1
|
Wang Z, Chen C, Ge X. Large T antigen mediated target gene replication improves site-specific recombination efficiency. Front Bioeng Biotechnol 2024; 12:1377167. [PMID: 38737535 PMCID: PMC11082406 DOI: 10.3389/fbioe.2024.1377167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/11/2024] [Indexed: 05/14/2024] Open
Abstract
With advantages of high-fidelity, monoclonality and large cargo capacity, site-specific recombination (SSR) holds great promises for precise genomic modifications. However, broad applications of SSR have been hurdled by low integration efficiency, and the amount of donor DNA available in nucleus for SSR presents as a limiting factor. Inspired by the DNA replication mechanisms observed in double-stranded DNA virus SV40, we hypothesized that expression of SV40 large T antigen (TAg) can increase the copy number of the donor plasmid bearing an SV40 origin, and in consequence promote recombination events. This hypothesis was tested with dual recombinase-mediated cassette exchange (RMCE) in suspension 293F cells. Results showed that TAg co-transfection significantly enhanced SSR in polyclonal cells. In the monoclonal cell line carrying a single landing pad at an identified genomic locus, 12% RMCE efficiency was achieved, and such improvement was indeed correlated with donor plasmid amplification. The developed TAg facilitated RMCE (T-RMCE) was exploited for the construction of large libraries of >107 diversity, from which GFP variants with enhanced fluorescence were isolated. We expect the underlying principle of target gene amplification can be applicable to other SSR processes and gene editing approaches in general for directed evolution and large-scale genomic screening in mammalian cells.
Collapse
Affiliation(s)
- Zening Wang
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, United States
| | - Chuan Chen
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, United States
| | - Xin Ge
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, United States
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA, United States
| |
Collapse
|
2
|
Chen C, Wang Z, Kang M, Lee KB, Ge X. High-fidelity large-diversity monoclonal mammalian cell libraries by cell cycle arrested recombinase-mediated cassette exchange. Nucleic Acids Res 2023; 51:e113. [PMID: 37941133 PMCID: PMC10711435 DOI: 10.1093/nar/gkad1001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/26/2023] [Accepted: 10/18/2023] [Indexed: 11/10/2023] Open
Abstract
Mammalian cells carrying defined genetic variations have shown great potentials in both fundamental research and therapeutic development. However, their full use was limited by lack of a robust method to construct large monoclonal high-quality combinatorial libraries. This study developed cell cycle arrested recombinase-mediated cassette exchange (aRMCE), able to provide monoclonality, precise genomic integration and uniform transgene expression. Via optimized nocodazole-mediated mitotic arrest, 20% target gene replacement efficiency was achieved without antibiotic selection, and the improved aRMCE efficiency was applicable to a variety of tested cell clones, transgene targets and transfection methods. As a demonstration of this versatile method, we performed directed evolution of fragment crystallizable (Fc), for which error-prone libraries of over 107 variants were constructed and displayed as IgG on surface of CHO cells. Diversities of constructed libraries were validated by deep sequencing, and panels of novel Fc mutants were identified showing improved binding towards specific Fc gamma receptors and enhanced effector functions. Due to its large cargo capacity and compatibility with different mutagenesis approaches, we expect this mammalian cell platform technology has broad applications for directed evolution, multiplex genetic assays, cell line development and stem cell engineering.
Collapse
Affiliation(s)
- Chuan Chen
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
| | - Zening Wang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Minhyo Kang
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
| | - Ki Baek Lee
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xin Ge
- Department of Chemical and Environmental Engineering, University of California Riverside, Riverside, CA 92521, USA
- Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
3
|
Kan M, Huang T, Zhao P. Artificial chromosome technology and its potential application in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:970943. [PMID: 36186059 PMCID: PMC9519882 DOI: 10.3389/fpls.2022.970943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Plant genetic engineering and transgenic technology are powerful ways to study the function of genes and improve crop yield and quality in the past few years. However, only a few genes could be transformed by most available genetic engineering and transgenic technologies, so changes still need to be made to meet the demands for high throughput studies, such as investigating the whole genetic pathway of crop traits and avoiding undesirable genes simultaneously in the next generation. Plant artificial chromosome (PAC) technology provides a carrier which allows us to assemble multiple and specific genes to produce a variety of products by minichromosome. However, PAC technology also have limitations that may hinder its further development and application. In this review, we will introduce the current state of PACs technology from PACs formation, factors on PACs formation, problems and potential solutions of PACs and exogenous gene(s) integration.
Collapse
Affiliation(s)
- Manman Kan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Panpan Zhao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
4
|
Lanzafame M, Branca G, Landi C, Qiang M, Vaz B, Nardo T, Ferri D, Mura M, Iben S, Stefanini M, Peverali FA, Bini L, Orioli D. Cockayne syndrome group A and ferrochelatase finely tune ribosomal gene transcription and its response to UV irradiation. Nucleic Acids Res 2021; 49:10911-10930. [PMID: 34581821 PMCID: PMC8565352 DOI: 10.1093/nar/gkab819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 08/10/2021] [Accepted: 09/12/2021] [Indexed: 11/14/2022] Open
Abstract
CSA and CSB proteins are key players in transcription-coupled nucleotide excision repair (TC-NER) pathway that removes UV-induced DNA lesions from the transcribed strands of expressed genes. Additionally, CS proteins play relevant but still elusive roles in other cellular pathways whose alteration may explain neurodegeneration and progeroid features in Cockayne syndrome (CS). Here we identify a CS-containing chromatin-associated protein complex that modulates rRNA transcription. Besides RNA polymerase I (RNAP1) and specific ribosomal proteins (RPs), the complex includes ferrochelatase (FECH), a well-known mitochondrial enzyme whose deficiency causes erythropoietic protoporphyria (EPP). Impairment of either CSA or FECH functionality leads to reduced RNAP1 occupancy on rDNA promoter that is associated to reduced 47S pre-rRNA transcription. In addition, reduced FECH expression leads to an abnormal accumulation of 18S rRNA that in primary dermal fibroblasts from CS and EPP patients results in opposed rRNA amounts. After cell irradiation with UV light, CSA triggers the dissociation of the CSA–FECH–CSB–RNAP1–RPs complex from the chromatin while it stabilizes its binding to FECH. Besides disclosing a function for FECH within nucleoli, this study sheds light on the still unknown mechanisms through which CSA modulates rRNA transcription.
Collapse
Affiliation(s)
- Manuela Lanzafame
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Giulia Branca
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Claudia Landi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Mingyue Qiang
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein Allee 23, 89081 Ulm, Germany
| | - Bruno Vaz
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Tiziana Nardo
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Debora Ferri
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Manuela Mura
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Sebastian Iben
- Department of Dermatology and Allergic Diseases, Ulm University, Albert-Einstein Allee 23, 89081 Ulm, Germany
| | - Miria Stefanini
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Fiorenzo A Peverali
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| | - Luca Bini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Donata Orioli
- Institute of Molecular Genetics -L.L. Cavalli Sforza, CNR, 27100 Pavia, Italy
| |
Collapse
|
5
|
Dias MM, Vidigal J, Sequeira DP, Alves PM, Teixeira AP, Roldão A. Insect High FiveTM cell line development using site-specific flipase recombination technology. G3-GENES GENOMES GENETICS 2021; 11:6274903. [PMID: 33982066 PMCID: PMC8763235 DOI: 10.1093/g3journal/jkab166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 05/24/2021] [Indexed: 11/14/2022]
Abstract
Insect Trichoplusia ni High FiveTM (Hi5) cells have been widely explored for production of heterologous proteins, traditionally mostly using the lytic baculovirus expression vector system (BEVS), and more recently using virus-free transient gene expression systems. Stable expression in such host cells would circumvent the drawbacks associated with both systems when it comes to scale-up and implementation of more efficient high-cell density process modes for the manufacturing of biologics. In this work, we combined Flipase (Flp) recombinase-mediated cassette exchange (RMCE) with fluorescence-activated cell sorting (FACS) for generating a stable master clonal Hi5 cell line with the flexibility to express single or multiple proteins of interest from a tagged genomic locus. The 3-step protocol herein implemented consisted of (i) introducing the RMCE docking cassette into the cell genome by random integration followed by selection in Hygromycin B and FACS (Hi5-tagging population), (ii) eliminating cells tagged in loci with low recombination efficiency by transfecting the tagging population with an eGFP-containing target cassette followed by selection in G418 and FACS (Hi5-RMCE population), and (iii) isolation of pure eGFP-expressing cells by FACS and expansion to suspension cultures (Hi5-RMCE master clone). Exchangeability of the locus in the master clone was demonstrated in small-scale suspension cultures by replacing the target cassette by one containing a single protein (i.e. iCherry, as an intracellular protein model) or two proteins (i.e. influenza HA and M1 for virus-like particles production, as an extracellular protein model). Overall, the stable insect Hi5 cell platform herein assembled has the potential to assist and accelerate biologics development.
Collapse
Affiliation(s)
- Mafalda M Dias
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - João Vidigal
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - Daniela P Sequeira
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal.,Department of Molecular Life Sciences, University of Zurich, 8057 Zurich, Switzerland
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| | - Ana P Teixeira
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal.,ETH Zurich, Department of Biosystems Science and Engineering, Mattenstrasse 26, 4058 - Basel, Switzerland
| | - António Roldão
- IBET, Instituto de Biologia Experimental e Tecnológica, 2780-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, 2780-901 Oeiras, Portugal
| |
Collapse
|
6
|
O’Brien SA, Lee K, Fu HY, Lee Z, Le TS, Stach CS, McCann MG, Zhang AQ, Smanski MJ, Somia NV, Hu WS. Single Copy Transgene Integration in a Transcriptionally Active Site for Recombinant Protein Synthesis. Biotechnol J 2018; 13:e1800226. [PMID: 30024101 PMCID: PMC7058118 DOI: 10.1002/biot.201800226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/09/2018] [Indexed: 12/21/2022]
Abstract
For the biomanufacturing of protein biologics, establishing stable cell lines with high transgene transcription is critical for high productivity. Modern genome engineering tools can direct transgene insertion to a specified genomic locus and can potentially become a valuable tool for cell line generation. In this study, the authors survey transgene integration sites and their transcriptional activity to identify characteristics of desirable regions. A lentivirus containing destabilized Green Fluorescent Protein (dGFP) is used to infect Chinese hamster ovary cells at a low multiplicity of infection, and cells with high or low GFP fluorescence are isolated. RNA sequencing and Assay for Transposase Accessible Chromatin using sequencing data shows integration sites with high GFP expression are in larger regions of high transcriptional activity and accessibility, but not necessarily within highly transcribed genes. This method is used to obtain high Immunoglobulin G (IgG) expressing cell lines with a single copy of the transgene integrated into transcriptionally active and accessible genomic regions. Dual recombinase-mediated cassette exchange is then employed to swap the IgG transgene for erythropoietin or tumor necrosis factor receptor-Fc. This work thus highlights a strategy to identify desirable sites for transgene integration and to streamline the development of new product producing cell lines.
Collapse
Affiliation(s)
- Sofie A. O’Brien
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Kyoungho Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Hsu-Yuan Fu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Tung S. Le
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Christopher S. Stach
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Meghan G. McCann
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Alicia Q. Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Michael J. Smanski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Nikunj V. Somia
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| |
Collapse
|
7
|
Voziyanova E, Anderson RP, Voziyanov Y. Dual Recombinase-Mediated Cassette Exchange by Tyrosine Site-Specific Recombinases. Methods Mol Biol 2017; 1642:53-67. [PMID: 28815493 DOI: 10.1007/978-1-4939-7169-5_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Recombinase-mediated cassette exchange, or RMCE, is a genome engineering tool that can be used to swap DNA fragments of interest between two DNA molecules. In a variation of RMCE, called dual RMCE, the exchange of DNA fragments is mediated by two recombinases in contrast to one recombinase in the classic RMCE reaction. Under optimal conditions, the efficiency of dual RMCE can be quite high: up to ~45% of the transfected cells depending on the recombinase pair used to mediate the replacement reaction. Here we describe protocols for preparing for, performing, and optimizing the parameters of dual RMCE.
Collapse
Affiliation(s)
- Eugenia Voziyanova
- School of Biosciences, Louisiana Tech University, 1 Adams Blvd, Ruston, LA, 71272, USA
| | - Rachelle P Anderson
- School of Biosciences, Louisiana Tech University, 1 Adams Blvd, Ruston, LA, 71272, USA
| | - Yuri Voziyanov
- School of Biosciences, Louisiana Tech University, 1 Adams Blvd, Ruston, LA, 71272, USA.
| |
Collapse
|
8
|
Abstract
The use of Cre recombinase to carry out conditional mutagenesis of transgenes and insert DNA cassettes into eukaryotic chromosomes is widespread. In addition to the numerous in vivo and in vitro applications that have been reported since Cre was first shown to function in yeast and mammalian cells nearly 30 years ago, the Cre-loxP system has also played an important role in understanding the mechanism of recombination by the tyrosine recombinase family of site-specific recombinases. The simplicity of this system, requiring only a single recombinase enzyme and short recombination sequences for robust activity in a variety of contexts, has been an important factor in both cases. This review discusses advances in the Cre recombinase field that have occurred over the past 12 years since the publication of Mobile DNA II. The focus is on those recent contributions that have provided new mechanistic insights into the reaction. Also discussed are modifications of Cre and/or the loxP sequence that have led to improvements in genome engineering applications.
Collapse
|
9
|
Abstract
The fields of molecular genetics, biotechnology and synthetic biology are demanding ever more sophisticated molecular tools for programmed precise modification of cell genomic DNA and other DNA sequences. This review presents the current state of knowledge and development of one important group of DNA-modifying enzymes, the site-specific recombinases (SSRs). SSRs are Nature's 'molecular machines' for cut-and-paste editing of DNA molecules by inserting, deleting or inverting precisely defined DNA segments. We survey the SSRs that have been put to use, and the types of applications for which they are suitable. We also discuss problems associated with uses of SSRs, how these problems can be minimized, and how recombinases are being re-engineered for improved performance and novel applications.
Collapse
|
10
|
Voziyanova E, Anderson RP, Shah R, Li F, Voziyanov Y. Efficient Genome Manipulation by Variants of Site-Specific Recombinases R and TD. J Mol Biol 2015; 428:990-1003. [PMID: 26555749 DOI: 10.1016/j.jmb.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 10/17/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Genome engineering benefits from the availability of DNA modifying enzymes that have different target specificities and have optimized performance in different cell types. This variety of site-specific enzymes can be used to develop complex genome engineering applications at multiple loci. Although eight yeast site-specific tyrosine recombinases are known, only Flp is actively used in genome engineering. To expand the pool of the yeast site-specific tyrosine recombinases capable of mediating genome manipulations in mammalian cells, we engineered and analyzed variants of two tyrosine recombinases: R and TD. The activity of the evolved variants, unlike the activity of the native R and TD recombinases, is suitable for genome engineering in Escherichia coli and mammalian cells. Unexpectedly, we found that R recombinase benefits from the shortening of its C-terminus. We also found that the activity of wild-type R can be modulated by its non-consensus "head" sequence but this modulation became not apparent in the evolved R variants. The engineered recombinase variants were found to be active in all recombination reactions tested: excision, integration, and dual recombinase-mediated cassette exchange. The analysis of the latter reaction catalyzed by the R/TD recombinase pair shows that the condition supporting the most efficient replacement reaction favors efficient TD-mediated integration reaction while favoring efficient R-mediated integration and deletion reactions.
Collapse
Affiliation(s)
- Eugenia Voziyanova
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Rachelle P Anderson
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Riddhi Shah
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Feng Li
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA
| | - Yuri Voziyanov
- School of Biosciences, Louisiana Tech University, 1 Adams Boulevard, Ruston, LA 71272, USA.
| |
Collapse
|
11
|
Lin Q, Qi H, Wu Y, Yuan Y. Robust orthogonal recombination system for versatile genomic elements rearrangement in yeast Saccharomyces cerevisiae. Sci Rep 2015; 5:15249. [PMID: 26477943 PMCID: PMC4609996 DOI: 10.1038/srep15249] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 08/26/2015] [Indexed: 11/25/2022] Open
Abstract
Rearrangement of genomic DNA elements in a dynamic controlled fashion is a fundamental challenge. Site-specific DNA recombinases have been tamed as a powerful tool in genome editing. Here, we reported a DNA element rearrangement on the basis of a pairwise orthogonal recombination system which is comprised of two site-specific recombinases of Vika/vox and Cre/loxp in yeast Saccharomyces Creevisiae. Taking the advantage of the robust pairwise orthogonality, we showed that multi gene elements could be organized in a programmed way, in which rationally designed pattern of loxP and vox determined the final genotype after expressing corresponding recombinases. Finally, it was demonstrated that the pairwise orthogonal recombination system could be utilized to refine synthetic chromosome rearrangement and modification by loxP-mediated evolution, SCRaMbLE, in yeast cell carrying a completely synthesized chromosome III.
Collapse
Affiliation(s)
- Qiuhui Lin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Hao Qi
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yi Wu
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Yingjin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, PR China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| |
Collapse
|
12
|
Shah R, Li F, Voziyanova E, Voziyanov Y. Target-specific variants of Flp recombinase mediate genome engineering reactions in mammalian cells. FEBS J 2015; 282:3323-33. [PMID: 26077105 DOI: 10.1111/febs.13345] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/18/2015] [Accepted: 06/12/2015] [Indexed: 12/30/2022]
Abstract
Genome engineering relies on DNA-modifying enzymes that are able to locate a DNA sequence of interest and initiate a desired genome rearrangement. Currently, the field predominantly utilizes site-specific DNA nucleases that depend on the host DNA repair machinery to complete a genome modification task. We show here that genome engineering approaches that employ target-specific variants of the self-sufficient, versatile site-specific DNA recombinase Flp can be developed into promising alternatives. We demonstrate that the Flp variant evolved to recombine an FRT-like sequence, FL-IL10A, which is located upstream of the human interleukin-10 gene, and can target this sequence in the model setting of Chinese hamster ovary and human embryonic kidney 293 cells. This target-specific Flp variant is able to perform the integration reaction and, when paired with another recombinase, the dual recombinase-mediated cassette exchange reaction. The efficiency of the integration reaction in human cells can be enhanced by 'humanizing' the Flp variant gene and by adding the nuclear localization sequence to the recombinase.
Collapse
Affiliation(s)
- Riddhi Shah
- School of Biosciences, Louisiana Tech University, Ruston, LA, USA
| | - Feng Li
- School of Biosciences, Louisiana Tech University, Ruston, LA, USA
| | | | - Yuri Voziyanov
- School of Biosciences, Louisiana Tech University, Ruston, LA, USA
| |
Collapse
|
13
|
Haghighat-Khah RE, Scaife S, Martins S, St John O, Matzen KJ, Morrison N, Alphey L. Site-specific cassette exchange systems in the Aedes aegypti mosquito and the Plutella xylostella moth. PLoS One 2015; 10:e0121097. [PMID: 25830287 PMCID: PMC4382291 DOI: 10.1371/journal.pone.0121097] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/09/2015] [Indexed: 12/02/2022] Open
Abstract
Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests.
Collapse
Affiliation(s)
- Roya Elaine Haghighat-Khah
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Oxitec Limited, Oxford, United Kingdom
| | | | - Sara Martins
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Oxitec Limited, Oxford, United Kingdom
| | - Oliver St John
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Oxitec Limited, Oxford, United Kingdom
| | | | | | - Luke Alphey
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Oxitec Limited, Oxford, United Kingdom
- * E-mail: (LA); (KJM)
| |
Collapse
|
14
|
Voziyanova E, Malchin N, Anderson RP, Yagil E, Kolot M, Voziyanov Y. Efficient Flp-Int HK022 dual RMCE in mammalian cells. Nucleic Acids Res 2013; 41:e125. [PMID: 23630322 PMCID: PMC3695500 DOI: 10.1093/nar/gkt341] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Recombinase-mediated cassette exchange, or RMCE, is a clean approach of gene delivery into a desired chromosomal location, as it is able to insert only the required sequences, leaving behind the unwanted ones. RMCE can be mediated by a single site-specific DNA recombinase or by two recombinases with different target specificities (dual RMCE). Recently, using the Flp–Cre recombinase pair, dual RMCE proved to be efficient, provided the relative ratio of the enzymes during the reaction is optimal. In the present report, we analyzed how the efficiency of dual RMCE mediated by the Flp–Int (HK022) pair depends on the variable input of the recombinases—the amount of the recombinase expression vectors added at transfection—and on the order of the addition of these vectors: sequential or simultaneous. We found that both in the sequential and the simultaneous modes, the efficiency of dual RMCE was critically dependent on the absolute and the relative concentrations of the Flp and Int expression vectors. Under optimal conditions, the efficiency of ‘simultaneous’ dual RMCE reached ∼12% of the transfected cells. Our results underline the importance of fine-tuning the reaction conditions for achieving the highest levels of dual RMCE.
Collapse
Affiliation(s)
- Eugenia Voziyanova
- School of Biosciences, Louisiana Tech University, 1 Adams Boulveard, Ruston, LA 71272, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Recombinase-mediated cassette exchange (RMCE) — A rapidly-expanding toolbox for targeted genomic modifications. Gene 2013. [DOI: 10.1016/j.gene.2012.11.016] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Captured segment exchange: a strategy for custom engineering large genomic regions in Drosophila melanogaster. Genetics 2012; 193:421-30. [PMID: 23150604 DOI: 10.1534/genetics.112.145748] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Site-specific recombinases (SSRs) are valuable tools for manipulating genomes. In Drosophila, thousands of transgenic insertions carrying SSR recognition sites have been distributed throughout the genome by several large-scale projects. Here we describe a method with the potential to use these insertions to make custom alterations to the Drosophila genome in vivo. Specifically, by employing recombineering techniques and a dual recombinase-mediated cassette exchange strategy based on the phiC31 integrase and FLP recombinase, we show that a large genomic segment that lies between two SSR recognition-site insertions can be "captured" as a target cassette and exchanged for a sequence that was engineered in bacterial cells. We demonstrate this approach by targeting a 50-kb segment spanning the tsh gene, replacing the existing segment with corresponding recombineered sequences through simple and efficient manipulations. Given the high density of SSR recognition-site insertions in Drosophila, our method affords a straightforward and highly efficient approach to explore gene function in situ for a substantial portion of the Drosophila genome.
Collapse
|
17
|
A Low-Copy-Number Plasmid for Retrieval of Toxic Genes from BACs and Generation of Conditional Targeting Constructs. Mol Biotechnol 2012; 54:504-14. [DOI: 10.1007/s12033-012-9591-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Fernandes F, Vidigal J, Dias MM, Prather KL, Coroadinha AS, Teixeira AP, Alves PM. Flipase-mediated cassette exchange inSf9insect cells for stable gene expression. Biotechnol Bioeng 2012; 109:2836-44. [DOI: 10.1002/bit.24542] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/21/2012] [Accepted: 04/24/2012] [Indexed: 02/02/2023]
|
19
|
Gene deletor: a new tool to address gene flow and food safety concerns over transgenic crop plants. ACTA ACUST UNITED AC 2012. [DOI: 10.1007/s11515-012-1195-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Anderson RP, Voziyanova E, Voziyanov Y. Flp and Cre expressed from Flp-2A-Cre and Flp-IRES-Cre transcription units mediate the highest level of dual recombinase-mediated cassette exchange. Nucleic Acids Res 2012; 40:e62. [PMID: 22270085 PMCID: PMC3333864 DOI: 10.1093/nar/gks027] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Recombinase-mediated cassette exchange (RMCE) is a powerful tool for unidirectional integration of DNA fragments of interest into a pre-determined genome locale. In this report, we examined how the efficiency of dual RMCE catalyzed by Flp and Cre depends on the nature of transcription units that express the recombinases. The following recombinase transcription units were analyzed: (i) Flp and Cre genes expressed as individual transcription units located on different vectors, (ii) Flp and Cre genes expressed as individual transcription units located on the same vector, (iii) Flp and Cre genes expressed from a single promoter and separated by internal ribosome entry sequence and (iv) Flp and Cre coding sequences separated by the 2A peptide and expressed as a single gene. We found that the highest level of dual RMCE (35-45% of the transfected cells) can be achieved when Flp and Cre recombinases are expressed as Flp-2A-Cre and Flp-IRES-Cre transcription units. In contrast, the lowest level of dual RMCE (∼1% of the transfected cells) is achieved when Flp and Cre are expressed as individual transcription units. The analysis shows that it is the relative Flp-to-Cre ratio that critically affects the efficiency of dual RMCE. Our results will be helpful for maximizing the efficiency of dual RMCE aimed to engineer and re-engineer genomes.
Collapse
Affiliation(s)
- Rachelle P Anderson
- School of Biosciences, Louisiana Tech University, 1 Adams Blvd., Ruston, LA 71272, USA
| | | | | |
Collapse
|
21
|
Abstract
The ability to manipulate the genomes of many insects has become a practical reality over the past 15 years. This has been led by the identification of several useful transposon vector systems that have allowed the identification and development of generalized, species-specific, and tissue-specific promoter systems for controlled expression of gene products upon introduction into insect genomes. Armed with these capabilities, researchers have made significant strides in both fundamental and applied transgenics in key model systems such as Bombyx mori, Tribolium casteneum, Aedes aegypti, and Anopheles stephensi. Limitations of transposon systems were identified, and alternative tools were developed, thus significantly increasing the potential for applied transgenics for control of both agricultural and medical insect pests. The next 10 years promise to be an exciting time of transitioning from the laboratory to the field, from basic research to applied control, during which the full potential of gene manipulation in insect systems will ultimately be realized.
Collapse
Affiliation(s)
- Malcolm J Fraser
- Eck Institute for Global Health, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556-0369, USA.
| |
Collapse
|
22
|
Watanabe H, Yang T, Stroud DM, Lowe JS, Harris L, Atack TC, Wang DW, Hipkens SB, Leake B, Hall L, Kupershmidt S, Chopra N, Magnuson MA, Tanabe N, Knollmann BC, George AL, Roden DM. Striking In vivo phenotype of a disease-associated human SCN5A mutation producing minimal changes in vitro. Circulation 2011; 124:1001-11. [PMID: 21824921 DOI: 10.1161/circulationaha.110.987248] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND The D1275N SCN5A mutation has been associated with a range of unusual phenotypes, including conduction disease and dilated cardiomyopathy, as well as atrial and ventricular tachyarrhythmias. However, when D1275N is studied in heterologous expression systems, most studies show near-normal sodium channel function. Thus, the relationship of the variant to the clinical phenotypes remains uncertain. METHODS AND RESULTS We identified D1275N in a patient with atrial flutter, atrial standstill, conduction disease, and sinus node dysfunction. There was no major difference in biophysical properties between wild-type and D1275N channels expressed in Chinese hamster ovary cells or tsA201 cells in the absence or presence of β1 subunits. To determine D1275N function in vivo, the Scn5a locus was modified to knock out the mouse gene, and the full-length wild-type (H) or D1275N (DN) human SCN5A cDNAs were then inserted at the modified locus by recombinase mediated cassette exchange. Mice carrying the DN allele displayed slow conduction, heart block, atrial fibrillation, ventricular tachycardia, and a dilated cardiomyopathy phenotype, with no significant fibrosis or myocyte disarray on histological examination. The DN allele conferred gene-dose-dependent increases in SCN5A mRNA abundance but reduced sodium channel protein abundance and peak sodium current amplitudes (H/H, 41.0±2.9 pA/pF at -30 mV; DN/H, 19.2±3.1 pA/pF, P<0.001 vs. H/H; DN/DN, 9.3±1.1 pA/pF, P<0.001 versus H/H). CONCLUSIONS Although D1275N produces near-normal currents in multiple heterologous expression experiments, our data establish this variant as a pathological mutation that generates conduction slowing, arrhythmias, and a dilated cardiomyopathy phenotype by reducing cardiac sodium current.
Collapse
Affiliation(s)
- Hiroshi Watanabe
- Department of Medicine, Vanderbilt University School of Medicine, 2215B Garland Ave, 1285 MRBIV Light Hall, Nashville, TN 37232-0575, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Turan S, Galla M, Ernst E, Qiao J, Voelkel C, Schiedlmeier B, Zehe C, Bode J. Recombinase-Mediated Cassette Exchange (RMCE): Traditional Concepts and Current Challenges. J Mol Biol 2011; 407:193-221. [DOI: 10.1016/j.jmb.2011.01.004] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2010] [Revised: 01/04/2011] [Accepted: 01/04/2011] [Indexed: 12/18/2022]
|
24
|
Wang Y, Yau YY, Perkins-Balding D, Thomson JG. Recombinase technology: applications and possibilities. PLANT CELL REPORTS 2011; 30:267-85. [PMID: 20972794 PMCID: PMC3036822 DOI: 10.1007/s00299-010-0938-1] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 10/06/2010] [Accepted: 10/08/2010] [Indexed: 05/02/2023]
Abstract
The use of recombinases for genomic engineering is no longer a new technology. In fact, this technology has entered its third decade since the initial discovery that recombinases function in heterologous systems (Sauer in Mol Cell Biol 7(6):2087-2096, 1987). The random insertion of a transgene into a plant genome by traditional methods generates unpredictable expression patterns. This feature of transgenesis makes screening for functional lines with predictable expression labor intensive and time consuming. Furthermore, an antibiotic resistance gene is often left in the final product and the potential escape of such resistance markers into the environment and their potential consumption raises consumer concern. The use of site-specific recombination technology in plant genome manipulation has been demonstrated to effectively resolve complex transgene insertions to single copy, remove unwanted DNA, and precisely insert DNA into known genomic target sites. Recombinases have also been demonstrated capable of site-specific recombination within non-nuclear targets, such as the plastid genome of tobacco. Here, we review multiple uses of site-specific recombination and their application toward plant genomic engineering. We also provide alternative strategies for the combined use of multiple site-specific recombinase systems for genome engineering to precisely insert transgenes into a pre-determined locus, and removal of unwanted selectable marker genes.
Collapse
Affiliation(s)
- Yueju Wang
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK 74014 USA
| | - Yuan-Yeu Yau
- Department of Plant and Microbial Biology, Plant Gene Expression Center, USDA-ARS, University of California-Berkeley, 800 Buchanan St., Albany, CA 94710 USA
| | | | - James G. Thomson
- Crop Improvement and Utilization Unit, USDA-ARS WRRC, 800 Buchanan St., Albany, CA 94710 USA
| |
Collapse
|
25
|
Osterwalder M, Galli A, Rosen B, Skarnes WC, Zeller R, Lopez-Rios J. Dual RMCE for efficient re-engineering of mouse mutant alleles. Nat Methods 2010; 7:893-5. [PMID: 20953177 PMCID: PMC3576631 DOI: 10.1038/nmeth.1521] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 09/20/2010] [Indexed: 12/30/2022]
Abstract
We have developed dual recombinase-mediated cassette exchange (dRMCE) to efficiently re-engineer the thousands of available conditional alleles in mouse embryonic stem cells. dRMCE takes advantage of the wild-type loxP and FRT sites present in these conditional alleles and in many gene-trap lines. dRMCE is a scalable, flexible tool to introduce tags, reporters and mutant coding regions into an endogenous locus of interest in an easy and highly efficient manner.
Collapse
Affiliation(s)
- Marco Osterwalder
- Developmental Genetics, Department of Biomedicine, University of Basel, Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
26
|
Malchin N, Molotsky T, Borovok I, Voziyanov Y, Kotlyar AB, Yagil E, Kolot M. High efficiency of a sequential recombinase-mediated cassette exchange reaction in Escherichia coli. J Mol Microbiol Biotechnol 2010; 19:117-22. [PMID: 20924197 DOI: 10.1159/000321497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
A comparison between the efficiency of recombinase-mediated cassette exchange (RMCE) reactions catalyzed in Escherichia coli by the site-specific recombinases Flp of yeast and Int of coliphage HK022 has revealed that an Flp-catalyzed RMCE reaction is more efficient than an Int-HK022 catalyzed reaction. In contrast, an RMCE reaction with 1 pair of frt sites and 1 pair of att sites catalyzed in the presence of both recombinases is very inefficient. However, the same reaction catalyzed by each recombinase individually supplied in a sequential order is very efficient, regardless of the order. Atomic force microscopy images of Flp with its DNA substrates show that only 1 pair of recombination sites forms a synaptic complex with the recombinase. The results suggest that the RMCE reaction is sequential.
Collapse
Affiliation(s)
- Natalia Malchin
- Department of Biochemistry, Tel Aviv University, Tel Aviv, Israel
| | | | | | | | | | | | | |
Collapse
|
27
|
Kameyama Y, Kawabe Y, Ito A, Kamihira M. An accumulative site-specific gene integration system using cre recombinase-mediated cassette exchange. Biotechnol Bioeng 2010; 105:1106-14. [DOI: 10.1002/bit.22619] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
28
|
Li Z, Xing A, Moon BP, McCardell RP, Mills K, Falco SC. Site-specific integration of transgenes in soybean via recombinase-mediated DNA cassette exchange. PLANT PHYSIOLOGY 2009; 151:1087-95. [PMID: 19429604 PMCID: PMC2773068 DOI: 10.1104/pp.109.137612] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 05/05/2009] [Indexed: 05/02/2023]
Abstract
A targeting method to insert genes at a previously characterized genetic locus to make plant transformation and transgene expression predictable is highly desirable for plant biotechnology. We report the successful targeting of transgenes to predefined soybean (Glycine max) genome sites using the yeast FLP-FRT recombination system. First, a target DNA containing a pair of incompatible FRT sites flanking a selection gene was introduced in soybean by standard biolistic transformation. Transgenic events containing a single copy of the target were retransformed with a donor DNA, which contained the same pair of FRT sites flanking a different selection gene, and a FLP expression DNA. Precise DNA cassette exchange was achieved between the target and donor DNA via recombinase-mediated cassette exchange, so that the donor DNA was introduced at the locus previously occupied by the target DNA. The introduced donor genes expressed normally and segregated according to Mendelian laws.
Collapse
Affiliation(s)
- Zhongsen Li
- DuPont/Pioneer Crop Genetics, Experimental Station, Wilmington, Delaware 19880, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Qiao J, Oumard A, Wegloehner W, Bode J. Novel Tag-and-Exchange (RMCE) Strategies Generate Master Cell Clones with Predictable and Stable Transgene Expression Properties. J Mol Biol 2009; 390:579-94. [DOI: 10.1016/j.jmb.2009.05.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 04/29/2009] [Accepted: 05/06/2009] [Indexed: 01/08/2023]
|
30
|
Activities of Various FLP Recombinases Expressed by Adenovirus Vectors in Mammalian Cells. J Mol Biol 2009; 390:221-30. [DOI: 10.1016/j.jmb.2009.04.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 04/24/2009] [Accepted: 04/27/2009] [Indexed: 11/18/2022]
|
31
|
Malchin N, Molotsky T, Yagil E, Kotlyar AB, Kolot M. Molecular analysis of recombinase-mediated cassette exchange reactions catalyzed by integrase of coliphage HK022. Res Microbiol 2008; 159:663-70. [DOI: 10.1016/j.resmic.2008.09.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 07/31/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
|
32
|
Djukanovic V, Lenderts B, Bidney D, Lyznik LA. A Cre::FLP fusion protein recombines FRT or loxP sites in transgenic maize plants. PLANT BIOTECHNOLOGY JOURNAL 2008; 6:770-781. [PMID: 18627532 DOI: 10.1111/j.1467-7652.2008.00357.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The coding sequences of Cre (site-specific recombinase from bacteriophage P1) and FLP (yeast 2-microm plasmid site-specific recombinase) were fused in frame to produce a novel, dual-function, site-specific recombinase gene. Transgenic maize plants containing the Cre::FLP fusion expression vector were crossed to transgenic plants containing either the loxP or FRT excision substrate. Complete and precise excisions of chromosomal fragments flanked by the respective target sites were observed in the F1 and F2 progeny plants. The episomal DNA recombination products were frequently lost. Non-recombined FRT substrates found in the F1 plants were recovered in the F2 generation after the Cre::FLP gene segregated out. They produced the recombination products in the F3 generation when crossed back to the FLP-expressing plants. These observations may indicate that the efficiency of site-specific recombination is affected by the plant developmental stage, with site-specific recombination being more prevalent in developing embryos. The Cre::FLP fusion protein was also tested for excisions catalysed by Cre. Excisions were identified in the F1 plants and verified in the F2 plants by polymerase chain reaction and Southern blotting. Both components of the fusion protein (FLP and Cre) were functional and acted with similar efficiency. The crossing strategy proved to be suitable for the genetic engineering of maize using the FLP or Cre site-specific recombination system.
Collapse
Affiliation(s)
- Vesna Djukanovic
- Pioneer Hi-Bred International, A DuPont Business, Research Center, 7300 NW 62nd Avenue, Johnston, IA 50131-1004, USA
| | | | | | | |
Collapse
|
33
|
Louwerse JD, van Lier MCM, van der Steen DM, de Vlaam CMT, Hooykaas PJJ, Vergunst AC. Stable recombinase-mediated cassette exchange in Arabidopsis using Agrobacterium tumefaciens. PLANT PHYSIOLOGY 2007; 145:1282-93. [PMID: 17921337 PMCID: PMC2151714 DOI: 10.1104/pp.107.108092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2007] [Accepted: 09/27/2007] [Indexed: 05/02/2023]
Abstract
Site-specific integration is an attractive method for the improvement of current transformation technologies aimed at the production of stable transgenic plants. Here, we present a Cre-based targeting strategy in Arabidopsis (Arabidopsis thaliana) using recombinase-mediated cassette exchange (RMCE) of transferred DNA (T-DNA) delivered by Agrobacterium tumefaciens. The rationale for effective RMCE is the precise exchange of a genomic and a replacement cassette both flanked by two heterospecific lox sites that are incompatible with each other to prevent unwanted cassette deletion. We designed a strategy in which the coding region of a loxP/lox5171-flanked bialaphos resistance (bar) gene is exchanged for a loxP/lox5171-flanked T-DNA replacement cassette containing the neomycin phosphotransferase (nptII) coding region via loxP/loxP and lox5171/lox5171 directed recombination. The bar gene is driven by the strong 35S promoter, which is located outside the target cassette. This placement ensures preferential selection of RMCE events and not random integration events by expression of nptII from this same promoter. Using root transformation, during which Cre was provided on a cotransformed T-DNA, 50 kanamycin-resistant calli were selected. Forty-four percent contained a correctly exchanged cassette based on PCR analysis, indicating the stringency of the selection system. This was confirmed for the offspring of five analyzed events by Southern-blot analysis. In four of the five analyzed RMCE events, there were no additional T-DNA insertions or they easily segregated, resulting in high-efficiency single-copy RMCE events. Our approach enables simple and efficient selection of targeting events using the advantages of Agrobacterium-mediated transformation.
Collapse
Affiliation(s)
- Jeanine D Louwerse
- Institute of Biology, Clusius Laboratory, Leiden University, 2333 AL Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
34
|
Wirth D, Gama-Norton L, Riemer P, Sandhu U, Schucht R, Hauser H. Road to precision: recombinase-based targeting technologies for genome engineering. Curr Opin Biotechnol 2007; 18:411-9. [PMID: 17904350 DOI: 10.1016/j.copbio.2007.07.013] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2007] [Revised: 07/30/2007] [Accepted: 07/31/2007] [Indexed: 02/07/2023]
Abstract
In the past years, recombinase-based approaches for integrating transgenes into defined chromosomal loci of mammalian cells have gained increasing attention. This method is attractive since it enables to precisely integrate transgenes of interest into pre-defined integration sites, thereby allowing to predict the expression properties of a genetically manipulated cell. This review focuses on the current state of targeting strategies including RMCE employing site-specific recombinases such as Cre, Flp and PhiC31. In particular, applications for protein expression, virus production, transgenic animals and chromosome engineering are described.
Collapse
Affiliation(s)
- Dagmar Wirth
- Helmholtz Centre for Infection Research, Department of Gene Regulation and Differentiation and Model Systems for Infection and Immunity, Inhoffenstrasse 7, D-38124 Braunschweig, Germany.
| | | | | | | | | | | |
Collapse
|
35
|
Luo K, Duan H, Zhao D, Zheng X, Deng W, Chen Y, Stewart CN, McAvoy R, Jiang X, Wu Y, He A, Pei Y, Li Y. 'GM-gene-deletor': fused loxP-FRT recognition sequences dramatically improve the efficiency of FLP or CRE recombinase on transgene excision from pollen and seed of tobacco plants. PLANT BIOTECHNOLOGY JOURNAL 2007; 5:263-274. [PMID: 17309681 DOI: 10.1111/j.1467-7652.2006.00237.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Pollen- and seed-mediated transgene flow is a concern in plant biotechnology. We report here a highly efficient 'genetically modified (GM)-gene-deletor' system to remove all functional transgenes from pollen, seed or both. With the three pollen- and/or seed-specific gene promoters tested, the phage CRE/loxP or yeast FLP/FRT system alone was inefficient in excising transgenes from tobacco pollen and/or seed, with no transgenic event having 100% efficiency. When loxP-FRT fusion sequences were used as recognition sites, simultaneous expression of both FLP and CRE reduced the average excision efficiency, but the expression of FLP or CRE alone increased the average excision efficiency, with many transgenic events being 100% efficient based on more than 25,000 T(1) progeny examined per event. The 'GM-gene-deletor' reported here may be used to produce 'non-transgenic' pollen and/or seed from transgenic plants and to provide a bioconfinement tool for transgenic crops and perennials, with special applicability towards vegetatively propagated plants and trees.
Collapse
Affiliation(s)
- Keming Luo
- Department of Plant Science, University of Connecticut, Storrs, CT 06269, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Liu K, Hipkens S, Yang T, Abraham R, Zhang W, Chopra N, Knollmann B, Magnuson MA, Roden DM. Recombinase-mediated cassette exchange to rapidly and efficiently generate mice with human cardiac sodium channels. Genesis 2007; 44:556-64. [PMID: 17083109 DOI: 10.1002/dvg.20247] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SCN5A encodes the predominant voltage-gated sodium channel isoform in human heart and nearly 100 variants have now been described and studied in vitro. However, development of animal models to analyze function of such large numbers of human gene variants represents a continuing challenge in translational medicine. Here, we describe the implementation of a two stage procedure, recombinase-mediated cassette exchange (RMCE), to efficiently and rapidly generate mice in which a full-length human cDNA replaces expression of the murine ortholog. In the first step of RMCE, conventional homologous recombination in mouse ES cells was used to replace scn5a exon 2 (that contains the translation start site) with a cassette acceptor that includes the thymidine kinase gene, flanked by loxP/inverted loxP sites. In the second step, the cassette acceptor site was replaced by the full-length wild-type human SCN5A cDNA by Cre/loxP-mediated recombination. The exchange event occurred in 7/29 (24%) colonies, and the time from electroporation to first homozygotes was only 8 months. PCR-restriction fragment length polymorphism (RFLP) showed that the murine isoform was replaced by the human one, and functional studies indicated that mice with human cardiac sodium channels have wild-type sodium current density, action potential durations, heart rates, and QRS durations. These data demonstrate that RMCE can be used to generate mice in which a targeted allele can be rapidly and efficiently replaced by variants of choice, and thereby can serve as an enabling approach for the functional characterization of ion channel and other DNA variants.
Collapse
Affiliation(s)
- Kai Liu
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0575, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
Controlling gene activity in space and time represents a cornerstone technology in gene and cell therapeutic applications, bioengineering, drug discovery as well as fundamental and applied research. This chapter provides a comprehensive overview of the different approaches for regulating gene activity and product protein formation at different biosynthetic levels, from genomic rearrangements over transcription and translation control to strategies for engineering inducible secretion and protein activity with a focus on the development during the past 2 years. Recent advances in designing second-generation gene switches, based on novel inducer administration routes (gas phase) as well as on the combination of heterologous switches with endogenous signals, will be complemented by an overview of the emerging field of mammalian synthetic biology, which enables the design of complex synthetic and semisynthetic gene networks. This article will conclude with an overview of how the different gene switches have been applied in gene therapy studies, bioengineering and drug discovery.
Collapse
Affiliation(s)
- W Weber
- Institute for Chemical and Bioengineering, ETH Zurich, ETH Hoenggerberg HCI F 115, Wolfgang-Pauli-Strasse 10, 8093 Zurich, Switzerland
| | | |
Collapse
|
38
|
Tang X, Metzger D, Leeman S, Amar S. LPS-induced TNF-alpha factor (LITAF)-deficient mice express reduced LPS-induced cytokine: Evidence for LITAF-dependent LPS signaling pathways. Proc Natl Acad Sci U S A 2006; 103:13777-82. [PMID: 16954198 PMCID: PMC1560089 DOI: 10.1073/pnas.0605988103] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previously we identified a transcription factor, LPS-Induced TNF-alpha Factor (LITAF), mediating inflammatory cytokine expression in LPS-induced processes. To characterize the role of LITAF in vivo, we generated a macrophage-specific LITAF-deficient mouse (macLITAF(-/-)). Our data demonstrate that in macrophages (i) several cytokines (such as TNF-alpha, IL-6, sTNF-RII, and CXCL16) are induced at lower levels in macLITAF(-/-) compared with LITAF(+/+) control macrophages; (ii) macLITAF(-/-) mice are more resistant to LPS-induced lethality. To further identify LITAF signaling pathways, we tested mouse TLR-2(-/-), -4(-/-), and -9(-/-) and WT peritoneal macrophages exposed to LPS. Using these cells, we now show that LITAF expression can be induced after challenge either with LPS from Porphyromonas gingivalis via agonism at TLR-2, or with LPS from Escherichia coli via agonism at TLR-4, both requiring functional MyD88. We also show that, in response to LPS, the MyD88-dependent LITAF pathway differs from the NF-kappaB pathway. Furthermore, using a kinase array, p38alpha was found to mediate LITAF phosphorylation and the inhibition of p38alpha with a p38-specific inhibitor (SB203580) blocked LITAF nuclear translocation and reduced LPS-induced TNF-alpha protein levels. Finally, macLITAF(-/-) macrophages rescued by LITAF cDNA transfection restored levels of TNF-alpha similar to those observed in WT cells. We conclude that LITAF is an important mediator of the LPS-induced inflammatory response that can be distinguished from NF-kappaB pathway and that p38alpha is the specific kinase involved in the pathway linking LPS/MyD88/LITAF to TNF.
Collapse
Affiliation(s)
- Xiaoren Tang
- Departments of *Periodontology and Oral Biology and
| | - Daniel Metzger
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Universite Louis Pasteur, and Institut Clinique de la Souris, 1 rue Laurent Fries, 67404 Illkirch, France
| | - Susan Leeman
- Pharmacology, Boston University Medical Center, Boston University, Boston, MA 02118; and
| | - Salomon Amar
- Departments of *Periodontology and Oral Biology and
| |
Collapse
|
39
|
Recommended Method for Chromosome Exploitation: RMCE-based Cassette-exchange Systems in Animal Cell Biotechnology. Cytotechnology 2006; 50:93-108. [PMID: 19003073 DOI: 10.1007/s10616-006-6550-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2006] [Accepted: 01/06/2006] [Indexed: 01/26/2023] Open
Abstract
The availability of site-specific recombinases has revolutionized the rational construction of cell lines with predictable properties. Early efforts were directed to providing pre-characterized genomic loci with a single recombinase target site that served as an address for the integration of vectors carrying a compatible tag. Efficient procedures of this type had to await recombinases like PhiC31, which recombine attP and attB target sites in a one-way reaction - at least in the cellular environment of the higher eukaryotic cell. Still these procedures lead to the co-introduction of prokaryotic vector sequences that are known to cause epigenetic silencing. This review illuminates the actual status of the more advanced recombinase-mediated cassette exchange (RMCE) techniques that have been developed for the major members of site-specific recombinases (SR), Flp, Cre and PhiC31. In RMCE the genomic address consists of a set of heterospecific recombinase target (RT-) sites permitting the exchange of the intervening sequence for the gene of interest (GOI), as part of a similar cassette. This process locks the GOI in place and it is 'clean' in the sense that it does not co-introduce prokaryotic vector parts nor does it leave behind a selection marker.
Collapse
|
40
|
Djukanovic V, Orczyk W, Gao H, Sun X, Garrett N, Zhen S, Gordon-Kamm W, Barton J, Lyznik LA. Gene conversion in transgenic maize plants expressing FLP/FRT and Cre/loxP site-specific recombination systems. PLANT BIOTECHNOLOGY JOURNAL 2006; 4:345-57. [PMID: 17147640 DOI: 10.1111/j.1467-7652.2006.00186.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
DNA recombination reactions (site-specific and homologous) were monitored in the progeny of transgenic maize plants by bringing together two recombination substrates (docking sites and shuttle vectors) in the zygotes. In one combination of transgenic events, the recombination marker gene (yellow fluorescent protein gene, YFP) was activated in 1%-2% of the zygotes receiving both substrates. In other crosses, chimeric embryos and plants were identified, indicative of late recombination events taking place after the first mitotic division of the zygotes. The docking site structure remained unchanged; therefore, all recovered recombination events were classified as gene conversions. The recombinant YFP-r gene segregated as a single locus in subsequent generations. The recombination products showed evidence of homologous recombination at the 5' end of the YFP marker gene and recombinational rearrangements at the other end, consistent with the conclusion that DNA replication was involved in generation of the recombination products. Here, we demonstrate that maize zygotes are efficient at generating homologous recombination products and that the homologous recombination pathways may successfully compete with other possible DNA repair/recombination mechanisms such as site-specific recombination. These results indicate that maize zygotes provide a permissive environment for homologous recombination, offering a new strategy for gene targeting in maize.
Collapse
Affiliation(s)
- Vesna Djukanovic
- Pioneer Hi-Bred International, A DuPont Business, Research Center, 7300 NW 62nd Avenue, Johnston, IA 50131-1004, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Pscherer A, Schliwka J, Wildenberger K, Mincheva A, Schwaenen C, Döhner H, Stilgenbauer S, Lichter P. Antagonizing inactivated tumor suppressor genes and activated oncogenes by a versatile transgenesis system: application in mantle cell lymphoma. FASEB J 2006; 20:1188-90. [PMID: 16636107 DOI: 10.1096/fj.05-4854fje] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A broad range of malignant diseases, such as mantle cell lymphoma (MCL), is associated with complex genomic alterations, demanding multimodal functional testing of candidate genes. To assess such candidate disease genes, we have developed a bidirectional targeted transgenesis tool, which allows well-controlled modulation of individual gene activities within a cellular MCL system. The engineered versatile transgenesis system permits functional analysis of virtually any candidate gene: for tumor suppressor genes by complementation via integration of respective genomic DNA or for oncogenes by inactivation via integrated shRNA coding plasmids. Complementation by genomic DNA ensures wild-type (WT) regulated gene expression, whereas genomic integration of shRNA coding inserts by an advanced RNAi-strategy mediates specific knock-down of gene expression. Site-specific genomic integration of an unmodified BAC, which contains the CDKN2A/B genes absent in the MCL model system, restored CDKN2A/B expression resulting in the inhibition of cell proliferation. CCND1, strongly overexpressed in the model system, was down-regulated via shRNA expression, again inhibiting proliferation. Notably, the presented site-specific shRNA-strategy circumvents interference by IFN-response induced when using other RNAi gene knock-down methods. In conclusion, we here demonstrate that adequate restoration of a range of different gene activities yields in a desired antiproliferative effect in MCL-derived cells. By antagonizing inactivated tumor suppressor genes or activated oncogenes, the presented approach can be readily used for the functional analysis of a broad range of disease-related genetic defects.
Collapse
Affiliation(s)
- Armin Pscherer
- Department Molecular Genetics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schnütgen F, Stewart AF, von Melchner H, Anastassiadis K. Engineering embryonic stem cells with recombinase systems. Methods Enzymol 2006; 420:100-36. [PMID: 17161696 DOI: 10.1016/s0076-6879(06)20007-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The combined use of site-specific recombination and gene targeting or trapping in embryonic stem cells (ESCs) has resulted in the emergence of technologies that enable the induction of mouse mutations in a prespecified temporal and spatially restricted manner. Their large-scale implementation by several international mouse mutagenesis programs will lead to the assembly of a library of ES cell lines harboring conditional mutations in every single gene of the mouse genome. In anticipation of this unprecedented resource, this chapter will focus on site-specific recombination strategies and issues pertinent to ESCs and mice. The upcoming ESC resource and the increasing sophistication of site-specific recombination technologies will greatly assist the functional annotation of the human genome and the animal modeling of human disease.
Collapse
Affiliation(s)
- Frank Schnütgen
- Department for Molecular Hematology, University of Frankfurt Medical School, Frankfurt am Main, Germany
| | | | | | | |
Collapse
|
43
|
Dafhnis-Calas F, Xu Z, Haines S, Malla SK, Smith MCM, Brown WRA. Iterative in vivo assembly of large and complex transgenes by combining the activities of phiC31 integrase and Cre recombinase. Nucleic Acids Res 2005; 33:e189. [PMID: 16361264 PMCID: PMC1316120 DOI: 10.1093/nar/gni192] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have used the phiC31 integrase to introduce large DNA sequences into a vertebrate genome and measure the efficiency of integration of intact DNA as a function of insert size. Inserts of 110 kb and 140 kb in length may be integrated with about 25% and 10% efficiency respectively. In order to overcome the problems of constructing transgenes longer than approximately 150 kb we have established a method that we call; 'Iterative Site Specific Integration' (ISSI). ISSI combines the activities of phiC31 integrase and Cre recombinase to enable the iterative and serial integration of transgenic DNA sequences. In principle the procedure may be repeated an arbitrary number of times and thereby allow the integration of tracts of DNA many hundreds of kilobase pairs long. In practice it may be limited by the time needed to check the accuracy of integration at each step of the procedure. We describe two ISSI experiments, in one of which we have constructed a complex array of vertebrate centromeric sequences of 150 kb in size. The principle that underlies ISSI is applicable to transgenesis in all organisms. ISSI may thus facilitate the reconstitution of biosynthetic pathways encoded by many different genes in transgenic plants, the assembly of large vertebrate loci as transgenes and the synthesis of complete genomes in bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | - William R. A. Brown
- To whom correspondence should be addressed. Tel: +44 115 849 3244; Fax: +44 115 970 9906;
| |
Collapse
|
44
|
Sorrell DA, Kolb AF. Targeted modification of mammalian genomes. Biotechnol Adv 2005; 23:431-69. [PMID: 15925473 DOI: 10.1016/j.biotechadv.2005.03.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2004] [Revised: 03/14/2005] [Accepted: 03/14/2005] [Indexed: 12/22/2022]
Abstract
The stable and site-specific modification of mammalian genomes has a variety of applications in biomedicine and biotechnology. Here we outline two alternative approaches that can be employed to achieve this goal: homologous recombination (HR) or site-specific recombination. Homologous recombination relies on sequence similarity (or rather identity) of a piece of DNA that is introduced into a host cell and the host genome. In most cell types, the frequency of homologous recombination is markedly lower than the frequency of random integration. Especially in somatic cells, homologous recombination is an extremely rare event. However, recent strategies involving the introduction of DNA double-strand breaks, triplex forming oligonucleotides or adeno-associated virus can increase the frequency of homologous recombination. Site-specific recombination makes use of enzymes (recombinases, transposases, integrases), which catalyse DNA strand exchange between DNA molecules that have only limited sequence homology. The recognition sites of site-specific recombinases (e.g. Cre, Flp or PhiC31 integrase) are usually 30-50 bp. In contrast, retroviral integrases only require a specific dinucleotide sequence to insert the viral cDNA into the host genome. Depending on the individual enzyme, there are either innumerable or very few potential target sites for a particular integrase/recombinase in a mammalian genome. A number of strategies have been utilised successfully to alter the site-specificity of recombinases. Therefore, site-specific recombinases provide an attractive tool for the targeted modification of mammalian genomes.
Collapse
Affiliation(s)
- David A Sorrell
- Molecular Recognition Group, Hannah Research Institute, Ayr, KA6 5HL, UK
| | | |
Collapse
|
45
|
MacAuley A, Ladiges WC. Approaches to determine clinical significance of genetic variants. Mutat Res 2005; 573:205-20. [PMID: 15829249 DOI: 10.1016/j.mrfmmm.2005.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Revised: 08/24/2004] [Indexed: 05/02/2023]
Abstract
The clinical significance of genetic variants (single nucleotide polymorphisms, SNPs) has implications for risk assessment and also for predicting the outcome of a disease process, especially in response to intervention. Approaches to determine the clinical significance of genetic polymorphisms are now beginning to be developed. The technology tools and procedures currently available have significant potential in identifying and validating polymorphisms associated with environmentally sensitive phenotypes. Numerous concepts can now provide the methodology to selectively identify SNPs with the potential for impacting gene function. These include computational algorithms, biochemical assays, yeast mutagenicity assays, and epidemiological studies, either as a stand-alone screen, or in various combinations depending on the gene of interest. Proof of principle will ultimately depend on large-scale epidemiological and clinical studies, but will require intensive resources. Therefore, the use of the mouse as a preclinical biological model is paramount in helping screen valid SNPs or combinations of SNPs for human studies. But more importantly, mouse modeling will help answer the question of what role gene variants play in sensitivity or resistance to a wide variety of environmental insults ranging from toxic chemicals and carcinogens to more mundane and routine exposure items, such as dietary factors, air quality, over the counter and prescription medications, and ultraviolet light. Our focus on SNPs that result in an amino acid change is a matter of expediency because these variants are more amenable to the prescreening approaches currently available that are expected to help identify SNPs that affect protein function. The mouse models generated to evaluate the environmental relevance of selected SNPs will be extremely valuable biological tools to validate gene variant and environment interaction in a variety of settings. Informative mouse models will also provide the basis of pursuing relevant SNPs in epidemiological and clinical investigations.
Collapse
Affiliation(s)
- Alasdair MacAuley
- Comparative Mouse Genomics Center, Department of Comparative Medicine, University of Washington, Seattle, WA 98195, USA
| | | |
Collapse
|
46
|
Seibler J, Küter-Luks B, Kern H, Streu S, Plum L, Mauer J, Kühn R, Brüning JC, Schwenk F. Single copy shRNA configuration for ubiquitous gene knockdown in mice. Nucleic Acids Res 2005; 33:e67. [PMID: 15831785 PMCID: PMC1079974 DOI: 10.1093/nar/gni065] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
RNA interference through the expression of small hairpin RNA (shRNA) molecules has become a very promising tool in reverse mouse genetics as it may allow inexpensive and rapid gene function analysis in vivo. However, the prerequisites for ubiquitous and reproducible shRNA expression are not well defined. Here we show that a single copy shRNA-transgene can mediate body-wide gene silencing in mice when inserted in a defined locus of the genome. The most commonly used promoters for shRNA expression, H1 and U6, showed a comparably broad activity in this configuration. Taken together, the results define a novel approach for efficient interference with expression of defined genes in vivo. Moreover, we provide a rapid strategy for the production of gene knockdown mice combining recombinase mediated cassette exchange and tetraploid blastocyst complementation approaches.
Collapse
Affiliation(s)
- Jost Seibler
- Artemis Pharmaceuticals GmbH Neurather Ring 1, 51063 Cologne, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Osipovich AB, Singh A, Ruley HE. Post-entrapment genome engineering: first exon size does not affect the expression of fusion transcripts generated by gene entrapment. Genome Res 2005; 15:428-35. [PMID: 15741512 PMCID: PMC551569 DOI: 10.1101/gr.3258105] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Gene trap mutagenesis in mouse embryonic stem cells has been widely used for genome-wide studies of mammalian gene function. However, while large numbers of genes can be disrupted, individual mutations may suffer from limitations due to the structure and/or placement of targeting vector. To extend the utility of gene trap mutagenesis, replaceable 3' [or poly(A)] gene trap vectors were developed that permit sequences inserted in individual entrapment clones to be engineered by Cre-mediated recombination. 3' traps incorporating different drug resistance genes could be readily exchanged, simply by selecting for the drug-resistance gene of the replacement vector. By substituting different 3' traps, we show that otherwise identical fusion genes containing a large first exon (804 nt) are not expressed at appreciably lower levels than genes expressing small first exons (384 and 151 nt). Thus, size appears to have less effect on the expression and processing of first exons than has been reported for internal exons. Finally, a retroviral poly(A) trap (consisting of a RNA polymerase II promoter, a neomycin-resistance gene, and 5'-splice site) typically produced mutagenized clones in which vector sequences spliced to the 3'-terminal exons of cellular transcription units, suggesting strong selection for fusion transcripts that evade nonsense-mediated decay. The efficient exchange of poly(A) traps should greatly extend the utility of mutant libraries generated by gene entrapment and provides new strategies to study the rules that govern the expression of exons inserted throughout the genome.
Collapse
Affiliation(s)
- Anna B Osipovich
- Department of Microbiology and Immunology, Vanderbilt University, School of Medicine, Nashville, Tennessee 37232-2363, USA
| | | | | |
Collapse
|
48
|
Long Q, Shelton KD, Lindner J, Jones JR, Magnuson MA. Efficient DNA cassette exchange in mouse embryonic stem cells by staggered positive-negative selection. Genesis 2005; 39:256-62. [PMID: 15286998 DOI: 10.1002/gene.20053] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Recombinase-mediated cassette exchange (RMCE), when applied to mouse embryonic stem (ES) cells, promises to increase the ease with which genetic alterations can be introduced into targeted genomic loci in the mouse. However, existing selection strategies for identifying ES cells in which replacement DNA cassettes from a carrier plasmid have been exchanged correctly into a defined locus are suboptimal. Here, we report the generation in mouse ES cells of a loxed cassette acceptor (LCA) allele within the glucokinase (gk) gene locus. Using the gkLCA as a test allele, we developed a staggered positive-negative selection strategy that facilitates efficient identification of ES cell clones in which a DNA replacement cassette from a carrier plasmid has been exchanged correctly into the gkLCA allele. This selection strategy, by facilitating more efficient production of ES cell clones with various replacement DNA cassettes, should accelerate targeted repetitive introduction of gene modifications into the mouse.
Collapse
Affiliation(s)
- Qiaoming Long
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0615, USA
| | | | | | | | | |
Collapse
|
49
|
Ponsaerts P, Brown JP, Van den Plas D, Van den Eeden L, Van Bockstaele DR, Jorens PG, Van Tendeloo VFI, Merregaert J, Singh PB, Berneman ZN. Messenger RNA electroporation is highly efficient in mouse embryonic stem cells: successful FLPe- and Cre-mediated recombination. Gene Ther 2005; 11:1606-10. [PMID: 15295620 DOI: 10.1038/sj.gt.3302342] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Development of efficient short-term gene transfer technologies for embryonic stem (ES) cells is urgently needed for various existing and new ES cell-based research strategies. In this study, we present a highly efficient, nonviral non-DNA technology for genetic loading of mouse ES cells based on electroporation of defined mRNA. Here, we show that mouse ES cells can be efficiently loaded with mRNA encoding a green fluorescent reporter protein, resulting in a level of at least 90% of transgene expression without loss of cell viability and phenotype. To show that transgenes, introduced by mRNA electroporation, exert a specific cellular function in transfected cells, we electroporated stably transfected ES cell lines with mRNA encoding FLPe or Cre recombinase proteins in order to excise an FRT- or LoxP-flanked reporter gene. The results, as determined by the disappearance and/or appearance of a fluorescent reporter gene expression, show that FLPe and Cre recombinase proteins, introduced by mRNA electroporation, efficiently exert their function without influence on further culture of undifferentiated ES cell populations and their ability to differentiate towards a specific lineage.
Collapse
Affiliation(s)
- P Ponsaerts
- Laboratory of Experimental Hematology, Faculty of Medicine, University of Antwerp, Antwerp University Hospital, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Uno S, Wang B, Shertzer HG, Nebert DW, Dalton TP. Balancer-Cre transgenic mouse germ cells direct the incomplete resolution of a tri-loxP-targeted Cyp1a1 allele, producing a conditional knockout allele. Biochem Biophys Res Commun 2003; 312:494-9. [PMID: 14637164 DOI: 10.1016/j.bbrc.2003.10.145] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To generate conditional alleles, genes are commonly engineered to contain recognition sites for bacteriophage recombinases, such as Cre recombinase. When such motifs (lox sites) flank essential gene sequences, and provided that Cre recombinase is expressed, Cre recombinase will excise the flanked sequence-creating a conditional knockout allele. Targeted conditional alleles contain a minimum of three lox sites. It would be desirable to have Cre recombinase perform partial resolution (i.e., recombination some of the time between only the two lox sites flanking the marker gene). Here we report use of the commercially available Balancer2-Cre transgenic mouse line to carry out this function from a tri-loxP-site-containing cytochrome p450 1A1 (Cyp1a1) targeted allele. Such incomplete resolution of this complex locus occurred progressively with age in germ cells of male mice; the conditional Cyp1a1 gene was recovered in offspring from mice containing the targeted Cyp1a1 allele and the Cre recombinase transgene. Removal of the marker gene resulted in a conditional Cyp1a1 allele whose expression was indistinguishable from that of the wild-type allele.
Collapse
Affiliation(s)
- Shigeyuki Uno
- Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH, USA
| | | | | | | | | |
Collapse
|