1
|
Carbajo CG, Han X, Savur B, Upadhyaya A, Taha F, Tinti M, Wheeler RJ, Yates PA, Tiengwe C. A high-throughput protein tagging toolkit that retains endogenous untranslated regions for studying gene regulation in kinetoplastids. Open Biol 2025; 15:240334. [PMID: 39999874 PMCID: PMC11858757 DOI: 10.1098/rsob.240334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/02/2025] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Kinetoplastid parasites cause diseases that threaten human and animal health. To survive transitions between vertebrate hosts and insect vectors, these parasites rely on precise regulation of gene expression to adapt to environmental changes. Since gene regulation in kinetoplastids is primarily post-transcriptional, developing efficient genetic tools for modifying genes at their endogenous loci while preserving regulatory mRNA elements is crucial for studying their complex biology. We present a CRISPR/Cas9-based tagging system that preserves untranslated regulatory elements and uses a viral 2A peptide from Thosea asigna to generate two separate proteins from a single transcript: a drug-selectable marker and a tagged protein of interest. This dual-function design maintains native control elements, allowing discrimination between regulation of transcript abundance, translational efficiency, and post-translational events. We validate the system by tagging six Trypanosoma brucei proteins and demonstrate (i) high-efficiency positive selection and separation of drug-selectable marker and target protein, (ii) preservation of regulatory responses to environmental cues like heat shock and iron availability, and (iii) maintenance of stage-specific regulation during developmental transitions. This versatile toolkit is applicable to all kinetoplastids amenable to CRISPR/Cas9 editing, providing a powerful reverse genetic tool for studying post-transcriptional regulation and protein function in organisms where post-transcriptional control is dominant.
Collapse
Affiliation(s)
| | - Xiaoyang Han
- Department of Life Sciences, Imperial College London, London, UK
| | - Bhairavi Savur
- Department of Life Sciences, Imperial College London, London, UK
| | - Arushi Upadhyaya
- Department of Life Sciences, Imperial College London, London, UK
| | - Fatima Taha
- Department of Life Sciences, Imperial College London, London, UK
| | - Michele Tinti
- Wellcome Trust Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Richard J. Wheeler
- Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, UK
- Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, UK
| | - Phillip A. Yates
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, OR, USA
| | - Calvin Tiengwe
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
2
|
Carbajo CG, Han X, Savur B, Upadhyaya A, Taha F, Tinti M, Wheeler RJ, Yates PA, Tiengwe C. A high-throughput protein tagging toolkit that retains endogenous UTRs for studying gene regulation in Kinetoplastids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.02.621556. [PMID: 39554005 PMCID: PMC11566017 DOI: 10.1101/2024.11.02.621556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Kinetoplastid parasites cause diseases that threaten human and animal health. To survive transitions between vertebrate hosts and insect vectors, these parasites rely on precise regulation of gene expression to adapt to environmental changes. Since gene regulation in Kinetoplastids is primarily post-transcriptional, developing efficient genetic tools for modifying genes at their endogenous loci while preserving regulatory mRNA elements is crucial for studying their complex biology. We present a CRISPR/Cas9-based tagging system that preserves untranslated regulatory elements and uses a viral 2A peptide from Thosea asigna to generate two separate proteins from a single transcript: a drug-selectable marker and a tagged protein of interest. This dual-function design maintains native control elements, allowing discrimination between regulation of transcript abundance, translational efficiency, and post-translational events. We validate the system by tagging six Trypanosoma brucei proteins and demonstrate: (i) high-efficiency positive selection and separation of drug-selectable marker and target protein, (ii) preservation of regulatory responses to environmental cues like heat shock and iron availability, and (iii) maintenance of stage-specific regulation during developmental transitions. This versatile toolkit is applicable to all kinetoplastids amenable to CRISPR/Cas9 editing, providing a powerful reverse genetic tool for studying post-transcriptional regulation and protein function in organisms where post-transcriptional control is dominant.
Collapse
|
3
|
Mu S, Wang W, Liu Q, Ke N, Li H, Sun F, Zhang J, Zhu Z. Autoimmune disease: a view of epigenetics and therapeutic targeting. Front Immunol 2024; 15:1482728. [PMID: 39606248 PMCID: PMC11599216 DOI: 10.3389/fimmu.2024.1482728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/23/2024] [Indexed: 11/29/2024] Open
Abstract
Autoimmune diseases comprise a large group of conditions characterized by a complex pathogenesis and significant heterogeneity in their clinical manifestations. Advances in sequencing technology have revealed that in addition to genetic susceptibility, various epigenetic mechanisms including DNA methylation and histone modification play critical roles in disease development. The emerging field of epigenetics has provided new perspectives on the pathogenesis and development of autoimmune diseases. Aberrant epigenetic modifications can be used as biomarkers for disease diagnosis and prognosis. Exploration of human epigenetic profiles revealed that patients with autoimmune diseases exhibit markedly altered DNA methylation profiles compared with healthy individuals. Targeted cutting-edge epigenetic therapies are emerging. For example, DNA methylation inhibitors can rectify methylation dysregulation and relieve patients. Histone deacetylase inhibitors such as vorinostat can affect chromatin accessibility and further regulate gene expression, and have been used in treating hematological malignancies. Epigenetic therapies have opened new avenues for the precise treatment of autoimmune diseases and offer new opportunities for improved therapeutic outcomes. Our review can aid in comprehensively elucidation of the mechanisms of autoimmune diseases and development of new targeted therapies that ultimately benefit patients with these conditions.
Collapse
Affiliation(s)
- Siqi Mu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Wanrong Wang
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Qiuyu Liu
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Naiyu Ke
- Department of Ophthalmology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hao Li
- Department of Urology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Feiyang Sun
- First Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Jiali Zhang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
| | - Zhengwei Zhu
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Key Laboratory of Dermatology (Anhui Medical University), Ministry of Education, Hefei, Anhui, China
- Department of Skin Genetics, Anhui Province Laboratory of Inflammation and Immune Mediated Diseases, Hefei, Anhui, China
- Department of Dermatology, Shannan People's Hospital, Shannan, China
| |
Collapse
|
4
|
Gangwar U, Choudhury H, Shameem R, Singh Y, Bansal A. Recent development in CRISPR-Cas systems for human protozoan diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 208:109-160. [PMID: 39266180 DOI: 10.1016/bs.pmbts.2024.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Protozoan parasitic diseases pose a substantial global health burden. Understanding the pathogenesis of these diseases is crucial for developing intervention strategies in the form of vaccine and drugs. Manipulating the parasite's genome is essential for gaining insights into its fundamental biology. Traditional genomic manipulation methods rely on stochastic homologous recombination events, which necessitates months of maintaining the cultured parasites under drug pressure to generate desired transgenics. The introduction of mega-nucleases (MNs), zinc-finger nucleases (ZFNs), and transcription activator-like effector nucleases (TALENs) greatly reduced the time required for obtaining a desired modification. However, there is a complexity associated with the design of these nucleases. CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) is the latest gene editing tool that provides an efficient and convenient method for precise genomic manipulations in protozoan parasites. In this chapter, we have elaborated various strategies that have been adopted for the use of CRISPR-Cas9 system in Plasmodium, Leishmania and Trypanosoma. We have also discussed various applications of CRISPR-Cas9 pertaining to understanding of the parasite biology, development of drug resistance mechanism, gene drive and diagnosis of the infection.
Collapse
Affiliation(s)
- Utkarsh Gangwar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Risha Shameem
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Yashi Singh
- Department of Biosciences & Biomedical Engineering, Indian Institute of Technology, Indore, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
5
|
Kaya C, Uğurlar F, Adamakis IDS. Epigenetic Modifications of Hormonal Signaling Pathways in Plant Drought Response and Tolerance for Sustainable Food Security. Int J Mol Sci 2024; 25:8229. [PMID: 39125799 PMCID: PMC11311266 DOI: 10.3390/ijms25158229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Drought significantly challenges global food security, necessitating a comprehensive understanding of plant molecular responses for effective mitigation strategies. Epigenetic modifications, such as DNA methylation and histone modifications, are key in regulating genes and hormones essential for drought response. While microRNAs (miRNAs) primarily regulate gene expression post-transcriptionally, they can also interact with epigenetic pathways as potential effectors that influence chromatin remodeling. Although the role of miRNAs in epigenetic memory is still being explored, understanding their contribution to drought response requires examining these indirect effects on epigenetic modifications. A key aspect of this exploration is epigenetic memory in drought-adapted plants, offering insights into the transgenerational inheritance of adaptive traits. Understanding the mechanisms that govern the maintenance and erasure of these epigenetic imprints provides nuanced insights into how plants balance stability and flexibility in their epigenomes. A major focus is on the dynamic interaction between hormonal pathways-such as those for abscisic acid (ABA), ethylene, jasmonates, and salicylic acid (SA)-and epigenetic mechanisms. This interplay is crucial for fine-tuning gene expression during drought stress, leading to physiological and morphological adaptations that enhance plant drought resilience. This review also highlights the transformative potential of advanced technologies, such as bisulfite sequencing and CRISPR-Cas9, in providing comprehensive insights into plant responses to water deficit conditions. These technologies pave the way for developing drought-tolerant crops, which is vital for sustainable agriculture.
Collapse
Affiliation(s)
- Cengiz Kaya
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa 63200, Turkey; (C.K.); (F.U.)
| | - Ferhat Uğurlar
- Soil Science and Plant Nutrition Department, Harran University, Sanliurfa 63200, Turkey; (C.K.); (F.U.)
| | | |
Collapse
|
6
|
Kolanu ND. CRISPR-Cas9 Gene Editing: Curing Genetic Diseases by Inherited Epigenetic Modifications. Glob Med Genet 2024; 11:113-122. [PMID: 38560484 PMCID: PMC10980556 DOI: 10.1055/s-0044-1785234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024] Open
Abstract
Introduction CRISPR-Cas9 gene editing, leveraging bacterial defense mechanisms, offers precise DNA modifications, holding promise in curing genetic diseases. This review critically assesses its potential, analyzing evidence on therapeutic applications, challenges, and future prospects. Examining diverse genetic disorders, it evaluates efficacy, safety, and limitations, emphasizing the need for a thorough understanding among medical professionals and researchers. Acknowledging its transformative impact, a systematic review is crucial for informed decision-making, responsible utilization, and guiding future research to unlock CRISPR-Cas9's full potential in realizing the cure for genetic diseases. Methods A comprehensive literature search across PubMed, Scopus, and the Web of Science identified studies applying CRISPR-Cas9 gene editing for genetic diseases, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Inclusion criteria covered in vitro and in vivo models targeting various genetic diseases with reported outcomes on disease modification or potential cure. Quality assessment revealed a generally moderate to high risk of bias. Heterogeneity prevented quantitative meta-analysis, prompting a narrative synthesis of findings. Discussion CRISPR-Cas9 enables precise gene editing, correcting disease-causing mutations and offering hope for previously incurable genetic conditions. Leveraging inherited epigenetic modifications, it not only fixes mutations but also restores normal gene function and controls gene expression. The transformative potential of CRISPR-Cas9 holds promise for personalized treatments, improving therapeutic outcomes, but ethical considerations and safety concerns must be rigorously addressed to ensure responsible and safe application, especially in germline editing with potential long-term implications.
Collapse
|
7
|
Joly V, Jacob Y. Mitotic inheritance of genetic and epigenetic information via the histone H3.1 variant. CURRENT OPINION IN PLANT BIOLOGY 2023; 75:102401. [PMID: 37302254 PMCID: PMC11168788 DOI: 10.1016/j.pbi.2023.102401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/12/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023]
Abstract
The replication-dependent histone H3.1 variant, ubiquitous in multicellular eukaryotes, has been proposed to play key roles during chromatin replication due to its unique expression pattern restricted to the S phase of the cell cycle. Here, we describe recent discoveries in plants regarding molecular mechanisms and cellular pathways involving H3.1 that contribute to the maintenance of genomic and epigenomic information. First, we highlight new advances concerning the contribution of the histone chaperone CAF-1 and the TSK-H3.1 DNA repair pathway in preventing genomic instability during replication. We then summarize the evidence connecting H3.1 to specific roles required for the mitotic inheritance of epigenetic states. Finally, we discuss the recent identification of a specific interaction between H3.1 and DNA polymerase epsilon and its functional implications.
Collapse
Affiliation(s)
- Valentin Joly
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA; Yale Cancer Center, Yale School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
8
|
Corcoran ET, Jacob Y. Direct assessment of histone function using histone replacement. Trends Biochem Sci 2023; 48:53-70. [PMID: 35853806 PMCID: PMC9789166 DOI: 10.1016/j.tibs.2022.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/09/2023]
Abstract
Histones serve many purposes in eukaryotic cells in the regulation of diverse genomic processes, including transcription, replication, DNA repair, and chromatin organization. As such, experimental systems to assess histone function are fundamental resources toward elucidating the regulation of activities occurring on chromatin. One set of important tools for investigating histone function are histone replacement systems, in which endogenous histone expression can be partially or completely replaced with a mutant histone. Histone replacement systems allow systematic screens of histone regulatory functions and the direct assessment of functions for histone residues. In this review, we describe existing histone replacement systems in model organisms, the benefits and limitations of these systems, and opportunities for future research with histone replacement strategies.
Collapse
Affiliation(s)
- Emma Tung Corcoran
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA
| | - Yannick Jacob
- Yale University, Department of Molecular, Cellular and Developmental Biology, Faculty of Arts and Sciences, 260 Whitney Avenue, New Haven, CT 06511, USA.
| |
Collapse
|
9
|
Nie Q, Huan X, Kang J, Yin J, Zhao J, Li Y, Zhang Z. MG149 Inhibits MOF-Mediated p53 Acetylation to Attenuate X-Ray Radiation-Induced Apoptosis in H9c2 Cells. Radiat Res 2022; 198:590-598. [PMID: 36481803 DOI: 10.1667/rade-22-00049.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 09/30/2022] [Indexed: 12/13/2022]
Abstract
Cardiomyocyte apoptosis is involved in the pathogenesis of radiation-induced heart disease, but the underlying epigenetic mechanism remains elusive. We evaluated the potential mediating role of males absent on the first (MOF) in the association between epigenetic activation of p53 lysine 120 (p53K120) and X-ray radiation-induced apoptosis in H9c2 cells. H9c2 cells were pretreated for 24 h with the MOF inhibitor MG149 after 4 Gy irradiation, followed by assessment of cell proliferation, injury, and apoptosis. MOF expression was upregulated by X-ray radiation. MG149 suppressed the proliferation inhibition, reduction of mitochondrial membrane potential, ROS production, and cell apoptosis. MG149 may promote the survival of H9c2 cells via inhibition of MOF-mediated p53K120 acetylation in response to X-ray radiation-induced apoptosis. Our data indicates a MOF-associated epigenetic mechanism in H9c2 cells that promotes attenuation of X-ray radiation-induced injury.
Collapse
Affiliation(s)
- Qianwen Nie
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Xuan Huan
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Jing Kang
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Jiangyan Yin
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| | - Jiahui Zhao
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China
| | - Yi Li
- School of Stomatology, Lanzhou University, Lanzhou 730000, China
| | - ZhengYi Zhang
- Lanzhou University Second College of Clinical Medicine, Chengguan District, Lanzhou 730030, China.,Department of General Medicine, Second Hospital of Lanzhou University, No.82 Cui Ying Men, Cheng Guan District, Lanzhou 730030, China
| |
Collapse
|
10
|
Pal S, Dam S. CRISPR-Cas9: Taming protozoan parasites with bacterial scissor. J Parasit Dis 2022; 46:1204-1212. [PMID: 36457766 PMCID: PMC9606157 DOI: 10.1007/s12639-022-01534-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/12/2022] [Indexed: 10/14/2022] Open
Abstract
The invention of CRISPR-Cas9 technology has opened a new era in which genome manipulation has become precise, faster, cheap and more accurate than previous genome editing strategies. Despite the intricacies of the genomes associated with several protozoan parasites, CRISPR-Cas9 has made a substantial contribution to parasitology. The study of functional genomics through CRISPR-Cas9 mediated gene knockout, insertion, deletion and mutation has helped in understanding intrinsic parasite biology. The invention of CRISPR-dCas9 has helped in the programmable control of protozoan gene expression and epigenetic engineering. CRISPR and CRISPR-based alternatives will continue to thrive and may aid in the development of novel anti-protozoan strategies to tame the protozoan parasites in the imminent future.
Collapse
Affiliation(s)
- Suchetana Pal
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| | - Somasri Dam
- Department of Microbiology, The University of Burdwan, Burdwan, West Bengal 713104 India
| |
Collapse
|
11
|
Mishra T, Bhardwaj V, Ahuja N, Gadgil P, Ramdas P, Shukla S, Chande A. Improved loss-of-function CRISPR-Cas9 genome editing in human cells concomitant with inhibition of TGF-β signaling. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:202-218. [PMID: 35402072 PMCID: PMC8961078 DOI: 10.1016/j.omtn.2022.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 03/03/2022] [Indexed: 11/29/2022]
Abstract
Strategies to modulate cellular DNA repair pathways hold immense potential to enhance the efficiency of CRISPR-Cas9 genome editing platform. In the absence of a repair template, CRISPR-Cas9-induced DNA double-strand breaks are repaired by the endogenous cellular DNA repair pathways to generate loss-of-function edits. Here, we describe a reporter-based assay for expeditious measurement of loss-of-function editing by CRISPR-Cas9. An unbiased chemical screen performed using this assay enabled the identification of small molecules that promote loss-of-function editing. Iterative rounds of screens reveal Repsox, a TGF-β signaling inhibitor, as a CRISPR-Cas9 editing efficiency enhancer. Repsox invariably increased CRISPR-Cas9 editing in a panel of commonly used cell lines in biomedical research and primary cells. Furthermore, Repsox-mediated editing enhancement in primary human CD4+ T cells enabled the generation of HIV-1-resistant cells with high efficiency. This study demonstrates the potential of transiently targeting cellular pathways by small molecules to improve genome editing for research applications and is expected to benefit gene therapy efforts.
Collapse
Affiliation(s)
- Tarun Mishra
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Vipin Bhardwaj
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Neha Ahuja
- Epigenetics and RNA Processing Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Pallavi Gadgil
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Pavitra Ramdas
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Sanjeev Shukla
- Epigenetics and RNA Processing Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| | - Ajit Chande
- Molecular Virology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India
| |
Collapse
|
12
|
Altmann S, Rico E, Carvalho S, Ridgway M, Trenaman A, Donnelly H, Tinti M, Wyllie S, Horn D. Oligo targeting for profiling drug resistance mutations in the parasitic trypanosomatids. Nucleic Acids Res 2022; 50:e79. [PMID: 35524555 PMCID: PMC9371896 DOI: 10.1093/nar/gkac319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 03/16/2022] [Accepted: 04/20/2022] [Indexed: 12/31/2022] Open
Abstract
Trypanosomatids cause the neglected tropical diseases, sleeping sickness, Chagas disease and the leishmaniases. Studies on these lethal parasites would be further facilitated by new and improved genetic technologies. Scalable precision editing methods, for example, could be used to improve our understanding of potential mutations associated with drug resistance, a current priority given that several new anti-trypanosomal drugs, with known targets, are currently in clinical development. We report the development of a simple oligo targeting method for rapid and precise editing of priority drug targets in otherwise wild type trypanosomatids. In Trypanosoma brucei, approx. 50-b single-stranded oligodeoxynucleotides were optimal, multiple base edits could be incorporated, and editing efficiency was substantially increased when mismatch repair was suppressed. Resistance-associated edits were introduced in T. brucei cyclin dependent kinase 12 (CRK12, L482F) or cleavage and polyadenylation specificity factor 3 (N232H), in the Trypanosoma cruzi proteasome β5 subunit (G208S), or in Leishmania donovani CRK12 (G572D). We further implemented oligo targeting for site saturation mutagenesis, targeting codon G492 in T. brucei CRK12. This approach, combined with amplicon sequencing for codon variant scoring, revealed fourteen resistance conferring G492 edits encoding six distinct amino acids. The outputs confirm on-target drug activity, reveal a variety of resistance-associated mutations, and facilitate rapid assessment of potential impacts on drug efficacy.
Collapse
Affiliation(s)
- Simone Altmann
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Eva Rico
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Sandra Carvalho
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Melanie Ridgway
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Anna Trenaman
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Hannah Donnelly
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Michele Tinti
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Susan Wyllie
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - David Horn
- The Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| |
Collapse
|
13
|
Kovářová J, Novotná M, Faria J, Rico E, Wallace C, Zoltner M, Field MC, Horn D. CRISPR/Cas9-based precision tagging of essential genes in bloodstream form African trypanosomes. Mol Biochem Parasitol 2022; 249:111476. [DOI: 10.1016/j.molbiopara.2022.111476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 12/27/2022]
|
14
|
Bonitto K, Sarathy K, Atai K, Mitra M, Coller HA. Is There a Histone Code for Cellular Quiescence? Front Cell Dev Biol 2021; 9:739780. [PMID: 34778253 PMCID: PMC8586460 DOI: 10.3389/fcell.2021.739780] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone “code,” a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.
Collapse
Affiliation(s)
- Kenya Bonitto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kirthana Sarathy
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaiser Atai
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
15
|
Kirti A, Sharma M, Rani K, Bansal A. CRISPRing protozoan parasites to better understand the biology of diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 180:21-68. [PMID: 33934837 DOI: 10.1016/bs.pmbts.2021.01.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Precise gene editing techniques are paramount to gain deeper insights into the biological processes such as host-parasite interactions, drug resistance mechanisms, and gene-function relationships. Discovery of CRISPR-Cas9 system has spearheaded mechanistic understanding of protozoan parasite biology as evident from the number of reports in the last decade. Here, we have described the use of CRISPR-Cas9 in understanding the biology of medically important protozoan parasites such as Plasmodium, Leishmania, Trypanosoma, Babesia and Trichomonas. In spite of intrinsic difficulties in genome editing in these protozoan parasites, CRISPR-Cas9 has acted as a catalyst for faster generation of desired transgenic parasites. Modifications in the CRISPR-Cas9 system for improving the efficiency have been useful in better understanding the molecular mechanisms associated with repair of double strand breaks in the parasites. Moreover, improvement in reagents used for CRISPR mediated gene editing have been instrumental in addressing the issue of non-specificity and toxicity for therapeutic use. These application-based modifications may help in further increasing the efficiency of gene editing in protozoan parasites.
Collapse
Affiliation(s)
- Apurva Kirti
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Manish Sharma
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Komal Rani
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Abhisheka Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India.
| |
Collapse
|
16
|
Fu Y, Zhu Z, Meng G, Zhang R, Zhang Y. A CRISPR-Cas9 based shuffle system for endogenous histone H3 and H4 combinatorial mutagenesis. Sci Rep 2021; 11:3298. [PMID: 33558622 PMCID: PMC7870972 DOI: 10.1038/s41598-021-82774-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 01/07/2021] [Indexed: 11/09/2022] Open
Abstract
Post-translational modifications of histone proteins greatly impact gene expression and cell fate decisions in eukaryotes. To study these, it is important to develop a convenient, multiplex, and efficient method to precisely introduce mutations to histones. Because eukaryotic cells usually contain multiple copies of histone genes, it is a challenge to mutate all histones at the same time by the traditional homologous recombination method. Here, we developed a CRISPR-Cas9 based shuffle system in Saccharomyces cerevisiae, to generate point mutations on both endogenous histone H3 and H4 genes in a rapid, seamless and multiplex fashion. Using this method, we generated yeast strains containing histone triple H3–K4R–K36R–K79R mutants and histone combinatorial H3–K56Q–H4–K59A double mutants with high efficiencies (70–80%). This CRISPR-Cas9 based mutagenesis system could be an invaluable tool to the epigenetics field.
Collapse
Affiliation(s)
- Yu Fu
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Rd., Shapingba, Chongqing, 401331, China
| | - Geng Meng
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China
| | - Rijun Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China.
| | - Yueping Zhang
- Laboratory of Feed Biotechnology, State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, College of Veterinary Medicine, China Agricultural University, Haidian District, Beijing, 100193, China.
| |
Collapse
|
17
|
Application of CRISPR/Cas9-Based Reverse Genetics in Leishmania braziliensis: Conserved Roles for HSP100 and HSP23. Genes (Basel) 2020; 11:genes11101159. [PMID: 33007987 PMCID: PMC7601497 DOI: 10.3390/genes11101159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/23/2020] [Accepted: 09/25/2020] [Indexed: 01/18/2023] Open
Abstract
The protozoan parasite Leishmania (Viannia) braziliensis (L. braziliensis) is the main cause of human tegumentary leishmaniasis in the New World, a disease affecting the skin and/or mucosal tissues. Despite its importance, the study of the unique biology of L. braziliensis through reverse genetics analyses has so far lagged behind in comparison with Old World Leishmania spp. In this study, we successfully applied a cloning-free, PCR-based CRISPR–Cas9 technology in L. braziliensis that was previously developed for Old World Leishmania major and New World L. mexicana species. As proof of principle, we demonstrate the targeted replacement of a transgene (eGFP) and two L. braziliensis single-copy genes (HSP23 and HSP100). We obtained homozygous Cas9-free HSP23- and HSP100-null mutants in L. braziliensis that matched the phenotypes reported previously for the respective L. donovani null mutants. The function of HSP23 is indeed conserved throughout the Trypanosomatida as L. majorHSP23 null mutants could be complemented phenotypically with transgenes from a range of trypanosomatids. In summary, the feasibility of genetic manipulation of L. braziliensis by CRISPR–Cas9-mediated gene editing sets the stage for testing the role of specific genes in that parasite’s biology, including functional studies of virulence factors in relevant animal models to reveal novel therapeutic targets to combat American tegumentary leishmaniasis.
Collapse
|
18
|
Histone Modifications and Other Facets of Epigenetic Regulation in Trypanosomatids: Leaving Their Mark. mBio 2020; 11:mBio.01079-20. [PMID: 32873754 PMCID: PMC7468196 DOI: 10.1128/mbio.01079-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Histone posttranslational modifications (PTMs) modulate several eukaryotic cellular processes, including transcription, replication, and repair. Vast arrays of modifications have been identified in conventional eukaryotes over the last 20 to 25 years. While initial studies uncovered these primarily on histone tails, multiple modifications were subsequently found on the central globular domains as well. Histones are evolutionarily conserved across eukaryotes, and a large number of their PTMs and the functional relevance of these PTMs are largely conserved. Histone posttranslational modifications (PTMs) modulate several eukaryotic cellular processes, including transcription, replication, and repair. Vast arrays of modifications have been identified in conventional eukaryotes over the last 20 to 25 years. While initial studies uncovered these primarily on histone tails, multiple modifications were subsequently found on the central globular domains as well. Histones are evolutionarily conserved across eukaryotes, and a large number of their PTMs and the functional relevance of these PTMs are largely conserved. Trypanosomatids, however, are early diverging eukaryotes. Although possessing all four canonical histones as well as several variants, their sequences diverge from those of other eukaryotes, particularly in the tails. Consequently, the modifications they carry also vary. Initial analyses almost 15 years ago suggested that trypanosomatids possessed a smaller collection of histone modifications. However, exhaustive high resolution mass spectrometry analyses in the last few years have overturned this belief, and it is now evident that the “histone code” proposed by Allis and coworkers in the early years of this century is as complex in these organisms as in other eukaryotes. Trypanosomatids cause several diseases, and the members of this group of organisms have varied lifestyles, evolving diverse mechanisms to evade the host immune system, some of which have been found to be principally controlled by epigenetic mechanisms. This minireview aims to acquaint the reader with the impact of histone PTMs on trypanosomatid cellular processes, as well as other facets of trypanosomatid epigenetic regulation, including the influence of three-dimensional (3D) genome architecture, and discusses avenues for future investigations.
Collapse
|
19
|
Yagoubat A, Corrales RM, Bastien P, Lévêque MF, Sterkers Y. Gene Editing in Trypanosomatids: Tips and Tricks in the CRISPR-Cas9 Era. Trends Parasitol 2020; 36:745-760. [DOI: 10.1016/j.pt.2020.06.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/19/2020] [Accepted: 06/30/2020] [Indexed: 12/22/2022]
|
20
|
Shaw S, Knüsel S, Hoenner S, Roditi I. A transient CRISPR/Cas9 expression system for genome editing in Trypanosoma brucei. BMC Res Notes 2020; 13:268. [PMID: 32493474 PMCID: PMC7268226 DOI: 10.1186/s13104-020-05089-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 05/13/2020] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Generation of knockouts and in situ tagging of genes in Trypanosoma brucei has been greatly facilitated by using CRISPR/Cas9 as a genome editing tool. To date, this has entailed using a limited number of cell lines that are stably transformed to express Cas9 and T7 RNA polymerase (T7RNAP). It would be desirable, however, to be able to use CRISPR/Cas9 for any trypanosome cell line. RESULTS We describe a sequential transfection expression system that enables transient expression of the two proteins, followed by delivery of PCR products for gRNAs and repair templates. This procedure can be used for genome editing without the need for stable integration of the Cas9 and T7RNAP genes.
Collapse
Affiliation(s)
- Sebastian Shaw
- Institute of Cell Biology, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Science, University of Bern, Bern, Switzerland
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, Philadelphia, PA, 19104, USA
| | - Sebastian Knüsel
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Sarah Hoenner
- Institute of Cell Biology, University of Bern, Bern, Switzerland
| | - Isabel Roditi
- Institute of Cell Biology, University of Bern, Bern, Switzerland.
| |
Collapse
|
21
|
Abstract
Cultivation of pleomorphic Trypanosoma brucei strains was introduced in 1996 when matrix dependence of growth of natural isolates was recognized. Semisolid agarose or liquid methylcellulose are currently used and here we provide optimized protocols for these culture methods and for transfection of pleomorphic strains. Although more laborious than standard liquid culture, culture of native pleomorphic strains is important for a number of research questions including differentiation, virulence, tissue tropism, and regulated metabolism. Some subclones of pleomorphic strains have acquired matrix independence upon passage in culture but maintained a pleomorphic phenotype. It appears that matrix dependence and pleomorphism are not tightly linked traits, yet phenotypes have to be verified before choosing one of these subclones for given experiments. Based on direct comparisons, we give recommendations for pleomorphic strain selection and culture conditions that guarantee truly pleomorphic and differentiation competent Trypanosoma brucei.
Collapse
|
22
|
Yagoubat A, Crobu L, Berry L, Kuk N, Lefebvre M, Sarrazin A, Bastien P, Sterkers Y. Universal highly efficient conditional knockout system in
Leishmania
, with a focus on untranscribed region preservation. Cell Microbiol 2020; 22:e13159. [DOI: 10.1111/cmi.13159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/24/2019] [Accepted: 12/27/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Akila Yagoubat
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Lucien Crobu
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Laurence Berry
- Laboratory of Pathogen Host Interactions, Microscopie Electronique et Analytique, CNRSUniversity of Montpellier Montpellier France
| | - Nada Kuk
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Michèle Lefebvre
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Amélie Sarrazin
- Montpellier RIO Imaging Facility, Montpellier BIOCAMPUSUniversity of Montpellier, Arnaud de Villeneuve Campus Imaging Facility‐Institut de Génétique Humaine‐CNRS Montpellier France
| | - Patrick Bastien
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| | - Yvon Sterkers
- MiVEGECUniversity of Montpellier, CNRS, IRD, CHU Montpellier France
| |
Collapse
|
23
|
Vergnes B, Gazanion E, Mariac C, Du Manoir M, Sollelis L, Lopez-Rubio JJ, Sterkers Y, Bañuls AL. A single amino acid substitution (H451Y) in Leishmania calcium-dependent kinase SCAMK confers high tolerance and resistance to antimony. J Antimicrob Chemother 2019; 74:3231-3239. [DOI: 10.1093/jac/dkz334] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
For almost a century, antimonials have remained the first-line drugs for the treatment of leishmaniasis. However, little is known about their mode of action and clinical resistance mechanisms.
Objectives
We have previously shown that Leishmania nicotinamidase (PNC1) is an essential enzyme for parasite NAD+ homeostasis and virulence in vivo. Here, we found that parasites lacking the pnc1 gene (Δpnc1) are hypersusceptible to the active form of antimony (SbIII) and used these mutant parasites to better understand antimony’s mode of action and the mechanisms leading to resistance.
Methods
SbIII-resistant WT and Δpnc1 parasites were selected in vitro by a stepwise selection method. NAD(H)/NADP(H) dosages and quantitative RT–PCR experiments were performed to explain the susceptibility differences observed between strains. WGS and a marker-free CRISPR/Cas9 base-editing approach were used to identify and validate the role of a new resistance mutation.
Results
NAD+-depleted Δpnc1 parasites were highly susceptible to SbIII and this phenotype could be rescued by NAD+ precursor or trypanothione precursor supplementation. Δpnc1 parasites could become resistant to SbIII by an unknown mechanism. WGS revealed a unique amino acid substitution (H451Y) in an EF-hand domain of an orphan calcium-dependent kinase, recently named SCAMK. When introduced into a WT reference strain by base editing, the H451Y mutation allowed Leishmania parasites to survive at extreme concentrations of SbIII, potentiating the rapid emergence of resistant parasites.
Conclusions
These results establish that Leishmania SCAMK is a new central hub of antimony’s mode of action and resistance development, and uncover the importance of drug tolerance mutations in the evolution of parasite drug resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yvon Sterkers
- MIVEGEC, IRD, CNRS, Univ. Montpellier, Montpellier, France
- Department of Parasitology-Mycology, Faculty of Medicine, University Hospital Center of Montpellier, Univ. Montpellier, Montpellier, France
| | | |
Collapse
|
24
|
Lander N, Chiurillo MA. State-of-the-art CRISPR/Cas9 Technology for Genome Editing in Trypanosomatids. J Eukaryot Microbiol 2019; 66:981-991. [PMID: 31211904 DOI: 10.1111/jeu.12747] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/12/2019] [Accepted: 06/12/2019] [Indexed: 12/23/2022]
Abstract
CRISPR/Cas9 technology has revolutionized biology. This prokaryotic defense system against foreign DNA has been repurposed for genome editing in a broad range of cell tissues and organisms. Trypanosomatids are flagellated protozoa belonging to the order Kinetoplastida. Some of its most representative members cause important human diseases affecting millions of people worldwide, such as Chagas disease, sleeping sickness and different forms of leishmaniases. Trypanosomatid infections represent an enormous burden for public health and there are no effective treatments for most of the diseases they cause. Since the emergence of the CRISPR/Cas9 technology, the genetic manipulation of these parasites has notably improved. As a consequence, genome editing is now playing a key role in the functional study of proteins, in the characterization of metabolic pathways, in the validation of alternative targets for antiparasitic interventions, and in the study of parasite biology and pathogenesis. In this work we review the different strategies that have been used to adapt the CRISPR/Cas9 system to Trypanosoma cruzi, Trypanosoma brucei, and Leishmania spp., as well as the research progress achieved using these approaches. Thereby, we will present the state-of-the-art molecular tools available for genome editing in trypanosomatids to finally point out the future perspectives in the field.
Collapse
Affiliation(s)
- Noelia Lander
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602
| | - Miguel A Chiurillo
- Center for Tropical and Emerging Global Diseases and Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
25
|
Bryant JM, Baumgarten S, Glover L, Hutchinson S, Rachidi N. CRISPR in Parasitology: Not Exactly Cut and Dried! Trends Parasitol 2019; 35:409-422. [DOI: 10.1016/j.pt.2019.03.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 03/13/2019] [Accepted: 03/14/2019] [Indexed: 12/26/2022]
|
26
|
Arunsan P, Ittiprasert W, Smout MJ, Cochran CJ, Mann VH, Chaiyadet S, Karinshak SE, Sripa B, Young ND, Sotillo J, Loukas A, Brindley PJ, Laha T. Programmed knockout mutation of liver fluke granulin attenuates virulence of infection-induced hepatobiliary morbidity. eLife 2019; 8:e41463. [PMID: 30644359 PMCID: PMC6355195 DOI: 10.7554/elife.41463] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 12/12/2018] [Indexed: 12/26/2022] Open
Abstract
Infection with the food-borne liver fluke Opisthorchis viverrini is the principal risk factor (IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, 2012) for cholangiocarcinoma (CCA) in the Lower Mekong River Basin countries including Thailand, Lao PDR, Vietnam and Cambodia. We exploited this link to explore the role of the secreted growth factor termed liver fluke granulin (Ov-GRN-1) in pre-malignant lesions by undertaking programmed CRISPR/Cas9 knockout of the Ov-GRN-1 gene from the liver fluke genome. Deep sequencing of amplicon libraries from genomic DNA of gene-edited parasites revealed Cas9-catalyzed mutations within Ov-GRN-1. Gene editing resulted in rapid depletion of Ov-GRN-1 transcripts and the encoded Ov-GRN-1 protein. Gene-edited parasites colonized the biliary tract of hamsters and developed into adult flukes, but the infection resulted in reduced pathology as evidenced by attenuated biliary hyperplasia and fibrosis. Not only does this report pioneer programmed gene-editing in parasitic flatworms, but also the striking, clinically-relevant pathophysiological phenotype confirms the role for Ov-GRN-1 in virulence morbidity during opisthorchiasis.
Collapse
Affiliation(s)
- Patpicha Arunsan
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, United States
- Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington DC, United States
| | - Wannaporn Ittiprasert
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, United States
- Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington DC, United States
| | - Michael J Smout
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Christina J Cochran
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, United States
- Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington DC, United States
| | - Victoria H Mann
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, United States
- Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington DC, United States
| | - Sujittra Chaiyadet
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Shannon E Karinshak
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, United States
- Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington DC, United States
| | - Banchob Sripa
- Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Neil David Young
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Victoria, Australia
| | - Javier Sotillo
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Alex Loukas
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Paul J Brindley
- Department of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington DC, United States
- Research Center for Neglected Diseases of Poverty, School of Medicine & Health Sciences, George Washington University, Washington DC, United States
| | - Thewarach Laha
- Department of Parasitology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
27
|
Niemirowicz GT, Cazzulo JJ, Álvarez VE, Bouvier LA. Simplified inducible system for Trypanosoma brucei. PLoS One 2018; 13:e0205527. [PMID: 30308039 PMCID: PMC6181392 DOI: 10.1371/journal.pone.0205527] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/26/2018] [Indexed: 11/18/2022] Open
Abstract
Nowadays, most reverse genetics approaches in Trypanosoma brucei, a protozoan parasite of medical and veterinary importance, rely on pre-established cell lines. Consequently, inducible experimentation is reduced to a few laboratory strains. Here we described a new transgene expression system based exclusively on endogenous transcription activities and a minimum set of regulatory components that can easily been adapted to different strains. The pTbFIX vectors are designed to contain the sequence of interest under the control of an inducible rRNA promoter along with a constitutive dicistronic unit encoding a nucleus targeted tetracycline repressor and puromycin resistance genes in a tandem “head-to-tail” configuration. Upon doxycycline induction, the system supports regulatable GFP expression (170 to 400 fold) in both bloodstream and procyclic T. brucei forms. Furthermore we have adapted the pTbFIX plasmid to perform RNAi experimentation. Lethal phenotypes, including α-tubulin and those corresponding to the enolase and clathrin heavy chain genes, were successfully recapitulated in procyclic and bloodstream parasites thus showing the versatility of this new tool.
Collapse
Affiliation(s)
- Gabriela T. Niemirowicz
- Instituto de Investigaciones Biotecnológicas (IIB) Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Juan J. Cazzulo
- Instituto de Investigaciones Biotecnológicas (IIB) Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - Vanina E. Álvarez
- Instituto de Investigaciones Biotecnológicas (IIB) Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
| | - León A. Bouvier
- Instituto de Investigaciones Biotecnológicas (IIB) Dr. Rodolfo A. Ugalde, Universidad Nacional de San Martín (UNSAM), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|