1
|
Wang G, Wang B, Xie K, Cao R, Sun J, Chen S, Xu Y. Characterization of the content characteristics of pyrazines and volatile phenols in Chinese Baijiu Daqu by QuEChERS-UPLC-MS/MS approach. Food Res Int 2025; 204:115891. [PMID: 39986760 DOI: 10.1016/j.foodres.2025.115891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/16/2025] [Accepted: 01/29/2025] [Indexed: 02/24/2025]
Abstract
Based on QuEChERS dispersed purification and UPLC-MS/MS, a novel robust and sensitive approach for the detection of pyrazines and volatile phenols in Baijiu Daqu was established. Pyrazines and volatile phenols were purified by dispersion with primary secondary amine (PSA)/C18 and C18 respectively. Volatile phenols were analyzed by UPLC-MS/MS after being derivatized with dansyl chloride. The matrix effect value of the established method falls within the range 85.46 %-102.68 %. The method attains excellent extraction recoveries (78.32 %-109.45 %), demonstrating outstanding repeatability (precisions < 10 %). The limits of detection for pyrazines and volatile phenols are 0.09-1.54 μg/kg and 0.09-0.19 μg/kg, respectively. Through analysis of different quality levels of medium-high Daqu, it was found that in high-quality Daqu, 2-ethyl-3,5-dimethylpyrazine, vanillin and 4-vinylguaiacol are particularly prominent, with vanillin reaching concentrations as high as 2546.32 μg/kg in premium Daqu. In low grade Daqu, the levels of 2,3,5,6-tetramethylpyrazine, 2,3,5-trimethylpyrazine and p-Cresol are notably elevated. Analysis of different fermentation stages of Daqu reveals that pyrazines and volatile phenols are significantly synthesized in the late and middle stages of fermentation, respectively. This study offers an efficient approach for the quantitative assessment of Baijiu Daqu quality, as well as the control and improvement of medium-high Daqu quality.
Collapse
Affiliation(s)
- Gaowei Wang
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Bowen Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Kaijun Xie
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| | - Runjie Cao
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China; Anhui Gujing Distillery Co. Ltd., Bozhou 236800, China
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, School of Food and Health, School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China.
| | - Shuang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China.
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi 214122, Jiangsu, China
| |
Collapse
|
2
|
He SS, Huang HF, Shi SQ, Zhao JJ, Yuan B, Ji X, Zhang HB. Gastrodin plays a protective role in alleviating hepatic ischemia reperfusion injury by regulating heme oxygenase-1 expression. Braz J Med Biol Res 2025; 58:e14248. [PMID: 39907409 PMCID: PMC11793152 DOI: 10.1590/1414-431x2024e14248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/06/2024] [Indexed: 02/06/2025] Open
Abstract
Hepatic ischemia reperfusion injury (HIRI) is a pathophysiological and complex systemic process involving multiple tissues and organs. Gastrodin (GSTD), a natural compound from Gastrodia elata, displays a variety of interesting pharmacological activities. Heme oxygenase-1 (HO-1), a stress-responsive protein, has a cytoprotective defense response against oxidative and inflammatory injuries. The aim of this investigation was to elucidate whether GSTD plays a protective role against HIRI by regulating HO-1 expression. GSTD (100 mg/kg) or zinc protoporphyrin (15 mg/kg; an HO-1 inhibitor) was administered to HIRI C57 male mice. GSTD decreased glutamic pyruvic transaminase and glutamic oxaloacetic transaminase levels in HIRI mice. Inflammatory (TNF-α and IL-6) and oxidative-stress (malondialdehyde, MDA) markers of HIRI mice were decreased by GSTD. GSTD up-regulated HO-1 protein and mRNA expression in HIRI mice but decreased caspase-3 and -9 protein expression. GSTD lowered mRNA expression of apoptosis-related genes (caspase-3, -9, -12, and Bax) in the liver of HIRI mice but enhanced mRNA level of the anti-apoptotic Bcl-2 gene. Consistent with in vivo results, GSTD displayed a similar regulatory effect on the expression of mRNA (HO-1, caspase-3, -9, -12, Bax, and Bcl-2) and protein (HO-1, caspase-3 and -9) as well as inflammatory (TNF-α and IL-6) and on oxidative stress factors (superoxide dismutase and MDA) in BRL-3A cells transfected with small interfering HO-1 RNA in a hypoxia-reperfusion model. In conclusion, GSTD up-regulated HO-1 expression to play a protective role in HIRI by anti-apoptotic, anti-inflammatory, and antioxidant effects. GSTD is a promising natural compound that alleviated HIRI in liver surgery.
Collapse
Affiliation(s)
- Shan-Shan He
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Han-Fei Huang
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shao-Qing Shi
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Jing-Jiao Zhao
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Bo Yuan
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Xiang Ji
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hong-Bin Zhang
- The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
3
|
Wu M, Wang S, Chen X, Shen L, Ding J, Jiang H. Single-cell transcriptome analysis reveals cellular reprogramming and changes of immune cell subsets following tetramethylpyrazine treatment in LPS-induced acute lung injury. PeerJ 2025; 13:e18772. [PMID: 39822976 PMCID: PMC11737342 DOI: 10.7717/peerj.18772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 12/05/2024] [Indexed: 01/19/2025] Open
Abstract
Background Acute lung injury (ALI) is a disordered pulmonary disease characterized by acute respiratory insufficiency with tachypnea, cyanosis refractory to oxygen and diffuse alveolar infiltrates. Despite increased research into ALI, current clinical treatments lack effectiveness. Tetramethylpyrazine (TMP) has shown potential in ALI treatment, and understanding its effects on the pulmonary microenvironment and its underlying mechanisms is imperative. Methods We established a mouse model of lipopolysaccharide (LPS)-induced ALI and performed single cell RNA sequencing (scRNA-seq). Bioinformatic analyses of the immune, epithelial and endothelial cells were then performed to explore the dynamic changes of the lung tissue microenvironment. We also analyzed the effects of TMP on the cell subtypes, differential gene expression and potential regulation of transcriptional factors involved. Immunohistochemistry and enzyme-linked immunosorbent assay were performed to identify the effects of TMP on immune inflammatory response. Results We found that TMP efficiently protected against LPS-induced acute lung injury. Results of scRNA-seq showed that the cells were divided into seven major cell clusters, including immune cells, fibroblasts, endothelial cells and epithelial cells. Neither dexamethasone (Dex) nor TMP treatment showed any significant protective effects in these clusters. However, TMP treatment in the LPS-induced ALI model significantly increased follicular helper T cells and reduced CD8+ naive T cells, Vcan-positive monocytes and Siva-positive NK cells. In addition, TMP treatment increased the number of basal epithelial cells and lymphatic endothelial cells (LECs), indicating its protective effects on these cell types. Scenic analysis suggested that TMP likely mitigates LPS-induced injury in epithelial and endothelial cells by promoting FOSL1 in basal epithelial cells and JunB in LECs. Conclusions Our findings suggest that TMP appears to alleviate LPS-induced lung injury by regulating the immune response, promoting epithelial cell survival and boosting the antioxidant potential of endothelial cells. This study highlights the potential therapeutic use of TMP in the management of ALI.
Collapse
Affiliation(s)
- Mingyan Wu
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shanmei Wang
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaolan Chen
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Shen
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jurong Ding
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hongbin Jiang
- Department of Emergency Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
4
|
Duan J, Cheng W, Lv S, Deng W, Hu X, Li H, Sun J, Zheng F, Sun B. Characterization of key aroma compounds in soy sauce flavor baijiu by molecular sensory science combined with aroma active compounds reverse verification method. Food Chem 2024; 443:138487. [PMID: 38271898 DOI: 10.1016/j.foodchem.2024.138487] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/25/2023] [Accepted: 01/15/2024] [Indexed: 01/27/2024]
Abstract
The distinctive flavor profile of soy sauce flavor baijiu (SAB) is shaped by its unique aroma compounds. The characteristic aroma compounds in Langjiu soy sauce flavor baijiu (LSAB) were explored based on molecular sensory science. A total of 66 aroma active compounds were identified by gas chromatography-olfactometry (GC-O) combined with aroma extract dilution analysis (AEDA), and 6 important unknown sulfur compounds were identified using the aroma active compounds reverse verification method (ACRVW). A total of 39 key aroma compounds were determined to have odor activity values (OAVs) ≥ 1. The aroma contribution of aroma components was verified by aroma recombination and aroma omission experiments. 15 characteristic aroma compounds were identified in LSAB. Meanwhile, a simple and easy-to-understand sensory expression language was described to fully understand the style characteristics of LSAB. Overall, the present paper offers insights into research uncovering the key "sauce flavor" of soy sauce flavor baijiu.
Collapse
Affiliation(s)
- Jiawen Duan
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Wei Cheng
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Silei Lv
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Wanyu Deng
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Xiangjun Hu
- Sichuan Langjiu Co., Ltd, Gulin, Sichuan 646523, China
| | - Hehe Li
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China.
| | - Jinyuan Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Fuping Zheng
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| | - Baoguo Sun
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, China; Beijing Key Laboratory for Food Quality and Safety, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
5
|
Dogan T, Yildirim BA, Kapakin KAT. Investigation of the effects of crocin on inflammation, oxidative stress, apoptosis, NF-κB, TLR-4 and Nrf-2/HO-1 pathways in gentamicin-induced nephrotoxicity in rats. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 106:104374. [PMID: 38246228 DOI: 10.1016/j.etap.2024.104374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
The primary limitation of gentamicin (Gm) treatment is its potential to induce nephrotoxicity, which can restrict both its duration and efficacy. This study aims to investigate the protective effects of Crocin (Cr) against Gm-induced nephrotoxicity and its underlying mechanisms, including inflammation, apoptosis, TLR-4, Nrf-2/HO-1 pathways. 36 Sprague Dawley rats were divided into 6 groups for the study. Group I received only saline. Groups II and III were administered 25 and 50 mg/kg of crocin, respectively. Group IV was treated with 80 mg/kg of Gm. Groups V and VI received 25 and 50 mg/kg of crocin, respectively, in addition to Gm administration. Crocin demonstrated protective effects on kidney tissue. It down-regulated the genes NF-κB, COX-2, TLR-4, Bax, and Caspase-3, while up-regulating Bcl-2, Nrf-2, and HO-1. In conclusion, these findings hold promise for the prevention of Gm-induced nephrotoxicity through the modulation of the Nrf-2/HO-1 pathway.
Collapse
Affiliation(s)
- Tuba Dogan
- Ataturk University, Veterinary Faculty, Biochemistry Department, Erzurum 25100, Turkey.
| | | | | |
Collapse
|
6
|
Li S, Xu Y, He S, Li X, Shi J, Zhang B, Zhu Y, Li X, Wang Y, Liu C, Ma Y, Dong S, Yu J. Tetramethylpyrazine ameliorates endotoxin-induced acute lung injury by relieving Golgi stress via the Nrf2/HO-1 signaling pathway. BMC Pulm Med 2023; 23:286. [PMID: 37550659 PMCID: PMC10408181 DOI: 10.1186/s12890-023-02585-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
PURPOSE Endotoxin-induced acute lung injury (ALI) is a severe disease caused by an imbalanced host response to infection. It is necessary to explore novel mechanisms for the treatment of endotoxin-induced ALI. In endotoxin-induced ALI, tetramethylpyrazine (TMP) provides protection through anti-inflammatory, anti-apoptosis, and anti-pyroptosis effects. However, the mechanism of action of TMP in endotoxin-induced ALI remains unclear. Here, we aimed to determine whether TMP can protect the lungs by inhibiting Golgi stress via the Nrf2/HO-1 pathway. METHODS AND RESULTS Using lipopolysaccharide (LPS)-stimulated C57BL/6J mice and MLE12 alveolar epithelial cells, we observed that TMP pretreatment attenuated endotoxin-induced ALI. LPS + TMP group showed lesser lung pathological damage and a lower rate of apoptotic lung cells than LPS group. Moreover, LPS + TMP group also showed decreased levels of inflammatory factors and oxidative stress damage than LPS group (P < 0.05). Additionally, LPS + TMP group presented reduced Golgi stress by increasing the Golgi matrix protein 130 (GM130), Golgi apparatus Ca2+/Mn2+ ATPases (ATP2C1), and Golgin97 expression while decreasing the Golgi phosphoprotein 3 (GOLPH3) expression than LPS group (P < 0.05). Furthermore, TMP pretreatment promoted Nrf2 and HO-1 expression (P < 0.05). Nrf2-knockout mice or Nrf2 siRNA-transfected MLE12 cells were pretreated with TMP to explore how the Nrf2/HO-1 pathway affected TMP-mediated Golgi stress in endotoxin-induced ALI models. We observed that Nrf2 gene silencing partially reversed the alleviating effect of Golgi stress and the pulmonary protective effect of TMP. CONCLUSION Our findings showed that TMP therapy reduced endotoxin-induced ALI by suppressing Golgi stress via the Nrf2/HO-1 signaling pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Shaona Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Yexiang Xu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Simeng He
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250000, Shandong Province, China
| | - Xiangyun Li
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Jia Shi
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Bing Zhang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Youzhuang Zhu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Xiangkun Li
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Yanting Wang
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Cuicui Liu
- Department of Anesthesiology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong Province, China
| | - Yang Ma
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Shuan Dong
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China
| | - Jianbo Yu
- Department of Anesthesiology and Critical Care Medicine, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin, 300100, China.
| |
Collapse
|
7
|
Albalawi RS, Binmahfouz LS, Hareeri RH, Shaik RA, Bagher AM. Parthenolide Phytosomes Attenuated Gentamicin-Induced Nephrotoxicity in Rats via Activation of Sirt-1, Nrf2, OH-1, and NQO1 Axis. Molecules 2023; 28:2741. [PMID: 36985711 PMCID: PMC10053629 DOI: 10.3390/molecules28062741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/30/2023] Open
Abstract
Nephrotoxicity is a serious complication that limits the clinical use of gentamicin (GEN). Parthenolide (PTL) is a sesquiterpene lactone derived from feverfew with various therapeutic benefits. However, PTL possesses low oral bioavailability. This study aimed to evaluate the therapeutic protective effects of PTL-phytosomes against GEN-induced nephrotoxicity in rats. The PTL was prepared as phytosomes to improve the pharmacological properties with a particle size of 407.4 nm, and surface morphology showed oval particles with multiple edges. Rats were divided into six groups: control, nano-formulation plain vehicle, PTL-phytosomes (10 mg/kg), GEN (100 mg/kg), GEN + PTL-phytosomes (5 mg/kg), and GEN + PTL-phytosomes (10 mg/kg). The administration of PTL-phytosomes alleviated GEN-induced impairment in kidney functions and histopathological damage, and decreased kidney injury molecule-1 (KIM-1). The anti-oxidative effect of PTL-phytosomes was demonstrated by the reduced malondialdehyde (MDA) concentration and increased superoxide dismutase (SOD) and catalase (CAT) activities. Furthermore, PTL-phytosomes treatment significantly enhanced sirtuin 1 (Sirt-1), nuclear factor erythroid-2-related factor-2 (Nrf2), NAD(P)H quinone dehydrogenase 1 (NQO1), and heme oxygenase-1 (HO-1). Additionally, PTL-phytosomes treatment exhibited anti-inflammatory and anti-apoptotic properties in the kidney tissue. These findings suggest that PTL-phytosomes attenuate renal dysfunction and structural damage by reducing oxidative stress, inflammation, and apoptosis in the kidney.
Collapse
Affiliation(s)
| | | | | | | | - Amina M. Bagher
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
8
|
Kang S, Chen T, Hao Z, Yang X, Wang M, Zhang Z, Hao S, Lang F, Hao H. Oxymatrine Alleviates Gentamicin-Induced Renal Injury in Rats. Molecules 2022; 27:molecules27196209. [PMID: 36234739 PMCID: PMC9571404 DOI: 10.3390/molecules27196209] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 11/16/2022] Open
Abstract
Gentamicin is an aminoglycoside antibiotic commonly used to treat Gram-negative bacterial infections that possesses considerable nephrotoxicity. Oxymatrine is a phytochemical with the ability to counter gentamicin toxicity. We investigated the effects and protective mechanism of oxymatrine in rats. The experimental groups were as follows: Control, Oxymatrine only group (100 mg/kg/d), Gentamicin only group (100 mg/kg/d), Gentamicin (100 mg/kg/d) plus Oxymatrine (100 mg/kg/d) group (n = 10). All rats were treated for seven continuous days. The results indicated that oxymatrine alleviated gentamicin-induced kidney injury, and decreased rats’ kidney indices and NAG (N-acetyl-beta-d-glucosaminidase), BUN (blood urea nitrogen) and CRE (creatine) serum levels. The oxymatrine-treated group sustained less histological damage. Oxymatrine also relived gentamicin-induced oxidative and nitrative stress, indicated by the increased SOD (superoxidase dismutase), GSH (glutathione) and CAT (catalase) activities and decreased MDA (malondialdehyde), iNOS (inducible nitric oxide synthase) and NO (nitric oxide) levels. Caspase-9 and -3 activities were also decreased in the oxymatrine-treated group. Oxymatrine exhibited a potent anti-inflammatory effect on gentamicin-induced kidney injury, down-regulated the Bcl-2ax and NF-κB mRNAs, and upregulated Bcl-2, HO-1 and Nrf2 mRNAs in the kidney tissue. Our investigation revealed the renal protective effect of oxymatrine in gentamicin-induced kidney injury for the first time. The effect was achieved through activation of the Nrf2/HO-1 pathways. The study underlines the potential clinical application of oxymatrine as a renal protectant agent for gentamicin therapy.
Collapse
Affiliation(s)
- Songyao Kang
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Agricultural Biopharmaceutical Engineering Technology Research Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Tingting Chen
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhihui Hao
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (Z.H.); (X.Y.)
| | - Xiao Yang
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Correspondence: (Z.H.); (X.Y.)
| | - Mingfa Wang
- Qingdao University Medical Group Juxian Hospital, Qingdao 276599, China
| | - Zhifang Zhang
- College of Traditional Medicine, Inner Mongolia Medical University, Hohhot 010059, China
| | - Sijia Hao
- College of Traditional Medicine, Inner Mongolia Medical University, Hohhot 010059, China
| | - Fengting Lang
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Agricultural Biopharmaceutical Engineering Technology Research Center, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongxia Hao
- Chinese Veterinary Medicine Innovation Center, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
- Agricultural Biopharmaceutical Engineering Technology Research Center, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
9
|
Li Z, Shan L, Yu P. Preventive effect of tetramethylpyrazine on nitroglycerin-tolerance in rats by improving oxidative stress and ribosome homeostasis. Biochem Biophys Res Commun 2022; 618:141-147. [PMID: 35724458 DOI: 10.1016/j.bbrc.2022.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 05/25/2022] [Accepted: 06/05/2022] [Indexed: 11/15/2022]
Abstract
Nitroglycerin (NTG) is recommended as the first-line drug in angina pectoris though its prolonged use impacts nitroglycerin tolerance. In this study, we investigated the preventive effect of Tetramethylpyrazine (TMP), a famous Chinese medicine used for cardiovascular diseases, on NTG-induced tolerance and further explained the underlying mechanism of its action. The results revealed that pretreatment of TMP improved NTG-induced tolerance in vitro thoracic aorta rings and in rats. Proteomic analysis showed oxidative stress and ribosome proteins dyshomeostasis in NTG-tolerance vessels. TMP attenuated the oxidative stress by enhancing the protein expression of ALDH2, Nrf2 and HO-1. In addition, TMP recovered the down-regulated expression of RpL10a induced by nitroglycerin. Therefore, TMP could prevent nitroglycerin tolerance in rats, which may be mediated by up-regulation of ALDH2 and Nrf2/HO-1 signaling pathway and involved in the restoration of ribosome homeostasis. These findings indicate the potential of TMP as a promising medicine for preventing the development of nitroglycerin-induced tolerance.
Collapse
Affiliation(s)
- Zixin Li
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, 510632, China
| | - Luchen Shan
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| | - Pei Yu
- International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Chinese Ministry of Education, Jinan University College of Pharmacy, Guangzhou, 510632, China.
| |
Collapse
|
10
|
Xiang C, Liao Y, Chen Z, Xiao B, Zhao Z, Li A, Xia Y, Wang P, Li H, Xiao T. Network Pharmacology and Molecular Docking to Elucidate the Potential Mechanism of Ligusticum Chuanxiong Against Osteoarthritis. Front Pharmacol 2022; 13:854215. [PMID: 35496280 PMCID: PMC9050356 DOI: 10.3389/fphar.2022.854215] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/24/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Osteoarthritis (OA) is a degenerative disease which serious affects patients. Ligusticum chuanxiong (CX) has been shown to have a certain curative effect on osteoarthritis in traditional Chinese medicine therapy. This study is based on network pharmacology and molecular docking technology to explore the potential mechanism of CX. Methods: Components of CX to treat osteoarthritis were screened in the TCMSP database and targets were predicted by the PharmMapper database, the osteoarthritis targets were collected from the GeneCards database, and intersection genes were found to be the possible targets of CX anti-OA. The STRING database and Cytoscape software were utilized for protein-protein interaction analysis and further screening of core targets. The Metascape database was used for KEGG and GO enrichment analyses. Then, the top 10 pathways were selected to construct “drug-compound-target-pathway-disease” network analysis. Finally, molecular docking was used to analyze the binding affinity of seven compounds with core targets and TNF-α. Results: Seven compounds with 253 non-repetitive targets of CX were screened from the TCMSP database and 60 potential intersection targets of CX anti-OA were found. PPI network analysis showed that the core targets were ALB, AKT1, IGF1, CASP3, MAPK1, ANXA5, and MAPK14, while GO and KEGG pathway enrichment analyses showed that the relevant biological processes involved in the treatment of osteoarthritis by CX might include the MAPK cascade and reactive oxygen species metabolic process. The KEGG pathway analysis result was mainly associated with the MAPK signaling pathway and PI3K-AKT signaling pathway. We further docked seven ingredients with MAPK1 and MAPK14 enriched in the MAPK pathway, and TNF-α as the typical inflammatory cytokine. The results also showed good binding affinity, especially FA, which may be the most important component of CX anti-OA. Conclusion: Our research revealed the potential mechanism of CX in the treatment of OA, and our findings can also pave the way for subsequent basic experimental verification and a new research direction.
Collapse
Affiliation(s)
- Cheng Xiang
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yilin Liao
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhuoyuan Chen
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Bo Xiao
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Ziyue Zhao
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Aoyu Li
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Yu Xia
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Pingxiao Wang
- Second Xiangya Hospital, Central South University, Changsha, China
| | - Hui Li
- Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hui Li, ; Tao Xiao,
| | - Tao Xiao
- Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Hui Li, ; Tao Xiao,
| |
Collapse
|
11
|
Li J, Gong X. Tetramethylpyrazine: An Active Ingredient of Chinese Herbal Medicine With Therapeutic Potential in Acute Kidney Injury and Renal Fibrosis. Front Pharmacol 2022; 13:820071. [PMID: 35145414 PMCID: PMC8821904 DOI: 10.3389/fphar.2022.820071] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/10/2022] [Indexed: 12/23/2022] Open
Abstract
As an increasing public health concern worldwide, acute kidney injury (AKI) is characterized by rapid deterioration of kidney function. Although continuous renal replacement therapy (CRRT) could be used to treat severe AKI, effective drug treatment methods for AKI are largely lacking. Tetramethylpyrazine (TMP) is an active ingredient of Chinese herb Ligusticum wallichii (Chuan Xiong) with antioxidant and anti-inflammatory functions. In recent years, more and more clinical and experimental studies suggest that TMP might effectively prevent AKI. The present article reviews the potential mechanisms of TMP against AKI. Through search and review, a total of 23 studies were finally included. Our results indicate that the undergoing mechanisms of TMP preventing AKI are mainly related to reducing oxidative stress injury, inhibiting inflammation, preventing apoptosis of intrinsic renal cells, and regulating autophagy. Meanwhile, given that AKI and chronic kidney disease (CKD) are very tightly linked by each other, and AKI is also an important inducement of CKD, we thus summarized the potential of TMP impeding the progression of CKD through anti-renal fibrosis.
Collapse
|
12
|
Yahyazadeh R, Baradaran Rahimi V, Yahyazadeh A, Mohajeri SA, Askari VR. Promising effects of gingerol against toxins: A review article. Biofactors 2021; 47:885-913. [PMID: 34418196 DOI: 10.1002/biof.1779] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 08/04/2021] [Indexed: 12/11/2022]
Abstract
Ginger is a medicinal and valuable culinary plant. Gingerols, as an active constituent in the fresh ginger rhizomes of Zingiber officinale, exhibit several promising pharmacological properties. This comprehensive literature review was performed to assess gingerol's protective and therapeutic efficacy against the various chemical, natural, and radiational stimuli. Another objective of this study was to investigate the mechanism of anti-inflammatory, antioxidant, and antiapoptotic properties of gingerol. It should be noted that the data were gathered from in vivo and in vitro experimental studies. Gingerols can exert their protective activity through different mechanisms and cell signaling pathways. For example, these are mitogen-activated protein kinase (MAPK), nuclear factor-kappa B (NF-kB), Wnt/β-catenin, nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE), transforming growth factor beta1/Smad3 (TGF-β1/Smad3), and extracellular signal-related kinase/cAMP-response element-binding protein (ERK/CREB). We hope that more researchers can benefit from this review to conduct preclinical and clinical studies, treat cancer, inflammation, and attenuate the side effects of drugs and industrial pollutants.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vafa Baradaran Rahimi
- Department of Cardiovascular Diseases, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Yahyazadeh
- Department of Histology and Embryology, Faculty of Medicine, Karabuk University, Karabuk, Turkey
| | - Seyed Ahmad Mohajeri
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vahid Reza Askari
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Sciences in Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Persian Medicine, School of Persian and Complementary Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Bai L, Yang J, Zhang H, Liao W, Cen Y. PTB domain and leucine zipper motif 1 (APPL1) inhibits myocardial ischemia/hypoxia-reperfusion injury via inactivation of apoptotic protease activating factor-1 (APAF-1)/Caspase9 signaling pathway. Bioengineered 2021; 12:4385-4396. [PMID: 34304702 PMCID: PMC8806591 DOI: 10.1080/21655979.2021.1954841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Myocardial ischemia/hypoxia-reperfusion injury mediates the progression of multiple cardiovascular diseases. It has been reported that knockdown of adaptor protein containing a PH domain, PTB domain and leucine zipper motif 1 (APPL1) is a significant factor for the progression of myocardial injury. However, the role of APPL1 in myocardial ischemia remains unclear. Hence, the aim of the present study was to investigate the specific mechanism underlying the role of APPL1 in myocardial ischemia.In our study, the mRNA level of APPL1 was detected by quantitative real-time PCR (RT-qPCR). The expressions of APPL1, Apoptotic protease activating factor-1 (APAF-1), cleaved caspase9 and other inflammation- and apoptosis-related proteins were determined by western blotting. The secretion of inflammatory cytokines and lactate dehydrogenase (LDH) levels were measured by commercial assay kits. The H9C2 cell viability was analyzed by cell counting kit-8 (CCK-8) assay. The apoptosis rate of H9C2 cells was analyzed by TUNEL assay. The interaction between APPL1 and APAF-1/caspase9 was determined by Immunoprecipitation (IP).Our findings demonstrated that APPL1 was low expressed in myocardial ischemia tissues and cells. APPL1 knockdown suppressed the viability of myocardial ischemia cells and aggravated hypoxia/reperfusion-induced LDH hypersecretion, inflammation and apoptosis. In addition, the overexpression of APPL1 induced inactivation of APAF-1/Caspase9 signaling pathway. Significantly, APAF1 inhibitor reversed the effect of APPL1 knockdown on viability, LDH secretion, inflammation and apoptosis.We conclude that APPL1 inhibits myocardial ischemia/hypoxia-reperfusion injury via inactivation of APAF-1/Caspase9 signaling pathway. Hence, APPL1 may be a novel and effective target for the treatment of myocardial ischemia.
Collapse
Affiliation(s)
- Lina Bai
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, PR China
| | - Junhua Yang
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, PR China
| | - Hong Zhang
- Department of Cardiology, Tianjin Nankai Hospital, Tianjin, PR China
| | - Wei Liao
- Department of Medical Ultrasonics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PR China
| | - Yunguang Cen
- Center of Geriatrics, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, PR China
| |
Collapse
|
14
|
Miquelianin Inhibits Allergic Responses in Mice by Suppressing CD4 + T Cell Proliferation. Antioxidants (Basel) 2021; 10:antiox10071120. [PMID: 34356353 PMCID: PMC8301087 DOI: 10.3390/antiox10071120] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 02/06/2023] Open
Abstract
Allergic diseases, including atopic dermatitis (AD), induce type 2 helper T (Th2) cell-dominant immune responses. Miquelianin (quercetin 3-O-glucuronide, MQL) is an active compound in Rosae multiflorae fructus extract with anti-allergic properties. Here, we investigate the anti-allergic effects of MQL in an ovalbumin (OVA)-induced Th2-dominant mouse model and the associated mechanisms. Oral MQL suppressed cytokine and IL-2 production and proliferation of Th2 cells and upregulated heme oxygenase-1 (HO-1) in splenocytes. Ex vivo MQL suppressed Th1- and Th2-related immune responses by inhibiting CD4+ T cell proliferation, and upregulated HO-1 in CD4+ T cells by activating C-Raf-ERK1/2-Nrf2 pathway via induction of reactive oxygen species generation. In a trimellitic anhydride-induced AD-like mouse model, both topical and oral MQL ameliorated AD symptoms by suppressing Th2 immune responses. Our results suggest that MQL is a potential therapeutic agent for CD4+ T cell-mediated diseases, including allergic diseases.
Collapse
|
15
|
Ma X, Ruan Q, Ji X, Yang J, Peng H. Ligustrazine alleviates cyclophosphamide-induced hepatotoxicity via the inhibition of Txnip/Trx/NF-κB pathway. Life Sci 2021; 274:119331. [PMID: 33716060 DOI: 10.1016/j.lfs.2021.119331] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/23/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
AIMS Cyclophosphamide (CP) is a common therapeutic drug for cancer, but exposure to CP can cause acute hepatotoxicity. This study aimed to elucidate the protective effects of Ligustrazine (2, 3, 5, 6-tetramethylpyrazine, TMP) on hepatotoxicity induced by CP or its active metabolite 4-hydroperoxycyclophosphamide (4-HC). MAIN METHODS We presented a comprehensive investigation about the hepatoprotection of TMP on CP-induced mice and 4-HC-treated HSC-LX2 cells. Liver function was detected via enzyme-linked immunosorbent assay (ELISA). Hepatic histopathology analysis was performed via hematoxylin and eosin (H&E) and Masson staining. Survival of hepatocytes was detected by TUNEL assay. Related proteins in the thioredoxin (Trx)-interacting protein (Txnip)/Trx/Nuclear factor-kappa B (NF-κB) pathway were measured by western blotting. KEY FINDINGS The results indicated that CP or 4-HC could increase the levels of alanine aminotransferase and aspartate aminotransferase, enhance inflammatory factors and oxidative indicators, and suppress the activity of oxidoreductases. Moreover, significant changes in liver histological structure, fibrosis, and cell death were observed through the activation of Txnip/Trx/NF-κB pathway. In contrast, administration of TMP significantly reversed these above changes. Furthermore, TMP intervention participated in the inhibition of NLRP3 inflammasome accompanied with pyroptosis, as well as upregulating Trx expression and downregulating p-NF-κB, while the protective effect of TMP was limited to the involvement of Txnip overexpression. SIGNIFICANCE TMP treatment could significantly alleviate the hepatotoxicity process as evidenced by improving the structure and function of the liver, inhibiting oxidative stress and inflammation accompanied with pyroptosis, which was positively correlated with the inhibition of Txnip/Trx/NF-κB pathway.
Collapse
Affiliation(s)
- Xinfei Ma
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Qinli Ruan
- Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| | - Xiaotian Ji
- Department of Gastroenterology, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu, China
| | - Ju Yang
- Department of Gastroenterology, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu, China
| | - Huiping Peng
- Department of Gastroenterology, Kunshan Hospital Affiliated to Nanjing University of Chinese Medicine, Kunshan 215300, Jiangsu, China.
| |
Collapse
|
16
|
Grunenwald A, Roumenina LT, Frimat M. Heme Oxygenase 1: A Defensive Mediator in Kidney Diseases. Int J Mol Sci 2021; 22:2009. [PMID: 33670516 PMCID: PMC7923026 DOI: 10.3390/ijms22042009] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022] Open
Abstract
The incidence of kidney disease is rising, constituting a significant burden on the healthcare system and making identification of new therapeutic targets increasingly urgent. The heme oxygenase (HO) system performs an important function in the regulation of oxidative stress and inflammation and, via these mechanisms, is thought to play a role in the prevention of non-specific injuries following acute renal failure or resulting from chronic kidney disease. The expression of HO-1 is strongly inducible by a wide range of stimuli in the kidney, consequent to the kidney's filtration role which means HO-1 is exposed to a wide range of endogenous and exogenous molecules, and it has been shown to be protective in a variety of nephropathological animal models. Interestingly, the positive effect of HO-1 occurs in both hemolysis- and rhabdomyolysis-dominated diseases, where the kidney is extensively exposed to heme (a major HO-1 inducer), as well as in non-heme-dependent diseases such as hypertension, diabetic nephropathy or progression to end-stage renal disease. This highlights the complexity of HO-1's functions, which is also illustrated by the fact that, despite the abundance of preclinical data, no drug targeting HO-1 has so far been translated into clinical use. The objective of this review is to assess current knowledge relating HO-1's role in the kidney and its potential interest as a nephroprotection agent. The potential therapeutic openings will be presented, in particular through the identification of clinical trials targeting this enzyme or its products.
Collapse
Affiliation(s)
- Anne Grunenwald
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (A.G.); (L.T.R.)
| | - Lubka T. Roumenina
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, F-75006 Paris, France; (A.G.); (L.T.R.)
| | - Marie Frimat
- U1167-RID-AGE, Institut Pasteur de Lille, Inserm, Univ. Lille, F-59000 Lille, France
- Nephrology Department, CHU Lille, Univ. Lille, F-59000 Lille, France
| |
Collapse
|
17
|
Zhang S, An L, Li Z, Wang X, Wang H, Shi L, Bao J, Lan X, Zhang E, Lall N, Reid AM, Li Y, Jin DQ, Xu J, Guo Y. Structural elucidation of an immunological arabinan from the rhizomes of Ligusticum chuanxiong, a traditional Chinese medicine. Int J Biol Macromol 2020; 170:42-52. [PMID: 33316344 DOI: 10.1016/j.ijbiomac.2020.12.069] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/08/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022]
Abstract
In the present study, an immunological arabinan, LCP70-2A, was isolated from Ligusticum chuanxiong for the first time. The absolute molecular weight of LCP70-2A was determined to be 6.46 × 104 g/mol using the HPSEC-MALLS-RID method. The absolute configuration of arabinose in LCP70-2A was determined to be L-configuration. Physicochemical characterization revealed that LCP70-2A was a homogeneous polysaccharide and had a backbone of (1 → 5)-linked α-L-Araf with terminal α-L-arabinose residues at position O-2 and O-3. Molecular conformation analysis showed that LCP70-2A was a branching polysaccharide with a compact coil chain conformation in 0.1 M NaCl solution. In addition, in vitro cell assays showed that LCP70-2A can activate macrophages by enhancing the phagocytosis and potentiating the secretion of immunoregulatory factors including NO, TNF-α, IL-6, and IL-1β. Furthermore, LCP70-2A was proved to promote the production of ROS and NO using the zebrafish model, suggesting that LCP70-2A can be further developed as a candidate supplement for immunological enhancement.
Collapse
Affiliation(s)
- Shaojie Zhang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijun An
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Zhengguo Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Xuelian Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Honglin Wang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Lijuan Shi
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Jiahe Bao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China
| | - Xiaozhong Lan
- Food Science College, Tibet Agricultural & Animal Husbandry University, Linzhi 860000, People's Republic of China
| | - Erhao Zhang
- Food Science College, Tibet Agricultural & Animal Husbandry University, Linzhi 860000, People's Republic of China
| | - Namrita Lall
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Anna-Mari Reid
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Yuhao Li
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Da-Qing Jin
- School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, and Drug Discovery Center for Infectious Disease, Nankai University, Tianjin 300350, People's Republic of China.
| |
Collapse
|
18
|
The Protective Effects and Potential Mechanisms of Ligusticum chuanxiong: Focus on Anti-Inflammatory, Antioxidant, and Antiapoptotic Activities. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:8205983. [PMID: 33133217 PMCID: PMC7591981 DOI: 10.1155/2020/8205983] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Accepted: 10/06/2020] [Indexed: 01/10/2023]
Abstract
Ligusticum chuanxiong (LC) is a Chinese materia medica which is widely used in clinical settings to treat headaches, blood extravasation, and arthritis. Recent studies demonstrate that LC possesses versatile pharmacological functions, including antiatherosclerosis, antimigraine, antiaging, and anticancer properties. Moreover, LC also shows protective effects in the progression of different diseases that damage somatic cells. Oxidative stress and inflammation, which can induce somatic cell apoptosis, are the main factors associated with an abundance of diseases, whose progresses can be reversed by LC. In order to comprehensively review the molecular mechanisms associated with the protective effects of LC, we collected and integrated all its related studies on the anti-inflammatory, antioxidant, and antiapoptotic effects. The results show that LC could exhibit the mentioned biological activities by modulating several signaling pathways, specifically the NF-κB, Nrf2, protein kinase, and caspase-3 pathways. In future investigations, the pharmacokinetic properties of bioactive compounds in LC and the signaling pathway modulation of LC could be focused.
Collapse
|
19
|
Yi R, Chen X, Li W, Mu J, Tan F, Zhao X. Preventive effect of insect tea primary leaf ( Malus sieboldii (Regal) Rehd.) extract on D-galactose-induced oxidative damage in mice. Food Sci Nutr 2020; 8:5160-5171. [PMID: 32994976 PMCID: PMC7500765 DOI: 10.1002/fsn3.1821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/14/2022] Open
Abstract
Insect tea is consumed as a health beverage in China. The insect tea primary leaf (ITPL) is rich in bioactive substances, which are also used as traditional Chinese medicine. This study investigated the role of ITPL in reducing the oxidative response induced by D-galactose in mice. Mice were intraperitoneally injected with D-galactose to induce oxidative damage. The effect of ITPL was tested by pathological observation, serum detection with kits, quantitative polymerase chain reaction, and Western blot. The experimental results show that ITPL increased the thymus, brain, heart, liver, spleen, and kidney indices of oxidized mice. ITPL increased superoxide dismutase, glutathione peroxidase, and glutathione levels and reduced nitric oxide and malondialdehyde levels in the serum, liver, and spleen in oxidative damaged mice. The pathological observations show that ITPL reduced the oxidative damage of the liver and spleen in mice induced with D-galactose. Simultaneously, ITPL upregulated mRNA expression of neuronal nitric oxide synthase, endothelial nitric oxide synthase, cuprozinc-superoxide dismutase, manganese superoxide dismutase, catalase, heme oxygenase-1, nuclear factor-erythroid 2 related factor 2, γ-glutamylcysteine synthetase, and NAD(P)H dehydrogenase [quinone] 1, and downregulated the expression of inducible nitric oxide synthase in the liver and spleen of oxidized mice. ITPL had beneficial preventive effects on the oxidative damage caused by D-galactose in mice and was more effective as an antioxidant than vitamin C. The component analysis test by high-performance liquid chromatography indicated that ITPL contained the following seven compounds: neochlorogenic acid, cryptochlorogenic acid, rutin, kaempferin, isochlorogenic acid B, isochlorogenic acid A, and hesperidin. ITPL is a plant with excellent antioxidant activities derived from its bioactive substances.
Collapse
Affiliation(s)
- Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Xi Chen
- Intensive Care UnitThe First People's Hospital of Chongqing Liang Jiang New AreaChongqingChina
| | - Wenfeng Li
- School of Life Science and BiotechnologyYangtze Normal UniversityChongqingChina
| | - Jianfei Mu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Intensive Care UnitThe First People's Hospital of Chongqing Liang Jiang New AreaChongqingChina
| | - Fang Tan
- Department of Public HealthOur Lady of Fatima UniversityValenzuelaPhilippines
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| |
Collapse
|
20
|
Sandrim VC, Luizon MR, Pilan E, Caldeira-Dias M, Coeli-Lacchini FB, Kors G, Berndt I, Lacchini R, Cavalli RC. Interaction Between NOS3 and HMOX1 on Antihypertensive Drug Responsiveness in Preeclampsia. REVISTA BRASILEIRA DE GINECOLOGIA E OBSTETRÍCIA 2020; 42:460-467. [PMID: 32559798 PMCID: PMC10309231 DOI: 10.1055/s-0040-1712484] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
OBJECTIVE We examined the interaction of polymorphisms in the genes heme oxygenase-1 (HMOX1) and nitric oxide synthase (NOS3) in patients with preeclampsia (PE) as well as the responsiveness to methyldopa and to total antihypertensive therapy. METHODS The genes HMOX1 (rs2071746, A/T) and NOS3 (rs1799983, G/T) were genotyped using TaqMan allele discrimination assays (Applied Biosystems, Foster City, CA, USA ), and the levels of enzyme heme oxygenase-1 (HO-1) were measured using enzyme-linked immunosorbent assay (ELISA). RESULTS We found interactions between genotypes of the HMOX-1 and NOS3 genes and responsiveness to methyldopa and that PE genotyped as AT presents lower levels of protein HO-1 compared with AA. CONCLUSION We found interactions between the HMOX-1 and NOS3 genes and responsiveness to methyldopa and that the HMOX1 polymorphism affects the levels of enzyme HO-1 in responsiveness to methyldopa and to total antihypertensive therapy. These data suggest impact of the combination of these two polymorphisms on antihypertensive responsiveness in PE.
Collapse
Affiliation(s)
- Valeria Cristina Sandrim
- Department of Pharmacology, Instituto de Biociências de Botucatu da Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Marcelo Rizzatti Luizon
- Department of Genetics, Ecology and Evolution, Instituto de Ciências Biológicas da Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Eliane Pilan
- Department of Pharmacology, Instituto de Biociências de Botucatu da Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Mayara Caldeira-Dias
- Department of Pharmacology, Instituto de Biociências de Botucatu da Universidade Estadual Paulista, Botucatu, SP, Brazil
| | | | - Georgia Kors
- Department of Pharmacology, Instituto de Biociências de Botucatu da Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Iuly Berndt
- Department of Pharmacology, Instituto de Biociências de Botucatu da Universidade Estadual Paulista, Botucatu, SP, Brazil
| | - Riccardo Lacchini
- Department of Psychiatric Nursing and Human Sciences, Escola de Enfermagem de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Ricardo Carvalho Cavalli
- Department of Gynecology and Obstetrics, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
21
|
Quantitation of pyrazines in Baijiu and during production process by a rapid and sensitive direct injection UPLC-MS/MS approach. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2020.109371] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Zhu K, Zeng X, Tan F, Li W, Li C, Song Y, Zhao X. Effect of insect tea on D-galactose-induced oxidation in mice and its mechanisms. Food Sci Nutr 2019; 7:4105-4115. [PMID: 31890190 PMCID: PMC6924339 DOI: 10.1002/fsn3.1278] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 10/05/2019] [Accepted: 10/08/2019] [Indexed: 12/12/2022] Open
Abstract
Insect tea is a traditional Chinese drink that contains abundant bioactive substances. In this study, the preventive effect of Insect tea on D-galactose-induced oxidation in mice was studied. The serum, liver, and spleen of mice were measured by biochemical and molecular biological methods, which showed that Insect tea could increase the biochemical indexes of the thymus, brain, heart, liver, spleen, and kidney in mice with induced oxidative damage. Insect tea can increase the levels of SOD (superoxide dismutase), GSH-Px (glutathione peroxidase), and GSH (glutathione) and decrease the levels of MDA (malondialdehyde) in the serum, liver, and spleen of mice with oxidative damage. Pathological observation also confirmed that Insect tea could inhibit oxidative damage of the liver and spleen tissue caused by D-galactose in mice. Further molecular biological experiments also showed that Insect tea could upregulate the mRNA and protein expression of Cu/Zn-SOD (cuprozinc-superoxide dismutase), Mn-SOD (manganese superoxide dismutase), CAT (catalase), HO-1 (heme oxygenase-1), Nrf2 (nuclear factor-erythroid 2 related factor 2), γ-GCS (γ-glutamylcysteine synthetase), and NQO1 (NAD(P)H dehydrogenase [quinone] 1) in the liver and spleen of oxidized mice. Insect tea has a good preventive effect on D-galactose-induced oxidation in mice, and the effect is better than vitamin C, an antioxidant. Insect tea is rich in isochlorogenic acid A, quercetin, rutin, hesperidin, neochlorogenic acid, and cryptochlorogenic acid. The combination of these bioactive substances has good antioxidant effects. Thus, Insect tea is a functional food with a good antioxidant effect that has value for future development and utilization.
Collapse
Affiliation(s)
- Kai Zhu
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Xiaofei Zeng
- Department of Cardiothoracic SurgeryThe First Affiliated Hospital of Chengdu Medical CollegeChengduChina
| | - Fang Tan
- Department of Public HealthOur Lady of Fatima UniversityValenzuelaPhilippines
| | - Wenfeng Li
- School of Life Science and BiotechnologyYangtze Normal UniversityChongqingChina
| | - Chong Li
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Yaru Song
- Chongqing Collaborative Innovation Center for Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
- Chongqing Engineering Laboratory for Research and Development of Functional FoodChongqing University of EducationChongqingChina
| | - Xin Zhao
- Chongqing Engineering Research Center of Functional FoodChongqing University of EducationChongqingChina
| |
Collapse
|
23
|
Guo H, Kuang Z, Zhang J, Zhao X, Pu P, Yan J. The preventive effect of Apocynum venetum polyphenols on D-galactose-induced oxidative stress in mice. Exp Ther Med 2019; 19:557-568. [PMID: 31897099 PMCID: PMC6923744 DOI: 10.3892/etm.2019.8261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 11/05/2019] [Indexed: 12/26/2022] Open
Abstract
Apocynum venetum is a traditional medicine that is rich in polyphenols. Apocynum venetum polyphenol extract (AVP) contains the active substances neochlorogenic acid, chlorogenic acid, rutin, isoquercitrin, astragaloside and rosmarinic acid. In the present study, the preventive effect of AVP against D-galactose-induced oxidative stress was studied in a mouse model. The sera, skin, livers and spleens of mice were examined using hematoxylin and eosin staining, reverse transcription-quantitative PCR and western blot analysis. The biochemical results showed that AVP improved the thymus, brain, heart, liver, spleen and kidney indices in a mouse model of oxidative stress. AVP was also able to reverse the reduction in levels of superoxide dismutase (SOD), glutathione peroxidase and glutathione, and increased the levels of nitric oxide and malondialdehyde identified in the serum, liver, spleen and brain of mice exposed to oxidative stress. Pathological observations confirmed that AVP could inhibit oxidative damage to the skin, liver and spleen of mice caused by D-galactose. Further molecular biological experiments also demonstrated that AVP increased the expression of neuronal nitric oxide synthase, endothelial nitric oxide synthase, Cu/Zn-SOD, Mn-SOD, catalase, heme oxygenase-1, nuclear factor-erythroid 2-related factor 2, γ-glutamylcysteine synthetase and NAD(P)H quinone dehydrogenase 1 and reduced the expression of inducible nitric oxide synthase in the liver and spleen of treated mice compared to controls. Notably, the preventive effect of AVP against D-galactose-induced oxidative damage in mice was better than that of the confirmed antioxidant vitamin C. In conclusion, AVP exhibited an antioxidant effect and the AVP-rich Apocynum venetum may be considered a plant resource with potential antioxidative benefits.
Collapse
Affiliation(s)
- Huan Guo
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, P.R. China
| | - Zhiping Kuang
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, P.R. China
| | - Jing Zhang
- Environment and Quality Inspection College, Chongqing Chemical Industry Vocational College, Chongqing 401228, P.R. China
| | - Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, P.R. China
| | - Ping Pu
- The First Department of Orthopaedic Surgery, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, P.R. China
| | - Junfeng Yan
- Department of Internal Medicine-Neurology, Chongqing Traditional Chinese Medicine Hospital, Chongqing 400021, P.R. China
| |
Collapse
|
24
|
Ying J, Wu J, Zhang Y, Han Y, Qian X, Yang Q, Chen Y, Chen Y, Zhu H. Ligustrazine suppresses renal NMDAR1 and caspase-3 expressions in a mouse model of sepsis-associated acute kidney injury. Mol Cell Biochem 2019; 464:73-81. [PMID: 31732832 DOI: 10.1007/s11010-019-03650-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/03/2019] [Indexed: 12/16/2022]
Abstract
Sepsis-associated acute kidney injury (AKI) is a life threatening condition with high morbidity and mortality. The pathogenesis of AKI is associated with apoptosis. In this study, we investigated the effects of ligustrazine (LGZ) on experimental sepsis-associated AKI in mice. Sepsis-associated AKI was induced in a mice model using cecal ligation and puncture (CLP) method. Mice were administered LGZ (10, 30, and 60 mg/kg) via tail vein injection 0.5 h before CLP surgery. Mice survival was evaluated. Renal water content was detected. Urine samples were collected for ELISA of Kim1. Kidneys were collected for nucleic acid analysis and histological examination. Pathological assessment was used to determine the effect of LGZ on sepsis-associated AKI. Caspase-3 expression in kidney was assessed by immunohistochemistry. Renal NMDAR1 level was also determined. Treatment of LGZ improved mice survival rate; the effect was significant when administered at a high LGZ dose (60 mg/kg). Renal water content of mice undergoing CLP was significantly reduced by LGZ treatment. Both middle-dose and high-dose LGZ treatments reduced urine Kim1 level in sepsis-associated AKI mice. The severity of AKI in septic mice was reduced by middle-dose and high-dose LGZ administration. Immunohistochemical analysis revealed decreased caspase-3 and NMDAR1 levels in the kidney following middle-dose and high-dose LGZ treatments. RT-PCR assay showed a significant reduction in NMDAR1 mRNA expression in the kidney of middle-dose and high-dose LGZ-treated mice. LGZ exhibited protective effects against sepsis-associated AKI in mice, possibly via downregulation of renal NMDAR1 expression and its anti-apoptotic action by inhibiting caspase-3.
Collapse
Affiliation(s)
- Jing Ying
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Jin Wu
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China.
| | - Yiwei Zhang
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Yangyang Han
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Xinger Qian
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Qiuhong Yang
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Yongjie Chen
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Yijun Chen
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| | - Hao Zhu
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo, 315010, Zhejiang, China
| |
Collapse
|
25
|
Qu B, Yuan L, Yang L, Li J, Lv H, Yang X. Polyurethane End-Capped by Tetramethylpyrazine-Nitrone for Promoting Endothelialization Under Oxidative Stress. Adv Healthc Mater 2019; 8:e1900582. [PMID: 31529779 DOI: 10.1002/adhm.201900582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 09/05/2019] [Indexed: 12/25/2022]
Abstract
Thrombus and restenosis are two main factors that cause the failure of vascular implants. Constructing a functional and confluent layer of endothelial cells (ECs) is considered an ideal method to prevent these problems. However, oxidative stress induced by the disease and implantation can damage ECs and hinder the endothelialization of implants. Thus, developing biomaterials that can protect ECs adhesion and proliferation from oxidative stress is urgently needed for the rapid endothelialization of vascular implants. In this work, a novel polyurethane (PU-TBN) is synthesized by employing tetramethylpyrazine-nitrone (TBN) as end-group to endow polymers with dual functions of antioxidant activity and promoting endothelialization. Common PU without TBN is also prepared to be control. Compared to PU, PU-TBN significantly promotes human umbilical vein endothelial cells (HUVECs) adhesion and proliferation, where cells spread well and a confluent endothelial layer is formed. PU-TBN also shows obvious free radical scavenging activity, and thus effectively attenuates oxidative stress to protect HUVECs from oxidative apoptosis. Moreover, PU-TBN exhibits enhanced antiplatelets effect, excellent biocompatibility, and similar mechanical properties to PU. These characteristics can endow PU-TBN with great potential to be used as vascular implants or coatings of other materials for rapid endothelialization under complex oxidative stress environment.
Collapse
Affiliation(s)
- Baoliu Qu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Liguang Yuan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Lei Yang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
- College of Applied Chemistry and EngineeringUniversity of Science and Technology of China 96 Jinzhai Road Hefei 230026 P. R. China
| | - Jinge Li
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Hongying Lv
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| | - Xiaoniu Yang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of Sciences 5625 Renmin Stree Changchun 130022 P. R. China
- Polymer Composites Engineering LaboratoryChangchun Institute of Applied ChemistryUniversity of Chinese Academy of Sciences 5625 Renmin Street Changchun 130022 P. R. China
| |
Collapse
|
26
|
Zhao X, Yi R, Zhou X, Mu J, Long X, Pan Y, Song JL, Park KY. Preventive effect of Lactobacillus plantarum KSFY02 isolated from naturally fermented yogurt from Xinjiang, China, on d-galactose–induced oxidative aging in mice. J Dairy Sci 2019; 102:5899-5912. [DOI: 10.3168/jds.2018-16033] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 01/10/2019] [Indexed: 12/11/2022]
|
27
|
Kremer JI, Pickard S, Stadlmair LF, Glaß-Theis A, Buckel L, Bakuradze T, Eisenbrand G, Richling E. Alkylpyrazines from Coffee are Extensively Metabolized to Pyrazine Carboxylic Acids in the Human Body. Mol Nutr Food Res 2019; 63:e1801341. [PMID: 31125183 DOI: 10.1002/mnfr.201801341] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 04/17/2019] [Indexed: 12/14/2022]
Abstract
SCOPE Coffee is a complex mixture of over 1000 compounds, including diverse heteroaromatic compounds such as alkylpyrazines. Little is known about the intake, metabolism, and bodily distribution of these compounds. Therefore, a human intervention study is conducted to investigate the excretion of alkylpyrazine metabolites in urine after the ingestion of brewed coffee containing alkylpyrazines. METHODS AND RESULTS After consuming a diet without heat-processed food, ten volunteers consumed 500 mL of freshly brewed coffee prepared from coffee pads, providing intakes of 2-methylpyrazine (2-MeP), 2,5-dimethylpyrazine (2,5-DMeP), and 2,6-dimethylpyrazine (2,6-DMeP) amounting to 17.2, 4.4, and 4.9 µmol, respectively. These alkylpyrazines are metabolized into the corresponding pyrazine carboxylic acids, namely pyrazine-2-carboxylic acid (PA), 5-hydroxypyrazine-2-carboxylic acid (5-OHPA), 5-methylpyrazine-2-carboxylic acid (5-MePA), and 6-methylpyrazine-2-carboxylic acid (6-MePA). In total, 64% of the ingested 2-MeP is excreted as PA, as well as 26% as 5-OHPA, while 91% and 97% of the ingested 2,5-DMeP and 2,6-DMeP are recovered as 5-MePA and 6-MePA, respectively, in urine samples collected after coffee consumption. CONCLUSION This study provides evidence that alkylpyrazines are rapidly metabolized into the corresponding carboxylic acids and excreted via urine by humans, which is consistent with earlier rodent studies.
Collapse
Affiliation(s)
- Jonathan I Kremer
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Stephanie Pickard
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Lara F Stadlmair
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Anika Glaß-Theis
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Leon Buckel
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Tamara Bakuradze
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Gerhard Eisenbrand
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| | - Elke Richling
- Department of Chemistry, Division of Food Chemistry and Toxicology, Technische Universität Kaiserslautern, Erwin-Schrödinger-Str. 52, D-67663, Kaiserslautern, Germany
| |
Collapse
|
28
|
Preventive Effect of Small-Leaved Kuding Tea ( Ligustrum robustum (Roxb.) Bl.) Polyphenols on D-Galactose-Induced Oxidative Stress and Aging in Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:3152324. [PMID: 31239856 PMCID: PMC6556317 DOI: 10.1155/2019/3152324] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 02/06/2023]
Abstract
Small-leaved Kuding tea is a traditional Chinese tea that is rich in polyphenols. In the current study, we investigated the preventive effect of small-leaved Kuding tea (SLKDT) on D-galactose-induced oxidative aging in mice. Changes in serum, skin, liver, and spleen of experimental animals were determined using biochemical and molecular biology techniques. Biochemical analysis demonstrated that polyphenol extract of SLKDT (PSLKDT) improved the indices of the thymus, brain, heart, liver, spleen, and kidney function in model mice. PSLKDT prevented a decrease in the levels of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) as well as an increase in nitric oxide (NO) and malondialdehyde (MDA) levels in serum, liver, and spleen. Pathological assessment also showed that PSLKDT reduced oxidative damage induced by D-galactose in skin, liver, and spleen. We further found that PSLKDT upregulated neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), Cu/Zn-SOD, Mn-SOD, catalase (CAT), heme oxygenase-1 (HO-1), nuclear factor (nuclear factor-erythroid 2 related factor 2 (Nrf2), γ-glutamylcysteine synthetase (γ-GCS), and NAD(P)H dehydrogenase [quinone] 1 (NQO1) mRNA expression and downregulated inducible nitric oxide synthase (iNOS) mRNA expression. Protein levels of SOD1 (Cu/Zn-SOD), SOD2 (Mn-SOD), CAT, GSH1 (γ-glutamate-cysteine ligase), and GSH2 (glutathione synthetase) in the liver and spleen were also increased by PSLKDT treatment. Collectively, these results indicate that PSLKDT is effective in preventing D-galactose-induced oxidative aging in mice, and its efficacy is significantly higher than antioxidant vitamin C. Because PSLKDT is a potent antioxidant and antiaging polyphenol, Kuding tea rich in PSLKDT should be considered an ideal drink with antioxidative and antiaging effects.
Collapse
|
29
|
Yang L, Qiu Y, Liu J, Lin R, Yu P, Fu X, Hao B, Lei B. Retinal Transcriptome Analysis in the Treatment of Endotoxin-Induced Uveitis with Tetramethylpyrazine Eye Drops. J Ocul Pharmacol Ther 2019; 35:235-244. [PMID: 30994400 DOI: 10.1089/jop.2018.0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Purpose: To investigate retinal gene expression of tetramethylpyrazine (TMP) eye drop-treated endotoxin-induced uveitis (EIU) in mice and to explore the mechanisms. Methods: The inflammatory signs of the anterior segment were evaluated, and clinical scores were graded. The retinal transcriptome from the TMP eye drop-treated and the untreated mice was identified by RNA sequencing (RNA-seq) strategy. Differentially expressed genes (DEGs) were validated by real-time PCR. The protein-protein interaction was analyzed using the STRING software. Results: Compared with the TMP-treated group, the inflammatory responses of the untreated control group were much severe and clinical score was remarkably higher (P < 0.001) at 24 h after lipopolysaccharide administration. RNA-seq assay identified 407 DEGs, among which 356 were upregulated and 51 were downregulated. There were 12 upregulated gene ontology terms enriched and 27 upregulated pathways. Seven DEGs, including inflammation-related, complement system-related, and interferon-related genes, were validated using quantitative PCR. Conclusions: TMP exerted anti-inflammatory effect in EIU. Local application of TMP inhibited retinal inflammatory response by regulating the inflammation-related genes, suggesting that TMP may be a potential novel therapeutic drug for ocular inflammation.
Collapse
Affiliation(s)
- Lin Yang
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Yiguo Qiu
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Jingyang Liu
- 2 People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, China
| | - Ru Lin
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Peng Yu
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Xinyu Fu
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China
| | - Bingtao Hao
- 3 Cancer Research Institute, Southern Medical University, Guangzhou, China
| | - Bo Lei
- 1 The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Laboratory of Ophthalmology, Chongqing Eye Institute, Chongqing, China.,2 People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Henan Eye Institute, Henan Eye Hospital, Zhengzhou, China
| |
Collapse
|
30
|
Salvianolic acid B ameliorates liver injury in a murine aGvHD model by decreasing inflammatory responses via upregulation of HO-1. Transpl Immunol 2019; 55:101203. [PMID: 30904623 DOI: 10.1016/j.trim.2019.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 01/10/2023]
Abstract
Acute graft-versus-host disease (aGvHD) remains lethal, even after allogeneic hematopoietic stem cell transplantation. Inflammatory responses play an important role in aGvHD. Salvianolic acid B (Sal B) has been widely reported to have a major effect on the anti-inflammatory response, but these effects in an aGvHD model have never been reported. B6 donor splenocytes were transplanted into unirradiated BDF1 recipients and liver and serum were collected on day 14 after transplantation with or without Sal B administration. We measured the expression of pro-inflammatory cytokines and chemokines and other manifestations in aGvHD mice after Sal B treatment. Sal B ameliorated liver injury in aGvHD and promoted survival in mice. Sal B treatment resulted in decreased expression of pro-inflammatory cytokines and chemokines whose expressions in liver are normally elevated by aGvHD. Furthermore, Sal B treatment also enhanced PGC-1α expression in liver tissue and HO-1 expression in nonparenchymal cells. In addition, HO-1 inhibitor abrogated the improvement of survival rate of mice with aGvHD. These results indicated that the protective effect of Sal B relies on suppressing the inflammatory response phase in the aGvHD model, presumably by inducing HO-1. Taken together our data showed that Sal B ameliorates liver injury in aGvHD by decreasing inflammatory responses via upregulation of HO-1. It may provide a novel way to deal with this disease.
Collapse
|
31
|
Urinary biomarker evaluation for early detection of gentamycin-induced acute kidney injury. Toxicol Lett 2019; 300:73-80. [DOI: 10.1016/j.toxlet.2018.10.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/20/2022]
|
32
|
Li HD, Meng XM, Huang C, Zhang L, Lv XW, Li J. Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury. Front Pharmacol 2019; 10:376. [PMID: 31057404 PMCID: PMC6482429 DOI: 10.3389/fphar.2019.00376] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 03/26/2019] [Indexed: 02/06/2023] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future.
Collapse
Affiliation(s)
- Hai-Di Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Cheng Huang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Lei Zhang
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Xiong-Wen Lv
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Jun Li
- The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
- Institute for Liver Diseases, Anhui Medical University, Hefei, China
- Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Jun Li, ;
| |
Collapse
|
33
|
Sosorburam D, Wu ZG, Zhang SC, Hu P, Zhang HY, Jiang T, Ahiasi-Mensah J, He X. Therapeutic effects of traditional Chinese herbal prescriptions for primary dysmenorrhea. CHINESE HERBAL MEDICINES 2019. [DOI: 10.1016/j.chmed.2018.11.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
34
|
Lixin X, Lijun Y, Songping H. Ganoderic acid A against cyclophosphamide‐induced hepatic toxicity in mice. J Biochem Mol Toxicol 2018; 33:e22271. [PMID: 30506662 DOI: 10.1002/jbt.22271] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 10/16/2018] [Accepted: 10/26/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Xu Lixin
- Department of Hepatology, Nantong Third People's Hospital, Nantong UniversityNantong China
| | - Yan Lijun
- Department of Hepatology, Nantong Third People's Hospital, Nantong UniversityNantong China
| | - Huang Songping
- Department of Hepatology, Nantong Third People's Hospital, Nantong UniversityNantong China
| |
Collapse
|
35
|
Lactobacillus plantarum CQPC11 Isolated from Sichuan Pickled Cabbages Antagonizes d-galactose-Induced Oxidation and Aging in Mice. Molecules 2018; 23:molecules23113026. [PMID: 30463304 PMCID: PMC6278364 DOI: 10.3390/molecules23113026] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/17/2022] Open
Abstract
Chinese pickled cabbage is a traditional fermented food that contains abundant microbes produced during the process of fermentation. In this work, an in vivo animal study was conducted to investigate the effects of a newly isolated lactic acid bacterium (Lactobacillus plantarum CQPC11, LP-CQPC11) on d-galactose-induced oxidation and aging in mice. Analysis of the serum and tissue samples of these mice using molecular biology approaches showed that LP-CQPC11 suppressed the decrease in thymus, brain, heart, liver, spleen, and kidney indices caused by oxidation and aging. Furthermore, LP-CQPC11 increased the levels of SOD (superoxide dismutase), GSH-Px (glutathione peroxidase), and GSH (glutathione), whereas it reduced the levels of NO (nitric oxide) and MDA (malondialdehyde) in the serum, liver, and spleen of oxidation and aging mouse models. Pathological observation indicated that LP-CQPC11 alleviated the damage caused by oxidation and aging on the liver and spleen of mice. qPCR analysis indicated that LP-CQPC11 effectively upregulated the expression of nNOS (neuronal nitric oxide synthase), eNOS (endothelial nitric oxide synthase), Cu/Zn-SOD (cuprozinc-superoxide dismutase), Mn-SOD (manganese superoxide dismutase), CAT (catalase), HO-1 (heme oxygenase-1), Nrf2 (nuclear factor-erythroid 2 related factor 2), γ-GCS (γ-glutamylcysteine synthetase), and NQO1 (NAD(P)H dehydrogenase [quinone] 1), but downregulated the expression of iNOS (inducible nitric oxide synthase) in the mouse liver and spleen. Western blot analysis showed that LP-CQPC11 effectively upregulated SOD1 (Cu/Zn-SOD), SOD2 (Mn-SOD), CAT, GSH1 (c-glutamylcysteine synthetase), and GSH2 (glutathione synthetase) protein expression in mouse liver and spleen tissues. These findings suggest that LP-CQPC11 can effectively prevent d-galactose-induced oxidation and aging in mice, and the effect is even better than that of the commonly used Lactobacillus delbruechii subsp. bulgaricus (LDSB) and vitamin C in the industry. Thus, LP-CQPC11 may be potentially employed as a probiotic strain.
Collapse
|
36
|
Zhao X, Song JL, Yi R, Li G, Sun P, Park KY, Suo H. Comparison of Antioxidative Effects of Insect Tea and Its Raw Tea (Kuding Tea) Polyphenols in Kunming Mice. Molecules 2018; 23:E204. [PMID: 29351230 PMCID: PMC6017035 DOI: 10.3390/molecules23010204] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/16/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022] Open
Abstract
Kudingcha is a traditional Chinese tea, and insect tea is a special drink produced by the metabolism of insect larvae using the raw Kuding tea. Insect tea polyphenols (ITP) and its raw tea (Kuding tea) polyphenols (KTP) are high-purity polyphenols extracted by centrifuge precipitation. The present study was designed to compare the antioxidative effects of insect tea polyphenols (ITP) and its raw tea (Kuding tea) polyphenols (KTP) on d-galactose-induced oxidation in Kunming (KM) mice. KM mice were treated with ITP (200 mg/kg) and KTP (200 mg/kg) by gavage, and vitamin C (VC, 200 mg/kg) was also used as a positive control by gavage. After determination in serum, liver and spleen, ITP-treated mice showed higher superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and glutathione (GSH) activities and lower nitric oxide (NO), malonaldehyde (MDA) activities than VC-treated mice, KTP-treated mice and untreated oxidation mice (control group). By H&E section observation, the mice induced by d-galactose-induced oxidation showed more changes than normal mice, and oxidative damage appeared in liver and spleen tissues; ITP, VC and KTP improved oxidative damage of liver and spleen tissues, and the effects of ITP were better than VC and KTP. Using quantitative polymerase chain reaction (qPCR) and western blot experiments, it was observed that ITP could increase the mRNA and protein expression of neuronal nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), manganese superoxide dismutase (Mn-SOD), cupro/zinc superoxide dismutase (Cu/Zn-SOD), catalase (CAT), heme oxygenase-1 (HO-1), nuclear factor erythroid 2 related factor 2 (Nrf2), gamma glutamylcysteine synthetase (γ-GCS), and NAD(P)H:quinone oxidoreductase 1 (NQO1) and reduce inducible nitric oxide synthase (iNOS) expression in liver and spleen tissues compared to the control group. These effects were stronger than for VC and KTP. Both ITP and KTP had good antioxidative effects, and after the transformation of insects, the effects of ITP were better than that of KTP and even better than VC. Thus, ITP can be used as an antioxidant and anti-ageing functional food.
Collapse
Affiliation(s)
- Xin Zhao
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Jia-Le Song
- Department of Nutrition and Food Hygiene, School of Public Health, Guilin Medical University, Guilin 541004, Guangxi, China.
| | - Ruokun Yi
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Guijie Li
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Peng Sun
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Research Center of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Chongqing Engineering Laboratory for Research and Development of Functional Food, Chongqing University of Education, Chongqing 400067, China.
- College of Biological and Chemical Engineering, Chongqing University of Education, Chongqing 400067, China.
| | - Kun-Young Park
- Chongqing Collaborative Innovation Center for Functional Food, Chongqing University of Education, Chongqing 400067, China.
- Department of Food Science and Biotechnology, Cha University, Seongnam 13488, Gyeongghi-do, Korea.
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China.
| |
Collapse
|
37
|
Ye Z, Lu H, Su Q, Xian X, Li L. Effect of ligustrazine on preventing contrast-induced nephropathy in patients with unstable angina. Oncotarget 2017; 8:92366-92374. [PMID: 29190922 PMCID: PMC5696188 DOI: 10.18632/oncotarget.21310] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Our purpose was to assess the effect of ligustrazine in the prevention of contrast-induced nephropathy (CIN) in patients with unstable angina (UA). METHODS 148 patients with UA undergoing coronary angiography and/or percutaneous coronary intervention (PCI) were selected for observation; the patients were divided into a control group (group A, n=74) and a ligustrazine group (group B, n=74). Group A was given routine treatment, while group B was given routine treatment combined with ligustrazine. Serum creatinine (Scr), cystatin C and glomerular filtration rate (eGFR) concentrations were measured before and 1 day, 2 days and 3 days after treatment, and the incidence of contrast-induced nephropathy (CIN) and major cardiovascular events (MACE) were observed in both groups. RESULTS The Scr, Cystatin C and eGRF levels in group B were better than in group A after 1 day (OR: 2.64, 95% CI: 2.47-4.98; OR: 2.66, 95% CI: 2.62-5.77; OR: 4.02, 95% CI: 3.02-5.53, respectively), 2 days (OR: 3.58, 95% CI: 2.41-4.92; OR: 2.92, 95% CI: 2.83-5.02; OR: 3.28, 95% CI: 3.24-5.14, respectively) and 3 days of treatment (OR: 3.26, 95% CI: 2.17-4.35; OR: 2.85, 95% CI: 2.26-4.02; OR: 3.19, 95% CI: 2.53-4.34, respectively). The incidence of CIN (9.26% vs 16.67%) and MACE (7.41% vs 18.51%) of group B were significantly lower than in group A (P<0.05). CONCLUSIONS Our study suggests that ligustrazine can reduce CIN and MACE in patients with UA when undergoing coronary angiography and/or PCI.
Collapse
Affiliation(s)
- Ziliang Ye
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
- Guangxi Medical University, Nanning, Guangxi, China
| | - Haili Lu
- Guangxi Medical University, Nanning, Guangxi, China
| | - Qiang Su
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
| | - Xinhua Xian
- Guangxi Medical University, Nanning, Guangxi, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Guangxi Cardiovascular Institute, Nanning, Guangxi, China
| |
Collapse
|
38
|
Xia H, Xu Y, Cheng Z, Cheng Y. Tetramethylpyrazine-Loaded Hydrogels: Preparation, Penetration Through a Subcutaneous-Mucous-Membrane Model, and a Molecular Dynamics Simulation. AAPS PharmSciTech 2017; 18:1720-1727. [PMID: 27743208 DOI: 10.1208/s12249-016-0645-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 10/03/2016] [Indexed: 11/30/2022] Open
Abstract
Tetramethylpyrazine (TMP) was extracted from Ligusticum chuanxiong hort. The compound is known to have a variety of medicinal functions; in particular, it is used for the treatment of cerebral ischemic diseases. TMP-loaded hydrogels offer an excellent preparation with the capacity to bypass the blood-brain barrier, allowing treatment of the brain through intranasal administration. We prepared TMP-loaded hydrogels using carbomer 940 and evaluated the release of TMP from the hydrogel. We determined the release rate using Franz-type diffusion cell experiments with a subcutaneous-mucous-membrane model and also by a molecular dynamics (MD) simulation. In general, the former method was more complicated than the latter was. The dynamic behavior of TMP release from the hydrogel was revealed by analysis of the mean square displacement of the trajectory in the MD simulation. The coefficient of TMP diffusion from the hydrogel was calculated at different temperatures (277, 298, and 310 K) by using MD software. The results showed that the coefficient of diffusion increased with an increase in temperature. This trend was observed both experimentally and in the MD simulation. Therefore, the MD simulation was a complementary method to verify the experimental data.
Collapse
|
39
|
Aycan-Ustyol E, Kabasakal M, Bekpinar S, Alp-Yıldırım FI, Tepe O, Giris M, Ozluk Y, Unlucerci Y, Uydes-Dogan BS, Uysal M. Vascular function and arginine and dimethylarginines in gentamicin-induced renal failure: a possible effect of heme oxygenase 1 inducer hemin. Can J Physiol Pharmacol 2017; 95:1406-1413. [PMID: 28489953 DOI: 10.1139/cjpp-2016-0578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Increased oxidative stress and disturbance in nitric oxide bioavailability lead to endothelial dysfunction and cardiovascular complication in renal disease. Gentamicin (GM), a commonly used antibiotic, exhibits a toxic effect on renal proximal tubules. Prevention of its nephrotoxicity is important. Therefore, we investigated whether heme oxygenase 1 HO-1) induction influenced kidney and vascular function in GM-administered rats. GM (100 mg·kg-1·day-1; i.p.) was given to rats alone or together with hemin (20 mg·kg-1 on alternate days; i.p.) for 14 days. Plasma and kidney l-arginine, asymmetric dimethylarginine (ADMA), and symmetric dimethylarginine (SDMA) as well as kidney 4-hydroxynonenal (HNE) levels and myeloperoxidase (MPO) activity were measured. Histopathological examinations of kidney and relaxation and contraction responses of aorta were also examined. GM increased serum SDMA, urea nitrogen (BUN), and creatinine levels and caused histopathological alterations in the kidney. GM elevated HO-1 protein and mRNA expressions, 4-HNE level, and MPO activity and decreased antioxidant enzyme activities and l-arginine levels in the kidney. Decreased relaxation and contraction were detected in the aorta. Hemin restored renal oxidative stress and inflammatory changes together with vascular dysfunction, but did not affect SDMA, BUN, or creatinine levels. We conclude that HO-1 induction may be effective in improving renal oxidative stress, inflammation, and vascular dysfunction mediated by GM.
Collapse
Affiliation(s)
- Esra Aycan-Ustyol
- a Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Capa 34093, Istanbul, Turkey
| | - Merve Kabasakal
- b Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Beyazit 34116, Istanbul, Turkey
| | - Seldag Bekpinar
- a Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Capa 34093, Istanbul, Turkey
| | - F Ilkay Alp-Yıldırım
- b Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Beyazit 34116, Istanbul, Turkey
| | - Ozge Tepe
- c Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Capa 34093, Istanbul, Turkey
| | - Murat Giris
- a Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Capa 34093, Istanbul, Turkey
| | - Yasemin Ozluk
- c Department of Pathology, Istanbul Faculty of Medicine, Istanbul University, Capa 34093, Istanbul, Turkey
| | - Yesim Unlucerci
- a Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Capa 34093, Istanbul, Turkey
| | - B Sonmez Uydes-Dogan
- b Department of Pharmacology, Faculty of Pharmacy, Istanbul University, Beyazit 34116, Istanbul, Turkey
| | - Mujdat Uysal
- a Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Capa 34093, Istanbul, Turkey
| |
Collapse
|
40
|
Wu D, Luo N, Wang L, Zhao Z, Bu H, Xu G, Yan Y, Che X, Jiao Z, Zhao T, Chen J, Ji A, Li Y, Lee GD. Hydrogen sulfide ameliorates chronic renal failure in rats by inhibiting apoptosis and inflammation through ROS/MAPK and NF-κB signaling pathways. Sci Rep 2017; 7:455. [PMID: 28352125 PMCID: PMC5428696 DOI: 10.1038/s41598-017-00557-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/03/2017] [Indexed: 11/25/2022] Open
Abstract
Chronic renal failure (CRF) is a major public health problem worldwide. Hydrogen sulfide (H2S) plays important roles in renal physiological and pathophysiological processes. However, whether H2S could protect against CRF in rats remains unclear. In this study, we found that H2S alleviated gentamicin-induced nephrotoxicity by reducing reactive oxygen species (ROS)-mediated apoptosis in normal rat kidney-52E cells. We demonstrated that H2S significantly improved the kidney structure and function of CRF rats. We found that H2S decreased the protein levels of Bax, Caspase-3, and Cleaved-caspase-3, but increased the expression of Bcl-2. Treatment with H2S reduced the levels of malondialdehyde and ROS and increased the activities of superoxide dismutase and glutathione peroxidase. H2S significantly abolished the phosphorylation of extracellular signal-regulated protein kinase 1/2, c-Jun N-terminal kinase, and p38 in the kidney of CRF rats. Furthermore, H2S decreased the expression levels of tumor necrosis factor-α, interleukin (IL)-6, IL-10, and monocyte chemoattractant protein-1, as well as the protein levels of p50, p65, and p-p65 in the kidney of CRF rats. In conclusion, H2S could ameliorate adenine-induced CRF in rats by inhibiting apoptosis and inflammation through ROS/mitogen-activated protein kinase and nuclear factor-kappa B signaling pathways.
Collapse
Affiliation(s)
- Dongdong Wu
- Henan University School of Medicine, Kaifeng, 475004, Henan, China
| | - Ning Luo
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Lianqu Wang
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Zhijun Zhao
- Luohe Medical College, Luohe, 462002, Henan, China
| | - Hongmin Bu
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Guoliang Xu
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Yongjun Yan
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Xinping Che
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Zhiling Jiao
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Tengfu Zhao
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Jingtao Chen
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China
| | - Ailing Ji
- Henan University School of Medicine, Kaifeng, 475004, Henan, China
| | - Yanzhang Li
- Henan University School of Medicine, Kaifeng, 475004, Henan, China.
| | - Garrick D Lee
- The First Affiliated Hospital of Henan University, Kaifeng, 475001, Henan, China.
| |
Collapse
|
41
|
Ding Y, Liao W, He X, Xiang W, Lu Q. CSTMP Exerts Anti-Inflammatory Effects on LPS-Induced Human Renal Proximal Tubular Epithelial Cells by Inhibiting TLR4-Mediated NF-κB Pathways. Inflammation 2017; 39:849-59. [PMID: 26956469 DOI: 10.1007/s10753-016-0315-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
(E)-2-(2-chlorostyryl)-3,5,6-trimethylpyrazine (CSTMP), a novel stilbene derivative, have been shown to have cytoprotective effects against H2O2-induced oxidative stress in human endothelial cells. However, little is known about its anti-inflammatory effects in lupus nephritis (LN). In the present study, we investigated the anti-inflammatory effects of CSTMP on lipopolysaccharide (LPS)-induced human renal proximal tubular epithelial cells (hRPTECs) and elucidated its molecular mechanisms. CSTMP significantly attenuated the cytotoxicity and suppressed the release of proinflammatory mediators, including iNOS, COX-2, TNF-α, IL-6, IL-8, CCL-2, ICAM-1, IL-1β, and MCP-1 in LPS-induced hRPTECs. In addition, CSTMP decreased the expression of TLR4 and its adapter molecules (MyD88, phosphorylation of TAK1, TRAF6, and IRAK1) and abolished its interactions with these adapter molecules in LPS-induced hRPTECs, resulting in an inhibition of the TLR4/MyD88/TAK1/ TRAF6/IRAK1 complex. Moreover, CSTMP also attenuated phosphorylation of IκB and IKK-α/β, and P50-NF-κB and P65-NF-κB translocation to nucleus in LPS-induced hRPTECs. These findings provided new insights to understand the mode of action of CSTMP in treatment of inflammatory diseases, such as LN.
Collapse
Affiliation(s)
- Yan Ding
- Department of Dermatology, Hainan General Hospital, Haikou, 570102, China.,Department of Dermatology, Maternal and Child Health care Hospital of Hainan Province, Haikou, 570206, China
| | - Wang Liao
- Department of Cardiology, Hainan General Hospital, Haikou, 570102, China
| | - Xiaojie He
- Department of Nephropathy, Children's Medical Center, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| | - Wei Xiang
- Department of Pediatrics, Maternal and Child Health care Hospital of Hainan Province, 15 Long Kun-Nan Road, Haikou, 570206, China.
| | - Qianjin Lu
- Department of Dermatology, The Second Xiangya Hospital, Central South University, Changsha, 410000, China
| |
Collapse
|
42
|
Xia H, Cheng Z, Cheng Y, Xu Y. Investigating the passage of tetramethylpyrazine-loaded liposomes across blood-brain barrier models in vitro and ex vivo. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 69:1010-7. [DOI: 10.1016/j.msec.2016.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 07/14/2016] [Accepted: 08/02/2016] [Indexed: 02/03/2023]
|
43
|
Jaikumkao K, Pongchaidecha A, Thongnak LO, Wanchai K, Arjinajarn P, Chatsudthipong V, Chattipakorn N, Lungkaphin A. Amelioration of Renal Inflammation, Endoplasmic Reticulum Stress and Apoptosis Underlies the Protective Effect of Low Dosage of Atorvastatin in Gentamicin-Induced Nephrotoxicity. PLoS One 2016; 11:e0164528. [PMID: 27727327 PMCID: PMC5058561 DOI: 10.1371/journal.pone.0164528] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022] Open
Abstract
Gentamicin is a commonly used aminoglycoside antibiotic. However, its therapeutic use is limited by its nephrotoxicity. The mechanisms of gentamicin-induced nephrotoxicity are principally from renal inflammation and oxidative stress. Since atorvastatin, 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors, exerts lipid-lowering effects, antioxidant, anti-inflammatory as well as anti-apoptotic effects, this study aimed to investigate the protective effects of atorvastatin against gentamicin-induced nephrotoxicity. Male Sprague Dawley rats were used and nephrotoxicity was induced by intraperitoneal injection of gentamicin, 100 mg/kg/day, for 15 days. Atorvastatin, 10 mg/kg/day, was administered by orally gavage 30 min before gentamicin injection on day 1 to 15 (pretreatment) or on day 10 to15 (delayed treatment). For only atorvastatin treatment group, it was given on day 1 to 15. At the end of the experiment, kidney weight, blood urea nitrogen and serum creatinine as well as renal inflammation (NF-κB, TNFαR1, IL-6 and iNOS), renal fibrosis (TGFβ1), ER stress (calpain, GRP78, CHOP, and caspase 12) and apoptotic markers (cleaved caspase-3, Bax, and Bcl-2) as well as TUNEL assay were determined. Gentamicin-induced nephrotoxicity was confirmed by marked elevations in serum urea and creatinine, kidney hypertrophy, renal inflammation, fibrosis, ER stress and apoptosis and attenuation of creatinine clearance. Atorvastatin pre and delayed treatment significantly improved renal function and decreased renal NF-κB, TNFαR1, IL-6, iNOS and TGFβ1 expressions. They also attenuated calpain, GRP78, CHOP, caspase 12, Bax, and increased Bcl-2 expressions in gentamicin-treated rat. These results indicate that atorvastatin treatment could attenuate gentamicin-induced nephrotoxicity in rats, substantiated by the reduction of inflammation, ER stress and apoptosis. The effect of atorvastatin in protecting from renal damage induced by gentamicin seems to be more effective when it beginning given along with gentamicin or pretreatment.
Collapse
Affiliation(s)
- Krit Jaikumkao
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anchalee Pongchaidecha
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - La-ongdao Thongnak
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Keerati Wanchai
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Phatchawan Arjinajarn
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | | | - Nipon Chattipakorn
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Anusorn Lungkaphin
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- * E-mail: ,
| |
Collapse
|
44
|
Mechanisms and Clinical Application of Tetramethylpyrazine (an Interesting Natural Compound Isolated from Ligusticum Wallichii): Current Status and Perspective. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:2124638. [PMID: 27668034 PMCID: PMC5030435 DOI: 10.1155/2016/2124638] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/09/2016] [Indexed: 01/09/2023]
Abstract
Tetramethylpyrazine, a natural compound from Ligusticum wallichii (Chuan Xiong), has been extensively used in China for cardiovascular and cerebrovascular diseases for about 40 years. Because of its effectiveness in multisystems, especially in cardiovascular, its pharmacological action, clinical application, and the structural modification have attracted broad attention. In this paper its mechanisms of action, the clinical status, and synthetic derivatives will be reviewed briefly.
Collapse
|
45
|
Wang L, Chan JY, Zhou X, Cui G, Yan Z, Wang L, Yan R, Di L, Wang Y, Hoi MP, Shan L, Lee SM. A Novel Agent Enhances the Chemotherapeutic Efficacy of Doxorubicin in MCF-7 Breast Cancer Cells. Front Pharmacol 2016; 7:249. [PMID: 27559313 PMCID: PMC4979254 DOI: 10.3389/fphar.2016.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 07/27/2016] [Indexed: 12/20/2022] Open
Abstract
We have previously demonstrated that DT-010, a novel conjugate of danshensu (DSS) and tetramethylpyrazine (TMP), displays anti-tumor effects in breast cancer cells both in vitro and in vivo. In the present study, we investigated whether DT-010 enhances the chemotherapeutic effect of doxorubicin (Dox) in MCF-7 breast cancer cells and exerts concurrent cardioprotective benefit at the same time. Our findings showed that DT-010 was more potent than TMP, DSS, or their combination in potentiating Dox-induced toxicity in MCF-7 cells. Co-treatment with DT-010 and Dox increased apoptosis in MCF-7 cells relative to Dox alone. Further study indicated that glycolytic capacity, glycolytic reserve and lactate level of MCF-7 cells were significantly inhibited after DT-010 treatment. DT-010 also increased the expression of the pro-survival protein GRP78, which was inhibited by co-treatment with Dox. Both endoplasmic reticulum stress inhibitor 4-PBA and knockdown of the expression of GRP78 protein potentiated DT-010-mediated apoptosis in MCF-7 cells. Moreover, DT-010 inhibited Dox-induced cardiotoxicity in H9c2 myoblasts. In conclusion, DT-010 and Dox confer synergistic anti-tumor effect in MCF-7 breast cancer cells through downregulation of the glycolytic pathway and inhibition of the expression of GRP78. Meanwhile, DT-010 also protects against Dox-induced cardiotoxicity.
Collapse
Affiliation(s)
- Liang Wang
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau Macao, China
| | - Judy Y Chan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau Macao, China
| | - Xinhua Zhou
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau Macao, China
| | - Guozhen Cui
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau Macao, China
| | - Zhixiang Yan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau Macao, China
| | - Li Wang
- Faculty of Health sciences, University of Macau Macao, China
| | - Ru Yan
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau Macao, China
| | - Lijun Di
- Faculty of Health sciences, University of Macau Macao, China
| | - Yuqiang Wang
- Institute of New Drug Research, College of Pharmacy, Jinan University Guangzhou, China
| | - Maggie P Hoi
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau Macao, China
| | - Luchen Shan
- Institute of New Drug Research, College of Pharmacy, Jinan University Guangzhou, China
| | - Simon M Lee
- State Key Laboratory of Quality Research in Chinese Medicine and Institute of Chinese Medical Sciences, University of Macau Macao, China
| |
Collapse
|
46
|
6-gingerol ameliorates gentamicin induced renal cortex oxidative stress and apoptosis in adult male albino rats. Tissue Cell 2016; 48:208-16. [PMID: 27036327 DOI: 10.1016/j.tice.2016.03.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 03/13/2016] [Accepted: 03/14/2016] [Indexed: 11/21/2022]
Abstract
Ginger or Zingiber officinale which is used in traditional medicine has been found to possess antioxidant effect that can control the generation of free radicals. Free radicals are the causes of renal cell degeneration that leads to renal failure in case of gentamicin induced toxicity. This study was done to evaluate the possible protective effects of 6-gingerol as natural antioxidant on gentamicin-induced renal cortical oxidative stress and apoptosis in adult male albino rats. Forty adult male albino rats were used in this study and were randomly divided into four groups, control group; 6-gingerol treated group; gentamicin treated group and protected group (given simultaneous 6-gingerol and gentamicin). At the end of the study, blood samples were drawn for biochemical study. Kidney sections were processed for histological, and immunohistochemical examination for caspase-3 to detect apoptosis and anti heat shock protein 47 (HSP47) to detect oxidative damage. Gentamicin treated rats revealed a highly significant increase in renal function tests, tubular dilatation with marked vacuolar degeneration and desquamation of cells, interstitial hemorrhage and cellular infiltration. Immunohistochemically, gentamicin treated rats showed a strong positive immunoreaction for caspase-3 and anti heat shock protein 47 (HSP47). Protected rats showed more or less normal biochemical, histological, and immunohistochemical pictures. In conclusion, co-administration of 6-gingerol during gentamicin 'therapy' has a significant reno-protective effect in a rat model of gentamicin-induced renal damage. It is recommended that administration of ginger with gentamicin might be beneficial in men who receive gentamicin to treat infections.
Collapse
|
47
|
Ding Y, Hou X, Chen L, Zhou H, Gong Y, Dai L, Zheng Y. Heme oxygenase-1 dependant pathway contributes to protection by tetramethylpyrazine against chronic hypoxic injury on medulla oblongata in rats. J Neurol Sci 2016; 361:101-11. [DOI: 10.1016/j.jns.2015.12.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 12/12/2015] [Accepted: 12/15/2015] [Indexed: 10/22/2022]
|
48
|
Cai J, Pan R, Jia X, Li Y, Hou Z, Huang RY, Chen X, Huang S, Yang GY, Sun J, Huang Y. The combination of astragalus membranaceus and ligustrazine ameliorates micro-haemorrhage by maintaining blood-brain barrier integrity in cerebrally ischaemic rats. JOURNAL OF ETHNOPHARMACOLOGY 2014; 158 Pt A:301-309. [PMID: 25456435 DOI: 10.1016/j.jep.2014.10.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2014] [Revised: 09/18/2014] [Accepted: 10/13/2014] [Indexed: 06/04/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Haemorrhagic transformation is an asymptomatic event that frequently occurs after following ischaemic stroke, particularly when pharmaceutical thrombolysis is used. However, the mechanism responsible for haemorrhagic transformation remains unknown, and therapeutics have not been identified. In this study, we administered a combination of astragalus membranaceus and ligustrazine to rats with cerebral ischaemia that had undergone thrombolysis. We analysed the effect of this combination on the attenuation of haemorrhagic transformation and the maintenance of blood-brain barrier integrity. METHODS A rat model of focal cerebral ischaemia was induced with autologous blood clot injections. Thrombolysis was performed via the intravenous injection of rt-PA. Astragalus membranaceus, ligustrazine or a combination of Astragalus membranaceus and ligustrazine was administered immediately after the clot injection. The cerebral infarct area, neurological deficits, blood-brain barrier integrity, and cerebral haemorrhage status were determined after 3, 6 and 24h of ischaemia. The ultrastructure of the blood-brain barrier was examined with a transmission electron microscope. The expression of tight junction proteins, including claudin-1, claudin-5, occludin, and zonula occludens-1, and matrix metallopeptidase-9 activation was further evaluated in terms of their roles in the protective effects of the combination drug on the integrity of the blood-brain barrier. RESULTS Ischaemia-induced Evans blue leakage and cerebral haemorrhage were markedly reduced in the combination drug-treated rats compared to the rats treated with either astragalus membranaceus or ligustrazine alone (p<0.05). The disruption of the ultrastructure of the blood-brain barrier and the neurological deficits were ameliorated by the combination treatment (p<0.05). The reductions in the expression of laudin-1, claudin-5, occludin, and ZO-1 were smaller in the rats that received the combination treatment. In addition, MMP-9 activity was suppressed in the combination-treated rats compared to the controls (p<0.05). CONCLUSIONS Treatment with a combination of astragalus membranaceus and ligustrazine alleviated ischaemia-induced micro-haemorrhage transformation by maintaining the integrity of the blood-brain barrier.
Collapse
Affiliation(s)
- Jun Cai
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Post-doctoral Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ruihuan Pan
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China; Post-doctoral Research Center of Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Xiang Jia
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Yue Li
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Zijun Hou
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Run-Yue Huang
- Department of Rheumatism, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510006, China
| | - Xin Chen
- Department of Radiology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Shengping Huang
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China
| | - Guo-Yuan Yang
- Neuroscience and Neuroengineering Center, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jingbo Sun
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| | - Yan Huang
- Diagnosis and Treatment Center of Encephalopathy, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China; The Second Institute of Clinical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510120, China.
| |
Collapse
|
49
|
Beetroot (Beta vulgaris L.) extract ameliorates gentamicin-induced nephrotoxicity associated oxidative stress, inflammation, and apoptosis in rodent model. Mediators Inflamm 2014; 2014:983952. [PMID: 25400335 PMCID: PMC4221885 DOI: 10.1155/2014/983952] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 09/11/2014] [Accepted: 09/29/2014] [Indexed: 11/17/2022] Open
Abstract
The present investigation was designed to investigate the protective effect of (Beta vulgaris L.) beat root ethanolic extract (BVEE) on gentamicin-induced nephrotoxicity and to elucidate the potential mechanism. Serum specific kidney function parameters (urea, uric acid, total protein, creatinine, and histopathology of kidney tissue) were evaluated to access gentamicin-induced nephrotoxicity. The oxidative/nitrosative stress (Lipid peroxidation, MDA, NP-SH, Catalase, and nitric oxide levels) was assessed. The inflammatory response (TNF-α, IL-6, MPO, NF-κB (p65), and NF-κB (p65) DNA binding) and apoptotic marker (Caspase-3, Bax, and Bcl-2) were also evaluated. BVEE (250 and 500 mg/kg) treatment along with gentamicin restored/increased the renal endogenous antioxidant status. Gentamicin-induced increased renal inflammatory cytokines (TNF-α and IL-6), nuclear protein expression of NF-κB (p65), NF-κB-DNA binding activity, myeloperoxidase (MPO) activity, and nitric oxide level were significantly down regulated upon BVEE treatment. In addition, BVEE treatment significantly reduced the amount of cleaved caspase 3 and Bax, protein expression and increased the Bcl-2 protein expression. BVEE treatment also ameliorated the extent of histologic injury and reduced inflammatory infiltration in renal tubules. These findings suggest that BVEE treatment attenuates renal dysfunction and structural damage through the reduction of oxidative stress, inflammation, and apoptosis in the kidney.
Collapse
|
50
|
Alkylpyrazine contents of coffee beverages using stable isotope dilution gas chromatography–mass spectrometry. Lebensm Wiss Technol 2014. [DOI: 10.1016/j.lwt.2014.02.049] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|