1
|
Alsaedi S, Ogasawara M, Alarawi M, Gao X, Gojobori T. AI-powered precision medicine: utilizing genetic risk factor optimization to revolutionize healthcare. NAR Genom Bioinform 2025; 7:lqaf038. [PMID: 40330081 PMCID: PMC12051108 DOI: 10.1093/nargab/lqaf038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/11/2025] [Accepted: 04/17/2025] [Indexed: 05/08/2025] Open
Abstract
The convergence of artificial intelligence (AI) and biomedical data is transforming precision medicine by enabling the use of genetic risk factors (GRFs) for customized healthcare services based on individual needs. Although GRFs play an essential role in disease susceptibility, progression, and therapeutic outcomes, a gap exists in exploring their contribution to AI-powered precision medicine. This paper addresses this need by investigating the significance and potential of utilizing GRFs with AI in the medical field. We examine their applications, particularly emphasizing their impact on disease prediction, treatment personalization, and overall healthcare improvement. This review explores the application of AI algorithms to optimize the use of GRFs, aiming to advance precision medicine in disease screening, patient stratification, drug discovery, and understanding disease mechanisms. Through a variety of case studies and examples, we demonstrate the potential of incorporating GRFs facilitated by AI into medical practice, resulting in more precise diagnoses, targeted therapies, and improved patient outcomes. This review underscores the potential of GRFs, empowered by AI, to enhance precision medicine by improving diagnostic accuracy, treatment precision, and individualized healthcare solutions.
Collapse
Affiliation(s)
- Sakhaa Alsaedi
- Computer Science, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Center of Excellence for Generative AI, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- College of Computer Science and Engineering (CCSE), Taibah University, 42353 Madinah, Kingdom of Saudi Arabia
| | - Michihiro Ogasawara
- Department of Internal Medicine and Rheumatology, Juntendo University, 113-8431 Tokyo, Japan
| | - Mohammed Alarawi
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Center of Excellence for Generative AI, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Xin Gao
- Computer Science, Division of Computer, Electrical and Mathematical Sciences and Engineering (CEMSE), King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Center of Excellence for Generative AI, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
| | - Takashi Gojobori
- Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Center of Excellence for Generative AI, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Kingdom of Saudi Arabia
- Marine Open Innovation Institute (MaOI), 113-8431 Shizuoka, Japan
| |
Collapse
|
2
|
Mitchell DK, Brewster K, Makri SC, Khan J, Albright E, Horvai A, Mang H, Lu Q, Dixon SAH, White E, Saadatzadeh MR, Bijangi-Vishehsaraei K, Gampala S, Hickey BE, Leffew H, Li X, Jiang L, Ciesielski MD, Bessler WK, Collier CD, Cohen-Gadol A, Fishel ML, Pratilas CA, Pollok KE, Angus SP, Rhodes S, Clapp DW. DLK1 Distinguishes Subsets of NF1-Associated Malignant Peripheral Nerve Sheath Tumors with Divergent Molecular Signatures. Clin Cancer Res 2025; 31:1988-2009. [PMID: 40063513 PMCID: PMC12081192 DOI: 10.1158/1078-0432.ccr-24-3029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/21/2024] [Accepted: 03/06/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE Malignant peripheral nerve sheath tumor (MPNST) is the leading cause of premature death among individuals with neurofibromatosis type 1 (NF1), and the transcriptional aberrations that precede malignant transformation and contribute to MPNST tumorigenesis remain poorly defined. Alterations involving CDKN2A and components of PRC2 have been implicated as early drivers of peripheral nerve sheath tumor (PNST) evolution, but these events do not occur in all MPNST. Accordingly, emerging data have begun to highlight the importance of molecular-based stratification to improve outcomes in patients with NF1-PNST. EXPERIMENTAL DESIGN In this study, we perform an integrated analysis of multiple, independent datasets obtained from human patients with NF1 to gain critical insights into PNST evolution and MPNST heterogeneity. RESULTS We show that delta-like noncanonical Notch ligand 1 (DLK1) is significantly increased in MPNST and provide evidence that DLK1 overexpression may precede histologic changes consistent with malignancy. In complementary analyses, we find that serum levels of DLK1 are significantly higher in both mice and humans harboring MPNST compared with those without malignancy. Importantly, although DLK1 expression is increased in MPNST overall, through the integration of multiple, independent datasets, we demonstrate that divergent levels of DLK1 expression distinguish MPNST subsets characterized by unique molecular programs and potential therapeutic vulnerabilities. Specifically, we show that overexpression of DLK1 is associated with the reactivation of embryonic signatures, an immunosuppressive microenvironment, and a worse overall survival in patients with NF1-MPNST. CONCLUSIONS Collectively, our findings provide critical insights into MPNST tumorigenesis and support prospective studies evaluating the utility of DLK1 tissue and serum levels in augmenting diagnosis, risk assessment, and therapeutic stratification in the setting of NF1-PNST.
Collapse
Affiliation(s)
- Dana K. Mitchell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Kylee Brewster
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Stavriani C. Makri
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | | | - Eric Albright
- Department of Clinical Pathology and Laboratory Medicine, Indiana University School of Medicine
| | - Andrew Horvai
- Department of Pathology and Laboratory Medicine, University of California San Francisco
| | - Henry Mang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Qingbo Lu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Shelley A. H. Dixon
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Emily White
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Medical Scientist Training Program, Indiana University School of Medicine
| | - M. Reza Saadatzadeh
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - Khadijeh Bijangi-Vishehsaraei
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - Silpa Gampala
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - Brooke E. Hickey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Hannah Leffew
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Xiaohong Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Li Jiang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Marisa D. Ciesielski
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Waylan K. Bessler
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | | | - Aaron Cohen-Gadol
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
| | - Melissa L. Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - Christine A. Pratilas
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | - Karen E. Pollok
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - Steve P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - Steven Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - D. Wade Clapp
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| |
Collapse
|
3
|
Umrath F, Wendt V, Gasparoni G, Narknava Y, Walter J, Lethaus B, Weber J, Carriel V, Avci-Adali M, Alexander D. Revitalizing the Epigenome of Adult Jaw Periosteal Cells: Enhancing Diversity in iPSC-Derived Mesenchymal Stem Cells (iMSCs). Cells 2025; 14:627. [PMID: 40358151 PMCID: PMC12071994 DOI: 10.3390/cells14090627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/11/2025] [Accepted: 04/19/2025] [Indexed: 05/15/2025] Open
Abstract
Induced pluripotent stem cells (iPSCs) are rapidly emerging as a transformative resource in regenerative medicine. In a previous study, our laboratory achieved a significant milestone by successfully reprograming jaw periosteal cells (JPCs) into iPSCs, which were then differentiated into iPSC-derived mesenchymal stem cells (iMSCs). Using an optimized protocol, we generated iMSCs with a remarkable osteogenic potential while exhibiting lower expression levels of the senescence markers p16 and p21 compared to the original JPCs. This study aimed to explore the epigenetic landscape by comparing the DNA methylation and transcription profiles of iMSCs with their JPC precursors, seeking to uncover key differences. Additionally, this analysis provided an opportunity for us to investigate the potential rejuvenation effects associated with cellular reprogramming. To assess the safety of the generated cells, we evaluated their ability to form teratomas through subcutaneous injection into immunodeficient mice. Our findings revealed that, while the methylation profile of iMSCs closely mirrored that of JPCs, distinct iMSC-specific methylation patterns were evident. Strikingly, the application of DNA methylation (DNAm) clocks for biological age estimation showed a dramatic reduction in DNAm age to approximately zero in iPSCs-a rejuvenation effect that persisted in the derived iMSCs. This profound reset in biological age, together with our transcriptome data, indicate that iMSCs could possess an enhanced regenerative potential compared to adult MSCs. Future in vivo studies should validate this hypothesis.
Collapse
Affiliation(s)
- Felix Umrath
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (V.W.); (Y.N.); (B.L.)
- Department of Orthopaedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany
| | - Valerie Wendt
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (V.W.); (Y.N.); (B.L.)
| | - Gilles Gasparoni
- Department of Genetics and Epigenetics, Saarland University, 66123 Saarbrücken, Germany; (G.G.); (J.W.)
| | - Yasser Narknava
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (V.W.); (Y.N.); (B.L.)
| | - Jörn Walter
- Department of Genetics and Epigenetics, Saarland University, 66123 Saarbrücken, Germany; (G.G.); (J.W.)
| | - Bernd Lethaus
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (V.W.); (Y.N.); (B.L.)
| | - Josefin Weber
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (J.W.); (M.A.-A.)
| | - Victor Carriel
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada, 18016 Granada, Spain;
| | - Meltem Avci-Adali
- Department of Thoracic and Cardiovascular Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (J.W.); (M.A.-A.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany; (F.U.); (V.W.); (Y.N.); (B.L.)
| |
Collapse
|
4
|
Kumar S, Wu CC, Wulandari FS, Chiao CC, Ko CC, Lin HY, Ngadio JL, Rebecca C, Xuan DTM, Solomon DD, Michael M, Kristiani L, Chuang JY, Tsai MC, Wang CY. Integration of multi-omics and single-cell transcriptome reveals mitochondrial outer membrane protein-2 (MTX-2) as a prognostic biomarker and characterizes ubiquinone metabolism in lung adenocarcinoma. J Cancer 2025; 16:2401-2420. [PMID: 40302794 PMCID: PMC12036103 DOI: 10.7150/jca.106902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025] Open
Abstract
Lung adenocarcinoma (LUAD) remains to be one of the most prevalent and highly invasive forms of cancer. Mitochondrial outer membrane protein-2 or Metaxin-2 (MTX2), a key regulator of mitochondrial function, has been linked to cellular bioenergetics and stress response mechanisms. However, its roles in the progression and prognosis of LUAD remain largely unexplored. This study, employed a multi-omics approach, integrating transcriptomic and clinical patient data from public databases, to evaluate the expression and prognostic relevance of MTX2 in LUAD. Single-cell RNA sequencing was utilized to further explore MTX2's role in immune infiltration and interactions within the tumor microenvironment. Additionally, we validated these findings through a series of molecular biology and functional assays. Our results demonstrated that MTX2 expression was higher in LUAD tissues compared to normal lung tissues. Elevated MTX2 levels were significantly associated with poorer overall survival in LUAD patients. Functional analyses revealed that MTX2 regulates mitochondrial bioenergetics and facilitates tumor cell proliferation. Additionally, MTX2 expression was associated with increased immune cell infiltration. A pathway analysis identified cell metabolic and tumor growth pathways regulated by MTX2, supporting its role in tumor progression. Our research identifies MTX2 as a promising prognostic biomarker and therapeutic target for LUAD. Increased expression of MTX2 promotes tumor growth by altering metabolic pathways and modulating the immune response, underscoring its potential as a new target for LUAD treatment.
Collapse
Affiliation(s)
- Sachin Kumar
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management Sciences, Himachal Pradesh, 173229, India
| | - Chung-Che Wu
- Department of Neurosurgery, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Fitria Sari Wulandari
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Surgery, Division of Neurosurgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Chung-Chieh Chiao
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Juan Lorell Ngadio
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Bioinformatics, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl. Pulomas Barat Kav 88, Jakarta Timur, 13210, Indonesia
| | - Cathleen Rebecca
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pharmacy, School of Medicine and Health Sciences, Atma Jaya Catholic University of Indonesia, Jakarta, Indonesia
| | - Do Thi Minh Xuan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam.
| | - Dahlak Daniel Solomon
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Yogananda School of AI Computers and Data Sciences, Shoolini University, Solan 173229, India
| | - Michael Michael
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl Pulomas Barat Kav 88, Jakarta Timur, 13210, Indonesia
| | - Lidya Kristiani
- Department of Biomedicine, School of Life Sciences, Indonesia International Institute for Life Sciences, Jl Pulomas Barat Kav 88, Jakarta Timur, 13210, Indonesia
| | - Jian-Ying Chuang
- The Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cell Physiology and Molecular Image Research Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Cheng Tsai
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Neurosurgery, Shin-Kong Wu Ho-Su Memorial Hospital, 95 Wen-Chang Road, Shih-Lin District, Taipei 111045, Taiwan
| | - Chih-Yang Wang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
5
|
Fisher K, Grafton F, Ispaso F, Tworig J, Derler R, Sonntag F, Hörer M, Schulze A, Reid CA, Mandegar MA. Polo-like kinase inhibitors increase AAV production by halting cell cycle progression. Mol Ther Methods Clin Dev 2025; 33:101412. [PMID: 39968185 PMCID: PMC11834096 DOI: 10.1016/j.omtm.2025.101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/14/2025] [Indexed: 02/20/2025]
Abstract
Recombinant adeno-associated viruses (rAAVs) are commonly used in gene therapy for preclinical research and therapeutic applications. Despite the clinical efficacy of rAAVs, their manufacturing involves challenges in productivity and quality, leading to limited availability. In this study, we aimed to identify compounds that increase the capacity of cells to produce AAV9 with a high-throughput small-molecule screening strategy. With the Arrayed Targeted Library for AAV Screening platform, we screened a library of 3,300 small molecules and identified several targets, including cell cycle modulators, G protein-coupled receptor modulators, histone deacetylate inhibitors, Janus kinase inhibitors, and metabolic modulators. Most notably, we identified Polo-like kinase isoform 1 (PLK1) inhibitors as enhancers of adeno-associated virus (AAV) production. Inhibiting PLK1 with HMN-214 increased AAV production, which was largely consistent across HEK293 cell lines, vector payloads, and capsid serotypes. Using cell cycle and RNA-sequencing analysis, we showed that PLK1 inhibition halts cells in the G2/M phase and blocks their exit from the M to G1 phase. These findings support that inhibiting PLK1 may enhance AAV production and could be used to develop more cost-effective methods to manufacture AAV for gene therapies.
Collapse
Affiliation(s)
- Kaylin Fisher
- Ascend Advanced Therapies CA Inc, Alameda, CA 94501, USA
| | | | | | - Joshua Tworig
- Ascend Advanced Therapies CA Inc, Alameda, CA 94501, USA
| | - Rupert Derler
- Ascend Advanced Therapies GmbH, 82152 Planegg, Germany
| | | | - Markus Hörer
- Ascend Advanced Therapies GmbH, 82152 Planegg, Germany
| | | | | | | |
Collapse
|
6
|
Kiesworo K, Agius T, Macarthur MR, Lambelet M, Lyon A, Zhang J, Turiel G, Fan Z, d’Almeida S, Uygun K, Yeh H, Déglise S, de Bock K, Mitchell SJ, Ocampo A, Allagnat F, Longchamp A. Nicotinamide mononucleotide restores impaired metabolism, endothelial cell proliferation and angiogenesis in old sedentary male mice. iScience 2025; 28:111656. [PMID: 39868046 PMCID: PMC11763620 DOI: 10.1016/j.isci.2024.111656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 10/15/2024] [Accepted: 12/18/2024] [Indexed: 01/28/2025] Open
Abstract
Aging is accompanied by a decline in neovascularization potential and increased susceptibility to ischemic injury. Here, we confirm the age-related impaired neovascularization following ischemic leg injury and impaired angiogenesis. The age-related deficits in angiogenesis arose primarily from diminished EC proliferation capacity, but not migration or VEGF sensitivity. Aged EC harvested from the mouse skeletal muscle displayed a pro-angiogenic gene expression phenotype, along with considerable changes in metabolic genes. Metabolomics analysis and 13C glucose tracing revealed impaired ATP production and blockade in glycolysis and TCA cycle in late passage HUVECs, which occurred at nicotinamide adenine dinucleotide (NAD⁺)-dependent steps, along with NAD+ depletion. Supplementation with nicotinamide mononucleotide (NMN), a precursor of NAD⁺, enhances late-passage EC proliferation and sprouting angiogenesis from aged mice aortas. Taken together, our study illustrates the importance of NAD+-dependent metabolism in the maintenance of EC proliferation capacity with age, and the therapeutic potential of NAD precursors.
Collapse
Affiliation(s)
- Kevin Kiesworo
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Thomas Agius
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Michael R. Macarthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Martine Lambelet
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Arnaud Lyon
- Transplantation Centre and Transplantation Immunopathology Laboratory, Department of Medicine, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Jing Zhang
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Guillermo Turiel
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Zheng Fan
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | | | - Korkut Uygun
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Heidi Yeh
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sébastien Déglise
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Katrien de Bock
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Sarah J. Mitchell
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
- Ludwig Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, Lausanne University (UNIL), Lausanne, Switzerland
| | - Florent Allagnat
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, Lausanne University Hospital (CHUV), Lausanne, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Ando D, Rashad S, Begley TJ, Endo H, Aoki M, Dedon PC, Niizuma K. Decoding Codon Bias: The Role of tRNA Modifications in Tissue-Specific Translation. Int J Mol Sci 2025; 26:706. [PMID: 39859422 PMCID: PMC11766445 DOI: 10.3390/ijms26020706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/08/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
The tRNA epitranscriptome has been recognized as an important player in mRNA translation regulation. Our knowledge of the role of the tRNA epitranscriptome in fine-tuning translation via codon decoding at tissue or cell levels remains incomplete. We analyzed tRNA expression and modifications as well as codon optimality across seven mouse tissues. Our analysis revealed distinct enrichment patterns of tRNA modifications in different tissues. Queuosine (Q) tRNA modification was most enriched in the brain compared to other tissues, while mitochondrial tRNA modifications and tRNA expression were highest in the heart. Using this observation, we synthesized, and delivered in vivo, codon-mutated EGFP for Q-codons, where the C-ending Q-codons were replaced with U-ending codons. The protein levels of mutant EGFP were downregulated in liver, which is poor in Q, while in brain EGFP, levels did not change. These data show that understanding tRNA modification enrichments across tissues is not only essential for understanding codon decoding and bias but can also be utilized for optimizing gene and mRNA therapeutics to be more tissue-, cell-, or condition-specific.
Collapse
Affiliation(s)
- Daisuke Ando
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (D.A.); (M.A.)
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
| | - Sherif Rashad
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
| | - Thomas J. Begley
- Department of Biological Sciences, University at Albany, Albany, NY 12222, USA;
| | - Hidenori Endo
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| | - Masashi Aoki
- Department of Neurology, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan; (D.A.); (M.A.)
| | - Peter C. Dedon
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Kuniyasu Niizuma
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Medicine, Tohoku University, Sendai 980-8575, Japan;
- Department of Neurosurgical Engineering and Translational Neuroscience, Graduate School of Biomedical Engineering, Tohoku University, Sendai 980-8575, Japan
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan;
| |
Collapse
|
8
|
Barshick MR, Ely KM, Mogge KC, Chance LM, Johnson SE. Methylsulfonylmethane (MSM) Supplementation in Adult Horses Supports Improved Skeletal Muscle Inflammatory Gene Expression Following Exercise. Animals (Basel) 2025; 15:215. [PMID: 39858215 PMCID: PMC11758608 DOI: 10.3390/ani15020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/27/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Methylsulfonylmethane (MSM) is a sulfur-containing molecule with reported anti-inflammatory and antioxidant activities. Exercise causes the formation of free radicals and stimulates inflammatory gene expression in leukocytes and skeletal muscle. The hypothesis that dietary supplementation with MSM alters the exercise-mediated inflammatory and oxidant response was assessed in unfit adult thoroughbred geldings. Ten geldings (6.7 ± 1.6 yr) were assigned to a diet supplemented without (CON, n = 5) or with 21 g of MSM (n = 5) for 30 days. Following the supplementation period, horses performed a standardized exercise test (SET) with blood collections before (t = 0), 10 min, 1 h, 4 h, and 24 h post-SET. Skeletal muscle biopsies were retrieved from the middle gluteus before and 1 h post-SET for total RNA isolation. All horses were rested for 120 days before the experiment was repeated in a cross-over design. Plasma total antioxidant capacity was unaffected (p > 0.05) by either exercise or MSM. Plasma glutathione peroxidase activity was less (p < 0.05) in MSM horses than in the CON. Plasma IL6, IL8, IL10, and TNFα were unaffected (p > 0.05) by either exercise or diet. Transcriptomic analysis of skeletal muscle revealed 35 genes were differentially expressed (DEG; p < 0.05) by 2-fold or more in response to exercise; no MSM DEGs were noted. A comparison of the exercise by diet contrasts revealed that horses supplemented with MSM contained a greater number of exercise-responsive genes (630; logFC > 0.2; q < 0.05) by comparison to the CON (237), with many of these mapping to the immune response (71) and cytokine signal transduction (60) pathways. These results suggest supplementation of MSM as a dietary aid for improved anti-inflammatory responses in skeletal muscle following exercise.
Collapse
Affiliation(s)
- Madison R. Barshick
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA; (K.M.E.); (K.C.M.); (L.M.C.)
| | | | | | | | - Sally E. Johnson
- School of Animal Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24060, USA; (K.M.E.); (K.C.M.); (L.M.C.)
| |
Collapse
|
9
|
Xuan DTM, Yeh IJ, Liu HL, Su CY, Ko CC, Ta HDK, Jiang JZ, Sun Z, Lin HY, Wang CY, Yen MC. A comparative analysis of Marburg virus-infected bat and human models from public high-throughput sequencing data. Int J Med Sci 2025; 22:1-16. [PMID: 39744175 PMCID: PMC11659840 DOI: 10.7150/ijms.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/10/2024] [Indexed: 02/01/2025] Open
Abstract
Marburg virus (MARV) disease (MVD) is an uncommon yet serious viral hemorrhagic fever that impacts humans and non-human primates. In humans, infection by the MARV is marked by rapid onset, high transmissibility, and elevated mortality rates, presenting considerable obstacles to the development of vaccines and treatments. Bats, particularly Rousettus aegyptiacus, are suspected to be natural hosts of MARV. Previous research reported asymptomatic MARV infection in bats, in stark contrast to the severe responses observed in humans and other primates. Recent MARV outbreaks highlight significant public health concerns, underscoring the need for gene expression studies during MARV progression. To investigate this, we employed two models from the Gene Expression Omnibus, including kidney cells from Rousettus aegyptiacus and primary proximal tubular cells from Homo sapiens. These models were chosen to identify changes in gene expression profiles and to examine co-regulated genes and pathways involved in MARV disease progression. Our analysis of differentially expressed genes (DEGs) revealed that these genes are mainly associated with pathways related to the complement system, innate immune response via interferons (IFNs), Wnt/β-catenin signaling, and Hedgehog signaling, which played crucial roles in MARV infection across both models. Furthermore, we also identified several potential compounds that may be useful against MARV infection. These findings offer valuable insights into the mechanisms underlying MARV's pathophysiology and suggest potential strategies for preventing transmission, managing post-infection effects, and developing future vaccines.
Collapse
Affiliation(s)
- Do Thi Minh Xuan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam
| | - I-Jeng Yeh
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Hsin-Liang Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Che-Yu Su
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Hoang Dang Khoa Ta
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan
| | - Jia-Zhen Jiang
- Emergency Department, Huashan Hospital North, Fudan University, Shanghai 201508, People's Republic of China
| | - Zhengda Sun
- Kaiser Permanente, Northern California Regional Laboratories, The Permanente Medical Group, 1725 Eastshore Hwy, Berkeley, CA 94710, USA
| | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY 12144, USA
| | - Chih-Yang Wang
- Ph.D. Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Meng-Chi Yen
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
10
|
Tworig J, Grafton F, Fisher K, Hörer M, Reid CA, Mandegar MA. Transcriptomics-informed pharmacology identifies epigenetic and cell cycle regulators that enhance AAV production. Mol Ther Methods Clin Dev 2024; 32:101384. [PMID: 39687728 PMCID: PMC11647610 DOI: 10.1016/j.omtm.2024.101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 11/14/2024] [Indexed: 12/18/2024]
Abstract
Recombinant adeno-associated virus (rAAV) is a widely used viral vector for gene therapy. However, these vectors have limited availability due to manufacturing challenges with productivity and quality. These challenges can be addressed by better understanding the mechanisms that influence cellular responses during rAAV production. In this study, we aimed to identify targets that may enhance rAAV production using transcriptomic analyses of five cell lines with variable capacities for rAAV production. Using an intersectional approach, we measured the transcriptional responses of these cells during rAAV production and compared transcriptional profiles between high and base producers to identify possible targets for enhancing production. During rAAV production, we found transcriptional differences in cell cycle and nucleosome components contributed to proliferative capacity and DNA replication. We also saw upregulation of several core functions, including transcription, stress response, and Golgi and endoplasmic reticulum organization. Conversely, we saw consistent downregulation of other factors, including inhibitors of DNA-binding proteins and mitochondrial components. With a drug-connectivity analysis, we identified five classes of drugs that were predicted to enhance rAAV production. We also validated the efficacy of histone deacetylase and microtubule inhibitors. Our data uncover novel and previously identified pathways that may enhance rAAV production and quality to expand availability of rAAV for gene therapies.
Collapse
Affiliation(s)
- Joshua Tworig
- Ascend Advanced Therapies CA, Inc, Alameda, CA 94501, USA
| | | | - Kaylin Fisher
- Ascend Advanced Therapies CA, Inc, Alameda, CA 94501, USA
| | - Markus Hörer
- Ascend Advanced Therapies GmbH, 82152 Planegg, Germany
| | | | | |
Collapse
|
11
|
Hayes CN, Nakahara H, Ono A, Tsuge M, Oka S. From Omics to Multi-Omics: A Review of Advantages and Tradeoffs. Genes (Basel) 2024; 15:1551. [PMID: 39766818 PMCID: PMC11675490 DOI: 10.3390/genes15121551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 11/25/2024] [Accepted: 11/28/2024] [Indexed: 01/11/2025] Open
Abstract
Bioinformatics is a rapidly evolving field charged with cataloging, disseminating, and analyzing biological data. Bioinformatics started with genomics, but while genomics focuses more narrowly on the genes comprising a genome, bioinformatics now encompasses a much broader range of omics technologies. Overcoming barriers of scale and effort that plagued earlier sequencing methods, bioinformatics adopted an ambitious strategy involving high-throughput and highly automated assays. However, as the list of omics technologies continues to grow, the field of bioinformatics has changed in two fundamental ways. Despite enormous success in expanding our understanding of the biological world, the failure of bulk methods to account for biologically important variability among cells of the same or different type has led to a major shift toward single-cell and spatially resolved omics methods, which attempt to disentangle the conflicting signals contained in heterogeneous samples by examining individual cells or cell clusters. The second major shift has been the attempt to integrate two or more different classes of omics data in a single multimodal analysis to identify patterns that bridge biological layers. For example, unraveling the cause of disease may reveal a metabolite deficiency caused by the failure of an enzyme to be phosphorylated because a gene is not expressed due to aberrant methylation as a result of a rare germline variant. Conclusions: There is a fine line between superficial understanding and analysis paralysis, but like a detective novel, multi-omics increasingly provides the clues we need, if only we are able to see them.
Collapse
Affiliation(s)
- C. Nelson Hayes
- Department of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (A.O.); (M.T.); (S.O.)
| | - Hikaru Nakahara
- Department of Clinical and Molecular Genetics, Hiroshima University, Hiroshima 734-8551, Japan;
| | - Atsushi Ono
- Department of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (A.O.); (M.T.); (S.O.)
| | - Masataka Tsuge
- Department of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (A.O.); (M.T.); (S.O.)
- Liver Center, Hiroshima University, Hiroshima 734-8551, Japan
| | - Shiro Oka
- Department of Gastroenterology, Graduate School of Biomedical & Health Sciences, Hiroshima University, Hiroshima 734-8551, Japan; (A.O.); (M.T.); (S.O.)
| |
Collapse
|
12
|
Di Stefano J, Garcia-Pupo L, Di Marco F, Motaln H, Govaerts J, Van Breedam E, Mateiu LM, Van Calster S, Ricciardi L, Quarta A, Verstraelen P, De Vos WH, Rogelj B, Cicalini I, De Laurenzi V, Del Boccio P, FitzGerald U, Vanden Berghe W, Verhoye M, Pieragostino D, Ponsaerts P. Transcriptomic and proteomic profiling of bi-partite and tri-partite murine iPSC-derived neurospheroids under steady-state and inflammatory condition. Brain Behav Immun 2024; 121:1-12. [PMID: 39002812 DOI: 10.1016/j.bbi.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/24/2024] [Accepted: 07/06/2024] [Indexed: 07/15/2024] Open
Abstract
induced-pluripotent stem cell (iPSC)-derived neurospheroid (NSPH) models are an emerging in vitro toolkit to study the influence of inflammatory triggers on neurodegeneration and repair in a 3D neural environment. In contrast to their human counterpart, the absence of murine iPSC-derived NSPHs for profound characterisation and validation studies is a major experimental research gap, even though they offer the only possibility to truly compare or validate in vitro NSPH responses with in vivo brain responses. To contribute to these developments, we here describe the generation and characterisation of 5-week-old CX3CR1eGFP+/- CCR2RFP+/- murine (m)iPSC-derived bi-partite (neurons + astrocytes) and tri-partite (neurons + astrocytes + microglia) NSPH models that can be subjected to cellular activation following pro-inflammatory stimulation. First, cytokine analysis demonstrates that both bi-partite and tri-partite NSPHs can be triggered to release IL6 and CXCL10 following three days of stimulation with, respectively, TNFα + IL1β + IFNγ and LPS + IFNγ. Additionally, immunocytochemical analysis for G3BP1 and PABPC1 revealed the development of stress granules in both bi-partite and tri-partite NSPHs after 3 days of stimulation. To further investigate the observed signs of inflammatory response and cellular stress, we performed an untargeted transcriptomic and proteomic analysis of bi- and tri-partite NSPHs under steady-state and inflammatory conditions. Here, using the combined differential gene and protein expression profiles between unstimulated and stimulated NSPHs, Ingenuity Pathway Analysis (IPA) confirms the activation of canonical pathways associated with inflammation and cellular stress in both bi-partite and tri-partite NSPHs. Moreover, our multi-omics analysis suggests a higher level of downstream inflammatory responses, impairment of homeostatic and developmental processes, as well as activation of cell death processes in stimulated tri-partite NSPHs compared to bi-partite NSPHs. Concluding, these results emphasise the advantages of including microglia in NSPH research to study inflammation-induced neurodegeneration in a 3D neural environment.
Collapse
Affiliation(s)
- Julia Di Stefano
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium; Bio-Imaging Lab, University of Antwerp, 2610 Wilrijk, Belgium
| | - Laura Garcia-Pupo
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium; Cell Death Signaling, Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Federica Di Marco
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Helena Motaln
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Jonas Govaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Elise Van Breedam
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Ligia Monica Mateiu
- Center for Medical Genetics, Faculty of Medicine and Health Sciences, Antwerp University Hospital, University of Antwerp, Edegem, Belgium
| | - Siebe Van Calster
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Leonardo Ricciardi
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium; Bio-Imaging Lab, University of Antwerp, 2610 Wilrijk, Belgium; µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Alessandra Quarta
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium
| | - Peter Verstraelen
- µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; Laboratory of Cell Biology and Histology and Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Winnok H De Vos
- µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium; Laboratory of Cell Biology and Histology and Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
| | - Boris Rogelj
- Department of Biotechnology, Jozef Stefan Institute, SI-1000 Ljubljana, Slovenia
| | - Ilaria Cicalini
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Vincenzo De Laurenzi
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Piero Del Boccio
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Pharmacy, G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy
| | - Una FitzGerald
- CÚRAM, Centre for Research in Medical Devices, Biomedical Engineering, University of Galway, Ireland; Galway Neuroscience Centre, University of Galway, Ireland
| | - Wim Vanden Berghe
- Cell Death Signaling, Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, University of Antwerp, 2610 Wilrijk, Belgium; µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Damiana Pieragostino
- Center for Advanced Studies and Technology (CAST), G. d'Annunzio University of Chieti-Pescara, 66100 Chieti, Italy; Department of Innovative Technologies in Medicine and Dentistry, University "G. d'Annunzio" of Chieti-Pescara, 66100 Chieti, Italy
| | - Peter Ponsaerts
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, 2610 Wilrijk, Belgium.
| |
Collapse
|
13
|
Wu YJ, Chiao CC, Chuang PK, Hsieh CB, Ko CY, Ko CC, Chang CF, Chen TY, Nguyen NUN, Hsu CC, Chu TH, Fang CC, Tsai HY, Tsai HC, Anuraga G, Ta HDK, Xuan DTM, Kumar S, Dey S, Wulandari FS, Manalu RT, Ly NP, Wang CY, Lee YK. Comprehensive analysis of bulk and single-cell RNA sequencing data reveals Schlafen-5 (SLFN5) as a novel prognosis and immunity. Int J Med Sci 2024; 21:2348-2364. [PMID: 39310264 PMCID: PMC11413889 DOI: 10.7150/ijms.97975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/13/2024] [Indexed: 09/25/2024] Open
Abstract
Recent advancements have elucidated the multifaceted roles of the Schlafen (SLFN) family, including SLFN5, SLFN11, SLFN12, SLFN13, and SLFN14, which are implicated in immunological responses. However, little is known about the roles of this gene family in relation to malignancy development. The current study aimed to explore the diagnostic and prognostic potential of Schlafen family genes in colorectal adenocarcinoma (COAD) through bioinformatics analysis. Leveraging advanced bioinformatics tools of bulk RNA-sequencing and single-cell sequencing, we conducted in-depth analyses of gene expressions, functional enrichment, and survival patterns of patients with colorectal cancer compared to normal tissue. Among Schlafen family genes, the transcription levels of SLFN5 in COAD tissues were significantly elevated and correlated with poor survival outcomes. Furthermore, SLFN5 regulated the immune response via Janus kinase (JAK)/signal transduction and activator of transcription (STAT)/interferon (IFN)-alpha/beta signaling. These chemokines in inflammation are associated with diabetes and metabolism, suggesting their involvement in altered cellular energetics for COAD progress. In addition, an immune cell deconvolution analysis indicated a correlation between SLFN5 expression and immune-related cell populations, such as regulatory T cells (Tregs). These findings highlighted the potential clinical significance of SLFN5 in COAD and provided insights into its involvement in the tumor microenvironment and immune regulation. Meanwhile, the drug discovery data of SFLN5 with potential targeted small molecules suggested its therapeutic potential for COAD. Collectively, the current research demonstrated that SFLN5 play crucial roles in tumor development and serve as a prospective biomarker for COAD.
Collapse
Affiliation(s)
- Yueh-Jung Wu
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Chung-Chieh Chiao
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Po-Kai Chuang
- Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Chung-Bao Hsieh
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, Taipei 114202, Taiwan
- Division of General Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Chou-Yuan Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi-Mei Medical Center, Tainan, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Chuan-Fa Chang
- Institute of Basic Medical Science, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan
| | - Tung-Yuan Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Ngoc Uyen Nhi Nguyen
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas TX 75390, USA
| | - Ching-Cheng Hsu
- Department of Internal Medicine, Division of Cardiology, The University of Texas Southwestern Medical Center, Dallas TX 75390, USA
| | - Tian-Huei Chu
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Cheng-Chieh Fang
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| | - Hsuan-Yen Tsai
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taiwan
| | - Hsien-Chun Tsai
- Department of Life Sciences, National University of Kaohsiung, Taiwan
| | - Gangga Anuraga
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Statistics, Faculty of Science and Technology, PGRI Adi Buana University, East Java, Surabaya 60234, Indonesia
| | - Hoang Dang Khoa Ta
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Do Thi Minh Xuan
- Faculty of Pharmacy, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam
| | - Sachin Kumar
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Faculty of Biotechnology and Applied Sciences, Shoolini University of Biotechnology and Management Sciences, Himachal Pradesh, India
| | - Sanskriti Dey
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Fitria Sari Wulandari
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Rosario Trijuliamos Manalu
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pharmacy, Faculty of Pharmacy, National Institute of Science and Technology, Jakarta, 12640, Indonesia
| | - Ngoc Phung Ly
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Natural Product Research Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Chih-Yang Wang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yung-Kuo Lee
- Institute of Medical Science and Technology, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Medical Laboratory, Medical Education and Research Center, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
| |
Collapse
|
14
|
Bataclan M, Leoni C, Moro SG, Pecoraro M, Wong EH, Heissmeyer V, Monticelli S. Crosstalk between Regnase-1 and -3 shapes mast cell survival and cytokine expression. Life Sci Alliance 2024; 7:e202402784. [PMID: 38830770 PMCID: PMC11147952 DOI: 10.26508/lsa.202402784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/17/2024] [Accepted: 05/22/2024] [Indexed: 06/05/2024] Open
Abstract
Post-transcriptional regulation of immune-related transcripts by RNA-binding proteins (RBPs) impacts immune cell responses, including mast cell functionality. Despite their importance in immune regulation, the functional role of most RBPs remains to be understood. By manipulating the expression of specific RBPs in murine mast cells, coupled with mass spectrometry and transcriptomic analyses, we found that the Regnase family of proteins acts as a potent regulator of mast cell physiology. Specifically, Regnase-1 is required to maintain basic cell proliferation and survival, whereas both Regnase-1 and -3 cooperatively regulate the expression of inflammatory transcripts upon activation, with Tnf being a primary target in both human and mouse cells. Furthermore, Regnase-3 directly interacts with Regnase-1 in mast cells and is necessary to restrain Regnase-1 expression through the destabilization of its transcript. Overall, our study identifies protein interactors of endogenously expressed Regnase factors, characterizes the regulatory interplay between Regnase family members in mast cells, and establishes their role in the control of mast cell homeostasis and inflammatory responses.
Collapse
Affiliation(s)
- Marian Bataclan
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Cristina Leoni
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Simone G Moro
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| | - Elaine H Wong
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, Munich, Germany
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Università della Svizzera Italiana, Bellinzona, Switzerland
| |
Collapse
|
15
|
D'Incal CP, Annear DJ, Elinck E, van der Smagt JJ, Alders M, Dingemans AJM, Mateiu L, de Vries BBA, Vanden Berghe W, Kooy RF. Loss-of-function of activity-dependent neuroprotective protein (ADNP) by a splice-acceptor site mutation causes Helsmoortel-Van der Aa syndrome. Eur J Hum Genet 2024; 32:630-638. [PMID: 38424297 PMCID: PMC11153555 DOI: 10.1038/s41431-024-01556-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/19/2024] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
Mutations in ADNP result in Helsmoortel-Van der Aa syndrome. Here, we describe the first de novo intronic deletion, affecting the splice-acceptor site of the first coding ADNP exon in a five-year-old girl with developmental delay and autism. Whereas exome sequencing failed to detect the non-coding deletion, genome-wide CpG methylation analysis revealed an episignature suggestive of a Helsmoortel-Van der Aa syndrome diagnosis. This diagnosis was further supported by PhenoScore, a novel facial recognition software package. Subsequent whole-genome sequencing resolved the three-base pair ADNP deletion c.[-5-1_-4del] with transcriptome sequencing showing this deletion leads to skipping of exon 4. An N-terminal truncated protein could not be detected in transfection experiments with a mutant expression vector in HEK293T cells, strongly suggesting this is a first confirmed diagnosis exclusively due to haploinsufficiency of the ADNP gene. Pathway analysis of the methylome indicated differentially methylated genes involved in brain development, the cytoskeleton, locomotion, behavior, and muscle development. Along the same line, transcriptome analysis identified most of the differentially expressed genes as upregulated, in line with the hypomethylated CpG episignature and confirmed the involvement of the cytoskeleton and muscle development pathways that are also affected in patient cell lines and animal models. In conclusion, this novel mutation for the first time demonstrates that Helsmoortel-Van der Aa syndrome can be caused by a loss-of-function mutation. Moreover, our study elegantly illustrates the use of EpiSignatures, WGS and Phenoscore as novel complementary diagnostic tools in case a of negative WES result.
Collapse
Affiliation(s)
- Claudio Peter D'Incal
- Cognitive Genetics (CONGET), Centre for Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium Department of Medical Genetics, Antwerp, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Dale John Annear
- Cognitive Genetics (CONGET), Centre for Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium Department of Medical Genetics, Antwerp, Belgium
| | - Ellen Elinck
- Cognitive Genetics (CONGET), Centre for Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium Department of Medical Genetics, Antwerp, Belgium
| | - Jasper J van der Smagt
- Division of Laboratories, Pharmacy and Biomedical Genetics, Section Clinical Genetics, University Medical Center Utrecht, the Netherlands and Rijksuniversiteit Utrecht, Utrecht, the Netherlands
| | - Mariëlle Alders
- Department of Human Genetics, Amsterdam Reproduction & Development Research Institute, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Alexander J M Dingemans
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Artificial Intelligence, Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Ligia Mateiu
- Cognitive Genetics (CONGET), Centre for Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium Department of Medical Genetics, Antwerp, Belgium
| | - Bert B A de Vries
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium.
| | - R Frank Kooy
- Cognitive Genetics (CONGET), Centre for Medical Genetics (CMG), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium Department of Medical Genetics, Antwerp, Belgium.
| |
Collapse
|
16
|
Bartel S, Wolters JC, Noor H, Rafie K, Fang J, Kirchner B, Nolte-′t Hoen E, Pfaffl MW, Rutgers S, Timens W, van den Berge M, Hylkema MN. Altered Extracellular Vesicle-Derived Protein and microRNA Signatures in Bronchoalveolar Lavage Fluid from Patients with Chronic Obstructive Pulmonary Disease. Cells 2024; 13:945. [PMID: 38891077 PMCID: PMC11171984 DOI: 10.3390/cells13110945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/13/2024] [Accepted: 05/24/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive lung disease for which there is no cure. Accumulating research results suggest a role for extracellular vesicles (EVs) in the pathogenesis of COPD. This study aimed to uncover the involvement of EVs and their molecular cargo in the progression of COPD by identification of EV-associated protein and microRNA (miRNA) profiles. We isolated EVs from the bronchial alveolar lavage fluid (BALF) of 18 patients with COPD and 11 healthy controls using size-exclusion chromatography. EV isolates were characterized using nanoparticle tracking analysis and protein content. Proteomic analysis revealed a higher abundance of 284 proteins (log2FC > 1) and a lower abundance of 3 proteins (log2FC < -1) in EVs derived from patients with COPD. Ingenuity pathway analysis showed that proteins enriched in COPD-associated EVs trigger inflammatory responses, including neutrophil degranulation. Variances in surface receptors and ligands associated with COPD EVs suggest a preferential interaction with alveolar cells. Small RNAseq analysis identified a higher abundance of ten miRNAs and a lower abundance of one miRNA in EVs from COPD versus controls (Basemean > 100, FDR < 0.05). Our data indicate that the molecular composition of EVs in the BALF of patients with COPD is altered compared to healthy control EVs. Several components in COPD EVs were identified that may perpetuate inflammation and alveolar tissue destruction.
Collapse
Affiliation(s)
- Sabine Bartel
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Justina C. Wolters
- Department of Pediatrics, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Hasnat Noor
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Karim Rafie
- Department of Molecular Pharmacology, Groningen Research Institute of Pharmacy (GRIP), University of Groningen, 9712 CP Groningen, The Netherlands
| | - Jiahua Fang
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Benedikt Kirchner
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
- Institute of Human Genetics, LMU University Hospital, LMU Munich, 80539 Munich, Germany
| | - Esther Nolte-′t Hoen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Michael W. Pfaffl
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, 85354 Freising, Germany
| | | | - Wim Timens
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Maarten van den Berge
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Pulmonary Diseases, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Machteld N. Hylkema
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Groningen Research Institute for Asthma and COPD (GRIAC), University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
17
|
Ernst TR, Blischak JD, Nordlund P, Dalen J, Moore J, Bhamidipati A, Dwivedi P, LoGrasso J, Curado MR, Engelmann BW. OmicNavigator: open-source software for the exploration, visualization, and archival of omic studies. BMC Bioinformatics 2024; 25:162. [PMID: 38658834 PMCID: PMC11040775 DOI: 10.1186/s12859-024-05743-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 03/13/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND The results of high-throughput biology ('omic') experiments provide insight into biological mechanisms but can be challenging to explore, archive and share. The scale of these challenges continues to grow as omic research volume expands and multiple analytical technologies, bioinformatic pipelines, and visualization preferences have emerged. Multiple software applications exist that support omic study exploration and/or archival. However, an opportunity remains for open-source software that can archive and present the results of omic analyses with broad accommodation of study-specific analytical approaches and visualizations with useful exploration features. RESULTS We present OmicNavigator, an R package for the archival, visualization and interactive exploration of omic studies. OmicNavigator enables bioinformaticians to create web applications that interactively display their custom visualizations and analysis results linked with app-derived analytical tools, graphics, and tables. Studies created with OmicNavigator can be viewed within an interactive R session or hosted on a server for shared access. CONCLUSIONS OmicNavigator can be found at https://github.com/abbvie-external/OmicNavigator.
Collapse
Affiliation(s)
| | - John D Blischak
- AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Paul Nordlund
- AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Joe Dalen
- AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | - Justin Moore
- AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL, 60064, USA
- Current Address: Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX, USA
| | | | - Pankaj Dwivedi
- AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL, 60064, USA
- Proteovant Therapeutics, 2500 Renaissance Blvd, King of Prussia, PA, USA
| | - Joe LoGrasso
- AbbVie Inc., 1 North Waukegan Rd, North Chicago, IL, 60064, USA
| | | | | |
Collapse
|
18
|
D'Incal C, Van Dijck A, Ibrahim J, De Man K, Bastini L, Konings A, Elinck E, Theys C, Gozes I, Marusic Z, Anicic M, Vukovic J, Van der Aa N, Mateiu L, Vanden Berghe W, Kooy RF. ADNP dysregulates methylation and mitochondrial gene expression in the cerebellum of a Helsmoortel-Van der Aa syndrome autopsy case. Acta Neuropathol Commun 2024; 12:62. [PMID: 38637827 PMCID: PMC11027339 DOI: 10.1186/s40478-024-01743-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 02/11/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Helsmoortel-Van der Aa syndrome is a neurodevelopmental disorder in which patients present with autism, intellectual disability, and frequent extra-neurological features such as feeding and gastrointestinal problems, visual impairments, and cardiac abnormalities. All patients exhibit heterozygous de novo nonsense or frameshift stop mutations in the Activity-Dependent Neuroprotective Protein (ADNP) gene, accounting for a prevalence of 0.2% of all autism cases worldwide. ADNP fulfills an essential chromatin remodeling function during brain development. In this study, we investigated the cerebellum of a died 6-year-old male patient with the c.1676dupA/p.His559Glnfs*3 ADNP mutation. RESULTS The clinical presentation of the patient was representative of the Helsmoortel-Van der Aa syndrome. During his lifespan, he underwent two liver transplantations after which the child died because of multiple organ failure. An autopsy was performed, and various tissue samples were taken for further analysis. We performed a molecular characterization of the cerebellum, a brain region involved in motor coordination, known for its highest ADNP expression and compared it to an age-matched control subject. Importantly, epigenome-wide analysis of the ADNP cerebellum identified CpG methylation differences and expression of multiple pathways causing neurodevelopmental delay. Interestingly, transcription factor motif enrichment analysis of differentially methylated genes showed that the ADNP binding motif was the most significantly enriched. RNA sequencing of the autopsy brain further identified downregulation of the WNT signaling pathway and autophagy defects as possible causes of neurodevelopmental delay. Ultimately, label-free quantification mass spectrometry identified differentially expressed proteins involved in mitochondrial stress and sirtuin signaling pathways amongst others. Protein-protein interaction analysis further revealed a network including chromatin remodelers (ADNP, SMARCC2, HDAC2 and YY1), autophagy-related proteins (LAMP1, BECN1 and LC3) as well as a key histone deacetylating enzyme SIRT1, involved in mitochondrial energy metabolism. The protein interaction of ADNP with SIRT1 was further biochemically validated through the microtubule-end binding proteins EB1/EB3 by direct co-immunoprecipitation in mouse cerebellum, suggesting important mito-epigenetic crosstalk between chromatin remodeling and mitochondrial energy metabolism linked to autophagy stress responses. This is further supported by mitochondrial activity assays and stainings in patient-derived fibroblasts which suggest mitochondrial dysfunctions in the ADNP deficient human brain. CONCLUSION This study forms the baseline clinical and molecular characterization of an ADNP autopsy cerebellum, providing novel insights in the disease mechanisms of the Helsmoortel-Van der Aa syndrome. By combining multi-omic and biochemical approaches, we identified a novel SIRT1-EB1/EB3-ADNP protein complex which may contribute to autophagic flux alterations and impaired mitochondrial metabolism in the Helsmoortel-Van der Aa syndrome and holds promise as a new therapeutic target.
Collapse
Affiliation(s)
- Claudio D'Incal
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anke Van Dijck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Family Medicine and Population Health (FAMPOP), Department of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Joe Ibrahim
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Kevin De Man
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Lina Bastini
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Anthony Konings
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Ellen Elinck
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Claudia Theys
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium
| | - Illana Gozes
- The Elton Laboratory for Molecular Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical & Health Sciences, Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Zlatko Marusic
- Clinical Department of Pathology and Cytology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Mirna Anicic
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Jurica Vukovic
- Division of Pediatric Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, School of Medicine, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Nathalie Van der Aa
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Ligia Mateiu
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium
| | - Wim Vanden Berghe
- Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Epigenetic Signaling lab (PPES), Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Antwerp, Belgium.
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43/6, 2650, Edegem, Antwerp, Belgium.
| |
Collapse
|
19
|
Koch B, Filzmayer M, Patyna S, Wetzstein N, Lampe S, Schmid T, Geiger H, Baer PC, Dolnik O. Transcriptomics of Marburg virus-infected primary proximal tubular cells reveals negative correlation of immune response and energy metabolism. Virus Res 2024; 342:199337. [PMID: 38346476 PMCID: PMC10875301 DOI: 10.1016/j.virusres.2024.199337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
Marburg virus, a member of the Filoviridae, is the causative agent of Marburg virus disease (MVD), a hemorrhagic fever with a case fatality rate of up to 90 %. Acute kidney injury is common in MVD and is associated with increased mortality, but its pathogenesis in MVD remains poorly understood. Interestingly, autopsies show the presence of viral proteins in different parts of the nephron, particularly in proximal tubular cells (PTC). These findings suggest a potential role for the virus in the development of MVD-related kidney injury. To shed light on this effect, we infected primary human PTC with Lake Victoria Marburg virus and conducted transcriptomic analysis at multiple time points. Unexpectedly, infection did not induce marked cytopathic effects in primary tubular cells at 20 and 40 h post infection. However, gene expression analysis revealed robust renal viral replication and dysregulation of genes essential for different cellular functions. The gene sets mainly downregulated in PTC were associated with the targets of the transcription factors MYC and E2F, DNA repair, the G2M checkpoint, as well as oxidative phosphorylation. Importantly, the downregulated factors comprise PGC-1α, a well-known factor in acute and chronic kidney injury. By contrast, the most highly upregulated gene sets were those related to the inflammatory response and cholesterol homeostasis. In conclusion, Marburg virus infects and replicates in human primary PTC and induces downregulation of processes known to be relevant for acute kidney injury as well as a strong inflammatory response.
Collapse
Affiliation(s)
- Benjamin Koch
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany.
| | - Maximilian Filzmayer
- Goethe University Frankfurt, University Hospital, Department of Urology, Frankfurt am Main 60596, Germany
| | - Sammy Patyna
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Nils Wetzstein
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine, Infectious Diseases, Frankfurt am Main 60596, Germany
| | - Sebastian Lampe
- Goethe University Frankfurt, University Hospital, Faculty of Medicine, Institute for Biochemistry I, Frankfurt am Main 60596, Germany
| | - Tobias Schmid
- Goethe University Frankfurt, University Hospital, Faculty of Medicine, Institute for Biochemistry I, Frankfurt am Main 60596, Germany
| | - Helmut Geiger
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Patrick C Baer
- Goethe University Frankfurt, University Hospital, Department of Internal Medicine 4, Nephrology, Theodor-Stern-Kai 7, Frankfurt am Main 60596, Germany
| | - Olga Dolnik
- Philipps University Marburg, Institute of Virology, Hans-Meerwein-Str. 2, Marburg 35043, Germany.
| |
Collapse
|
20
|
Mitchell DK, Burgess B, White EE, Smith AE, Potchanant EAS, Mang H, Hickey BE, Lu Q, Qian S, Bessler W, Li X, Jiang L, Brewster K, Temm C, Horvai A, Albright EA, Fishel ML, Pratilas CA, Angus SP, Clapp DW, Rhodes SD. Spatial Gene-Expression Profiling Unveils Immuno-oncogenic Programs of NF1-Associated Peripheral Nerve Sheath Tumor Progression. Clin Cancer Res 2024; 30:1038-1053. [PMID: 38127282 PMCID: PMC11095977 DOI: 10.1158/1078-0432.ccr-23-2548] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/25/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
PURPOSE Plexiform neurofibromas (PNF) are benign peripheral nerve sheath tumors (PNST) associated with neurofibromatosis type 1 (NF1). Despite similar histologic appearance, these neoplasms exhibit diverse evolutionary trajectories, with a subset progressing to malignant peripheral nerve sheath tumor (MPNST), the leading cause of premature death in individuals with NF1. Malignant transformation of PNF often occurs through the development of atypical neurofibroma (ANF) precursor lesions characterized by distinct histopathologic features and CDKN2A copy-number loss. Although genomic studies have uncovered key driver events promoting tumor progression, the transcriptional changes preceding malignant transformation remain poorly defined. EXPERIMENTAL DESIGN Here we resolve gene-expression profiles in PNST across the neurofibroma-to-MPNST continuum in NF1 patients and mouse models, revealing early molecular features associated with neurofibroma evolution and transformation. RESULTS Our findings demonstrate that ANF exhibit enhanced signatures of antigen presentation and immune response, which are suppressed as malignant transformation ensues. MPNST further displayed deregulated survival and mitotic fidelity pathways, and targeting key mediators of these pathways, CENPF and BIRC5, disrupted the growth and viability of human MPNST cell lines and primary murine Nf1-Cdkn2a-mutant Schwann cell precursors. Finally, neurofibromas contiguous with MPNST manifested distinct alterations in core oncogenic and immune surveillance programs, suggesting that early molecular events driving disease progression may precede histopathologic evidence of malignancy. CONCLUSIONS If validated prospectively in future studies, these signatures may serve as molecular diagnostic tools to augment conventional histopathologic diagnosis by identifying neurofibromas at high risk of undergoing malignant transformation, facilitating risk-adapted care.
Collapse
Affiliation(s)
- Dana K. Mitchell
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Breanne Burgess
- Medical Scientist Training Program, Indiana University School of Medicine
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
| | - Emily E. White
- Medical Scientist Training Program, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
| | - Abbi E. Smith
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | | | - Henry Mang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Brooke E. Hickey
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Qingbo Lu
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Shaomin Qian
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Waylan Bessler
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Xiaohong Li
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Li Jiang
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Kylee Brewster
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Constance Temm
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
| | - Andrew Horvai
- Department of Pathology and Laboratory Medicine, University of California San Francisco
| | - Eric A. Albright
- Department of Clinical Pathology and Laboratory Medicine, Indiana University School of Medicine
| | - Melissa L. Fishel
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - Christine A. Pratilas
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine
| | - Steven P. Angus
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - D. Wade Clapp
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| | - Steven D. Rhodes
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine
- Department of Medical and Molecular Genetics, Indiana University School of Medicine
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine
| |
Collapse
|
21
|
Agius T, Emsley R, Lyon A, MacArthur MR, Kiesworo K, Faivre A, Stavart L, Lambelet M, Legouis D, de Seigneux S, Golshayan D, Lazeyras F, Yeh H, Markmann JF, Uygun K, Ocampo A, Mitchell SJ, Allagnat F, Déglise S, Longchamp A. Short-term hypercaloric carbohydrate loading increases surgical stress resilience by inducing FGF21. Nat Commun 2024; 15:1073. [PMID: 38316771 PMCID: PMC10844297 DOI: 10.1038/s41467-024-44866-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
Dietary restriction promotes resistance to surgical stress in multiple organisms. Counterintuitively, current medical protocols recommend short-term carbohydrate-rich drinks (carbohydrate loading) prior to surgery, part of a multimodal perioperative care pathway designed to enhance surgical recovery. Despite widespread clinical use, preclinical and mechanistic studies on carbohydrate loading in surgical contexts are lacking. Here we demonstrate in ad libitum-fed mice that liquid carbohydrate loading for one week drives reductions in solid food intake, while nearly doubling total caloric intake. Similarly, in humans, simple carbohydrate intake is inversely correlated with dietary protein intake. Carbohydrate loading-induced protein dilution increases expression of hepatic fibroblast growth factor 21 (FGF21) independent of caloric intake, resulting in protection in two models of surgical stress: renal and hepatic ischemia-reperfusion injury. The protection is consistent across male, female, and aged mice. In vivo, amino acid add-back or genetic FGF21 deletion blocks carbohydrate loading-mediated protection from ischemia-reperfusion injury. Finally, carbohydrate loading induction of FGF21 is associated with the induction of the canonical integrated stress response (ATF3/4, NF-kB), and oxidative metabolism (PPARγ). Together, these data support carbohydrate loading drinks prior to surgery and reveal an essential role of protein dilution via FGF21.
Collapse
Affiliation(s)
- Thomas Agius
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Raffaella Emsley
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Arnaud Lyon
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Michael R MacArthur
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Kevin Kiesworo
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Anna Faivre
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Louis Stavart
- Transplantation Center, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Martine Lambelet
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - David Legouis
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, Geneva, Switzerland
| | - Sophie de Seigneux
- Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
- Service of Nephrology, Department of Internal Medicine Specialties, University Hospital of Geneva, Geneva, Switzerland
| | - Déla Golshayan
- Transplantation Center, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), Lausanne, Switzerland
| | - Francois Lazeyras
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Geneva, Switzerland
| | - Heidi Yeh
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - James F Markmann
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Korkut Uygun
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alejandro Ocampo
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sarah J Mitchell
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Florent Allagnat
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Sébastien Déglise
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alban Longchamp
- Department of Vascular Surgery, University Hospital of Lausanne (CHUV), Lausanne, Switzerland.
- Transplant Center, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Center for Engineering in Medicine, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Vural-Ozdeniz M, Calisir K, Acar R, Yavuz A, Ozgur MM, Dalgıc E, Konu O. CAP-RNAseq: an integrated pipeline for functional annotation and prioritization of co-expression clusters. Brief Bioinform 2024; 25:bbad536. [PMID: 38279653 PMCID: PMC10818169 DOI: 10.1093/bib/bbad536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 12/04/2023] [Accepted: 12/21/2024] [Indexed: 01/28/2024] Open
Abstract
Cluster analysis is one of the most widely used exploratory methods for visualization and grouping of gene expression patterns across multiple samples or treatment groups. Although several existing online tools can annotate clusters with functional terms, there is no all-in-one webserver to effectively prioritize genes/clusters using gene essentiality as well as congruency of mRNA-protein expression. Hence, we developed CAP-RNAseq that makes possible (1) upload and clustering of bulk RNA-seq data followed by identification, annotation and network visualization of all or selected clusters; and (2) prioritization using DepMap gene essentiality and/or dependency scores as well as the degree of correlation between mRNA and protein levels of genes within an expression cluster. In addition, CAP-RNAseq has an integrated primer design tool for the prioritized genes. Herein, we showed using comparisons with the existing tools and multiple case studies that CAP-RNAseq can uniquely aid in the discovery of co-expression clusters enriched with essential genes and prioritization of novel biomarker genes that exhibit high correlations between their mRNA and protein expression levels. CAP-RNAseq is applicable to RNA-seq data from different contexts including cancer and available at http://konulabapps.bilkent.edu.tr:3838/CAPRNAseq/ and the docker image is downloadable from https://hub.docker.com/r/konulab/caprnaseq.
Collapse
Affiliation(s)
| | - Kubra Calisir
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Rana Acar
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Aysenur Yavuz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Mustafa M Ozgur
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| | - Ertugrul Dalgıc
- Department of Medical Biology, School of Medicine, Zonguldak Bülent Ecevit University, Zonguldak, Türkiye
| | - Ozlen Konu
- Department of Neuroscience, Bilkent University, Ankara, Türkiye
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Türkiye
| |
Collapse
|
23
|
Le Compte M, De La Hoz EC, Peeters S, Fortes FR, Hermans C, Domen A, Smits E, Lardon F, Vandamme T, Lin A, Vanlanduit S, Roeyen G, Van Laere S, Prenen H, Peeters M, Deben C. Single-organoid analysis reveals clinically relevant treatment-resistant and invasive subclones in pancreatic cancer. NPJ Precis Oncol 2023; 7:128. [PMID: 38066116 PMCID: PMC10709344 DOI: 10.1038/s41698-023-00480-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 11/09/2023] [Indexed: 06/28/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal diseases, characterized by a treatment-resistant and invasive nature. In line with these inherent aggressive characteristics, only a subset of patients shows a clinical response to the standard of care therapies, thereby highlighting the need for a more personalized treatment approach. In this study, we comprehensively unraveled the intra-patient response heterogeneity and intrinsic aggressive nature of PDAC on bulk and single-organoid resolution. We leveraged a fully characterized PDAC organoid panel (N = 8) and matched our artificial intelligence-driven, live-cell organoid image analysis with retrospective clinical patient response. In line with the clinical outcomes, we identified patient-specific sensitivities to the standard of care therapies (gemcitabine-paclitaxel and FOLFIRINOX) using a growth rate-based and normalized drug response metric. Moreover, the single-organoid analysis was able to detect resistant as well as invasive PDAC organoid clones, which was orchestrates on a patient, therapy, drug, concentration and time-specific level. Furthermore, our in vitro organoid analysis indicated a correlation with the matched patient progression-free survival (PFS) compared to the current, conventional drug response readouts. This work not only provides valuable insights on the response complexity in PDAC, but it also highlights the potential applications (extendable to other tumor types) and clinical translatability of our approach in drug discovery and the emerging era of personalized medicine.
Collapse
Affiliation(s)
- Maxim Le Compte
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | | | - Sofía Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Felicia Rodrigues Fortes
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Andreas Domen
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Antwerp, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Timon Vandamme
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Abraham Lin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Plasma Lab for Applications in Sustainability and Medicine ANTwerp (PLASMANT), University of Antwerp, Antwerp, Belgium
| | | | - Geert Roeyen
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Hepatobiliary Transplantation and Endocrine Surgery, University Hospital Antwerp (UZA), Antwerp, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Hans Prenen
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Antwerp, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
24
|
Nedwed AS, Helbich SS, Braband KL, Volkmar M, Delacher M, Marini F. Using combined single-cell gene expression, TCR sequencing and cell surface protein barcoding to characterize and track CD4+ T cell clones from murine tissues. Front Immunol 2023; 14:1241283. [PMID: 37901204 PMCID: PMC10602882 DOI: 10.3389/fimmu.2023.1241283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/31/2023] [Indexed: 10/31/2023] Open
Abstract
Single-cell gene expression analysis using sequencing (scRNA-seq) has gained increased attention in the past decades for studying cellular transcriptional programs and their heterogeneity in an unbiased manner, and novel protocols allow the simultaneous measurement of gene expression, T-cell receptor clonality and cell surface protein expression. In this article, we describe the methods to isolate scRNA/TCR-seq-compatible CD4+ T cells from murine tissues, such as skin, spleen, and lymph nodes. We describe the processing of cells and quality control parameters during library preparation, protocols for multiplexing of samples, and strategies for sequencing. Moreover, we describe a step-by-step bioinformatic analysis pipeline from sequencing data generated using these protocols. This includes quality control, preprocessing of sequencing data and demultiplexing of individual samples. We perform quantification of gene expression and extraction of T-cell receptor alpha and beta chain sequences, followed by quality control and doublet detection, and methods for harmonization and integration of datasets. Next, we describe the identification of highly variable genes and dimensionality reduction, clustering and pseudotemporal ordering of data, and we demonstrate how to visualize the results with interactive and reproducible dashboards. We will combine different analytic R-based frameworks such as Bioconductor and Seurat, illustrating how these can be interoperable to optimally analyze scRNA/TCR-seq data of CD4+ T cells from murine tissues.
Collapse
Affiliation(s)
- Annekathrin Silvia Nedwed
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
| | - Sara Salome Helbich
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Kathrin Luise Braband
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Michael Volkmar
- Helmholtz-Institute for Translational Oncology Mainz (HI-TRON Mainz), Mainz, Germany
| | - Michael Delacher
- Institute of Immunology, University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center Mainz, Mainz, Germany
- Research Center for Immunotherapy, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
25
|
Khameneh HJ, Fonta N, Zenobi A, Niogret C, Ventura P, Guerra C, Kwee I, Rinaldi A, Pecoraro M, Geiger R, Cavalli A, Bertoni F, Vivier E, Trumpp A, Guarda G. Myc controls NK cell development, IL-15-driven expansion, and translational machinery. Life Sci Alliance 2023; 6:e202302069. [PMID: 37105715 PMCID: PMC10140547 DOI: 10.26508/lsa.202302069] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/19/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
MYC is a pleiotropic transcription factor involved in cancer, cell proliferation, and metabolism. Its regulation and function in NK cells, which are innate cytotoxic lymphocytes important to control viral infections and cancer, remain poorly defined. Here, we show that mice deficient for Myc in NK cells presented a severe reduction in these lymphocytes. Myc was required for NK cell development and expansion in response to the key cytokine IL-15, which induced Myc through transcriptional and posttranslational mechanisms. Mechanistically, Myc ablation in vivo largely impacted NK cells' ribosomagenesis, reducing their translation and expansion capacities. Similar results were obtained by inhibiting MYC in human NK cells. Impairing translation by pharmacological intervention phenocopied the consequences of deleting or blocking MYC in vitro. Notably, mice lacking Myc in NK cells exhibited defective anticancer immunity, which reflected their decreased numbers of mature NK cells exerting suboptimal cytotoxic functions. These results indicate that MYC is a central node in NK cells, connecting IL-15 to translational fitness, expansion, and anticancer immunity.
Collapse
Affiliation(s)
- Hanif J Khameneh
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Nicolas Fonta
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Alessandro Zenobi
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Charlène Niogret
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Pedro Ventura
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Concetta Guerra
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Ivo Kwee
- BigOmics Analytics SA, Lugano, Switzerland
| | - Andrea Rinaldi
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
| | - Matteo Pecoraro
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| | - Roger Geiger
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
| | - Andrea Cavalli
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Francesco Bertoni
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute of Oncology Research, Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Eric Vivier
- Aix-Marseille Université, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Marseille, France
- Innate Pharma Research Laboratories, Marseille, France
- APHM, Hôpital de la Timone, Marseille-Immunopôle, Marseille, France
| | - Andreas Trumpp
- Division of Stem Cells and Cancer, DKFZ, Heidelberg, Germany
- HI-STEM: The Heidelberg Institute for Stem Cell Technology and Experimental Medicine gGmbH, Heidelberg, Germany
| | - Greta Guarda
- Università della Svizzera italiana, Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Bellinzona, Switzerland
| |
Collapse
|
26
|
Leoni C, Bataclan M, Ito-Kureha T, Heissmeyer V, Monticelli S. The mRNA methyltransferase Mettl3 modulates cytokine mRNA stability and limits functional responses in mast cells. Nat Commun 2023; 14:3862. [PMID: 37386028 PMCID: PMC10310798 DOI: 10.1038/s41467-023-39614-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Mast cells are central players in allergy and asthma, and their dysregulated responses lead to reduced quality of life and life-threatening conditions such as anaphylaxis. The RNA modification N6-methyladenosine (m6A) has a prominent impact on immune cell functions, but its role in mast cells remains unexplored. Here, by optimizing tools to genetically manipulate primary mast cells, we reveal that the m6A mRNA methyltransferase complex modulates mast cell proliferation and survival. Depletion of the catalytic component Mettl3 exacerbates effector functions in response to IgE and antigen complexes, both in vitro and in vivo. Mechanistically, deletion of Mettl3 or Mettl14, another component of the methyltransferase complex, lead to the enhanced expression of inflammatory cytokines. By focusing on one of the most affected mRNAs, namely the one encoding the cytokine IL-13, we find that it is methylated in activated mast cells, and that Mettl3 affects its transcript stability in an enzymatic activity-dependent manner, requiring consensus m6A sites in the Il13 3'-untranslated region. Overall, we reveal that the m6A machinery is essential in mast cells to sustain growth and to restrain inflammatory responses.
Collapse
Affiliation(s)
- Cristina Leoni
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
| | - Marian Bataclan
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland
| | - Taku Ito-Kureha
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, 82152, Planegg-Martinsried, Germany
| | - Vigo Heissmeyer
- Institute for Immunology, Biomedical Center, Faculty of Medicine, Ludwig-Maximilians-Universität in Munich, 82152, Planegg-Martinsried, Germany
- Research Unit Molecular Immune Regulation, Helmholtz Zentrum München, 81377, Munich, Germany
| | - Silvia Monticelli
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500, Bellinzona, Switzerland.
| |
Collapse
|
27
|
Kerslake R, Belay B, Panfilov S, Hall M, Kyrou I, Randeva HS, Hyttinen J, Karteris E, Sisu C. Transcriptional Landscape of 3D vs. 2D Ovarian Cancer Cell Models. Cancers (Basel) 2023; 15:3350. [PMID: 37444459 DOI: 10.3390/cancers15133350] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 06/01/2023] [Accepted: 06/14/2023] [Indexed: 07/15/2023] Open
Abstract
Three-dimensional (3D) cancer models are revolutionising research, allowing for the recapitulation of an in vivo-like response through the use of an in vitro system, which is more complex and physiologically relevant than traditional monolayer cultures. Cancers such as ovarian (OvCa) are prone to developing resistance, are often lethal, and stand to benefit greatly from the enhanced modelling emulated by 3D cultures. However, the current models often fall short of the predicted response, where reproducibility is limited owing to the lack of standardised methodology and established protocols. This meta-analysis aims to assess the current scope of 3D OvCa models and the differences in the genetic profiles presented by a vast array of 3D cultures. An analysis of the literature (Pubmed.gov) spanning 2012-2022 was used to identify studies with paired data of 3D and 2D monolayer counterparts in addition to RNA sequencing and microarray data. From the data, 19 cell lines were found to show differential regulation in their gene expression profiles depending on the bio-scaffold (i.e., agarose, collagen, or Matrigel) compared to 2D cell cultures. The top genes differentially expressed in 2D vs. 3D included C3, CXCL1, 2, and 8, IL1B, SLP1, FN1, IL6, DDIT4, PI3, LAMC2, CCL20, MMP1, IFI27, CFB, and ANGPTL4. The top enriched gene sets for 2D vs. 3D included IFN-α and IFN-γ response, TNF-α signalling, IL-6-JAK-STAT3 signalling, angiogenesis, hedgehog signalling, apoptosis, epithelial-mesenchymal transition, hypoxia, and inflammatory response. Our transversal comparison of numerous scaffolds allowed us to highlight the variability that can be induced by these scaffolds in the transcriptional landscape and identify key genes and biological processes that are hallmarks of cancer cells grown in 3D cultures. Future studies are needed to identify which is the most appropriate in vitro/preclinical model to study tumour microenvironments.
Collapse
Affiliation(s)
- Rachel Kerslake
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Birhanu Belay
- Computational Biophysics and Imaging Group, The Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Suzana Panfilov
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Marcia Hall
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
- Mount Vernon Cancer Centre, Rickmansworth Road, Northwood HA6 2RN, UK
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
- Research Institute for Health & Wellbeing, Coventry University, Coventry CV1 5FB, UK
- Aston Medical School, College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
- Laboratory of Dietetics and Quality of Life, Department of Food Science and Human Nutrition, School of Food and Nutritional Sciences, Agricultural University of Athens, 11855 Athens, Greece
| | - Harpal S Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Jari Hyttinen
- Computational Biophysics and Imaging Group, The Faculty of Medicine and Health Technology, Tampere University, 33100 Tampere, Finland
| | - Emmanouil Karteris
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Cristina Sisu
- Division of Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
28
|
Freire Boullosa L, Van Loenhout J, Flieswasser T, Hermans C, Merlin C, Lau HW, Marcq E, Verschuuren M, De Vos WH, Lardon F, Smits ELJ, Deben C. Auranofin Synergizes with the PARP Inhibitor Olaparib to Induce ROS-Mediated Cell Death in Mutant p53 Cancers. Antioxidants (Basel) 2023; 12:antiox12030667. [PMID: 36978917 PMCID: PMC10045521 DOI: 10.3390/antiox12030667] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 02/23/2023] [Accepted: 03/03/2023] [Indexed: 03/11/2023] Open
Abstract
Auranofin (AF) is a potent, off-patent thioredoxin reductase (TrxR) inhibitor that efficiently targets cancer via reactive oxygen species (ROS)- and DNA damage-mediated cell death. The goal of this study is to enhance the efficacy of AF as a cancer treatment by combining it with the poly(ADP-ribose) polymerase-1 (PARP) inhibitor olaparib (referred to as ‘aurola’). Firstly, we investigated whether mutant p53 can sensitize non-small cell lung cancer (NSCLC) and pancreatic ductal adenocarcinoma (PDAC) cancer cells to AF and olaparib treatment in p53 knock-in and knock-out models with varying p53 protein expression levels. Secondly, we determined the therapeutic range for synergistic cytotoxicity between AF and olaparib and elucidated the underlying molecular cell death mechanisms. Lastly, we evaluated the effectiveness of the combination strategy in a murine 344SQ 3D spheroid and syngeneic in vivo lung cancer model. We demonstrated that high concentrations of AF and olaparib synergistically induced cytotoxicity in NSCLC and PDAC cell lines with low levels of mutant p53 protein that were initially more resistant to AF. The aurola combination also led to the highest accumulation of ROS, which resulted in ROS-dependent cytotoxicity of mutant p53 NSCLC cells through distinct types of cell death, including caspase-3/7-dependent apoptosis, inhibited by Z-VAD-FMK, and lipid peroxidation-dependent ferroptosis, inhibited by ferrostatin-1 and alpha-tocopherol. High concentrations of both compounds were also needed to obtain a synergistic cytotoxic effect in 3D spheroids of the murine lung adenocarcinoma cell line 344SQ, which was interestingly absent in 2D. This cell line was used in a syngeneic mouse model in which the oral administration of aurola significantly delayed the growth of mutant p53 344SQ tumors in 129S2/SvPasCrl mice, while either agent alone had no effect. In addition, RNA sequencing results revealed that AF- and aurola-treated 344SQ tumors were negatively enriched for immune-related gene sets, which is in accordance with AF’s anti-inflammatory function as an anti-rheumatic drug. Only 344SQ tumors treated with aurola showed the downregulation of genes related to the cell cycle, potentially explaining the growth inhibitory effect of aurola since no apoptosis-related gene sets were enriched. Overall, this novel combination strategy of oxidative stress induction (AF) with PARP inhibition (olaparib) could be a promising treatment for mutant p53 cancers, although high concentrations of both compounds need to be reached to obtain a substantial cytotoxic effect.
Collapse
Affiliation(s)
- Laurie Freire Boullosa
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Jinthe Van Loenhout
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Tal Flieswasser
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Céline Merlin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Ho Wa Lau
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Elly Marcq
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Winnok H. De Vos
- Laboratory of Cell Biology and Histology, Antwerp Center for Advanced Microscopy, Department of Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium
- µNEURO Research Centre of Excellence, University of Antwerp, 2610 Wilrijk, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Evelien L. J. Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium
- Correspondence: ; Tel.: +32-3-265-25-76
| |
Collapse
|
29
|
Tu CL, Chang W, Sosa JA, Koh J. Digital spatial profiling of human parathyroid tumors reveals cellular and molecular alterations linked to vitamin D deficiency. PNAS NEXUS 2023; 2:pgad073. [PMID: 36992820 PMCID: PMC10042281 DOI: 10.1093/pnasnexus/pgad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023]
Abstract
Primary hyperparathyroidism (PHPT) is a common endocrine neoplastic disorder characterized by disrupted calcium homeostasis secondary to inappropriately elevated parathyroid hormone (PTH) secretion. Low levels of serum 25-hydroxyvitamin D (25OHD) are significantly more prevalent in PHPT patients than in the general population (1-3), but the basis for this association remains unclear. We employed a spatially defined in situ whole-transcriptomics and selective proteomics profiling approach to compare gene expression patterns and cellular composition in parathyroid adenomas from vitamin D-deficient or vitamin D-replete PHPT patients. A cross-sectional panel of eucalcemic cadaveric donor parathyroid glands was examined in parallel as normal tissue controls. Here, we report that parathyroid tumors from vitamin D-deficient PHPT patients (Def-Ts) are intrinsically different from those of vitamin D-replete patients (Rep-Ts) of similar age and preoperative clinical presentation. The parathyroid oxyphil cell content is markedly higher in Def-Ts (47.8%) relative to Rep-Ts (17.8%) and normal donor glands (7.7%). Vitamin D deficiency is associated with increased expression of electron transport chain and oxidative phosphorylation pathway components. Parathyroid oxyphil cells, while morphologically distinct, are comparable to chief cells at the transcriptional level, and vitamin D deficiency affects the transcriptional profiles of both cell types in a similar manner. These data suggest that oxyphil cells are derived from chief cells and imply that their increased abundance may be induced by low vitamin D status. Gene set enrichment analysis reveals that pathways altered in Def-Ts are distinct from Rep-Ts, suggesting alternative tumor etiologies in these groups. Increased oxyphil content may thus be a morphological indicator of tumor-predisposing cellular stress.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158
| | - Wenhan Chang
- Endocrine Research Unit, Department of Medicine, San Francisco Department of Veterans Affairs Medical Center, University of California San Francisco, San Francisco, CA 94158
| | - Julie A Sosa
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA 94143
| | - James Koh
- Endocrine Neoplasia Laboratory, Department of Surgery, University of California San Francisco, San Francisco, CA 94143
| |
Collapse
|
30
|
Mabille D, Dirkx L, Thys S, Vermeersch M, Montenye D, Govaerts M, Hendrickx S, Takac P, Van Weyenbergh J, Pintelon I, Delputte P, Maes L, Pérez-Morga D, Timmermans JP, Caljon G. Impact of pulmonary African trypanosomes on the immunology and function of the lung. Nat Commun 2022; 13:7083. [PMID: 36400767 PMCID: PMC9674601 DOI: 10.1038/s41467-022-34757-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Approximately 20% of sleeping sickness patients exhibit respiratory complications, however, with a largely unknown role of the parasite. Here we show that tsetse fly-transmitted Trypanosoma brucei parasites rapidly and permanently colonize the lungs and occupy the extravascular spaces surrounding the blood vessels of the alveoli and bronchi. They are present as nests of multiplying parasites exhibiting close interactions with collagen and active secretion of extracellular vesicles. The local immune response shows a substantial increase of monocytes, macrophages, dendritic cells and γδ and activated αβ T cells and a later influx of neutrophils. Interestingly, parasite presence results in a significant reduction of B cells, eosinophils and natural killer cells. T. brucei infected mice show no infection-associated pulmonary dysfunction, mirroring the limited pulmonary clinical complications during sleeping sickness. However, the substantial reduction of the various immune cells may render individuals more susceptible to opportunistic infections, as evident by a co-infection experiment with respiratory syncytial virus. Collectively, these observations provide insights into a largely overlooked target organ, and may trigger new diagnostic and supportive therapeutic approaches for sleeping sickness.
Collapse
Affiliation(s)
- Dorien Mabille
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Laura Dirkx
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Sofie Thys
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Marjorie Vermeersch
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Gosselies, Belgium
- Laboratory of Molecular Parasitology, IBMM, Université libre de Bruxelles, Gosselies, Belgium
| | - Daniel Montenye
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Gosselies, Belgium
- Laboratory of Molecular Parasitology, IBMM, Université libre de Bruxelles, Gosselies, Belgium
| | - Matthias Govaerts
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Sarah Hendrickx
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Peter Takac
- Institute of Zoology, Slovak Academy of Sciences, 84506, Bratislava, Slovakia
- Scientica, Ltd., 83106, Bratislava, Slovakia
| | - Johan Van Weyenbergh
- Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute of Medical Research, KU Leuven, Leuven, Belgium
| | - Isabel Pintelon
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Peter Delputte
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium
| | - David Pérez-Morga
- Center for Microscopy and Molecular Imaging, Université libre de Bruxelles, Gosselies, Belgium
- Laboratory of Molecular Parasitology, IBMM, Université libre de Bruxelles, Gosselies, Belgium
| | - Jean-Pierre Timmermans
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, Infla-Med Centre of Excellence, University of Antwerp, Wilrijk, Belgium.
| |
Collapse
|
31
|
Kwee I, Martinelli A, Khayal LA, Akhmedov M. metaLINCS: an R package for meta-level analysis of LINCS L1000 drug signatures using stratified connectivity mapping. BIOINFORMATICS ADVANCES 2022; 2:vbac064. [PMID: 36699415 PMCID: PMC9710587 DOI: 10.1093/bioadv/vbac064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/18/2022] [Accepted: 09/08/2022] [Indexed: 02/01/2023]
Abstract
Summary Accessing the collection of perturbed gene expression profiles, such as the LINCS L1000 connectivity map, is usually performed at the individual dataset level, followed by a summary performed by counting individual hits for each perturbagen. With the metaLINCS R package, we present an alternative approach that combines rank correlation and gene set enrichment analysis to identify meta-level enrichment at the perturbagen level and, in the case of drugs, at the mechanism of action level. This significantly simplifies the interpretation and highlights overarching themes in the data. We demonstrate the functionality of the package and compare its performance against those of three currently used approaches. Availability and implementation metaLINCS is released under GPL3 license. Source code and documentation are freely available on GitHub (https://github.com/bigomics/metaLINCS). Supplementary information Supplementary data are available at Bioinformatics Advances online.
Collapse
Affiliation(s)
- Ivo Kwee
- To whom correspondence should be addressed.
| | | | | | | |
Collapse
|
32
|
Barreca M, Spanò V, Rocca R, Bivacqua R, Abel AC, Maruca A, Montalbano A, Raimondi MV, Tarantelli C, Gaudio E, Cascione L, Rinaldi A, Bai R, Steinmetz M, Prota A, Alcaro S, Hamel E, Bertoni F, Barraja P. Development of [1,2]oxazoloisoindoles tubulin polymerization inhibitors: Further chemical modifications and potential therapeutic effects against lymphomas. Eur J Med Chem 2022; 243:114744. [DOI: 10.1016/j.ejmech.2022.114744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/18/2022] [Accepted: 09/03/2022] [Indexed: 11/04/2022]
|
33
|
Ludt A, Ustjanzew A, Binder H, Strauch K, Marini F. Interactive and Reproducible Workflows for Exploring and Modeling RNA-seq Data with pcaExplorer, Ideal, and GeneTonic. Curr Protoc 2022; 2:e411. [PMID: 35467799 DOI: 10.1002/cpz1.411] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The generation and interpretation of results from transcriptome profiling experiments via RNA sequencing (RNA-seq) can be a complex task. While raw data quality control, alignment, and quantification can be streamlined via efficient algorithms that can deliver the preprocessed expression matrix, a common bottleneck in the analysis of such large datasets is the subsequent in-depth, iterative processes of data exploration, statistical testing, visualization, and interpretation. Specific tools for these workflow steps are available but require a level of technical expertise which might be prohibitive for life and clinical scientists, who are left with essential pieces of information distributed among different tabular and list formats. Our protocols are centered on the joint use of our Bioconductor packages (pcaExplorer, ideal, GeneTonic) for interactive and reproducible workflows. All our packages provide an interactive and accessible experience via Shiny web applications, while still documenting the steps performed with RMarkdown as a framework to guarantee the reproducibility of the analyses, reducing the overall time to generate insights from the data at hand. These protocols guide readers through the essential steps of Exploratory Data Analysis, statistical testing, and functional enrichment analyses, followed by integration and contextualization of results. In our packages, the core elements are linked together in interactive widgets that make drill-down tasks efficient by viewing the data at a level of increased detail. Thanks to their interoperability with essential classes and gold-standard pipelines implemented in the open-source Bioconductor project and community, these protocols will permit complex tasks in RNA-seq data analysis, combining interactivity and reproducibility for following modern best scientific practices and helping to streamline the discovery process for transcriptome data. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Exploratory Data Analysis with pcaExplorer Basic Protocol 2: Differential Expression Analysis with ideal Basic Protocol 3: Interpretation of RNA-seq results with GeneTonic Support Protocol: Downloading and installing pcaExplorer, ideal, and GeneTonic Alternate Protocol: Using functions from pcaExplorer, ideal, and GeneTonic in custom analyses.
Collapse
Affiliation(s)
- Annekathrin Ludt
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Division Statistical Genomics and Bioinformatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Arsenij Ustjanzew
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Division Statistical Genomics and Bioinformatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Harald Binder
- Institute of Medical Biometry and Statistics (IMBI), Faculty of Medicine and Medical Center, University of Freiburg, Freiburg im Breisgau, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Division Statistical Genomics and Bioinformatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Division Statistical Genomics and Bioinformatics, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Center for Thrombosis and Hemostasis Mainz (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
34
|
Kakkassery V, Gemoll T, Kraemer MM, Sauer T, Tura A, Ranjbar M, Grisanti S, Joachim SC, Mergler S, Reinhard J. Protein Profiling of WERI-RB1 and Etoposide-Resistant WERI-ETOR Reveals New Insights into Topoisomerase Inhibitor Resistance in Retinoblastoma. Int J Mol Sci 2022; 23:4058. [PMID: 35409416 PMCID: PMC9000009 DOI: 10.3390/ijms23074058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/23/2022] [Accepted: 04/02/2022] [Indexed: 12/16/2022] Open
Abstract
Chemotherapy resistance is one of the reasons for eye loss in patients with retinoblastoma (RB). RB chemotherapy resistance has been studied in different cell culture models, such as WERI-RB1. In addition, chemotherapy-resistant RB subclones, such as the etoposide-resistant WERI-ETOR cell line have been established to improve the understanding of chemotherapy resistance in RB. The objective of this study was to characterize cell line models of an etoposide-sensitive WERI-RB1 and its etoposide-resistant subclone, WERI-ETOR, by proteomic analysis. Subsequently, quantitative proteomics data served for correlation analysis with known drug perturbation profiles. Methodically, WERI-RB1 and WERI-ETOR were cultured, and prepared for quantitative mass spectrometry (MS). This was carried out in a data-independent acquisition (DIA) mode. The raw SWATH (sequential window acquisition of all theoretical mass spectra) files were processed using neural networks in a library-free mode along with machine-learning algorithms. Pathway-enrichment analysis was performed using the REACTOME-pathway resource, and correlated to the molecular signature database (MSigDB) hallmark gene set collections for functional annotation. Furthermore, a drug-connectivity analysis using the L1000 database was carried out to associate the mechanism of action (MOA) for different anticancer reagents to WERI-RB1/WERI-ETOR signatures. A total of 4756 proteins were identified across all samples, showing a distinct clustering between the groups. Of these proteins, 64 were significantly altered (q < 0.05 & log2FC |>2|, 22 higher in WERI-ETOR). Pathway analysis revealed the “retinoid metabolism and transport” pathway as an enriched metabolic pathway in WERI-ETOR cells, while the “sphingolipid de novo biosynthesis” pathway was identified in the WERI-RB1 cell line. In addition, this study revealed similar protein signatures of topoisomerase inhibitors in WERI-ETOR cells as well as ATPase inhibitors, acetylcholine receptor antagonists, and vascular endothelial growth factor receptor (VEGFR) inhibitors in the WERI-RB1 cell line. In this study, WERI-RB1 and WERI-ETOR were analyzed as a cell line model for chemotherapy resistance in RB using data-independent MS. Analysis of the global proteome identified activation of “sphingolipid de novo biosynthesis” in WERI-RB1, and revealed future potential treatment options for etoposide resistance in RB.
Collapse
Affiliation(s)
- Vinodh Kakkassery
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (A.T.); (M.R.); (S.G.)
| | - Timo Gemoll
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Luebeck and University Hospital Clinic Schleswig-Holstein, Ratzeburger Allee 160, 23538 Luebeck, Germany; (T.G.); (T.S.)
| | - Miriam M. Kraemer
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstraße 150, 44780 Bochum, Germany;
| | - Thorben Sauer
- Section for Translational Surgical Oncology and Biobanking, Department of Surgery, University of Luebeck and University Hospital Clinic Schleswig-Holstein, Ratzeburger Allee 160, 23538 Luebeck, Germany; (T.G.); (T.S.)
| | - Aysegül Tura
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (A.T.); (M.R.); (S.G.)
| | - Mahdy Ranjbar
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (A.T.); (M.R.); (S.G.)
| | - Salvatore Grisanti
- Department of Ophthalmology, University of Luebeck, Ratzeburger Allee 160, 23538 Luebeck, Germany; (A.T.); (M.R.); (S.G.)
| | - Stephanie C. Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum, In der Schornau 23-25, 44892 Bochum, Germany;
| | - Stefan Mergler
- Department of Ophthalmology, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universitaet Berlin, Humboldt-Universitaet zu Berlin, Augustenberger Platz 1, 13353 Berlin, Germany;
| | - Jacqueline Reinhard
- Department of Cell Morphology and Molecular Neurobiology, Faculty of Biology and Biotechnology, Ruhr-University Bochum, Universitaetsstraße 150, 44780 Bochum, Germany;
| |
Collapse
|
35
|
Protein Expression of AEBP1, MCM4, and FABP4 Differentiate Osteogenic, Adipogenic, and Mesenchymal Stromal Stem Cells. Int J Mol Sci 2022; 23:ijms23052568. [PMID: 35269711 PMCID: PMC8910760 DOI: 10.3390/ijms23052568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023] Open
Abstract
Mesenchymal stem cells (MSCs) gain an increasing focus in the field of regenerative medicine due to their differentiation abilities into chondrocytes, adipocytes, and osteoblastic cells. However, it is apparent that the transformation processes are extremely complex and cause cellular heterogeneity. The study aimed to characterize differences between MSCs and cells after adipogenic (AD) or osteoblastic (OB) differentiation at the proteome level. Comparative proteomic profiling was performed using tandem mass spectrometry in data-independent acquisition mode. Proteins were quantified by deep neural networks in library-free mode and correlated to the Molecular Signature Database (MSigDB) hallmark gene set collections for functional annotation. We analyzed 4108 proteins across all samples, which revealed a distinct clustering between MSCs and cell differentiation states. Protein expression profiling identified activation of the Peroxisome proliferator-activated receptors (PPARs) signaling pathway after AD. In addition, two distinct protein marker panels could be defined for osteoblastic and adipocytic cell lineages. Hereby, overexpression of AEBP1 and MCM4 for OB as well as of FABP4 for AD was detected as the most promising molecular markers. Combination of deep neural network and machine-learning algorithms with data-independent mass spectrometry distinguish MSCs and cell lineages after adipogenic or osteoblastic differentiation. We identified specific proteins as the molecular basis for bone formation, which could be used for regenerative medicine in the future.
Collapse
|
36
|
Tarantelli C, Cannas E, Ekeh H, Moscatello C, Gaudio E, Cascione L, Napoli S, Rech C, Testa A, Maniaci C, Rinaldi A, Zucca E, Stathis A, Ciulli A, Bertoni F. The bromodomain and extra-terminal domain degrader MZ1 exhibits preclinical anti-tumoral activity in diffuse large B-cell lymphoma of the activated B cell-like type. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:586-601. [PMID: 36046113 PMCID: PMC9400774 DOI: 10.37349/etat.2021.00065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/30/2021] [Indexed: 01/03/2023] Open
Abstract
Aim Bromodomain and extra-terminal domain (BET) proteins are epigenetic readers that play a fundamental role in transcription regulation. Preclinical and early clinical evidence sustain BET targeting as an anti-cancer approach. BET degraders are chimeric compounds comprising of a BET inhibitor, which allows the binding to BET bromodomains, linked to a small molecule, binder for an E3 ubiquitin ligase complex, triggering BET proteins degradation via the proteasome. These degraders, called proteolysis-targeting chimeras (PROTACs), can exhibit greater target specificity compared to BET inhibitors and overcome some of their limitations, such as the upregulation of the BET proteins themselves. Here are presented data on the anti-tumor activity and the mechanism of action of the BET degrader MZ1 in diffuse large B cell lymphoma (DLBCL) of the activated B-cell like (ABC, ABC DLBCL), using a BET inhibitor as a comparison. Methods Established lymphoma cell lines were exposed for 72 h to increasing doses of the compounds. Cell proliferation was evaluated by using an 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazoliumbromide (MTT) assay. Fluorescent-Activated Cell Sorter (FACS) analysis was performed to measure apoptotic activation and RNA sequencing (RNA-Seq) to study the transcriptional changes induced by the compounds. Results MZ1, and not its negative control epimer cisMZ1, was very active with a median half maximal inhibitory concentration (IC50) of 49 nmol/L. MZ1 was more in vitro active than the BET inhibitor birabresib (OTX015). Importantly, MZ1 induced cell death in all the ABC DLBCL cell lines, while the BET inhibitor was cytotoxic only in a fraction of them. BET degrader and inhibitor shared partially similar changes at transcriptome level but the MZ1 effect was stronger and overlapped with that caused cyclin-dependent kinase 9 (CDK9) inhibition. Conclusions The BET degrader MZ1 had strong cytotoxic activity in all the ABC DLBCL cell lines that were tested, and, at least in vitro, it elicited more profound effects than BET inhibitors, and encourages further investigations.
Collapse
Affiliation(s)
- Chiara Tarantelli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Eleonora Cannas
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Hillarie Ekeh
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Carmelo Moscatello
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Department of Medical, Oral and Biotechnological Sciences, “G. d’Annunzio” University of Chieti-Pescara, I-66100 Chieti, Italy
| | - Eugenio Gaudio
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- SIB Swiss Institute of Bioinformatics, 1000 Lausanne, Switzerland
| | - Sara Napoli
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Cesare Rech
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Andrea Testa
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Chiara Maniaci
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
| | - Emanuele Zucca
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| | - Anastasios Stathis
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
- Faculty of Biomedical Sciences, USI, 6900 Lugano, Switzerland
| | - Alessio Ciulli
- Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, UK
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, 6500 Bellinzona, Switzerland
- Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland
| |
Collapse
|
37
|
Marini F, Ludt A, Linke J, Strauch K. GeneTonic: an R/Bioconductor package for streamlining the interpretation of RNA-seq data. BMC Bioinformatics 2021; 22:610. [PMID: 34949163 PMCID: PMC8697502 DOI: 10.1186/s12859-021-04461-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/26/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The interpretation of results from transcriptome profiling experiments via RNA sequencing (RNA-seq) can be a complex task, where the essential information is distributed among different tabular and list formats-normalized expression values, results from differential expression analysis, and results from functional enrichment analyses. A number of tools and databases are widely used for the purpose of identification of relevant functional patterns, yet often their contextualization within the data and results at hand is not straightforward, especially if these analytic components are not combined together efficiently. RESULTS We developed the GeneTonic software package, which serves as a comprehensive toolkit for streamlining the interpretation of functional enrichment analyses, by fully leveraging the information of expression values in a differential expression context. GeneTonic is implemented in R and Shiny, leveraging packages that enable HTML-based interactive visualizations for executing drilldown tasks seamlessly, viewing the data at a level of increased detail. GeneTonic is integrated with the core classes of existing Bioconductor workflows, and can accept the output of many widely used tools for pathway analysis, making this approach applicable to a wide range of use cases. Users can effectively navigate interlinked components (otherwise available as flat text or spreadsheet tables), bookmark features of interest during the exploration sessions, and obtain at the end a tailored HTML report, thus combining the benefits of both interactivity and reproducibility. CONCLUSION GeneTonic is distributed as an R package in the Bioconductor project ( https://bioconductor.org/packages/GeneTonic/ ) under the MIT license. Offering both bird's-eye views of the components of transcriptome data analysis and the detailed inspection of single genes, individual signatures, and their relationships, GeneTonic aims at simplifying the process of interpretation of complex and compelling RNA-seq datasets for many researchers with different expertise profiles.
Collapse
Affiliation(s)
- Federico Marini
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Annekathrin Ludt
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz, Germany
| | - Jan Linke
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz, Germany
- Center for Thrombosis and Hemostasis (CTH), University Medical Center of the Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center of the Johannes Gutenberg University Mainz, Obere Zahlbacher Str. 69, 55131 Mainz, Germany
| |
Collapse
|
38
|
Chu X, Zhang B, Koeken VACM, Gupta MK, Li Y. Multi-Omics Approaches in Immunological Research. Front Immunol 2021; 12:668045. [PMID: 34177908 PMCID: PMC8226116 DOI: 10.3389/fimmu.2021.668045] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
The immune system plays a vital role in health and disease, and is regulated through a complex interactive network of many different immune cells and mediators. To understand the complexity of the immune system, we propose to apply a multi-omics approach in immunological research. This review provides a complete overview of available methodological approaches for the different omics data layers relevant for immunological research, including genetics, epigenetics, transcriptomics, proteomics, metabolomics, and cellomics. Thereafter, we describe the various methods for data analysis as well as how to integrate different layers of omics data. Finally, we discuss the possible applications of multi-omics studies and opportunities they provide for understanding the complex regulatory networks as well as immune variation in various immune-related diseases.
Collapse
Affiliation(s)
- Xiaojing Chu
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Bowen Zhang
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Valerie A. C. M. Koeken
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Manoj Kumar Gupta
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Yang Li
- Department of Genetics, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
39
|
Dimitrov D, Gu Q. BingleSeq: a user-friendly R package for bulk and single-cell RNA-Seq data analysis. PeerJ 2020; 8:e10469. [PMID: 33391870 PMCID: PMC7761193 DOI: 10.7717/peerj.10469] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 11/11/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND RNA sequencing is an indispensable research tool used in a broad range of transcriptome analysis studies. The most common application of RNA Sequencing is differential expression analysis and it is used to determine genetic loci with distinct expression across different conditions. An emerging field called single-cell RNA sequencing is used for transcriptome profiling at the individual cell level. The standard protocols for both of these approaches include the processing of sequencing libraries and result in the generation of count matrices. An obstacle to these analyses and the acquisition of meaningful results is that they require programing expertise. Although some effort has been directed toward the development of user-friendly RNA-Seq analysis analysis tools, few have the flexibility to explore both Bulk and single-cell RNA sequencing. IMPLEMENTATION BingleSeq was developed as an intuitive application that provides a user-friendly solution for the analysis of count matrices produced by both Bulk and Single-cell RNA-Seq experiments. This was achieved by building an interactive dashboard-like user interface which incorporates three state-of-the-art software packages for each type of the aforementioned analyses. Furthermore, BingleSeq includes additional features such as visualization techniques, extensive functional annotation analysis and rank-based consensus for differential gene analysis results. As a result, BingleSeq puts some of the best reviewed and most widely used packages and tools for RNA-Seq analyses at the fingertips of biologists with no programing experience. AVAILABILITY BingleSeq is as an easy-to-install R package available on GitHub at https://github.com/dbdimitrov/BingleSeq/.
Collapse
Affiliation(s)
- Daniel Dimitrov
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| | - Quan Gu
- MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow, UK
| |
Collapse
|
40
|
Dhillon BK, Smith M, Baghela A, Lee AHY, Hancock REW. Systems Biology Approaches to Understanding the Human Immune System. Front Immunol 2020; 11:1683. [PMID: 32849587 PMCID: PMC7406790 DOI: 10.3389/fimmu.2020.01683] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/24/2020] [Indexed: 12/18/2022] Open
Abstract
Systems biology is an approach to interrogate complex biological systems through large-scale quantification of numerous biomolecules. The immune system involves >1,500 genes/proteins in many interconnected pathways and processes, and a systems-level approach is critical in broadening our understanding of the immune response to vaccination. Changes in molecular pathways can be detected using high-throughput omics datasets (e.g., transcriptomics, proteomics, and metabolomics) by using methods such as pathway enrichment, network analysis, machine learning, etc. Importantly, integration of multiple omic datasets is becoming key to revealing novel biological insights. In this perspective article, we highlight the use of protein-protein interaction (PPI) networks as a multi-omics integration approach to unravel information flow and mechanisms during complex biological events, with a focus on the immune system. This involves a combination of tools, including: InnateDB, a database of curated interactions between genes and protein products involved in the innate immunity; NetworkAnalyst, a visualization and analysis platform for InnateDB interactions; and MetaBridge, a tool to integrate metabolite data into PPI networks. The application of these systems techniques is demonstrated for a variety of biological questions, including: the developmental trajectory of neonates during the first week of life, mechanisms in host-pathogen interaction, disease prognosis, biomarker discovery, and drug discovery and repurposing. Overall, systems biology analyses of omics data have been applied to a variety of immunology-related questions, and here we demonstrate the numerous ways in which PPI network analysis can be a powerful tool in contributing to our understanding of the immune system and the study of vaccines.
Collapse
Affiliation(s)
- Bhavjinder K. Dhillon
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Maren Smith
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Arjun Baghela
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| | - Amy H. Y. Lee
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
- Molecular Biology & Biochemistry Department, Simon Fraser University, Burnaby, BC, Canada
| | - Robert E. W. Hancock
- Centre for Microbial Diseases and Immunity Research, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|