart disease (CHD). Follow-up until Dec 31, 2019 found that in CMD-affected individuals, longevity-associated alleles of FOXO3 were associated with significantly longer lifespan: haplotype hazard ratio 0.81 (95% CI 0.72-0.91; diabetes 0.77, hypertension 0.82, CHD 0.83). Overall, men with a CMD had higher mortality than men without a CMD (P=6x10-7). However, those men with a CMD who had the FOXO3 longevity genotype had similar survival as men without a CMD. In men without a CMD there was no association of longevity-associated alleles of FOXO3 with lifespan. Our study provides novel insights into the basis for the long-established role of FOXO3 as a longevity gene. We suggest that the FOXO3 longevity genotype increases lifespan only in at-risk individuals by protection against cardiometabolic stress.
Collapse
Affiliation(s)
- Randi Chen
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
| | - Brian J. Morris
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
- School of Medical Sciences, University of Sydney, Sydney, New South Wales, Australia
| | - Timothy A. Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
- Institute for Biogenesis Research, University of Hawaii, Honolulu, HI 96822, USA
| | - Kamal H. Masaki
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - D. Craig Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| | - Philip M.C. Davy
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Human Welfare, Okinawa International University, Ginowan, Okinawa, Japan
| | - Richard C. Allsopp
- Department of Human Welfare, Okinawa International University, Ginowan, Okinawa, Japan
| | - Bradley J. Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA
- Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, USA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW FOXOs are transcription factors that regulate downstream target genes to counteract to cell stress. Here we review the function and regulation of FOXO transcription factors, the mechanism of FOXO3 activation in the kidney, and the role of FOXO3 in delaying the development of chronic kidney disease (CKD). RECENT FINDINGS Progressive renal hypoxia from vascular dropout and metabolic perturbation is a pathogenic factor for the initiation and development of CKD. Hypoxia and low levels of α-ketoglutarate generated from the TCA cycle inhibit prolyl hydroxylase domain (PHD)-mediated prolyl hydroxylation of FoxO3, thus reducing FoxO3 protein degradation via the ubiquitin proteasomal pathway, similar to HIF stabilization under hypoxic conditions. FoxO3 accumulation and nuclear translocation activate two key cellular defense mechanisms, autophagy and antioxidative response in renal tubular cells, to reduce cell injury and promote cell survival. FoxO3 directly activates the expression of Atg proteins, which replenishes core components of the autophagic machinery to allow sustained autophagy in the chronically hypoxic kidney. FoxO3 protects mitochondria by stimulating the expression of superoxide dismutase 2 (SOD2), as tubular deletion of FoxO3 in mice results in reduced SOD2 levels and profound mitochondrial damage. SUMMARY Knowledge gained from animal studies may help understand the function of stress responsive transcription factors that could be targeted to prevent or treat CKD.
Collapse
Affiliation(s)
- Fangming Lin
- Division of Pediatric Nephrology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| |
Collapse
|
34
|
Relationship of polymorphism rs3800231 in FOXO3 gene and clinical severity with oxidative stress markers in sickle cell disease. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
35
|
Liu L, Zhu A, Shu C, Zeng Y, Ji JS. Gene-Environment Interaction of FOXO and Residential Greenness on Mortality Among Older Adults. Rejuvenation Res 2020; 24:49-61. [PMID: 32364002 DOI: 10.1089/rej.2019.2301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Residential greenness is an important environmental factor that is strongly associated with mortality. To our knowledge, there was no previous study on the gene-environment interaction analysis between residential greenness and forkhead box O (FOXO) gene, a candidate longevity gene. Our sample consisted of 3179 participants aged 65 and older from the Chinese Longitudinal Healthy Longevity Survey. Residential greenness was measured by satellite-derived normalized difference vegetation index (NDVI) using a 500-m radius around each residential location. Contemporaneous NDVI, cumulative NDVI, and changes in NDVI over time were calculated. We used Cox-proportional hazard regression models to assess the main effect and gene-environment interaction effect of FOXO single nucleotide polymorphism (SNP) and residential greenness on mortality. We found that participants carrying two minor alleles of the three studied FOXO3A SNPs had lower mortality risk than those without minor allele (hazard ratio [HR]: 0.803 95% confidence interval [CI]: 0.654-0.987 for rs4946936, HR: 0.807 95% CI: 0.669-0.974 for rs2802292, HR: 0.803 95% CI: 0.666-0.968 for rs2253310). We found no difference in mortality among the genotypes of the other three FOXO1A SNPs (rs17630266, rs2755213, or rs2755209). Higher contemporaneous NDVI was associated with lower mortality risk (HR: 0.887 95% CI: 0.863-0.911 for 0.1-U of NDVI). The protective effect of both contemporaneous NDVI and cumulative NDVI was stronger for two minor allele carriers compared with zero minor allele carriers of the three FOXO3A SNPs. Compared with the zero minor allele genotype of the three FOXO3A SNPs, the protective effect on the mortality risk of minor allele homozygotes also increased with the increasing NDVI level at percentile 25, 50, and 75 (interaction term coefficient p < 0.05). We found gene-environment interaction between FOXO and residential greenness on mortality in this population study. A higher level of greenness may interact with FOXO pathways.
Collapse
Affiliation(s)
- Linxin Liu
- Environmental Research Center, Duke Kunshan University, Kunshan, China
| | - Anna Zhu
- Environmental Research Center, Duke Kunshan University, Kunshan, China
| | - Chang Shu
- School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Yi Zeng
- Center for the Study of Aging and Human Development, Duke Medical School, Durham, North Carolina, USA.,Center for Healthy Aging and Development Studies, National School of Development, Peking University, Beijing, China
| | - John S Ji
- Environmental Research Center, Duke Kunshan University, Kunshan, China.,Nicholas School of the Environment, Duke University, Durham, North Carolina, USA
| |
Collapse
|
36
|
Wang H, Liu J, Liu K, Liu Y, Wen J, Wang Z, Wen S. Association of ECE1 gene polymorphisms and essential hypertension risk in the Northern Han Chinese: A case-control study. Mol Genet Genomic Med 2020; 8:e1188. [PMID: 32107880 PMCID: PMC7196447 DOI: 10.1002/mgg3.1188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/05/2020] [Indexed: 01/30/2023] Open
Abstract
Background The ECE1 gene polymorphisms have been studied as a candidate gene in essential hypertension, but no consensus has been reached. To systematically explore their possible association, a case‒control study was conducted. Methods This study included 398 hypertensive subjects and 596 healthy volunteers as control subjects in the Northern Han Chinese. A total of 10 tag SNPs of ECE1 gene were genotyped successfully by TaqMan assay. Results A total of 10 SNPs (rs212544, rs2076280, rs115071, rs2076283, rs9426748, rs11590928, rs212515, rs2236847, rs2282715, and rs2774028) were identified as the tag SNPs for ECE1 gene. Although no positive connection has been found in general population, several SNPs have been found to be related to EH risk in gender‐stratified subgroup analysis. In males, rs115071 T allele influenced EH risk in a protective manner, with dominant model (TT+TC vs. CC: p = .032, OR = 0.655, 95% CI = 0.445–0.965), additive model (TT vs. TC vs. CC: p = .019, OR = 0.616, 95% CI = 0.411–0.924), as well as allele comparison (T vs. C: p = .045, OR = 0.702, 95% CI = 0.496–0.992). While, in females, rs212544 AA genotype would increase the onset risk of EH (recessive model: AA vs. GA+GG, p = .024, OR = 1.847, 95% CI = 1.086–3.142). In the three haplotype blocks identified, rs2076283‐rs2236847 C‐T haplotype was associated with a decreased risk of EH (OR = 0.558, p = .046). Conclusion The current case‒control study suggested that several SNPs and related haplotypes on ECE1 gene might be associated with the susceptibility of EH in certain gender subgroups in the Northern Han Chinese population.
Collapse
Affiliation(s)
- Hao Wang
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jielin Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Kuo Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Ya Liu
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Jie Wen
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Zuoguang Wang
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Shaojun Wen
- Department of Hypertension Research, Beijing Anzhen Hospital, Capital Medical University and Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| |
Collapse
|
37
|
Emerging Role of C/EBPβ and Epigenetic DNA Methylation in Ageing. Trends Genet 2020; 36:71-80. [DOI: 10.1016/j.tig.2019.11.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 10/31/2019] [Accepted: 11/12/2019] [Indexed: 12/11/2022]
|
38
|
Janus P, Toma-Jonik A, Vydra N, Mrowiec K, Korfanty J, Chadalski M, Widłak P, Dudek K, Paszek A, Rusin M, Polańska J, Widłak W. Pro-death signaling of cytoprotective heat shock factor 1: upregulation of NOXA leading to apoptosis in heat-sensitive cells. Cell Death Differ 2020; 27:2280-2292. [PMID: 31996779 PMCID: PMC7308270 DOI: 10.1038/s41418-020-0501-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 01/15/2023] Open
Abstract
Heat shock can induce either cytoprotective mechanisms or cell death. We found that in certain human and mouse cells, including spermatocytes, activated heat shock factor 1 (HSF1) binds to sequences located in the intron(s) of the PMAIP1 (NOXA) gene and upregulates its expression which induces apoptosis. Such a mode of PMAIP1 activation is not dependent on p53. Therefore, HSF1 not only can activate the expression of genes encoding cytoprotective heat shock proteins, which prevents apoptosis, but it can also positively regulate the proapoptotic PMAIP1 gene, which facilitates cell death. This could be the primary cause of hyperthermia-induced elimination of heat-sensitive cells, yet other pro-death mechanisms might also be involved.
Collapse
Affiliation(s)
- Patryk Janus
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Agnieszka Toma-Jonik
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Natalia Vydra
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Katarzyna Mrowiec
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Joanna Korfanty
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Marek Chadalski
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Piotr Widłak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Karolina Dudek
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Anna Paszek
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland.,Department of Data Science and Engineering, The Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Marek Rusin
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland
| | - Joanna Polańska
- Department of Data Science and Engineering, The Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Wiesława Widłak
- Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102, Gliwice, Poland.
| |
Collapse
|
39
|
Lu H, Wen D, Sun J, Zeng L, Du J, Du D, Zhang L, Deng J, Jiang J, Zhang A. Enhancer polymorphism rs10865710 associated with traumatic sepsis is a regulator of PPARG gene expression. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:430. [PMID: 31888703 PMCID: PMC6938012 DOI: 10.1186/s13054-019-2707-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/16/2019] [Indexed: 12/18/2022]
Abstract
Background Peroxisome proliferator-activated receptor gamma (PPARγ) is a major regulator in sepsis. Our previous study identified the enhancer polymorphism rs10865710C/G to be associated with susceptibility to sepsis in trauma patients. We performed two-stage cohort studies integrating biological experiments of potential functional variants that modify susceptibility to traumatic sepsis. Methods Improved multiplex ligation detection reaction (iMLDR) was used to genotype rs10865710 in 797 Han Chinese trauma patients in Chongqing. Clinical relevance was validated in 334 patients in Guizhou. The potential function of rs10865710 in transcriptional regulation was explored through a dual luciferase reporter assay and electrophoretic mobility shift assay (EMSA). Expression of PPARγ was assessed by expression quantitative trait locus (e-QTL) and western blot analyses. Results The association results confirmed rs10865710 to be significantly strongly associated with sepsis risk in trauma patients of the Chongqing and Guizhou cohorts (OR = 1.41 (1.11–1.79), P = 0.004 and OR = 1.45 (1.01–2.09), P = 0.046, both for allele-dose effect, respectively). A meta-analysis of both cohorts and a previous study indicated strong evidence for this association (OR = 1.41 (1.17–1.71), P = 0.0004 for the dominant model, OR = 1.78 (1.34–2.36), P < 0.0001 for the recessive model and OR = 1.38 (1.20–1.58), P < 0.0001 for the allelic model). Functional experiments verified that rs10865710 was a causative variant influencing enhancer activity (G vs. C, 0.068 ± 0.004 vs. 0.096 ± 0.002, P = 0.0005) and CREB2 binding. Expression analysis also indicatevd rs10865710 genotypes to be associated with levels of PPARγ expression (P = 9.2 × 10−5 for dominant effect and P = 0.005 for recessive effect). Conclusions Our study provides evidence that the enhancer-region polymorphism rs10865710 might influence transcription factor binding and regulate PPARγ expression, thus conferring susceptibility to traumatic sepsis. Trial registration ClinicalTrials.gov, NCT01713205. Registered 18 October 2012, retrospectively registered.
Collapse
Affiliation(s)
- Hongxiang Lu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Dalin Wen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Jianhui Sun
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Ling Zeng
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Juan Du
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Dingyuan Du
- Department of Cardiothoracic Surgery, Chongqing Emergency Medical Center, The Affiliated Central Hospital of Chongqing University, Chongqing, 400042, China
| | - Lianyang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China
| | - Jin Deng
- Department of Emergency Surgery, The Affiliated Hospital of Guizhou Medical University, Guiyang, 550004, Guizhou, China
| | - Jianxin Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China.
| | - Anqiang Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Surgery Research, Daping Hospital, Army Medical University, Changjiang Branch Road 10, Daping Street, Yuzhong District, Chongqing, 400042, China.
| |
Collapse
|
40
|
Kim D, Park Y. Molecular mechanism for the multiple sclerosis risk variant rs17594362. Hum Mol Genet 2019; 28:3600-3609. [PMID: 31509193 PMCID: PMC6927461 DOI: 10.1093/hmg/ddz216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/31/2019] [Accepted: 09/02/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple sclerosis (MS) is known as an autoimmune demyelinating disease of the central nervous system. However, its cause remains elusive. Given previous studies suggesting that dysfunctional oligodendrocytes (OLs) may trigger MS, we tested whether single nucleotide polymorphisms (SNPs) associated with MS affect OL enhancers, potentially increasing MS risk by dysregulating gene expression of OL lineage cells. We found that two closely spaced OL enhancers, which are 3 Kb apart on chromosome 13, overlap two MS SNPs in linkage disequilibrium-rs17594362 and rs12429256. Our data revealed that the two MS SNPs significantly up-regulate the associated OL enhancers, which we have named as Rgcc-E1 and Rgcc-E2. Analysis of Hi-C data and epigenome editing experiments shows that Rgcc is the primary target of Rgcc-E1 and Rgcc-E2. Collectively, these data indicate that the molecular mechanism of rs17594362 and rs12429256 is to induce Rgcc overexpression by potentiating the enhancer activity of Rgcc-E1 and Rgcc-E2. Importantly, the dosage of the rs17594362/rs12429256 risk allele is positively correlated with the expression level of Rgcc in the human population, confirming our molecular mechanism. Our study also suggests that Rgcc overexpression in OL lineage cells may be a key cellular mechanism of rs17594362 and rs12429256 for MS.
Collapse
Affiliation(s)
- Dongkyeong Kim
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Yungki Park
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, Hunter James Kelly Research Institute, State University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
41
|
Himanen SV, Sistonen L. New insights into transcriptional reprogramming during cellular stress. J Cell Sci 2019; 132:132/21/jcs238402. [PMID: 31676663 DOI: 10.1242/jcs.238402] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular stress triggers reprogramming of transcription, which is required for the maintenance of homeostasis under adverse growth conditions. Stress-induced changes in transcription include induction of cyto-protective genes and repression of genes related to the regulation of the cell cycle, transcription and metabolism. Induction of transcription is mediated through the activation of stress-responsive transcription factors that facilitate the release of stalled RNA polymerase II and so allow for transcriptional elongation. Repression of transcription, in turn, involves components that retain RNA polymerase II in a paused state on gene promoters. Moreover, transcription during stress is regulated by a massive activation of enhancers and complex changes in chromatin organization. In this Review, we highlight the latest research regarding the molecular mechanisms of transcriptional reprogramming upon stress in the context of specific proteotoxic stress responses, including the heat-shock response, unfolded protein response, oxidative stress response and hypoxia response.
Collapse
Affiliation(s)
- Samu V Himanen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland.,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| | - Lea Sistonen
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland .,Turku Bioscience Centre, University of Turku and Åbo Akademi University, Tykistökatu 6, 20520 Turku, Finland
| |
Collapse
|
42
|
Giuliani C, Garagnani P, Franceschi C. Genetics of Human Longevity Within an Eco-Evolutionary Nature-Nurture Framework. Circ Res 2019; 123:745-772. [PMID: 30355083 DOI: 10.1161/circresaha.118.312562] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Human longevity is a complex trait, and to disentangle its basis has a great theoretical and practical consequences for biomedicine. The genetics of human longevity is still poorly understood despite several investigations that used different strategies and protocols. Here, we argue that such rather disappointing harvest is largely because of the extraordinary complexity of the longevity phenotype in humans. The capability to reach the extreme decades of human lifespan seems to be the result of an intriguing mixture of gene-environment interactions. Accordingly, the genetics of human longevity is here described as a highly context-dependent phenomenon, within a new integrated, ecological, and evolutionary perspective, and is presented as a dynamic process, both historically and individually. The available literature has been scrutinized within this perspective, paying particular attention to factors (sex, individual biography, family, population ancestry, social structure, economic status, and education, among others) that have been relatively neglected. The strength and limitations of the most powerful and used tools, such as genome-wide association study and whole-genome sequencing, have been discussed, focusing on prominently emerged genes and regions, such as apolipoprotein E, Forkhead box O3, interleukin 6, insulin-like growth factor-1, chromosome 9p21, 5q33.3, and somatic mutations among others. The major results of this approach suggest that (1) the genetics of longevity is highly population specific; (2) small-effect alleles, pleiotropy, and the complex allele timing likely play a major role; (3) genetic risk factors are age specific and need to be integrated in the light of the geroscience perspective; (4) a close relationship between genetics of longevity and genetics of age-related diseases (especially cardiovascular diseases) do exist. Finally, the urgent need of a global approach to the largely unexplored interactions between the 3 genetics of human body, that is, nuclear, mitochondrial, and microbiomes, is stressed. We surmise that the comprehensive approach here presented will help in increasing the above-mentioned harvest.
Collapse
Affiliation(s)
- Cristina Giuliani
- From the Department of Biological, Geological, and Environmental Sciences (BiGeA), Laboratory of Molecular Anthropology and Centre for Genome Biology (C.G.), University of Bologna, Italy.,School of Anthropology and Museum Ethnography, University of Oxford, United Kingdom (C.G.).,Interdepartmental Centre 'L. Galvani' (CIG), University of Bologna, Italy (C.G.)
| | - Paolo Garagnani
- Department of Experimental, Diagnostic, and Specialty Medicine (DIMES) (P.G.), University of Bologna, Italy.,Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet at Huddinge University Hospital, Stockholm, Sweden (P.G.)
| | | |
Collapse
|
43
|
Fasano C, Disciglio V, Bertora S, Lepore Signorile M, Simone C. FOXO3a from the Nucleus to the Mitochondria: A Round Trip in Cellular Stress Response. Cells 2019; 8:cells8091110. [PMID: 31546924 PMCID: PMC6769815 DOI: 10.3390/cells8091110] [Citation(s) in RCA: 134] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 12/25/2022] Open
Abstract
Cellular stress response is a universal mechanism that ensures the survival or negative selection of cells in challenging conditions. The transcription factor Forkhead box protein O3 (FOXO3a) is a core regulator of cellular homeostasis, stress response, and longevity since it can modulate a variety of stress responses upon nutrient shortage, oxidative stress, hypoxia, heat shock, and DNA damage. FOXO3a activity is regulated by post-translational modifications that drive its shuttling between different cellular compartments, thereby determining its inactivation (cytoplasm) or activation (nucleus and mitochondria). Depending on the stress stimulus and subcellular context, activated FOXO3a can induce specific sets of nuclear genes, including cell cycle inhibitors, pro-apoptotic genes, reactive oxygen species (ROS) scavengers, autophagy effectors, gluconeogenic enzymes, and others. On the other hand, upon glucose restriction, 5′-AMP-activated protein kinase (AMPK) and mitogen activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) -dependent FOXO3a mitochondrial translocation allows the transcription of oxidative phosphorylation (OXPHOS) genes, restoring cellular ATP levels, while in cancer cells, mitochondrial FOXO3a mediates survival upon genotoxic stress induced by chemotherapy. Interestingly, these target genes and their related pathways are diverse and sometimes antagonistic, suggesting that FOXO3a is an adaptable player in the dynamic homeostasis of normal and stressed cells. In this review, we describe the multiple roles of FOXO3a in cellular stress response, with a focus on both its nuclear and mitochondrial functions.
Collapse
Affiliation(s)
- Candida Fasano
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Vittoria Disciglio
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Stefania Bertora
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
| | - Martina Lepore Signorile
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Roma, Italy.
| | - Cristiano Simone
- National Institute of Gastroenterology, "S. de Bellis" Research Hospital, 70013 Castellana Grotte (Bari), Italy.
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, 70124 Bari, Italy.
| |
Collapse
|
44
|
Deelen J, Evans DS, Arking DE, Tesi N, Nygaard M, Liu X, Wojczynski MK, Biggs ML, van der Spek A, Atzmon G, Ware EB, Sarnowski C, Smith AV, Seppälä I, Cordell HJ, Dose J, Amin N, Arnold AM, Ayers KL, Barzilai N, Becker EJ, Beekman M, Blanché H, Christensen K, Christiansen L, Collerton JC, Cubaynes S, Cummings SR, Davies K, Debrabant B, Deleuze JF, Duncan R, Faul JD, Franceschi C, Galan P, Gudnason V, Harris TB, Huisman M, Hurme MA, Jagger C, Jansen I, Jylhä M, Kähönen M, Karasik D, Kardia SLR, Kingston A, Kirkwood TBL, Launer LJ, Lehtimäki T, Lieb W, Lyytikäinen LP, Martin-Ruiz C, Min J, Nebel A, Newman AB, Nie C, Nohr EA, Orwoll ES, Perls TT, Province MA, Psaty BM, Raitakari OT, Reinders MJT, Robine JM, Rotter JI, Sebastiani P, Smith J, Sørensen TIA, Taylor KD, Uitterlinden AG, van der Flier W, van der Lee SJ, van Duijn CM, van Heemst D, Vaupel JW, Weir D, Ye K, Zeng Y, Zheng W, Holstege H, Kiel DP, Lunetta KL, Slagboom PE, Murabito JM. A meta-analysis of genome-wide association studies identifies multiple longevity genes. Nat Commun 2019; 10:3669. [PMID: 31413261 PMCID: PMC6694136 DOI: 10.1038/s41467-019-11558-2] [Citation(s) in RCA: 213] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 07/17/2019] [Indexed: 12/16/2022] Open
Abstract
Human longevity is heritable, but genome-wide association (GWA) studies have had limited success. Here, we perform two meta-analyses of GWA studies of a rigorous longevity phenotype definition including 11,262/3484 cases surviving at or beyond the age corresponding to the 90th/99th survival percentile, respectively, and 25,483 controls whose age at death or at last contact was at or below the age corresponding to the 60th survival percentile. Consistent with previous reports, rs429358 (apolipoprotein E (ApoE) ε4) is associated with lower odds of surviving to the 90th and 99th percentile age, while rs7412 (ApoE ε2) shows the opposite. Moreover, rs7676745, located near GPR78, associates with lower odds of surviving to the 90th percentile age. Gene-level association analysis reveals a role for tissue-specific expression of multiple genes in longevity. Finally, genetic correlation of the longevity GWA results with that of several disease-related phenotypes points to a shared genetic architecture between health and longevity.
Collapse
Affiliation(s)
- Joris Deelen
- Max Planck Institute for Biology of Ageing, 50866, Cologne, Germany.
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Daniel S Evans
- California Pacific Medical Center Research Institute, San Francisco, CA, 94158, USA.
| | - Dan E Arking
- McKusick-Nathans Institute of Genetic Medicine, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
| | - Niccolò Tesi
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2600 GA, Delft, The Netherlands
| | - Marianne Nygaard
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
| | - Xiaomin Liu
- BGI-Shenzhen, Shenzhen, 518083, China
- China National Genebank, BGI-Shenzhen, Shenzhen, 518120, China
| | - Mary K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Mary L Biggs
- Department of Biostatistics, University of Washington, Seattle, WA, 98115, USA
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
| | | | - Gil Atzmon
- Department of Biology, Faculty of Natural Science, University of Haifa, Haifa, 3498838, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Erin B Ware
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Chloé Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Albert V Smith
- School of Public Health, Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
- Icelandic Heart Association, 201, Kópavogur, Iceland
| | - Ilkka Seppälä
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Heather J Cordell
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Janina Dose
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Najaf Amin
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Alice M Arnold
- Department of Biostatistics, University of Washington, Seattle, WA, 98115, USA
| | | | - Nir Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | | | - Marian Beekman
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | | | - Kaare Christensen
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
- Clinical Biochemistry and Pharmacology, Odense University Hospital, 5000, Odense C, Denmark
- Department of Clinical Genetics, Odense University Hospital, 5000, Odense C, Denmark
| | - Lene Christiansen
- The Danish Aging Research Center, Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, 2100, Copenhagen, Denmark
| | - Joanna C Collerton
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Sarah Cubaynes
- MMDN, Univ. Montpellier, EPHE, Unité Inserm 1198, PSL Research University, 34095, Montpellier, France
| | - Steven R Cummings
- California Pacific Medical Center Research Institute, San Francisco, CA, 94158, USA
| | - Karen Davies
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Birgit Debrabant
- Department of Public Health, University of Southern Denmark, 5000, Odense C, Denmark
| | - Jean-François Deleuze
- Fondation Jean Dausset-CEPH, 75010, Paris, France
- Centre National de Recherche en Génomique Humaine, CEA-Institut de Biologie François Jacob, 91000, Evry, France
| | - Rachel Duncan
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Jessica D Faul
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Claudio Franceschi
- Department of Applied Mathematics and Centre of Bioinformatics, Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, 603022, Russia
- IRCCS Institute of Neurological Sciences of Bologna (ISNB), 40124, Bologna, Italy
| | - Pilar Galan
- EREN, UMR U1153 Inserm/U1125 Inra/Cnam/Paris 13, Université Paris 13, CRESS, 93017, Bobigny, France
| | - Vilmundur Gudnason
- Icelandic Heart Association, 201, Kópavogur, Iceland
- Faculty of Medicine, University of Iceland, 101, Reykjavik, Iceland
| | - Tamara B Harris
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Martijn Huisman
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Amsterdam Public Health Research Institute, 1007 MB, Amsterdam, The Netherlands
| | - Mikko A Hurme
- Department of Microbiology and Immunology, Faculty of Medicine and Health Technology, Tampere University, 33014, Tampere, Finland
| | - Carol Jagger
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Iris Jansen
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Marja Jylhä
- Faculty of Social Sciences (Health Sciences) and Gerontology Research Center (GEREC), Tampere University, 33104, Tampere, Finland
| | - Mika Kähönen
- Department of Clinical Physiology, Tampere University Hospital and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33521, Tampere, Finland
| | - David Karasik
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, 13010, Israel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, 02131, USA
| | - Sharon L R Kardia
- School of Public Health, Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Andrew Kingston
- Institute of Health & Society, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Thomas B L Kirkwood
- Newcastle University Institute for Ageing, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Lenore J Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, NIH, Bethesda, MD, 20892, USA
| | - Terho Lehtimäki
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Wolfgang Lieb
- Institute of Epidemiology and Biobank PopGen, Kiel University, 24105, Kiel, Germany
| | - Leo-Pekka Lyytikäinen
- Department of Clinical Chemistry, Fimlab Laboratories and Finnish Cardiovascular Research Center-Tampere, Faculty of Medicine and Health Technology, Tampere University, 33520, Tampere, Finland
| | - Carmen Martin-Ruiz
- Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Junxia Min
- Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, 311058, China
| | - Almut Nebel
- Institute of Clinical Molecular Biology, Kiel University, 24105, Kiel, Germany
| | - Anne B Newman
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Chao Nie
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Ellen A Nohr
- Research Unit of Gynecology and Obstetrics, Department of Clinical Research, University of Southern Denmark, 5000, Odense C, Denmark
| | - Eric S Orwoll
- Bone and Mineral Unit, Oregon Health Sciences University, Portland, OR, 97239, USA
| | - Thomas T Perls
- Department of Medicine, Geriatrics Section, Boston Medical Center, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Michael A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Saint Louis, MO, 63110, USA
| | - Bruce M Psaty
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, 98101, USA
- Department of Epidemiology, University of Washington, Seattle, WA, 98101, USA
- Department of Health Services, University of Washington, Seattle, WA, 98101, USA
- Kaiser Permanente Washington Health Research Institute, Seattle, WA, 98101, USA
| | - Olli T Raitakari
- Department of Clinical Physiology and Nuclear Medicine, Turku University Hospital, 20521, Turku, Finland
- Research Centre of Applied and Preventive Cardiovascular Medicine, University of Turku, 20014, Turku, Finland
| | - Marcel J T Reinders
- Delft Bioinformatics Lab, Delft University of Technology, 2600 GA, Delft, The Netherlands
| | - Jean-Marie Robine
- MMDN, Univ. Montpellier, EPHE, Unité Inserm 1198, PSL Research University, 34095, Montpellier, France
- CERMES3, UMR CNRS 8211-Unité Inserm 988-EHESS-Université Paris Descartes, 94801, Paris, France
| | - Jerome I Rotter
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Division of Genetic Outcomes, Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - Paola Sebastiani
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Jennifer Smith
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
- School of Public Health, Epidemiology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Thorkild I A Sørensen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Section of Metabolic Genetics, and Department of Public Health, Section of Epidemiology, Faculty of Health and Medical Sciences, University of Copenhagen, 2200, Copenhagen N, Denmark
- MRC Integrative Epidemiology Unit, Bristol University, BS8 2BN, Bristol, UK
| | - Kent D Taylor
- Institute for Translational Genomics and Population Sciences, Los Angeles Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
- Department of Pediatrics, Harbor-UCLA Medical Center, Torrance, CA, 90502, USA
| | - André G Uitterlinden
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
| | - Wiesje van der Flier
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Epidemiology and Biostatistics, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
| | - Cornelia M van Duijn
- Department of Epidemiology, Erasmus MC, 3000 CA, Rotterdam, The Netherlands
- Nuffield Department of Population Health, University of Oxford, Oxford, OX3 7LF, UK
| | - Diana van Heemst
- Department of Gerontology and Geriatrics, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands
| | - James W Vaupel
- Max Planck Institute for Demographic Research, 18057, Rostock, Germany
| | - David Weir
- Institute for Social Research, Survey Research Center, University of Michigan, Ann Arbor, MI, 48104, USA
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Yi Zeng
- Center for Healthy Aging and Development Studies, National School of Development and Raissun Institute for Advanced Studies, Peking University, 100871, Beijing, China
- Center for the Study of Aging and Human Development and Geriatrics Division, Medical School of Duke University, Durham, NC, 27710, USA
| | - Wanlin Zheng
- California Pacific Medical Center Research Institute, San Francisco, CA, 94158, USA
| | - Henne Holstege
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Department of Clinical Genetics, Amsterdam UMC, 1007 MB, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, 2600 GA, Delft, The Netherlands
| | - Douglas P Kiel
- Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Boston, MA, 02131, USA
- Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - P Eline Slagboom
- Molecular Epidemiology, Department of Biomedical Data Sciences, Leiden University Medical Center, 2300 RC, Leiden, The Netherlands.
| | - Joanne M Murabito
- NHLBI's and Boston University's Framingham Heart Study, Framingham, MA, 01702, USA.
- Section of General Internal Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
45
|
Chen M, Wang J, Liu N, Cui W, Dong W, Xing B, Pan C. Pig SOX9: Expression profiles of Sertoli cell (SCs) and a functional 18 bp indel affecting testis weight. Theriogenology 2019; 138:94-101. [PMID: 31319268 DOI: 10.1016/j.theriogenology.2019.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/27/2022]
Abstract
Sex determining region Y-box 9 (SOX9), an important member of the SRY- type HMGbox (SOX) gene family, plays an important role in the regulation of mammalian reproduction, including sex differentiation during the embryonic development stage and spermatogenesis after birth. To explore the roles of polymorphism and expression of the SOX9 gene in the development of testes, we analyzed the indel of SOX9 in pigs and the corresponding expression level of the SOX9 gene in 7-day and 5-month-old porcine Sertoli cells. Results revealed that the DD haplotype of SOX9 gene as well as the ID genotype were significantly associated with larger testicular weight, while the II haplotype was closely related to the smaller testicular weight. More importantly, the SOX9 gene expression of ID genotyped group was significantly higher than that in II genotyped group. Our results first revealed that the indel polymorphism and expression of SOX9 were significantly associated with pig reproduction traits indicating the critical roles of SOX9 gene in testes development. The study provides a new clue for understanding the regulation of animal reproductive activities.
Collapse
Affiliation(s)
- Mingyue Chen
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Jing Wang
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China.
| | - Nuan Liu
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Wenbo Cui
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| | - Baosong Xing
- Henan Key Laboratory of Farm Animal Breeding and Nutritional Regulation, Institute of Animal Husbandry and Veterinary Science, Henan Academy of Agricultural Sciences, No.116 Huayuan road, Zhengzhou, 450002, People's Republic of China.
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
46
|
Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis 2019; 1865:1718-1744. [PMID: 31109447 PMCID: PMC7295568 DOI: 10.1016/j.bbadis.2018.08.039] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/02/2018] [Accepted: 08/28/2018] [Indexed: 02/06/2023]
Abstract
Here we summarize the latest data on genetic and epigenetic contributions to human aging and longevity. Whereas environmental and lifestyle factors are important at younger ages, the contribution of genetics appears more important in reaching extreme old age. Genome-wide studies have implicated ~57 gene loci in lifespan. Epigenomic changes during aging profoundly affect cellular function and stress resistance. Dysregulation of transcriptional and chromatin networks is likely a crucial component of aging. Large-scale bioinformatic analyses have revealed involvement of numerous interaction networks. As the young well-differentiated cell replicates into eventual senescence there is drift in the highly regulated chromatin marks towards an entropic middle-ground between repressed and active, such that genes that were previously inactive "leak". There is a breakdown in chromatin connectivity such that topologically associated domains and their insulators weaken, and well-defined blocks of constitutive heterochromatin give way to generalized, senescence-associated heterochromatin, foci. Together, these phenomena contribute to aging.
Collapse
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences and Bosch Institute, University of Sydney, New South Wales 2006, Australia; Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Bradley J Willcox
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Kuakini Medical Center Campus, Honolulu, HI 96813, United States.
| | - Timothy A Donlon
- Honolulu Heart Program (HHP)/Honolulu-Asia Aging Study (HAAS), Department of Research, Kuakini Medical Center, Honolulu, HI 96817, United States; Departments of Cell & Molecular Biology and Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI 96813, United States.
| |
Collapse
|
47
|
Sanese P, Forte G, Disciglio V, Grossi V, Simone C. FOXO3 on the Road to Longevity: Lessons From SNPs and Chromatin Hubs. Comput Struct Biotechnol J 2019; 17:737-745. [PMID: 31303978 PMCID: PMC6606898 DOI: 10.1016/j.csbj.2019.06.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/31/2019] [Accepted: 06/11/2019] [Indexed: 12/21/2022] Open
Abstract
Health span is driven by a precise interplay between genes and the environment. Cell response to environmental cues is mediated by signaling cascades and genetic variants that affect gene expression by regulating chromatin plasticity. Indeed, they can promote the interaction of promoters with regulatory elements by forming active chromatin hubs. FOXO3 encodes a transcription factor with a strong impact on aging and age-related phenotypes, as it regulates stress response, therefore affecting lifespan. A significant association has been shown between human longevity and several FOXO3 variants located in intron 2. This haplotype block forms a putative aging chromatin hub in which FOXO3 has a central role, as it modulates the physical connection and activity of neighboring genes involved in age-related processes. Here we describe the role of FOXO3 and its single-nucleotide polymorphisms (SNPs) in healthy aging, with a focus on the enhancer region encompassing the SNP rs2802292, which upregulates FOXO3 expression and can promote the activity of the aging hub in response to different stress stimuli. FOXO3 protective effect on lifespan may be due to the accessibility of this region to transcription factors promoting its expression. This could in part explain the differences in FOXO3 association with longevity between genders, as its activity in females may be modulated by estrogens through estrogen receptor response elements located in the rs2802292-encompassing region. Altogether, the molecular mechanisms described here may help establish whether the rs2802292 SNP can be taken advantage of in predictive medicine and define the potential of targeting FOXO3 for age-related diseases.
Collapse
Key Words
- 3C, Chromosome conformation capture
- 5′UTR, Five prime untranslated region
- ACH, Active chromatin hub
- Aging
- Chromatin hub
- ER, Estrogen receptor
- ERE, Estrogen-responsive element
- FHRE, Forkhead response element
- FOXO3
- FOXO3, Forkhead box 3
- GPx, Glutathione peroxidase
- GWAS, Genome-wide association study
- HPS, Hamartomatous polyposis syndrome
- HSE, Heat shock element
- HSF1, Heat shock factor 1
- IGF-1, Insulin growth factor-1
- LD, Linkage disequilibrium
- Longevity
- PHTS, PTEN hamartoma tumor syndrome
- PJS, Peutz-Jeghers syndrome
- ROS, Reactive oxygen species
- SNP
- SNP, Single nucleotide polymorphism
- SNV, Single nucleotide variant
- SOD2, Superoxide dismutase 2
- TAD, Topologically associated domain
Collapse
Affiliation(s)
- Paola Sanese
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology ‘S. de Bellis’ Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology ‘S. de Bellis’ Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology ‘S. de Bellis’ Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| | - Cristiano Simone
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy
- Medical Genetics, National Institute of Gastroenterology ‘S. de Bellis’ Research Hospital, Via Turi, 27, 70013 Castellana Grotte (BA), Italy
| |
Collapse
|
48
|
Wang E, Nie Y, Fan X, Zheng Z, Hu S. Intronic Polymorphisms in Gene of Second Heart Field as Risk Factors for Human Congenital Heart Disease in a Chinese Population. DNA Cell Biol 2019; 38:521-531. [PMID: 31013439 DOI: 10.1089/dna.2018.4254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Transcriptional factors and signaling factors in the second heart field (SHF) contribute to cardiac development. However, the associations of intronic gene variants in the SHF with congenital heart disease (CHD) remain ununderstood. Ten single nucleotide polymorphisms (SNPs) from our previous sequencing data were selected and then genotyped in 383 CHD patients and 384 healthy controls in a Chinese population. Genotype analyses revealed that minor alleles in TBX1: rs12165908 C > G [odds ratio (OR) = 2.64; 95% confidence interval (CI) = 1.87-3.73, p = 3.03 × 10-8] and GATA6: rs143085291 C > T (OR = 2.49; 95% CI = 1.18-5.29, p = 0.01) increased CHD risk significantly. Meanwhile, FGF10: rs78454549 T > C and GATA4: rs13275657 A>G polymorphisms were significantly associated with increased risk of simple CHDs. The minor allele C in GATA4: rs17153694 T > C increased the risk of tetralogy of Fallot, whereas minor alleles in TBX1: rs41298006 G>A, FGF10: rs75629618 C>T, FGF10: rs10461755 G>A, FGF10: rs75632187 A>G, and FGF10: rs12518964 G > A were associated with increased risk of single ventricle. The minor allele T in rs143085291 in GATA6 enhancer decreased the transcription level in luciferase assay. Our findings suggest that intronic SNPs in transcriptional factors and signaling factors in the SHF are significantly associated with increased risk of different CHD types.
Collapse
Affiliation(s)
- Enshi Wang
- 1 Center for Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yu Nie
- 2 State Key Laboratory of Cardiovascular Disease, National Center for Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Xuesong Fan
- 3 Department of Clinical Laboratory Center, Beijing An Zhen Hospital, Capital Medical University, Beijing Institute of Heart, Lung and Blood Vessel Diseases Beijing, Beijing, China
| | - Zhe Zheng
- 1 Center for Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shengshou Hu
- 1 Center for Cardiac Surgery, Fuwai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
49
|
Grossi V, Fasano C, Celestini V, Lepore Signorile M, Sanese P, Simone C. Chasing the FOXO3: Insights into Its New Mitochondrial Lair in Colorectal Cancer Landscape. Cancers (Basel) 2019; 11:414. [PMID: 30909600 PMCID: PMC6468785 DOI: 10.3390/cancers11030414] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) poses a formidable challenge in terms of molecular heterogeneity, as it involves a variety of cancer-related pathways and molecular changes unique to an individual's tumor. On the other hand, recent advances in DNA sequencing technologies provide an unprecedented capacity to comprehensively identify the genetic alterations resulting in tumorigenesis, raising the hope that new therapeutic approaches based on molecularly targeted drugs may prevent the occurrence of chemoresistance. Regulation of the transcription factor FOXO3a in response to extracellular cues plays a fundamental role in cellular homeostasis, being part of the molecular machinery that drives cells towards survival or death. Indeed, FOXO3a is controlled by a range of external stimuli, which not only influence its transcriptional activity, but also affect its subcellular localization. These regulation mechanisms are mediated by cancer-related signaling pathways that eventually drive changes in FOXO3a post-translational modifications (e.g., phosphorylation). Recent results showed that FOXO3a is imported into the mitochondria in tumor cells and tissues subjected to metabolic stress and cancer therapeutics, where it induces expression of the mitochondrial genome to support mitochondrial metabolism and cell survival. The current review discusses the potential clinical relevance of multidrug therapies that drive cancer cell fate by regulating critical pathways converging on FOXO3a.
Collapse
Affiliation(s)
- Valentina Grossi
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Via Turi, 27, Castellana Grotte, 70013 Bari, Italy.
| | - Candida Fasano
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Via Turi, 27, Castellana Grotte, 70013 Bari, Italy.
| | - Valentina Celestini
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy.
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Via Turi, 27, Castellana Grotte, 70013 Bari, Italy.
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena, 324, 00161 Roma, Italy.
| | - Paola Sanese
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy.
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology, IRCCS 'S. de Bellis', Via Turi, 27, Castellana Grotte, 70013 Bari, Italy.
- Division of Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Piazza G. Cesare, 11, 70124 Bari, Italy.
| |
Collapse
|
50
|
Morris BJ. Letter by Morris Regarding Article, "Genetics of Human Longevity Within an Eco-Evolutionary Nature-Nurture Framework". Circ Res 2019; 124:e1. [PMID: 30653432 DOI: 10.1161/circresaha.118.314433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Brian J Morris
- Basic & Clinical Genomics Laboratory, School of Medical Sciences, University of Sydney, New South Wales, Australia
| |
Collapse
|