1
|
Nishimura M, Takahashi K, Hosokawa M. Recent advances in single-cell RNA sequencing of bacteria: Techniques, challenges, and applications. J Biosci Bioeng 2025; 139:341-346. [PMID: 39984340 DOI: 10.1016/j.jbiosc.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/30/2025] [Accepted: 01/30/2025] [Indexed: 02/23/2025]
Abstract
Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular heterogeneity in complex biological systems. While this technology has been widely applied to eukaryotic cells, its adaptation to bacterial systems has been challenging due to the unique characteristics of bacterial transcripts. This review surveys the recent developments in bacterial scRNA-seq techniques, highlighting the technical challenges, methodological innovations, and emerging applications in microbiology. We discuss the key differences between eukaryotic and bacterial RNA-seq approaches, focusing on the strategies to overcome limitations such as the lack of poly-A tails in bacterial mRNAs and the low RNA content in individual bacterial cells. The review covers various bacterial scRNA-seq methods, including plate-based, split-pool barcoding, and droplet-based techniques, comparing their strengths and limitations in terms of sensitivity, throughput, and applicability to different bacterial species. Furthermore, we explore the biological insights gained from these techniques, such as identifying rare cell states, characterization of antibiotic responses, and analysis of bacterial communities. Finally, we discuss future perspectives and potential applications of bacterial scRNA-seq in understanding microbial physiology, host-pathogen interactions, and complex microbial ecosystems. This comprehensive overview aims to provide researchers with a clear understanding of the current state and future directions of single-cell transcriptomics in bacteria.
Collapse
Affiliation(s)
- Mika Nishimura
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Kazuki Takahashi
- Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan
| | - Masahito Hosokawa
- Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan; Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan; Research Organization for Nano and Life Innovation, Waseda University, 513 Wasedatsurumaki-cho, Shinjuku-ku, Tokyo 162-0041, Japan; Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| |
Collapse
|
2
|
Chen W, Chen H, Liu Z, Chi X, Chen Y, Ye H, Huang W, Cao C, Weng W. A case report of confirmed difficult pulmonary tuberculosis based on the hybrid capture-based tNGS method. BMC Pulm Med 2025; 25:64. [PMID: 39915769 PMCID: PMC11800540 DOI: 10.1186/s12890-025-03539-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 01/30/2025] [Indexed: 02/11/2025] Open
Abstract
BACKGROUND Early diagnosis of pulmonary tuberculosis can greatly reduce the harm caused by the disease. However, traditional diagnostic methods have various shortcomings in diagnosing pulmonary tuberculosis. Currently, with the increasing popularity, iteration, and decreasing costs of Next-generation sequencing (NGS) testing technology, NGS is being more widely applied in the diagnosis of pulmonary tuberculosis. CASE PRESENTATION A 29-year-old male presented with "fever accompanied by cough for more than 20 days." Multiple chest CT scans revealed progressive enlargement of the right hilar lymph nodes and thickening of the interlobular septa in the right upper lobe. Routine testing of bronchoalveolar lavage fluid, search for tuberculosis bacilli, bacterial and fungal cultures, X-pert MTB/RIF, and multiplex PCR-based targeted Next-generation sequencing (mp-tNGS) results were all inconclusive. Finally, bronchoalveolar lavage fluid was sent for hybrid capture-based targeted Next-generation sequencing (hc-tNGS) testing, and special staining of the enlarged lymph nodes confirmed the diagnosis of pulmonary tuberculosis. CONCLUSION The hc-tNGS has significant value in diagnosing pulmonary tuberculosis, especially in cases that are difficult to detect with other methods. In the future, this could gradually become a routine diagnostic method for pulmonary tuberculosis, enhancing the accuracy of early diagnosis.
Collapse
Affiliation(s)
- Weiqian Chen
- Department of Respiratory Medicine, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Huimin Chen
- Department of Cardiology, Wenzhou TCM Hospital of Zhejiang Chinese Medical University, Wenzhou, 325000, Zhejiang, China
| | - Ze Liu
- Department of Nuclear Medicine, Ningbo Hangzhou Bay Hospital, Ningbo, 315327, Zhejiang, China
| | - Xinle Chi
- Department of Radiology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Yaomeng Chen
- Department of Radiology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Huan Ye
- Department of Respiratory Medicine, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Wenjie Huang
- Department of Nuclear Medicine, Xinqiao Hospital, Chongqing, 400037, China
| | - Chenlei Cao
- Department of Respiratory Medicine, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China
| | - Wei Weng
- Department of Radiology, The Wenzhou Third Clinical Institute Affiliated to Wenzhou Medical University, Wenzhou People's Hospital, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
3
|
Roos M, Bunga S, Tan A, Maissy E, Skola D, Richter A, Whittaker DS, Desplats P, Zarrinpar A, Conrad R, Kuersten S. Optimizing mouse metatranscriptome profiling by selective removal of redundant nucleic acid sequences. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.15.632452. [PMID: 39868335 PMCID: PMC11760724 DOI: 10.1101/2025.01.15.632452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Metatranscriptome (MetaT) sequencing is a critical tool for profiling the dynamic metabolic functions of microbiomes. In addition to taxonomic information, MetaT also provides real-time gene expression data of both host and microbial populations, thus permitting authentic quantification of the functional (enzymatic) output of the microbiome and its host. The main challenge to effective and accurate MetaT analysis is the removal of highly abundant rRNA transcripts from these complex mixtures of microbes, which can number in the thousands of individual species. Regardless of methodology for rRNA depletion, the design of rRNA removal probes based solely upon taxonomic content of the microbiome typically requires very large numbers of individual probes, making this approach complex to commercially manufacture, costly, and frequently technically infeasible. In previous work [1], we designed a set of depletion probes for human stool samples using a design strategy based solely on sequence abundance, completely agnostic of the microbiomal species present. Here, we show that the human-based probes are less effective when used with mouse cecal samples. However, adapting additional rRNA depletion probes specifically to cecal content provides both greater efficiency and consistency for MetaT analysis of mouse samples. Importance Sequencing total RNA from microbiome samples is seriously impaired by the overwhelming proportion of rRNA to mRNA content. As much as 99% of sequencing reads can be assigned to the rRNA content, thus removal of these abundant transcripts is critical to MetaT analysis. The use of Ribo Zero Plus rRNA depletion probes designed for human gut microbiomes proved to be less effective and more inconsistent across mouse cecal donor samples, a common experimental system for microbiome studies. In the present work, we have extended and refined a taxonomically-neutral probe design method for mouse cecal content. The additional probes were carefully chosen to limit the number needed for effective depletion to reduce both the cost and risk of introducing bias to MetaT analysis. Our results demonstrate this method as efficient and consistent for rRNA removal in mouse cecal samples, thus providing a significant increase in the number of mRNA-rich sequencing reads for MetaT analysis.
Collapse
Affiliation(s)
| | | | | | - Erica Maissy
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | | | - Alexander Richter
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
| | - Daniel S Whittaker
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
| | - Paula Desplats
- Departments of Neurosciences and Pathology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093
| | - Amir Zarrinpar
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, La Jolla, CA, USA
| | - Rick Conrad
- Illumina, Inc., San Diego, CA, USA
- Division of Gastroenterology, University of California, San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093
- Departments of Neurosciences and Pathology, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Division of Gastroenterology, Jennifer Moreno Department of Veterans Affairs Medical Center, La Jolla, CA, USA
- Retired
| | | |
Collapse
|
4
|
Hamami E, Huo W, Hernandez-Bird J, Castaneda A, Bai J, Syal S, Ortiz-Marquez JC, van Opijnen T, Geisinger E, Isberg RR. Identification of determinants that allow maintenance of high-level fluoroquinolone resistance in Acinetobacter baumannii. mBio 2025; 16:e0322124. [PMID: 39589129 PMCID: PMC11708032 DOI: 10.1128/mbio.03221-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/27/2024] Open
Abstract
Acinetobacter baumannii is associated with multidrug-resistant infections in healthcare settings, with fluoroquinolones such as ciprofloxacin being currently ineffective. Clinical isolates largely harbor mutations in the GyrA and TopoIV fluoroquinolone targets, as well as mutations that increase expression of drug resistance-nodulation-division (RND) efflux pumps. Factors critical for maintaining fitness levels of pump overproducers are uncharacterized despite their prevalence in clinical isolates. We, here, identify proteins that contribute to the fitness of fluoroquinolone-resistant (FQR) strains overexpressing three known RND systems using high-density insertion mutagenesis. Overexpression of the AdeFGH efflux pump caused hypersensitization to defects in outer membrane homeostatic regulation, including lesions that reduced lipooligosaccharide (LOS) biosynthesis and blocked production of the major A. baumannii porin. In contrast, AdeAB pump hyperexpression, in the absence of elevated adeC expression (the outer membrane component of the pump), was relatively tolerant to loss of these functions, consistent with the outer membrane protein being the primary disruptive component. Surprisingly, overexpression of proton-transporting efflux pumps had little impact on cytosolic pH, consistent with a compensatory response to pump activity. The most striking transcriptional changes were associated with AdeFGH pump overexpression, including the activation of the phenylacetate (PAA) degradation regulon. Disruption of the PAA pathway resulted in cytosolic acidification and defective expression of genes involved in protection from oxidative stress. These results indicate that RND efflux pump overproduction is compensated by maintenance of outer membrane integrity in A. baumannii to facilitate fitness of FQR isolates.IMPORTANCEAcinetobacter baumannii is a pathogen that often causes multidrug-resistant infections in healthcare settings, presenting a threat to the efficacy of known therapeutic interventions. Fluoroquinolones such as ciprofloxacin are currently ineffective against a majority of clinical A. baumannii isolates, many of which express pumps that remove this antibiotic class from within the bacterium. Three of these pumps can be found in most clinical isolates, with one of the three often hyperproduced at all times. In this study, we identify proteins that are necessary for the fitness of pump hyperproducers. The identified proteins are necessary to stabilize the outer membrane and allow the cytoplasm to tolerate the accumulation of ions as a consequence of excess pump activity. These results point to strategies for developing therapies that combine known antibiotics with drugs that target proteins important for survival of strains hyper-expressing efflux pumps.
Collapse
Affiliation(s)
- Efrat Hamami
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Arnold Castaneda
- Department of Biology, Tufts University, Medford, Massachusetts, USA
| | - Jinna Bai
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Sapna Syal
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Juan C. Ortiz-Marquez
- Department of Biology, Boston College, Chestnut Hill, Massachusetts, USA
- Innovation Laboratory, Broad Institute, Cambridge, Massachusetts, USA
| | - Tim van Opijnen
- Innovation Laboratory, Broad Institute, Cambridge, Massachusetts, USA
| | - Edward Geisinger
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Department of Biology, Northeastern University, Boston, Massachusetts, USA
| | - Ralph R. Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
5
|
Hamami E, Huo W, Hernandez-Bird J, Castaneda A, Bai J, Syal S, Ortiz-Marquez JC, van Opijnen T, Geisinger E, Isberg RR. Identification of Determinants that Allow Maintenance of High-Level Fluoroquinolone Resistance in Acinetobacter baumannii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560562. [PMID: 38645180 PMCID: PMC11030222 DOI: 10.1101/2023.10.03.560562] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Acinetobacter baumannii is associated with multidrug resistant (MDR) infections in healthcare settings, with fluoroquinolones such as ciprofloxacin being currently ineffective. Clinical isolates largely harbor mutations in the GyrA and TopoIV fluoroquinolone targets, as well as mutations that increase expression of drug resistance-nodulation-division (RND) efflux pumps. Factors critical for maintaining fitness levels of pump overproducers are uncharacterized despite their prevalence in clinical isolates. We here identify proteins that contribute to the fitness of FQR strains overexpressing three known RND systems using high-density insertion mutagenesis. Overexpression of the AdeFGH efflux pump caused hypersensitization to defects in outer membrane homeostatic regulation, including lesions that reduced LOS biosynthesis and blocked production of the major A. baumannii porin. In contrast, AdeAB pump hyperexpression, in the absence of elevated adeC expression (the outer membrane component of the pump), was relatively tolerant to loss of these functions, consistent with the outer membrane protein being the primary disruptive component. Surprisingly, overexpression of proton-transporting efflux pumps had little impact on cytosolic pH, consistent with a compensatory response to pump activity. The most striking transcriptional changes were associated with AdeFGH pump overexpression, including the activation of the phenylacetate (PAA) degradation regulon. Disruption of the PAA pathway resulted in cytosolic acidification and defective expression of genes involved in protection from oxidative stress. These results indicate that RND efflux pump overproduction is compensated by maintenance of outer membrane integrity in A. baumannii to facilitate fitness of FQR isolates.
Collapse
Affiliation(s)
- Efrat Hamami
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Wenwen Huo
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Juan Hernandez-Bird
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | | | - Jinna Bai
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Sapna Syal
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| | - Juan C Ortiz-Marquez
- Department of Biology, Boston College, Chestnut Hill, MA 02135, USA
- Innovation Laboratory, Broad Institute, Cambridge, MA 02412, USA
| | - Tim van Opijnen
- Innovation Laboratory, Broad Institute, Cambridge, MA 02412, USA
| | - Edward Geisinger
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Ave., Boston, MA 02111, USA
| |
Collapse
|
6
|
Odriozola I, Rasmussen JA, Gilbert MTP, Limborg MT, Alberdi A. A practical introduction to holo-omics. CELL REPORTS METHODS 2024; 4:100820. [PMID: 38986611 PMCID: PMC11294832 DOI: 10.1016/j.crmeth.2024.100820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/17/2024] [Accepted: 06/20/2024] [Indexed: 07/12/2024]
Abstract
Holo-omics refers to the joint study of non-targeted molecular data layers from host-microbiota systems or holobionts, which is increasingly employed to disentangle the complex interactions between the elements that compose them. We navigate through the generation, analysis, and integration of omics data, focusing on the commonalities and main differences to generate and analyze the various types of omics, with a special focus on optimizing data generation and integration. We advocate for careful generation and distillation of data, followed by independent exploration and analyses of the single omic layers to obtain a better understanding of the study system, before the integration of multiple omic layers in a final model is attempted. We highlight critical decision points to achieve this aim and flag the main challenges to address complex biological questions regarding the integrative study of host-microbiota relationships.
Collapse
Affiliation(s)
- Iñaki Odriozola
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Jacob A Rasmussen
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - M Thomas P Gilbert
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark; University Museum, NTNU, Trondheim, Norway
| | - Morten T Limborg
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | - Antton Alberdi
- Center for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
7
|
Singh A, Xue A, Tai J, Mbadugha F, Obi P, Mascarenhas R, Tyagi A, Siena A, Chen YG. A scalable and cost-efficient rRNA depletion approach to enrich RNAs for molecular biology investigations. RNA (NEW YORK, N.Y.) 2024; 30:728-738. [PMID: 38485192 PMCID: PMC11098455 DOI: 10.1261/rna.079761.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 02/16/2024] [Indexed: 05/18/2024]
Abstract
Transcriptomics analyses play pivotal roles in understanding the complex regulatory networks that govern cellular processes. The abundance of rRNAs, which account for 80%-90% of total RNA in eukaryotes, limits the detection and investigation of other transcripts. While mRNAs and long noncoding RNAs have poly(A) tails that are often used for positive selection, investigations of poly(A)- RNAs, such as circular RNAs, histone mRNAs, and small RNAs, typically require the removal of the abundant rRNAs for enrichment. Current approaches to deplete rRNAs for downstream molecular biology investigations are hampered by restrictive RNA input masses and high costs. To address these challenges, we developed rRNA Removal by RNaseH (rRRR), a method to efficiently deplete rRNAs from a wide range of human, mouse, and rat RNA inputs and of varying qualities at a cost 10- to 20-fold cheaper than other approaches. We used probe-based hybridization and enzymatic digestion to selectively target and remove rRNA molecules while preserving the integrity of non-rRNA transcripts. Comparison of rRRR to two commercially available approaches showed similar rRNA depletion efficiencies and comparable off-target effects. Our developed method provides researchers with a valuable tool for investigating gene expression and regulatory mechanisms across a wide range of biological systems at an affordable price that increases the accessibility for researchers to enter the field, ultimately advancing our understanding of cellular processes.
Collapse
Affiliation(s)
- Amrita Singh
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Amy Xue
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Justin Tai
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Faith Mbadugha
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Prisca Obi
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Romario Mascarenhas
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Antariksh Tyagi
- Yale Center for Genome Analysis, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Adamo Siena
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| | - Y Grace Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut 06519, USA
- Department of Genetics, Yale University School of Medicine, New Haven, Connecticut 06519, USA
| |
Collapse
|
8
|
Ricaurte D, Huang Y, Sheth RU, Gelsinger DR, Kaufman A, Wang HH. High-throughput transcriptomics of 409 bacteria-drug pairs reveals drivers of gut microbiota perturbation. Nat Microbiol 2024; 9:561-575. [PMID: 38233648 PMCID: PMC11287798 DOI: 10.1038/s41564-023-01581-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024]
Abstract
Many drugs can perturb the gut microbiome, potentially leading to negative health consequences. However, mechanisms of most microorganism-drug responses have not been elucidated at the genetic level. Using high-throughput bacterial transcriptomics, we systematically characterized the gene expression profiles of prevalent human gut bacteria exposed to the most frequently prescribed orally administered pharmaceuticals. Across >400 drug-microorganism pairs, significant and reproducible transcriptional responses were observed, including pathways involved in multidrug resistance, metabolite transport, tartrate metabolism and riboflavin biosynthesis. Importantly, we discovered that statin-mediated upregulation of the AcrAB-TolC efflux pump in Bacteroidales species enhances microbial sensitivity to vitamin A and secondary bile acids. Moreover, gut bacteria carrying acrAB-tolC genes are depleted in patients taking simvastatin, suggesting that drug-efflux interactions generate collateral toxicity that depletes pump-containing microorganisms from patient microbiomes. This study provides a resource to further understand the drivers of drug-mediated microbiota shifts for better informed clinical interventions.
Collapse
Affiliation(s)
- Deirdre Ricaurte
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Yiming Huang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | - Ravi U Sheth
- Department of Systems Biology, Columbia University, New York, NY, USA
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, NY, USA
| | | | - Andrew Kaufman
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
9
|
Lin H, Zhang M, Hu M, Zhang Y, Jiang W, Tang W, Ouyang Y, Jiang L, Mi Y, Chen Z, He P, Zhao G, Ouyang X. Emerging applications of single-cell profiling in precision medicine of atherosclerosis. J Transl Med 2024; 22:97. [PMID: 38263066 PMCID: PMC10804726 DOI: 10.1186/s12967-023-04629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/14/2023] [Indexed: 01/25/2024] Open
Abstract
Atherosclerosis is a chronic, progressive, inflammatory disease that occurs in the arterial wall. Despite recent advancements in treatment aimed at improving efficacy and prolonging survival, atherosclerosis remains largely incurable. In this review, we discuss emerging single-cell sequencing techniques and their novel insights into atherosclerosis. We provide examples of single-cell profiling studies that reveal phenotypic characteristics of atherosclerosis plaques, blood, liver, and the intestinal tract. Additionally, we highlight the potential clinical applications of single-cell analysis and propose that combining this approach with other techniques can facilitate early diagnosis and treatment, leading to more accurate medical interventions.
Collapse
Affiliation(s)
- Huiling Lin
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
- Department of Physiology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Mi Hu
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Yangkai Zhang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - WeiWei Jiang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanying Tang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Yuxin Ouyang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yali Mi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Zhi Chen
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Pingping He
- Department of Nursing, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China.
| | - Xinping Ouyang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China.
- Department of Physiology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410081, Hunan, Changsha, China.
- The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, 410081, Hunan, Changsha, China.
| |
Collapse
|
10
|
Heom KA, Wangsanuwat C, Butkovich LV, Tam SC, Rowe AR, O'Malley MA, Dey SS. Targeted rRNA depletion enables efficient mRNA sequencing in diverse bacterial species and complex co-cultures. mSystems 2023; 8:e0028123. [PMID: 37855606 PMCID: PMC10734481 DOI: 10.1128/msystems.00281-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
IMPORTANCE Microbes present one of the most diverse sources of biochemistry in nature, and mRNA sequencing provides a comprehensive view of this biological activity by quantitatively measuring microbial transcriptomes. However, efficient mRNA capture for sequencing presents significant challenges in prokaryotes as mRNAs are not poly-adenylated and typically make up less than 5% of total RNA compared with rRNAs that exceed 80%. Recently developed methods for sequencing bacterial mRNA typically rely on depleting rRNA by tiling large probe sets against rRNAs; however, such approaches are expensive, time-consuming, and challenging to scale to varied bacterial species and complex microbial communities. Therefore, we developed EMBR-seq+, a method that requires fewer than 10 short oligonucleotides per rRNA to achieve up to 99% rRNA depletion in diverse bacterial species. Finally, EMBR-seq+ resulted in a deeper view of the transcriptome, enabling systematic quantification of how microbial interactions result in altering the transcriptional state of bacteria within co-cultures.
Collapse
Affiliation(s)
- Kellie A. Heom
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Chatarin Wangsanuwat
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Lazarina V. Butkovich
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Scott C. Tam
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
| | - Annette R. Rowe
- Biological Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - Michelle A. O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
| | - Siddharth S. Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, California, USA
- Biological Engineering Program, University of California Santa Barbara, Santa Barbara, California, USA
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, California, USA
| |
Collapse
|
11
|
Tan A, Murugapiran S, Mikalauskas A, Koble J, Kennedy D, Hyde F, Ruotti V, Law E, Jensen J, Schroth GP, Macklaim JM, Kuersten S, LeFrançois B, Gohl DM. Rational probe design for efficient rRNA depletion and improved metatranscriptomic analysis of human microbiomes. BMC Microbiol 2023; 23:299. [PMID: 37864136 PMCID: PMC10588151 DOI: 10.1186/s12866-023-03037-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/03/2023] [Indexed: 10/22/2023] Open
Abstract
The microbiota that colonize the human gut and other tissues are dynamic, varying both in composition and functional state between individuals and over time. Gene expression measurements can provide insights into microbiome composition and function. However, efficient and unbiased removal of microbial ribosomal RNA (rRNA) presents a barrier to acquiring metatranscriptomic data. Here we describe a probe set that achieves efficient enzymatic rRNA removal of complex human-associated microbial communities. We demonstrate that the custom probe set can be further refined through an iterative design process to efficiently deplete rRNA from a range of human microbiome samples. Using synthetic nucleic acid spike-ins, we show that the rRNA depletion process does not introduce substantial quantitative error in gene expression profiles. Successful rRNA depletion allows for efficient characterization of taxonomic and functional profiles, including during the development of the human gut microbiome. The pan-human microbiome enzymatic rRNA depletion probes described here provide a powerful tool for studying the transcriptional dynamics and function of the human microbiome.
Collapse
Affiliation(s)
- Asako Tan
- Illumina, Inc, Madison, WI, 53719, USA
| | | | | | - Jeff Koble
- Illumina, Inc, San Diego, CA, 92122, USA
| | | | - Fred Hyde
- Illumina, Inc, Madison, WI, 53719, USA
| | | | - Emily Law
- Diversigen, Inc, New Brighton, MN, 55112, USA
| | | | | | | | | | | | - Daryl M Gohl
- Diversigen, Inc, New Brighton, MN, 55112, USA.
- University of Minnesota Genomics Center, Minneapolis, MN, 55455, USA.
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
12
|
Wang B, Lin AE, Yuan J, Novak KE, Koch MD, Wingreen NS, Adamson B, Gitai Z. Single-cell massively-parallel multiplexed microbial sequencing (M3-seq) identifies rare bacterial populations and profiles phage infection. Nat Microbiol 2023; 8:1846-1862. [PMID: 37653008 PMCID: PMC10522482 DOI: 10.1038/s41564-023-01462-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 07/31/2023] [Indexed: 09/02/2023]
Abstract
Bacterial populations are highly adaptive. They can respond to stress and survive in shifting environments. How the behaviours of individual bacteria vary during stress, however, is poorly understood. To identify and characterize rare bacterial subpopulations, technologies for single-cell transcriptional profiling have been developed. Existing approaches show some degree of limitation, for example, in terms of number of cells or transcripts that can be profiled. Due in part to these limitations, few conditions have been studied with these tools. Here we develop massively-parallel, multiplexed, microbial sequencing (M3-seq)-a single-cell RNA-sequencing platform for bacteria that pairs combinatorial cell indexing with post hoc rRNA depletion. We show that M3-seq can profile bacterial cells from different species under a range of conditions in single experiments. We then apply M3-seq to hundreds of thousands of cells, revealing rare populations and insights into bet-hedging associated with stress responses and characterizing phage infection.
Collapse
Affiliation(s)
- Bruce Wang
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Aaron E Lin
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Jiayi Yuan
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Katherine E Novak
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Matthias D Koch
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Ned S Wingreen
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Britt Adamson
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA.
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Zemer Gitai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
13
|
Ojala T, Häkkinen AE, Kankuri E, Kankainen M. Current concepts, advances, and challenges in deciphering the human microbiota with metatranscriptomics. Trends Genet 2023; 39:686-702. [PMID: 37365103 DOI: 10.1016/j.tig.2023.05.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/28/2023]
Abstract
Metatranscriptomics refers to the analysis of the collective microbial transcriptome of a sample. Its increased utilization for the characterization of human-associated microbial communities has enabled the discovery of many disease-state related microbial activities. Here, we review the principles of metatranscriptomics-based analysis of human-associated microbial samples. We describe strengths and weaknesses of popular sample preparation, sequencing, and bioinformatics approaches and summarize strategies for their use. We then discuss how human-associated microbial communities have recently been examined and how their characterization may change. We conclude that metatranscriptomics insights into human microbiotas under health and disease have not only expanded our knowledge on human health, but also opened avenues for rational antimicrobial drug use and disease management.
Collapse
Affiliation(s)
- Teija Ojala
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Esko Kankuri
- Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Kankainen
- Hematology Research Unit, University of Helsinki, Helsinki, Finland; Laboratory of Genetics, HUS Diagnostic Center, Hospital District of Helsinki and Uusimaa (HUS), Helsinki, Finland.
| |
Collapse
|
14
|
Xu Z, Wang Y, Sheng K, Rosenthal R, Liu N, Hua X, Zhang T, Chen J, Song M, Lv Y, Zhang S, Huang Y, Wang Z, Cao T, Shen Y, Jiang Y, Yu Y, Chen Y, Guo G, Yin P, Weitz DA, Wang Y. Droplet-based high-throughput single microbe RNA sequencing by smRandom-seq. Nat Commun 2023; 14:5130. [PMID: 37612289 PMCID: PMC10447461 DOI: 10.1038/s41467-023-40137-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/10/2023] [Indexed: 08/25/2023] Open
Abstract
Bacteria colonize almost all parts of the human body and can differ significantly. However, the population level transcriptomics measurements can only describe the average bacteria population behaviors, ignoring the heterogeneity among bacteria. Here, we report a droplet-based high-throughput single-microbe RNA-seq assay (smRandom-seq), using random primers for in situ cDNA generation, droplets for single-microbe barcoding, and CRISPR-based rRNA depletion for mRNA enrichment. smRandom-seq showed a high species specificity (99%), a minor doublet rate (1.6%), a reduced rRNA percentage (32%), and a sensitive gene detection (a median of ~1000 genes per single E. coli). Furthermore, smRandom-seq successfully captured transcriptome changes of thousands of individual E. coli and discovered a few antibiotic resistant subpopulations displaying distinct gene expression patterns of SOS response and metabolic pathways in E. coli population upon antibiotic stress. smRandom-seq provides a high-throughput single-microbe transcriptome profiling tool that will facilitate future discoveries in microbial resistance, persistence, microbe-host interaction, and microbiome research.
Collapse
Affiliation(s)
- Ziye Xu
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yuting Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Kuanwei Sheng
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Raoul Rosenthal
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA, USA
| | - Nan Liu
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xiaoting Hua
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tianyu Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Jiaye Chen
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mengdi Song
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Yuexiao Lv
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Shunji Zhang
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China
| | - Yingjuan Huang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Zhaolun Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Ting Cao
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA, USA
| | - Yifei Shen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunsong Yu
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guoji Guo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Peng Yin
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - David A Weitz
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
- John A. Paulson School of Engineering and Applied Sciences and Department of Physics, Harvard University, Cambridge, MA, USA.
| | - Yongcheng Wang
- Department of Laboratory Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, China.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, USA.
| |
Collapse
|
15
|
Münch JM, Sobol MS, Brors B, Kaster AK. Single-cell transcriptomics and data analyses for prokaryotes-Past, present and future concepts. ADVANCES IN APPLIED MICROBIOLOGY 2023; 123:1-39. [PMID: 37400172 DOI: 10.1016/bs.aambs.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Transcriptomics, or more specifically mRNA sequencing, is a powerful tool to study gene expression at the single-cell level (scRNA-seq) which enables new insights into a plethora of biological processes. While methods for single-cell RNA-seq in eukaryotes are well established, application to prokaryotes is still challenging. Reasons for that are rigid and diverse cell wall structures hampering lysis, the lack of polyadenylated transcripts impeding mRNA enrichment, and minute amounts of RNA requiring amplification steps before sequencing. Despite those obstacles, several promising scRNA-seq approaches for bacteria have been published recently, albeit difficulties in the experimental workflow and data processing and analysis remain. In particular, bias is often introduced by amplification which makes it difficult to distinguish between technical noise and biological variation. Future optimization of experimental procedures and data analysis algorithms are needed for the improvement of scRNA-seq but also to aid in the emergence of prokaryotic single-cell multi-omics. to help address 21st century challenges in the biotechnology and health sector.
Collapse
Affiliation(s)
- Julia M Münch
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany; Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
| | - Morgan S Sobol
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany
| | - Benedikt Brors
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany; HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany
| | - Anne-Kristin Kaster
- Institute for Biological Interfaces 5, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany; HIDSS4Health - Helmholtz Information and Data Science School for Health, Karlsruhe/Heidelberg, Germany.
| |
Collapse
|
16
|
Martini BA, Grigorov AS, Skvortsova YV, Bychenko OS, Salina EG, Azhikina TL. Small RNA MTS1338 Configures a Stress Resistance Signature in Mycobacterium tuberculosis. Int J Mol Sci 2023; 24:ijms24097928. [PMID: 37175635 PMCID: PMC10178195 DOI: 10.3390/ijms24097928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
In the course of evolution, Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, has developed sophisticated strategies to evade host immune response, including the synthesis of small non-coding RNAs (sRNAs), which regulate post-transcriptional pathways involved in the stress adaptation of mycobacteria. sRNA MTS1338 is upregulated in Mtb during its infection of cultured macrophages and in the model of chronic tuberculosis, suggesting involvement in host-pathogen interactions. Here, we analyzed the role of MTS1338 in the Mtb response to macrophage-like stresses in vitro. The Mtb strain overexpressing MTS1338 demonstrated enhanced survival ability under low pH, nitrosative, and oxidative stress conditions simulating the antimicrobial environment inside macrophages. Transcriptomic analysis revealed that in MTS1338-overexpressing Mtb, the stress factors led to the activation of a number of transcriptional regulators, toxin-antitoxin modules, and stress chaperones, about half of which coincided with the genes induced in Mtb phagocytosed by macrophages. We determined the MTS1338 "core regulon", consisting of 11 genes that were activated in all conditions under MTS1338 overexpression. Our findings indicate that MTS1338 is a stress-induced sRNA that promotes Mtb survival in macrophages by triggering adaptive transcriptional mechanisms in response to host antimicrobial defense reactions.
Collapse
Affiliation(s)
- Billy A Martini
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Artem S Grigorov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Yulia V Skvortsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Oksana S Bychenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elena G Salina
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia
| | - Tatyana L Azhikina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
17
|
Everaert C, Verwilt J, Verniers K, Vandamme N, Marcos Rubio A, Vandesompele J, Mestdagh P. Blocking Abundant RNA Transcripts by High-Affinity Oligonucleotides during Transcriptome Library Preparation. Biol Proced Online 2023; 25:7. [PMID: 36890441 PMCID: PMC9996952 DOI: 10.1186/s12575-023-00193-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/14/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND RNA sequencing has become the gold standard for transcriptome analysis but has an inherent limitation of challenging quantification of low-abundant transcripts. In contrast to microarray technology, RNA sequencing reads are proportionally divided in function of transcript abundance. Therefore, low-abundant RNAs compete against highly abundant - and sometimes non-informative - RNA species. RESULTS We developed an easy-to-use strategy based on high-affinity RNA-binding oligonucleotides to block reverse transcription and PCR amplification of specific RNA transcripts, thereby substantially reducing their abundance in the final sequencing library. To demonstrate the broad application potential of our method, we applied it to different transcripts and library preparation strategies, including YRNAs in small RNA sequencing of human blood plasma, mitochondrial rRNAs in both 3' end sequencing and long-read sequencing, and MALAT1 in single-cell 3' end sequencing. We demonstrate that the blocking strategy is highly efficient, reproducible, specific, and generally results in better transcriptome coverage and complexity. CONCLUSION Our method does not require modifications of the library preparation procedure apart from simply adding blocking oligonucleotides to the RT reaction and can thus be easily integrated into virtually any RNA sequencing library preparation protocol.
Collapse
Affiliation(s)
- Celine Everaert
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Jasper Verwilt
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Kimberly Verniers
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Niels Vandamme
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
- VIB Single Cell Core, Vlaams Instituut voor Biotechnologie, Ghent-Leuven, Belgium
| | - Alvaro Marcos Rubio
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Jo Vandesompele
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Pieter Mestdagh
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- Cancer Research Institute Ghent, Ghent University, Ghent, Belgium.
| |
Collapse
|
18
|
Wang T, Shen P, Chai R, He Y, Liu J. Profiling of bacterial transcriptome from ultra-low input with MiniBac-seq. Environ Microbiol 2022; 24:5774-5787. [PMID: 36053758 DOI: 10.1111/1462-2920.16169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/10/2022] [Indexed: 01/12/2023]
Abstract
There is a lack of appropriate methods for preparing bacterial RNA-seq library with ultra-low amount of RNA. To address this issue, we developed miniBac-seq, a strand-specific method for high-quality library construction from sub-nanogram of total RNA, which is 100-fold lower than the current benchmark kit and dramatically reduces preparation cost ($28 + $15 × samples). We further demonstrated the high sensitivity of miniBac-seq via detecting more than 500 genes from amount of total RNA equivalent to that of a single bacterial cell. Finally, we profiled the transcriptome of growth-arrested bacteria in isogenic culture of Escherichia coli. This subpopulation of bacteria is generally low in abundance but is a potent reservoir of antibiotic persistence, and their gene expression has been largely unknown due to technical limitations. Using miniBac-seq, we identified potential molecular driver towards arrested growth as well as antibiotic tolerance. Our method thus expands the capacity to quantify bacterial transcriptome in situ, which is useful to the understanding of bacterial physiology and regulation in their native contexts.
Collapse
Affiliation(s)
- Tianmin Wang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Ping Shen
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Ruochen Chai
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Yihui He
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jintao Liu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Center for Life Sciences, Beijing, China
| |
Collapse
|
19
|
Hu X, Zhang Y, Du M, Yang E. Efficient and specific DNA oligonucleotide rRNA probe-based rRNA removal in Talaromyces marneffei. Mycology 2022; 13:106-118. [PMID: 35711330 PMCID: PMC9196791 DOI: 10.1080/21501203.2021.2017045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Emerging evidence showed that lncRNAs play important roles in a wide range of biological processes of fungi such as Saccharomyces cerevisiae. However, systemic identification of lncRNAs in non-model fungi is a challenging task as the efficiency of rRNA removal has been proved to be affected by mismatches of universal rRNA-targeting probes of commercial kits, which forces deeper sequencing depth and increases costs. Here, we developed a low-cost and simple rRNA depletion method (rProbe) that could efficiently remove more than 99% rRNA in both yeast and mycelium samples of Talaromyces marneffei. The efficiency and robustness of rProbe were demonstrated to outperform the Illumina Ribo-Zero kit. Using rProbe RNA-seq, we identified 115 differentially expressed lncRNAs and constructed lncRNA-mRNA co-expression network related to dimorphic switch of T. marneffei. Our rRNA removal method has the potential to be a useful tool to explore non-coding transcriptomes of non-model fungi by adjusting rRNA probe sequences species specifically.
Collapse
Affiliation(s)
- Xueyan Hu
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Yun Zhang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Minghao Du
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ence Yang
- Department of Medical Bioinformatics, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- Department of Microbiology & Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
20
|
Belardinelli JM, Verma D, Li W, Avanzi C, Wiersma CJ, Williams JT, Johnson BK, Zimmerman M, Whittel N, Angala B, Wang H, Jones V, Dartois V, de Moura VCN, Gonzalez-Juarrero M, Pearce C, Schenkel AR, Malcolm KC, Nick JA, Charman SA, Wells TNC, Podell BK, Vennerstrom JL, Ordway DJ, Abramovitch RB, Jackson M. Therapeutic efficacy of antimalarial drugs targeting DosRS signaling in Mycobacterium abscessus. Sci Transl Med 2022; 14:eabj3860. [PMID: 35196022 DOI: 10.1126/scitranslmed.abj3860] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A search for alternative Mycobacterium abscessus treatments led to our interest in the two-component regulator DosRS, which, in Mycobacterium tuberculosis, is required for the bacterium to establish a state of nonreplicating, drug-tolerant persistence in response to a variety of host stresses. We show here that the genetic disruption of dosRS impairs the adaptation of M. abscessus to hypoxia, resulting in decreased bacterial survival after oxygen depletion, reduced tolerance to a number of antibiotics in vitro and in vivo, and the inhibition of biofilm formation. We determined that three antimalarial drugs or drug candidates, artemisinin, OZ277, and OZ439, can target DosS-mediated hypoxic signaling in M. abscessus and recapitulate the phenotypic effects of genetically disrupting dosS. OZ439 displayed bactericidal activity comparable to standard-of-care antibiotics in chronically infected mice, in addition to potentiating the activity of antibiotics used in combination. The identification of antimalarial drugs as potent inhibitors and adjunct inhibitors of M. abscessus in vivo offers repurposing opportunities that could have an immediate impact in the clinic.
Collapse
Affiliation(s)
- Juan Manuel Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Deepshikha Verma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Crystal J Wiersma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - John T Williams
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Matthew Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Nicholas Whittel
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Bhanupriya Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Han Wang
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Vinicius C N de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Camron Pearce
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Alan R Schenkel
- Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Kenneth C Malcolm
- Department of Medicine, National Jewish Health, Denver, CO, USA.,Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, USA.,Department of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Susan A Charman
- Centre for Drug Candidate Optimisation, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | | | - Brendan K Podell
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | | | - Diane J Ordway
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Robert B Abramovitch
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
21
|
Shirokikh NE. Translation complex stabilization on messenger RNA and footprint profiling to study the RNA responses and dynamics of protein biosynthesis in the cells. Crit Rev Biochem Mol Biol 2021; 57:261-304. [PMID: 34852690 DOI: 10.1080/10409238.2021.2006599] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
During protein biosynthesis, ribosomes bind to messenger (m)RNA, locate its protein-coding information, and translate the nucleotide triplets sequentially as codons into the corresponding sequence of amino acids, forming proteins. Non-coding mRNA features, such as 5' and 3' untranslated regions (UTRs), start sites or stop codons of different efficiency, stretches of slower or faster code and nascent polypeptide interactions can alter the translation rates transcript-wise. Most of the homeostatic and signal response pathways of the cells converge on individual mRNA control, as well as alter the global translation output. Among the multitude of approaches to study translational control, one of the most powerful is to infer the locations of translational complexes on mRNA based on the mRNA fragments protected by these complexes from endonucleolytic hydrolysis, or footprints. Translation complex profiling by high-throughput sequencing of the footprints allows to quantify the transcript-wise, as well as global, alterations of translation, and uncover the underlying control mechanisms by attributing footprint locations and sizes to different configurations of the translational complexes. The accuracy of all footprint profiling approaches critically depends on the fidelity of footprint generation and many methods have emerged to preserve certain or multiple configurations of the translational complexes, often in challenging biological material. In this review, a systematic summary of approaches to stabilize translational complexes on mRNA for footprinting is presented and major findings are discussed. Future directions of translation footprint profiling are outlined, focusing on the fidelity and accuracy of inference of the native in vivo translation complex distribution on mRNA.
Collapse
Affiliation(s)
- Nikolay E Shirokikh
- Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| |
Collapse
|
22
|
Belardinelli JM, Li W, Avanzi C, Angala SK, Lian E, Wiersma CJ, Palčeková Z, Martin KH, Angala B, de Moura VCN, Kerns C, Jones V, Gonzalez-Juarrero M, Davidson RM, Nick JA, Borlee BR, Jackson M. Unique Features of Mycobacterium abscessus Biofilms Formed in Synthetic Cystic Fibrosis Medium. Front Microbiol 2021; 12:743126. [PMID: 34777289 PMCID: PMC8586431 DOI: 10.3389/fmicb.2021.743126] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Characterizing Mycobacterium abscessus complex (MABSC) biofilms under host-relevant conditions is essential to the design of informed therapeutic strategies targeted to this persistent, drug-tolerant, population of extracellular bacilli. Using synthetic cystic fibrosis medium (SCFM) which we previously reported to closely mimic the conditions encountered by MABSC in actual cystic fibrosis (CF) sputum and a new model of biofilm formation, we show that MABSC biofilms formed under these conditions are substantially different from previously reported biofilms grown in standard laboratory media in terms of their composition, gene expression profile and stress response. Extracellular DNA (eDNA), mannose-and glucose-containing glycans and phospholipids, rather than proteins and mycolic acids, were revealed as key extracellular matrix (ECM) constituents holding clusters of bacilli together. None of the environmental cues previously reported to impact biofilm development had any significant effect on SCFM-grown biofilms, most likely reflecting the fact that SCFM is a nutrient-rich environment in which MABSC finds a variety of ways of coping with stresses. Finally, molecular determinants were identified that may represent attractive new targets for the development of adjunct therapeutics targeting MABSC biofilms in persons with CF.
Collapse
Affiliation(s)
- Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Shiva K Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Elena Lian
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Crystal J Wiersma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kevin H Martin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Bhanupriya Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Vinicius C N de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Callan Kerns
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebecca M Davidson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bradley R Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
23
|
Adams AND, Azam MS, Costliow ZA, Ma X, Degnan PH, Vanderpool CK. A Novel Family of RNA-Binding Proteins Regulate Polysaccharide Metabolism in Bacteroides thetaiotaomicron. J Bacteriol 2021; 203:e0021721. [PMID: 34251866 PMCID: PMC8508124 DOI: 10.1128/jb.00217-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/08/2021] [Indexed: 11/20/2022] Open
Abstract
Human gut microbiome composition is constantly changing, and diet is a major driver of these changes. Gut microbial species that persist in mammalian hosts for long periods of time must possess mechanisms for sensing and adapting to nutrient shifts to avoid being outcompeted. Global regulatory mechanisms mediated by RNA-binding proteins (RBPs) that govern responses to nutrient shifts have been characterized in Proteobacteria and Firmicutes but remain undiscovered in the Bacteroidetes. Here, we report the identification of RBPs that are broadly distributed across the Bacteroidetes, with many genomes encoding multiple copies. Genes encoding these RBPs are highly expressed in many Bacteroides species. A purified RBP, RbpB, from Bacteroides thetaiotaomicron binds to single-stranded RNA in vitro with an affinity similar to other characterized regulatory RBPs. B. thetaiotaomicron mutants lacking RBPs show dramatic shifts in expression of polysaccharide utilization and capsular polysaccharide loci, suggesting that these RBPs may act as global regulators of polysaccharide metabolism. A B. thetaiotaomicron ΔrbpB mutant shows a growth defect on dietary sugars belonging to the raffinose family of oligosaccharides (RFOs). The ΔrbpB mutant had reduced expression of BT1871, encoding a predicted RFO-degrading melibiase, compared to the wild-type strain. Mutation of BT1871 confirmed that the enzyme it encodes is essential for growth on melibiose and promotes growth on the RFOs raffinose and stachyose. Our data reveal that RbpB is required for optimal expression of BT1871 and other polysaccharide-related genes, suggesting that we have identified an important new family of global regulatory proteins in the Bacteroidetes. IMPORTANCE The human colon houses hundreds of bacterial species, including many belonging to the genus Bacteroides, that aid in breaking down our food to keep us healthy. Bacteroides have many genes responsible for breaking down different dietary carbohydrates, and complex regulatory mechanisms ensure that specific genes are only expressed when the right carbohydrates are available. In this study, we discovered that Bacteroides use a family of RNA-binding proteins as global regulators to coordinate expression of carbohydrate utilization genes. The ability to turn different carbohydrate utilization genes on and off in response to changing nutrient conditions is critical for Bacteroides to live successfully in the gut, and thus the new regulators we have identified may be important for life in the host.
Collapse
Affiliation(s)
- Amanda N. D. Adams
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Muhammad S. Azam
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Zachary A. Costliow
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Xiangqian Ma
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| | - Patrick H. Degnan
- Department of Microbiology and Plant Pathology, University of California-Riverside, Riverside, California, USA
| | - Carin K. Vanderpool
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
24
|
Choe D, Szubin R, Poudel S, Sastry A, Song Y, Lee Y, Cho S, Palsson B, Cho BK. RiboRid: A low cost, advanced, and ultra-efficient method to remove ribosomal RNA for bacterial transcriptomics. PLoS Genet 2021; 17:e1009821. [PMID: 34570751 PMCID: PMC8496792 DOI: 10.1371/journal.pgen.1009821] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/07/2021] [Accepted: 09/10/2021] [Indexed: 12/29/2022] Open
Abstract
RNA sequencing techniques have enabled the systematic elucidation of gene expression (RNA-Seq), transcription start sites (differential RNA-Seq), transcript 3′ ends (Term-Seq), and post-transcriptional processes (ribosome profiling). The main challenge of transcriptomic studies is to remove ribosomal RNAs (rRNAs), which comprise more than 90% of the total RNA in a cell. Here, we report a low-cost and robust bacterial rRNA depletion method, RiboRid, based on the enzymatic degradation of rRNA by thermostable RNase H. This method implemented experimental considerations to minimize nonspecific degradation of mRNA and is capable of depleting pre-rRNAs that often comprise a large portion of RNA, even after rRNA depletion. We demonstrated the highly efficient removal of rRNA up to a removal efficiency of 99.99% for various transcriptome studies, including RNA-Seq, Term-Seq, and ribosome profiling, with a cost of approximately $10 per sample. This method is expected to be a robust method for large-scale high-throughput bacterial transcriptomic studies. Removal of ribosomal RNAs, a major constituent (over 90%) of cellular RNA is a critical experimental step for transcriptomic studies that deal with messenger RNAs. In this manuscript, we describe a robust method to subtract ribosomal RNA from various RNA samples. The method is based on the enzymatic degradation of target RNA by short complementary DNA and RNA:DNA duplex specific nuclease. The method comprises carefully designed experimental procedures to minimize experimental bias and unwanted removal of messenger RNAs. We validate the method on various types of transcriptomic studies for seven diverse bacterial species. This method successfully removed ribosomal RNA with over 99% of efficiency and it was comparable to commercial systems even for degraded RNA samples at a fraction of a cost.
Collapse
Affiliation(s)
- Donghui Choe
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Saugat Poudel
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Anand Sastry
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Yoseb Song
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yongjae Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- Department of Pediatrics, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (BP); (B-KC)
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- * E-mail: (BP); (B-KC)
| |
Collapse
|
25
|
Fitzpatrick AH, Rupnik A, O'Shea H, Crispie F, Keaveney S, Cotter P. High Throughput Sequencing for the Detection and Characterization of RNA Viruses. Front Microbiol 2021; 12:621719. [PMID: 33692767 PMCID: PMC7938315 DOI: 10.3389/fmicb.2021.621719] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/20/2021] [Indexed: 12/12/2022] Open
Abstract
This review aims to assess and recommend approaches for targeted and agnostic High Throughput Sequencing of RNA viruses in a variety of sample matrices. HTS also referred to as deep sequencing, next generation sequencing and third generation sequencing; has much to offer to the field of environmental virology as its increased sequencing depth circumvents issues with cloning environmental isolates for Sanger sequencing. That said however, it is important to consider the challenges and biases that method choice can impart to sequencing results. Here, methodology choices from RNA extraction, reverse transcription to library preparation are compared based on their impact on the detection or characterization of RNA viruses.
Collapse
Affiliation(s)
- Amy H. Fitzpatrick
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
- Shellfish Microbiology, Marine Institute, Oranmore, Ireland
- Biological Sciences, Munster Technological University, Cork, Ireland
| | | | - Helen O'Shea
- Biological Sciences, Munster Technological University, Cork, Ireland
| | - Fiona Crispie
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| | | | - Paul Cotter
- Food Biosciences, Teagasc Food Research Centre, Fermoy, Ireland
| |
Collapse
|
26
|
Phelps WA, Carlson AE, Lee MT. Optimized design of antisense oligomers for targeted rRNA depletion. Nucleic Acids Res 2021; 49:e5. [PMID: 33221877 PMCID: PMC7797071 DOI: 10.1093/nar/gkaa1072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 10/01/2020] [Accepted: 10/21/2020] [Indexed: 11/14/2022] Open
Abstract
RNA sequencing (RNA-seq) is extensively used to quantify gene expression transcriptome-wide. Although often paired with polyadenylate (poly(A)) selection to enrich for messenger RNA (mRNA), many applications require alternate approaches to counteract the high proportion of ribosomal RNA (rRNA) in total RNA. Recently, digestion using RNaseH and antisense DNA oligomers tiling target rRNAs has emerged as an alternative to commercial rRNA depletion kits. Here, we present a streamlined, more economical RNaseH-mediated rRNA depletion with substantially lower up-front costs, using shorter antisense oligos only sparsely tiled along the target RNA in a 5-min digestion reaction. We introduce a novel Web tool, Oligo-ASST, that simplifies oligo design to target regions with optimal thermodynamic properties, and additionally can generate compact, common oligo pools that simultaneously target divergent RNAs, e.g. across different species. We demonstrate the efficacy of these strategies by generating rRNA-depletion oligos for Xenopus laevis and for zebrafish, which expresses two distinct versions of rRNAs during embryogenesis. The resulting RNA-seq libraries reduce rRNA to <5% of aligned reads, on par with poly(A) selection, and also reveal expression of many non-adenylated RNA species. Oligo-ASST is freely available at https://mtleelab.pitt.edu/oligo to design antisense oligos for any taxon or to target any abundant RNA for depletion.
Collapse
Affiliation(s)
- Wesley A Phelps
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Anne E Carlson
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Miler T Lee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| |
Collapse
|
27
|
Cheng MY, Tao WB, Yuan BF, Feng YQ. Methods for isolation of messenger RNA from biological samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:289-298. [PMID: 33300893 DOI: 10.1039/d0ay01912g] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
RNA molecules contain many chemical modifications that can regulate a variety of biological processes. Messenger RNA (mRNA) molecules are critical components in the central dogma of molecular biology. The discovery of reversible chemical modifications in eukaryotic mRNA brings forward a new research field in RNA modification-mediated regulation of gene expression. The modifications in mRNA generally exist in low abundance. The use of highly pure mRNA is critical for the confident identification of new modifications as well as for the accurate quantification of existing modifications in mRNA. In addition, isolation of highly pure mRNA is the first step in many biological research studies. Therefore, the methods for isolating highly pure mRNA are important for mRNA-based downstream studies. A variety of methods for isolating mRNA have been developed in the past few decades and new methods continuously emerge. This review focuses on the methodologies and protocols for isolating mRNA populations. In addition, we discuss the advantages and limitations of these methods. We hope this paper will provide a general view of mRNA isolation strategies and facilitate studies that involve mRNA modifications and functions.
Collapse
Affiliation(s)
- Ming-Yu Cheng
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), Sauvage Center for Molecular Sciences, Department of Chemistry, Wuhan University, Wuhan 430072, China.
| | | | | | | |
Collapse
|
28
|
Rodríguez-García A, Sola-Landa A, Pérez-Redondo R. Coupled Transcriptomics for Differential Expression Analysis and Determination of Transcription Start Sites: Design and Bioinformatics. Methods Mol Biol 2021; 2296:263-278. [PMID: 33977454 DOI: 10.1007/978-1-0716-1358-0_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The term coupled transcriptomics is coined to describe a design of an RNA-seq experiment intended for both differential expression analysis and genome-wide determination of the transcription start sites (TSS). The minimal requirements for the first analysis are two experimental conditions with at least two biological replicates enabling statistical tests. The second analysis involves the bioinformatics comparison of the data generated from a control RNA-seq library with another library enriched in primary transcripts using Terminator™ 5'-phosphate-dependent exonuclease, in an experiment denominated differential RNA-seq (dRNA-seq). Usually, dRNA-seq is carried out with specific protocols for library construction, different of those used for common differential expression analysis. Our experimental design allows to use the same data for both analyses, reducing the number of libraries to be generated and sequenced. This is a guide for designing a coupled transcriptomics experiment and for the subsequent bioinformatics procedures. The proposed methods can be applied to the detection and study of small RNA genes.
Collapse
Affiliation(s)
| | - Alberto Sola-Landa
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, León, Spain
| | - Rosario Pérez-Redondo
- Instituto de Biotecnología de León (INBIOTEC), Parque Científico de León, León, Spain
| |
Collapse
|
29
|
Lataretu M, Hölzer M. RNAflow: An Effective and Simple RNA-Seq Differential Gene Expression Pipeline Using Nextflow. Genes (Basel) 2020; 11:E1487. [PMID: 33322033 PMCID: PMC7763471 DOI: 10.3390/genes11121487] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/28/2022] Open
Abstract
RNA-Seq enables the identification and quantification of RNA molecules, often with the aim of detecting differentially expressed genes (DEGs). Although RNA-Seq evolved into a standard technique, there is no universal gold standard for these data's computational analysis. On top of that, previous studies proved the irreproducibility of RNA-Seq studies. Here, we present a portable, scalable, and parallelizable Nextflow RNA-Seq pipeline to detect DEGs, which assures a high level of reproducibility. The pipeline automatically takes care of common pitfalls, such as ribosomal RNA removal and low abundance gene filtering. Apart from various visualizations for the DEG results, we incorporated downstream pathway analysis for common species as Homo sapiens and Mus musculus. We evaluated the DEG detection functionality while using qRT-PCR data serving as a reference and observed a very high correlation of the logarithmized gene expression fold changes.
Collapse
Affiliation(s)
- Marie Lataretu
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Leutragraben 1, 07743 Jena, Germany;
| | - Martin Hölzer
- Methodology and Research Infrastructure, MF1 Bioinformatics, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany
| |
Collapse
|
30
|
Wangsanuwat C, Heom KA, Liu E, O'Malley MA, Dey SS. Efficient and cost-effective bacterial mRNA sequencing from low input samples through ribosomal RNA depletion. BMC Genomics 2020; 21:717. [PMID: 33066726 PMCID: PMC7565789 DOI: 10.1186/s12864-020-07134-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND RNA sequencing is a powerful approach to quantify the genome-wide distribution of mRNA molecules in a population to gain deeper understanding of cellular functions and phenotypes. However, unlike eukaryotic cells, mRNA sequencing of bacterial samples is more challenging due to the absence of a poly-A tail that typically enables efficient capture and enrichment of mRNA from the abundant rRNA molecules in a cell. Moreover, bacterial cells frequently contain 100-fold lower quantities of RNA compared to mammalian cells, which further complicates mRNA sequencing from non-cultivable and non-model bacterial species. To overcome these limitations, we report EMBR-seq (Enrichment of mRNA by Blocked rRNA), a method that efficiently depletes 5S, 16S and 23S rRNA using blocking primers to prevent their amplification. RESULTS EMBR-seq results in 90% of the sequenced RNA molecules from an E. coli culture deriving from mRNA. We demonstrate that this increased efficiency provides a deeper view of the transcriptome without introducing technical amplification-induced biases. Moreover, compared to recent methods that employ a large array of oligonucleotides to deplete rRNA, EMBR-seq uses a single or a few oligonucleotides per rRNA, thereby making this new technology significantly more cost-effective, especially when applied to varied bacterial species. Finally, compared to existing commercial kits for bacterial rRNA depletion, we show that EMBR-seq can be used to successfully quantify the transcriptome from more than 500-fold lower starting total RNA. CONCLUSIONS EMBR-seq provides an efficient and cost-effective approach to quantify global gene expression profiles from low input bacterial samples.
Collapse
Affiliation(s)
- Chatarin Wangsanuwat
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Kellie A Heom
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Estella Liu
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Siddharth S Dey
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Center for Bioengineering, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
- Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
31
|
Blattman SB, Jiang W, Oikonomou P, Tavazoie S. Prokaryotic single-cell RNA sequencing by in situ combinatorial indexing. Nat Microbiol 2020; 5:1192-1201. [PMID: 32451472 PMCID: PMC8330242 DOI: 10.1038/s41564-020-0729-6] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 04/23/2020] [Indexed: 02/06/2023]
Abstract
Despite longstanding appreciation of gene expression heterogeneity in isogenic bacterial populations, affordable and scalable technologies for studying single bacterial cells have been limited. Although single-cell RNA sequencing (scRNA-seq) has revolutionized studies of transcriptional heterogeneity in diverse eukaryotic systems1-13, the application of scRNA-seq to prokaryotes has been hindered by their extremely low mRNA abundance14-16, lack of mRNA polyadenylation and thick cell walls17. Here, we present prokaryotic expression profiling by tagging RNA in situ and sequencing (PETRI-seq)-a low-cost, high-throughput prokaryotic scRNA-seq pipeline that overcomes these technical obstacles. PETRI-seq uses in situ combinatorial indexing11,12,18 to barcode transcripts from tens of thousands of cells in a single experiment. PETRI-seq captures single-cell transcriptomes of Gram-negative and Gram-positive bacteria with high purity and low bias, with median capture rates of more than 200 mRNAs per cell for exponentially growing Escherichia coli. These characteristics enable robust discrimination of cell states corresponding to different phases of growth. When applied to wild-type Staphylococcus aureus, PETRI-seq revealed a rare subpopulation of cells undergoing prophage induction. We anticipate that PETRI-seq will have broad utility in defining single-cell states and their dynamics in complex microbial communities.
Collapse
Affiliation(s)
- Sydney B Blattman
- Department of Biological Sciences, Columbia University, New York City, NY, USA
- Department of Systems Biology, Columbia University, New York City, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY, USA
| | - Wenyan Jiang
- Department of Biological Sciences, Columbia University, New York City, NY, USA
- Department of Systems Biology, Columbia University, New York City, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY, USA
| | - Panos Oikonomou
- Department of Biological Sciences, Columbia University, New York City, NY, USA
- Department of Systems Biology, Columbia University, New York City, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY, USA
| | - Saeed Tavazoie
- Department of Biological Sciences, Columbia University, New York City, NY, USA.
- Department of Systems Biology, Columbia University, New York City, NY, USA.
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York City, NY, USA.
| |
Collapse
|
32
|
Mironov KS, Shumskaya M, Los DA. Construction of prokaryotic strand-specific primary-transcripts saturated RNASeq library by controlled heat magnesium-dependent mRNA degradation. Biochimie 2020; 177:63-67. [PMID: 32805305 DOI: 10.1016/j.biochi.2020.08.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/26/2020] [Accepted: 08/02/2020] [Indexed: 02/01/2023]
Abstract
The main limiting factors for RNA-Seq analysis are quality and quantity of the isolated mRNA. In prokaryotes, the proportion of messenger RNA to total RNA is rather low. Therefore, the main strategy of library preparation for sequencing is mRNA enrichment. Ribosomal and transfer RNAs, both monophosphorylated at the 5'-ends, are the major fractions of total RNA, while the bulk of primary transcripts is triphosphorylated at the 5'-teminus. Due to its low molecular weight, transfer RNA could be easily removed by a quick precipitation in LiCl solution. Ribosomal RNA may be degraded enzymatically by 5'-end terminal exonuclease XRN-1. These steps allow enriching samples in mRNA during the first stages of RNA-Seq library preparation. The desired level of fragmentation of enriched mRNA necessary for the 2nd generation sequencing can be controlled by the duration of incubation at elevated temperatures in the presence of Mg2+-ions. Here, we describe a simple protocol for construction of the primary prokaryotic mRNA-saturated library without long depletion procedures.
Collapse
Affiliation(s)
- Kirill S Mironov
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia.
| | - Maria Shumskaya
- Department of Biology, School of Natural Sciences, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Dmitry A Los
- Department of Molecular Biosystems, K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, 127276, Moscow, Russia
| |
Collapse
|
33
|
Prezza G, Heckel T, Dietrich S, Homberger C, Westermann AJ, Vogel J. Improved bacterial RNA-seq by Cas9-based depletion of ribosomal RNA reads. RNA (NEW YORK, N.Y.) 2020; 26:1069-1078. [PMID: 32345633 PMCID: PMC7373992 DOI: 10.1261/rna.075945.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/01/2020] [Indexed: 05/08/2023]
Abstract
A major challenge for RNA-seq analysis of gene expression is to achieve sufficient coverage of informative nonribosomal transcripts. In eukaryotic samples, this is typically achieved by selective oligo(dT)-priming of messenger RNAs to exclude ribosomal RNA (rRNA) during cDNA synthesis. However, this strategy is not compatible with prokaryotes in which functional transcripts are generally not polyadenylated. To overcome this, we adopted DASH (depletion of abundant sequences by hybridization), initially developed for eukaryotic cells, to improve both the sensitivity and depth of bacterial RNA-seq. DASH uses the Cas9 nuclease to remove unwanted cDNA sequences prior to library amplification. We report the design, evaluation, and optimization of DASH experiments for standard bacterial short-read sequencing approaches, including software for automated guide RNA (gRNA) design for Cas9-mediated cleavage in bacterial rDNA sequences. Using these gRNA pools, we effectively removed rRNA reads (56%-86%) in RNA-seq libraries from two different model bacteria, the Gram-negative pathogen Salmonella enterica and the anaerobic gut commensal Bacteroides thetaiotaomicron DASH works robustly, even with subnanogram amounts of input RNA. Its efficiency, high sensitivity, ease of implementation, and low cost (∼$5 per sample) render DASH an attractive alternative to rRNA removal protocols, in particular for material-constrained studies where conventional ribodepletion techniques fail.
Collapse
Affiliation(s)
- Gianluca Prezza
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany
| | - Tobias Heckel
- Core Unit Systems Medicine, University of Würzburg, Würzburg, 97080, Germany
| | - Sascha Dietrich
- Core Unit Systems Medicine, University of Würzburg, Würzburg, 97080, Germany
| | - Christina Homberger
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, 97080, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, 97080, Germany
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, 97080, Germany
| |
Collapse
|
34
|
Glaub A, Huptas C, Neuhaus K, Ardern Z. Recommendations for bacterial ribosome profiling experiments based on bioinformatic evaluation of published data. J Biol Chem 2020; 295:8999-9011. [PMID: 32385111 PMCID: PMC7335797 DOI: 10.1074/jbc.ra119.012161] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/05/2020] [Indexed: 02/03/2023] Open
Abstract
Ribosome profiling (RIBO-Seq) has improved our understanding of bacterial translation, including finding many unannotated genes. However, protocols for RIBO-Seq and corresponding data analysis are not yet standardized. Here, we analyzed 48 RIBO-Seq samples from nine studies of Escherichia coli K12 grown in lysogeny broth medium and particularly focused on the size-selection step. We show that for conventional expression analysis, a size range between 22 and 30 nucleotides is sufficient to obtain protein-coding fragments, which has the advantage of removing many unwanted rRNA and tRNA reads. More specific analyses may require longer reads and a corresponding improvement in rRNA/tRNA depletion. There is no consensus about the appropriate sequencing depth for RIBO-Seq experiments in prokaryotes, and studies vary significantly in total read number. Our analysis suggests that 20 million reads that are not mapping to rRNA/tRNA are required for global detection of translated annotated genes. We also highlight the influence of drug-induced ribosome stalling, which causes bias at translation start sites. The resulting accumulation of reads at the start site may be especially useful for detecting weakly expressed genes. As different methods suit different questions, it may not be possible to produce a "one-size-fits-all" ribosome profiling data set. Therefore, experiments should be carefully designed in light of the scientific questions of interest. We propose some basic characteristics that should be reported with any new RIBO-Seq data sets. Careful attention to the factors discussed should improve prokaryotic gene detection and the comparability of ribosome profiling data sets.
Collapse
Affiliation(s)
- Alina Glaub
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Christopher Huptas
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany
| | - Klaus Neuhaus
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany; Core Facility Microbiome, ZIEL Institute for Food and Health, Technical University of Munich, Freising, Germany
| | - Zachary Ardern
- Chair for Microbial Ecology, Technical University of Munich, Freising, Germany.
| |
Collapse
|
35
|
Culviner PH, Guegler CK, Laub MT. A Simple, Cost-Effective, and Robust Method for rRNA Depletion in RNA-Sequencing Studies. mBio 2020; 11:e00010-20. [PMID: 32317317 PMCID: PMC7175087 DOI: 10.1128/mbio.00010-20] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/26/2020] [Indexed: 01/30/2023] Open
Abstract
The profiling of gene expression by RNA sequencing (RNA-seq) has enabled powerful studies of global transcriptional patterns in all organisms, including bacteria. Because the vast majority of RNA in bacteria is rRNA, it is standard practice to deplete the rRNA from a total RNA sample such that the reads in an RNA-seq experiment derive predominantly from mRNA. One of the most commonly used commercial kits for rRNA depletion, the Ribo-Zero kit from Illumina, was recently discontinued abruptly and for an extended period of time. Here, we report the development of a simple, cost-effective, and robust method for depleting rRNA that can be easily implemented by any lab or facility. We first developed an algorithm for designing biotinylated oligonucleotides that will hybridize tightly and specifically to the 23S, 16S, and 5S rRNAs from any species of interest. Precipitation of these oligonucleotides bound to rRNA by magnetic streptavidin-coated beads then depletes rRNA from a complex, total RNA sample such that ∼75 to 80% of reads in a typical RNA-seq experiment derive from mRNA. Importantly, we demonstrate a high correlation of RNA abundance or fold change measurements in RNA-seq experiments between our method and the Ribo-Zero kit. Complete details on the methodology are provided, including open-source software for designing oligonucleotides optimized for any bacterial species or community of interest.IMPORTANCE The ability to examine global patterns of gene expression in microbes through RNA sequencing has fundamentally transformed microbiology. However, RNA-seq depends critically on the removal of rRNA from total RNA samples. Otherwise, rRNA would comprise upward of 90% of the reads in a typical RNA-seq experiment, limiting the reads coming from mRNA or requiring high total read depth. A commonly used kit for rRNA subtraction from Illumina was recently unavailable for an extended period of time, disrupting routine rRNA depletion. Here, we report the development of a "do-it-yourself" kit for rapid, cost-effective, and robust depletion of rRNA from total RNA. We present an algorithm for designing biotinylated oligonucleotides that will hybridize to the rRNAs from a target set of species. We then demonstrate that the designed oligonucleotides enable sufficient rRNA depletion to produce RNA-seq data with 75 to 80% of reads coming from mRNA. The methodology presented should enable RNA-seq studies on any species or metagenomic sample of interest.
Collapse
Affiliation(s)
- Peter H Culviner
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Chantal K Guegler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
36
|
Karl JP, Barbato RA, Doherty LA, Gautam A, Glaven SM, Kokoska RJ, Leary D, Mickol RL, Perisin MA, Hoisington AJ, Van Opstal EJ, Varaljay V, Kelley-Loughnane N, Mauzy CA, Goodson MS, Soares JW. Meeting report of the third annual Tri-Service Microbiome Consortium symposium. ENVIRONMENTAL MICROBIOME 2020; 15:12. [PMID: 32835172 PMCID: PMC7356122 DOI: 10.1186/s40793-020-00359-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 05/05/2023]
Abstract
The Tri-Service Microbiome Consortium (TSMC) was founded to enhance collaboration, coordination, and communication of microbiome research among U.S. Department of Defense (DoD) organizations and to facilitate resource, material and information sharing among consortium members. The 2019 annual symposium was held 22-24 October 2019 at Wright-Patterson Air Force Base in Dayton, OH. Presentations and discussions centered on microbiome-related topics within five broad thematic areas: 1) human microbiomes; 2) transitioning products into Warfighter solutions; 3) environmental microbiomes; 4) engineering microbiomes; and 5) microbiome simulation and characterization. Collectively, the symposium provided an update on the scope of current DoD microbiome research efforts, highlighted innovative research being done in academia and industry that can be leveraged by the DoD, and fostered collaborative opportunities. This report summarizes the presentations and outcomes of the 3rd annual TSMC symposium.
Collapse
Affiliation(s)
- J. Philip Karl
- Military Nutrition Division, United States Army Research Institute of Environmental Medicine, Natick, MA USA
| | - Robyn A. Barbato
- United States Army Cold Regions Research and Engineering Laboratory, Hanover, NH USA
| | - Laurel A. Doherty
- Soldier Performance Optimization Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA USA
| | - Aarti Gautam
- Medical Readiness Systems Biology, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD USA
| | - Sarah M. Glaven
- Center for Bio/Molecular Science and Engineering, Naval Research Laboratory, Washington, DC USA
| | - Robert J. Kokoska
- Physical Sciences Directorate, United States Army Research Laboratory – United States Army Research Office, Research Triangle Park, Durham, NC USA
| | - Dagmar Leary
- Center for Biomolecular Science & Engineering, United States Naval Research Laboratory, Washington, DC USA
| | | | - Matthew A. Perisin
- Biotechnology Branch, United States Army Combat Capabilities Development Command-Army Research Laboratory, Adelphi, MD USA
| | - Andrew J. Hoisington
- Department of Systems Engineering and Management, Air Force Institute of Technology, Wright-Patterson AFB, Dayton, OH USA
- Military and Veteran Microbiome: Consortium for Research and Education, Aurora, CO USA
- Veterans Health Administration, Rocky Mountain Mental Illness Research Education and Clinical Center, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO USA
- Department of Physical Medicine & Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Edward J. Van Opstal
- Human Systems Directorate, Office of the Underscretary of Defense for Research & Engineering, Washington, DC USA
| | - Vanessa Varaljay
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Nancy Kelley-Loughnane
- Soft Matter Materials Branch, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Camilla A. Mauzy
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Michael S. Goodson
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Dayton, OH USA
| | - Jason W. Soares
- Soldier Performance Optimization Directorate, United States Army Combat Capabilities Development Command Soldier Center, Natick, MA USA
| |
Collapse
|