1
|
Ozatik FY, Teksen Y, Ozatik O, Çengelli Unel C, Karadeniz Saygili S. The effects of the GLP1 analog liraglutide on allodynia and motor coordination in peripheral neuropathy induced by a chemotherapeutic agent, cisplatin. J Mol Histol 2025; 56:153. [PMID: 40341588 DOI: 10.1007/s10735-025-10440-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 04/24/2025] [Indexed: 05/10/2025]
Abstract
Peripheral neuropathy is one of the dose-limiting side effects of cisplatin (CIS) and still has no effective treatment. In this study, we aimed to investigate the potential protective effects of liraglutide, a Glucagon-like peptide-1 (GLP-1) analogue against CIS-induced peripheral neuropathy. For this purpose, female Sprague Dawley rats (n = 32) were randomly allocated into 4 groups: control, CIS, CIS + liraglutide (once weekly) and CIS + liraglutide (daily). Neuropathic pain was induced by CIS 3 mg/kg/week for 5 weeks. The potential effects of liraglutide were investigated by behavior tests (von Frey, tail flick and footprint analysis), biochemical analysis and histopathological analyses of sciatic nerves and dorsal root ganglions. In the von Frey and tail flick tests, liraglutide demonstrated anti-neuropathic effects. Liraglutide also ameliorated motor coordination which was impaired by CIS. Liraglutide was shown to have beneficial effects against CIS-induced peripheral neuropathy by parameters demonstrating reduction of histopathological damage (stained by toluidine blue) of the sciatic nerves and dorsal root ganglions, suppression of oxidative stress parameters (SOD, CAT and GPx), and inflammatory load (NO, IL-6 and IL-10). Weekly dosing regimen was more effective than daily administration of liraglutide in this study. As a result, liraglutide seems to be the candidate agent for the effective treatment of CIS-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Fikriye Yasemin Ozatik
- Faculty of Medicine, Department of Pharmacology, Kutahya Health Sciences University, Evliya Çelebi Yerleşkesi, Tavşanlı Yolu, 10. Km., Kutahya, Turkey.
| | - Yasemin Teksen
- Faculty of Medicine, Department of Pharmacology, Kutahya Health Sciences University, Evliya Çelebi Yerleşkesi, Tavşanlı Yolu, 10. Km., Kutahya, Turkey
| | - Orhan Ozatik
- Faculty of Medicine, Department of Histology and Embriology, Kutahya Health Sciences University, Kutahya, Turkey
| | - Cigdem Çengelli Unel
- Faculty of Medicine, Department of Pharmacology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | - Suna Karadeniz Saygili
- Faculty of Medicine, Department of Histology and Embriology, Kutahya Health Sciences University, Kutahya, Turkey
| |
Collapse
|
2
|
Goel Y, Argueta DA, Peterson K, Lomeli N, Bota DA, Gupta K. Neuronal p38 MAPK Signaling Contributes to Cisplatin-Induced Peripheral Neuropathy. Antioxidants (Basel) 2025; 14:445. [PMID: 40298791 PMCID: PMC12024185 DOI: 10.3390/antiox14040445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/01/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025] Open
Abstract
This study investigates the role of p38 mitogen-activated protein kinase (MAPK) activation in dorsal root ganglion (DRG) neurons in the development and progression of chemotherapy-induced peripheral neuropathy (CIPN). This research evaluates whether inhibiting activation of p38 MAPK could reduce neuropathic outcomes in a transgenic breast cancer mouse model (C3TAg) and wild-type mice (FVB/N) treated with cisplatin. Cisplatin treatment stimulated p38 MAPK phosphorylation and nuclear translocation in DRG neurons. Neflamapimod, a specific inhibitor of p38 MAPK alpha (p38α), proven to be safe in clinical trials, inhibited neuronal cisplatin-induced p38 MAPK phosphorylation in vitro and in vivo. Neflamapimod also reduced cisplatin-induced oxidative stress, mitochondrial dysfunction, and cleaved caspase-3 expression in DRG neurons in vitro, protecting neuronal integrity and preventing axonal damage. Functionally, neflamapimod improved mechanical and musculoskeletal hyperalgesia, and cold sensitivity in cisplatin-treated mice, reversing neuropathic pain and neurotoxicity. This study identifies p38 MAPK activation as a critical driver of CIPN and highlights its potential as a therapeutic target for CIPN. Targeting p38 MAPK activation with neflamapimod offers a promising strategy to mitigate neurotoxicity and hyperalgesia without exacerbating cancer progression, positioning it as a novel intervention for CIPN.
Collapse
Affiliation(s)
- Yugal Goel
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (D.A.A.); (K.P.)
| | - Donovan A. Argueta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (D.A.A.); (K.P.)
| | - Kristen Peterson
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (D.A.A.); (K.P.)
| | - Naomi Lomeli
- Department of Neurology, Department of Medicine, University of California, Irvine, CA 92697, USA; (N.L.); (D.A.B.)
| | - Daniela A. Bota
- Department of Neurology, Department of Medicine, University of California, Irvine, CA 92697, USA; (N.L.); (D.A.B.)
- Chao Family Comprehensive Cancer Center, University of California, Irvine, CA 92697, USA
| | - Kalpna Gupta
- Hematology/Oncology, Department of Medicine, University of California, Irvine, CA 92697, USA; (Y.G.); (D.A.A.); (K.P.)
- Division of Hematology, Oncology and Transplantation, Department of Medicine, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Adıgüzel C, Yildirim C, Çevik S, Yilmaz ŞG, Bal R. Fisetin mitigates cisplatin-induced peripheral neuropathy: a behavioral and immunohistochemical study. Mol Biol Rep 2025; 52:353. [PMID: 40167901 DOI: 10.1007/s11033-025-10465-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
BACKGROUND Cisplatin (CIS), a commonly used chemotherapeutic drug, often causes peripheral neuropathy, considerably affecting patients' quality of life. The present study investigated the neuroprotective effects of fisetin, a natural flavonoid with antioxidant and anti-inflammatory features, in a rat model of cisplatin-induced peripheral neuropathy. METHODS AND RESULTS Male Wistar rats were divided into six groups: sham, neuropathy (CIS, 3 mg/kg, 5 weeks), fisetin treatment (CIS + 10 mg/kg and CIS + 20 mg/kg), and drugs control groups (10 mg/kg and 20 mg/kg fisetin alone). Behavioural experiments were conducted to evaluate motor coordination and sensory function, electrophysiologically measured nerve conduction velocity (NCV). Gene expression studies were conducted for NF-kB and GPX4 to investigate oxidative stress and inflammation. Finally, confocal microscopy studies were used to evaluate the structure of the sciatic nerve. Cisplatin induced motor impairments, sensory dysfunction, mechanical allodynia, diminished nerve conduction velocity, myelin deterioration (decreased MBP), and increased neuroinflammation (elevated GFAP and NF-kB, decreased GPX4). Fisetin, specifically at a dose of 10 mg/kg, markedly enhanced motor coordination, sensory thresholds, NCV, maintained myelin integrity, reduced glial activation, and restored oxidative and inflammatory balance by elevating GPX4 levels and decreasing NF-kB expression. CONCLUSIONS These results highlight fisetin's potential as a therapeutic agent for cisplatin-induced neuropathy, emphasising its role in restoring molecular, structural, and functional integrity within the peripheral nervous system.
Collapse
Affiliation(s)
- Cansel Adıgüzel
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, 27310, Turkey
| | - Caner Yildirim
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, 27310, Turkey.
| | - Sena Çevik
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, 27310, Turkey
| | - Şenay Görücü Yilmaz
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Gaziantep University, Gaziantep, Turkey
| | - Ramazan Bal
- Department of Physiology, Faculty of Medicine, Gaziantep University, Gaziantep, 27310, Turkey
| |
Collapse
|
4
|
Yin P, Jiang Z, Wang X, Gong S, Zhang C, Fan Z. Fasudil protects spiral ganglion neurons and hair cells against cisplatin-induced apoptosis by inhibiting reactive oxygen species accumulation and regulating the ROCK/PTEN/AKT signaling pathway. Toxicol Res (Camb) 2025; 14:tfaf030. [PMID: 40052021 PMCID: PMC11881692 DOI: 10.1093/toxres/tfaf030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/26/2025] [Accepted: 02/26/2025] [Indexed: 03/09/2025] Open
Abstract
Cisplatin causes hearing loss in at least 60% of chemotherapy patients, leading to impairments in the patient's life quality. Spiral ganglion neurons (SGNs) and hair cells (HCs) are the main cell types affected by cisplatin accumulation in the inner ear. Fasudil is an FDA-approved drug and has been reported to exert neuroprotective effects in previous research. However, whether fasudil possesses protective effects in cisplatin-induced SGN and HC damage and the potential mechanisms remain unknown. In this study, we investigated whether fasudil has a protective effect on cisplatin-induced damage to inner ear SGNs and HCs. We first observed the effect of different concentrations of fasudil on cisplatin-induced cell loss of SGNs and HCs. We also studied the effects of fasudil on cisplatin-induced apoptosis of SGNs and HCs and detected the mitochondrial reactive oxygen species (ROS) level. Furthermore, we investigated the mechanisms of fasudil in protecting the SGNs and HCs from cisplatin- induced cells apoptosis. We found that fasudil treatment significantly ameliorated SGNs and HCs loss and attenuated cell apoptosis after cisplatin exposure. Moreover, fasudil attenuated the cisplatin-induced ROS generation in SGN- and HC-explants culture. Further mechanistic studies revealed that fasudil regulated the ROCK/PTEN/AKT signaling pathway in SGN- and HC-explants after cisplatin exposure. This study indicates that fasudil might be a novel therapeutic target for preventing cisplatin-induced SGNs and HCs damage.
Collapse
Affiliation(s)
- Peng Yin
- Department of Otolaryngology Head and Neck Surgery, Shengli Oilfield Central Hospital, No. 38 Jinan Road, Dongying District, Dongying 257034, China
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
- Shandong Institute of Otorhinolaryngology, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
| | - Zhenhua Jiang
- Department of Otolaryngology Head and Neck Surgery, Shengli Oilfield Central Hospital, No. 38 Jinan Road, Dongying District, Dongying 257034, China
| | - Xue Wang
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
- Shandong Institute of Otorhinolaryngology, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong'an Road, Xicheng District, Beijing 10050, China
| | - Cui Zhang
- Department of Otolaryngology Head and Neck Surgery, Shengli Oilfield Central Hospital, No. 38 Jinan Road, Dongying District, Dongying 257034, China
| | - Zhaomin Fan
- Department of Otolaryngology Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
- Shandong Institute of Otorhinolaryngology, No. 4 Duanxing West Road, Huaiyin District, Jinan 250022, China
| |
Collapse
|
5
|
Ihara D, Rasli NR, Katsuyama Y. How do neurons live long and healthy? The mechanism of neuronal genome integrity. Front Neurosci 2025; 19:1552790. [PMID: 40177377 PMCID: PMC11961891 DOI: 10.3389/fnins.2025.1552790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Genome DNA of neurons in the brain is unstable, and mutations caused by inaccurate repair can lead to neurodevelopmental and neurodegenerative disorders. Damage to the neuronal genome is induced both exogenously and endogenously. Rapid cell proliferation of neural stem cells during embryonic brain development can lead to errors in genome duplication. Electrical excitations and drastic changes in gene expression in functional neurons cause risks of damaging genomic DNA. The precise repair of DNA damages caused by events making genomic DNA unstable maintains neuronal functions. The maintenance of the DNA sequence and structure of the genome is known as genomic integrity. Molecular mechanisms that maintain genomic integrity are critical for healthy neuronal function. In this review, we describe recent progress in understanding the genome integrity in functional neurons referring to their disruptions reported in neurological diseases.
Collapse
Affiliation(s)
| | | | - Yu Katsuyama
- Division of Neuroanatomy, Department of Anatomy, Shiga University of Medical Science, Otsu, Shiga, Japan
| |
Collapse
|
6
|
Jiang Y, Ye F, Zhang J, Huang Y, Zong Y, Chen F, Yang Y, Zhu C, Yang T, Yu G, Tang Z. Dual function of MrgprB2 receptor-dependent neural immune axis in chronic pain. J Adv Res 2025:S2090-1232(25)00135-3. [PMID: 40024332 DOI: 10.1016/j.jare.2025.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 11/26/2024] [Accepted: 02/26/2025] [Indexed: 03/04/2025] Open
Abstract
INTRODUCTION Neuro-immune interactions have been recognized to be involved in the development of neuropathic pain induced by chemotherapeutic drugs (CINP). However, its role in pain resolution remains largely unknown, particularly concerning mast cells. OBJECTIVES To investigate the bidirectional modulation of mast cell Mas-related G protein-coupled receptor B2 (MrgprB2)-mediated neuro-immune interactions in CINP. METHODS CINP model was established in wild-type mice, Mas-related G protein-coupled receptor D knockout (MrgprD-/-) mice, mast cell-deficient mice, MrgprB2 knockout (MrgprB2-/-) mice, and MrgprB2-Cre tdTomato mice. The role of MrgprB2 receptor in CINP was investigated by calcium imaging, cytokine antibody arrays, mining of single-cell sequencing databases, immunofluorescence, western blotting, co-immunoprecipitation (Co-IP), among other methodologies. RESULTS We observed that cisplatin-induced allodynia was significantly inhibited in MrgprB2-/- mice, which was attributed to the blockade of tryptase release and the suppression of upregulation of protease-activated receptor 2 (PAR2) expression in dorsal root ganglion (DRG). Thus, the activation of MrgprB2/Tryptase/PAR2 axis contributed to the development of cisplatin-induced pain. In addition, we also found that there was co-expression of PAR2 and MrgprD in DRG neurons. And activation of PAR2 can negatively regulate the expression of MrgprD, whether in a physiological state or in a chronic pain condition. Consequently, MrgprD expression was down-regulated by the activation of the MrgprB2/Tryptase/PAR2 axis during the later stages of CINP, which was associated with pain relief. Therefore, the activation of MrgprB2/Tryptase/PAR2 axis also contributed to the alleviation of cisplatin-induced pain. This finding was in line with the phenomenon that persistent stimulation by cisplatin did not cause a continuous increase in pain. CONCLUSIONS Our research elucidated the bidirectional modulation of MrgprB2-dependent neural immune axis in CINP. This study emphasized that MrgprB2 is a critical target for early intervention in CINP, and highlighted the necessity of considering the mechanism differences at different stages in pain management.
Collapse
Affiliation(s)
- Yucui Jiang
- School of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Fan Ye
- College of Pharmacy, Jishou University, Jishou 416000, China
| | - Jian Zhang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Yun Huang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Yingxin Zong
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Feiyan Chen
- School of Chinese Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Yan Yang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Chan Zhu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China
| | - Tao Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Guang Yu
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| | - Zongxiang Tang
- School of Medicine, Nanjing University of Chinese Medicine, 138 Xianlin Road, Nanjing 210023, China.
| |
Collapse
|
7
|
Zou Y, Wu S, Hu Q, Zhou H, Ge Y, Ju Z, Luo S. Sonic hedgehog restrains the ubiquitin-dependent degradation of SP1 to inhibit neuronal/glial senescence associated phenotypes in chemotherapy-induced peripheral neuropathy via the TRIM25-CXCL13 axis. J Adv Res 2025; 68:387-402. [PMID: 38479571 PMCID: PMC11785578 DOI: 10.1016/j.jare.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
INTRODUCTION Chemotherapy-induced peripheral neuropathy (CIPN) is a common complication that affects an increasing number of cancer survivors. However, the current treatment options for CIPN are limited. Paclitaxel (PTX) is a widely used chemotherapeutic drug that induces senescence in cancer cells. While previous studies have demonstrated that Sonic hedgehog (Shh) can counteract cellular dysfunction during aging, its role in CIPN remains unknown. OBJECTIVES Herein, the aim of this study was to investigate whether Shh activation could inhibits neuronal/glial senescence and alleviates CIPN. METHODS We treated ND7/23 neuronal cells and RSC96 Schwann cells with two selective Shh activators (purmorphamine [PUR] and smoothened agonist [SAG]) in the presence of PTX. Additionally, we utilized a CIPN mouse model induced by PTX injection. To assess cellular senescence, we performed a senescence-associated β-galactosidase (SA-β-gal) assay, measured reactive oxygen species (ROS) levels, and examined the expression of P16, P21, and γH2AX. To understand the underlying mechanisms, we conducted ubiquitin assays, LC-MS/MS, H&E staining, and assessed protein expression through Western blotting and immunofluorescence staining. RESULTS In vitro, we observed that Shh activation significantly alleviated the senescence-related decline in multiple functions included SA-β-gal activity, expression of P16 and P21, cell viability, and ROS accumulation in DRG sensory neurons and Schwann cells after PTX exposure. Furthermore, our in vivo experiments demonstrated that Shh activation significantly reduced axonal degeneration, demyelination, and improved nerve conduction. Mechanistically, we discovered that PTX reduced the protein level of SP1, which was ubiquitinated by the E3 ligase TRIM25 at the lysine 694 (K694), leading to increased CXCL13 expression, and we found that Shh activation inhibited PTX-induced neuronal/glial senescence and CIPN through the TRIM25-SP1-CXCL13 axis. CONCLUSION These findings provide evidence for the role of PTX-induced senescence in DRG sensory neurons and Schwann cells, suggesting that Shh could be a potential therapeutic target for CIPN.
Collapse
Affiliation(s)
- Ying Zou
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Shu Wu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Qian Hu
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Haoxian Zhou
- Department of Cardiology, Guangdong Provincial Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Yuanlong Ge
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Zhenyu Ju
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Shengkang Luo
- Department of Plastic and Reconstructive Surgery, Guangdong Second Provincial General Hospital, Postdoctoral Research Station of Biology, School of Medicine, Jinan University, Guangzhou, China; Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Aging and Regenerative Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
8
|
Tao Z, Chen Z, Zeng X, Cui J, Quan M. An emerging aspect of cancer neuroscience: A literature review on chemotherapy-induced peripheral neuropathy. Cancer Lett 2024; 611:217433. [PMID: 39736454 DOI: 10.1016/j.canlet.2024.217433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/01/2025]
Abstract
The nervous system governs both ontogeny and oncology. Foundational discoveries have clarified the direct communication of neurotransmitters with tumors and indirect interactions through neural effects on the immune system and the tumor microenvironment. Meantime, the nervous system is susceptible to cancer and its treatment. Chemotherapy-induced peripheral neuropathy (CIPN) is the most common side effects that significantly reduce the efficacy of anti-cancer treatment and patients' quality of life by leading to dose reduction or early cessation of chemotherapy. However, there are no effective strategies to reverse or treat CIPN. A better understanding of the mechanisms is expected to enable the development of the next generation of therapies. Here, we summarize the recent important studies on clinical manifestations, risk factors, prediction, pathogenesis, prevention, and treatment of CIPN. We also provide perspectives and insights regarding the rationales of bidirectional interactions between cancer and the nervous system.
Collapse
Affiliation(s)
- Zhirui Tao
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Zhiqin Chen
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Xiaochen Zeng
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China
| | - Jiujie Cui
- Department of Oncology and State Key Laboratory of Systems Medicine for Cancer of Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China.
| | - Ming Quan
- Department of Oncology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200123, China.
| |
Collapse
|
9
|
Crugeiras J, Calls A, Contreras E, Alemany M, Navarro X, Yuste VJ, Casanovas O, Udina E, Bruna J. Oxygen matters: Unraveling the role of oxygen in the neuronal response to cisplatin. J Peripher Nerv Syst 2024; 29:528-536. [PMID: 39329299 PMCID: PMC11625991 DOI: 10.1111/jns.12659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/31/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND AND AIMS Cell culture is a fundamental experimental tool for understanding cell physiology. However, translating these findings to in vivo settings has proven challenging. Replicating donor tissue conditions, including oxygen levels, is crucial for achieving meaningful results. Nevertheless, oxygen culture conditions are often overlooked, particularly in the context of chemotherapy-induced neurotoxicity. METHODS In this study, we investigated the role of oxygen levels in primary neuronal cultures by comparing neuronal performance under cisplatin exposure (1 μg/mL) in supraphysiological normoxia (representing atmospheric conditions in a standard incubator; 18.5% O2) and physioxia (representing physiologic oxygen conditions in nervous tissue; 5% O2). Experiments were also conducted to assess survival, neurite development, senescence marker expression, and proinflammatory cytokine secretion. RESULTS Under control conditions, both oxygen concentration conditions exhibited similar behaviors. However, after cisplatin administration, sensory neurons cultured under supraphysiological normoxic conditions show higher mortality, exhibit an evolutionarily proinflammatory cytokine profile over time, and activate apoptotic-regulated neuron death markers. In contrast, under physiological conditions, neurons treated with cisplatin exhibited senescence marker expression and an attenuated inflammatory secretome. INTERPRETATION These results underscore the critical role of oxygen in neuronal culture, particularly in studying compounds where neuronal damage is mechanistically linked to oxidative stress. Even at identical doses of evaluated neurotoxic drugs, distinct cellular phenotypic fates can emerge, impacting translatability to the in vivo setting.
Collapse
Affiliation(s)
- Jose Crugeiras
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Aina Calls
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Estefanía Contreras
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Montse Alemany
- Unit of Neuro‐Oncology, Hospital Universitari de BellvitgeBellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
| | - Xavier Navarro
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Victor J. Yuste
- Department of BiochemistryInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
| | - Oriol Casanovas
- Tumor Angiogenesis Group, ProCURE ProgramCatalan Institute of Oncology, OncoBell Program, IDIBELLBarcelonaSpain
| | - Esther Udina
- Department of Cell Biology, Physiology, and ImmunologyInstitute of Neuroscience, Autonomous University of BarcelonaBellaterraSpain
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Jordi Bruna
- Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
- Unit of Neuro‐Oncology, Hospital Universitari de BellvitgeBellvitge Institute for Biomedical Research (IDIBELL)BarcelonaSpain
| |
Collapse
|
10
|
Casaril AM, Gaffney CM, Shepherd AJ. Animal models of neuropathic pain. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 179:339-401. [PMID: 39580217 DOI: 10.1016/bs.irn.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Animal models continue to be crucial to developing our understanding of the molecular, cellular, and neurophysiological mechanisms that lead to neuropathic pain. The overwhelming majority of animal studies use rodent models, ranging from surgical and trauma-induced models to those induced by metabolic diseases, genetic mutations, viruses, neurotoxic drugs, and cancer. We discuss the clinical relevance of the available models and the pain behavior tests commonly used as outcome measures. Finally, we summarize the refinements that have been proposed to improve the ability of animal model studies to predict clinical efficacy.
Collapse
Affiliation(s)
- Angela M Casaril
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Caitlyn M Gaffney
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Andrew J Shepherd
- Laboratories of Neuroimmunology, Department of Symptom Research, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States.
| |
Collapse
|
11
|
Elbaset MA, Afifi SM, Esatbeyoglu T, Abdelrahman SS, Saleh DO. Neuroprotective Effects of Trimetazidine against Cisplatin-Induced Peripheral Neuropathy: Involvement of AMPK-Mediated PI3K/mTOR, Nrf2, and NF- κB Signaling Axes. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2024; 2024:6612009. [PMID: 39502494 PMCID: PMC11535264 DOI: 10.1155/2024/6612009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 05/28/2024] [Accepted: 07/06/2024] [Indexed: 11/08/2024]
Abstract
Cisplatin-induced peripheral neuropathy (CIPN) is a common and debilitating side effect of cisplatin chemotherapy used in cancer treatment. This study explored the neuroprotective effects of Trimetazidine (TRI) against CIPN by preserving nerve integrity, reducing neuro-oxidative stress, and alleviating neuroinflammation. Using a rat model of CIPN, we evaluated TRI's impact on motor coordination, pain sensitivity, and peripheral nerve histopathology. Also, its effects on neuro-oxidative stress and neuroinflammatory markers were assessed. The findings showed that rats with CIPN had worse motor coordination and increased sensitivity to pain but that these symptoms were alleviated by TRI therapy in a dose-dependent way. Nerve conduction velocities were normalized, and expression of genes involved in neuropathy signaling was suppressed after TRI therapy. Antioxidant benefits were also shown in TRI, with oxidative damage being reduced and the cellular energy balance being restored. By inhibiting the production of inflammatory markers, it also demonstrated anti-inflammatory properties. Histopathological examination revealed that TRI, especially when administered at a higher dose, inhibited the degeneration and demyelination of nerve fibers. The anti-inflammatory properties of TRI in the sciatic nerves were further shown by the fact that its administration reduced iNOS expression. In conclusion, AMPK-mediated PI3K/mTOR, Nrf2, and NF-κB signaling pathways may all be involved in the therapeutic benefits of TRI for CIPN. These results indicate that TRI may be useful for reducing the side effects of CIPN and enhancing patient outcomes during cisplatin chemotherapy.
Collapse
Affiliation(s)
- Marawan A. Elbaset
- Pharmacology DepartmentMedical Research and Clinical Studies InstituteNational Research Centre, 33 El-Bohouth Street, Dokki, Cairo P.O. 12622, Egypt
| | - Sherif M. Afifi
- Department for Life Quality StudiesRimini CampusUniversity of Bologna, Corso d'Augusto, 237, Rimini 47921, Italy
| | - Tuba Esatbeyoglu
- Department of Molecular Food Chemistry and Food DevelopmentInstitute of Food and One HealthGottfried Wilhelm Leibniz University, Am Kleinen Felde 30, Hannover 30167, Germany
| | - Sahar S. Abdelrahman
- Department of PathologyCollege of Veterinary MedicineCairo University, Cairo P.O. 12211, Egypt
| | - Dalia O. Saleh
- Pharmacology DepartmentMedical Research and Clinical Studies InstituteNational Research Centre, 33 El-Bohouth Street, Dokki, Cairo P.O. 12622, Egypt
| |
Collapse
|
12
|
Yang Z, Huang R, Yang Y, Cong J, Yang X, Zhou Q, Guo R, Ma Y, Gong X, Jiao F, Li Y, Zhu S, Kong L, Hu J. NEDD1 Promotes the Development of Lung Adenocarcinoma and Can be Used as a Prognostic Marker. J Cancer 2024; 15:5149-5164. [PMID: 39247593 PMCID: PMC11375547 DOI: 10.7150/jca.98238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 07/09/2024] [Indexed: 09/10/2024] Open
Abstract
Objective : To explore the roles of Neural precursor cell expressed developmentally down-regulated 1(NEDD1) in lung cancer tumorigenesis and the relationship between NEDD1 expression and clinicopathology of patients with lung adenocarcinoma (LUAD). Methods: Expression of NEDD1 or other proteins in tissues and cell lines were determined with immunohistochemistry or western blot, the data of patients with LUAD in The Cancer Genome Atlas (TCGA) datasets and LUAD tissue array were collected and analyzed, the effects of NEDD1 on proliferation, migration, cell cycle progression and apoptosis of cancer cells were detected with colony formation assay, transwell assay and Flow cytometry (FCM) analysis respectively. the impact of NEDD1 knockdown on DNA damage was analyzed using Immunofluorescence staining of H2AX and comet assay. Furthermore, the effect of NEDD1 on cancer cell proliferation in vivo was investigated in nude mice. Results : NEDD1 was upregulated in lung tissues and the NEDD1 immune score was an independent prognostic factor. Overexpression of NEDD1 promoted epithelial-mesenchymal transition, accelerated cell cycle progression, and enhanced the proliferation and migration of A549 and H1299 cells, while knockdown of NEDD1 resulted in the opposite phenotype and leaded to DNA damage. In addition, NEDD1 improved cell tumorigenicity in vivo. Conclusion : These findings suggest that NEDD1 plays important roles in lung cancer development and may therefore be a potential prognostic marker and promising therapeutic target for lung cancer therapy.
Collapse
Affiliation(s)
- Zhen Yang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, China
- Institute of Healthcare and Industry, Sichuan Tourism College, Chengdu, Sichuan 610000, China
| | - Rongkun Huang
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Yun Yang
- Jining Medical University, Jining, Shandong 272067, China
| | - Jing Cong
- Yantai Center for Disease Control and Prevention, Yantai, Shandong 264003, China
| | - Xia Yang
- Department of Cardiology, Zhaoyuan people's Hospital, Yantai, Shandong 265499, China
| | - Quan Zhou
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Ruoyu Guo
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Ying Ma
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Xiangqian Gong
- Department of Gastrointestinal Surgery, Yuhuangding Hospital, Yantai, Shandong 265499, China
| | - Fei Jiao
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Youjie Li
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Shugang Zhu
- Department of Burn and Plastic Surgery, Yantai Affiliated Hospital of Binzhou Medical University, Shandong, China
| | - Lijun Kong
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Jinxia Hu
- Key Laboratory of Tumor Molecular Biology in Binzhou Medical University, Department of Biochemistry and Molecular Biology, Binzhou Medical University, Yantai, Shandong 264003, China
| |
Collapse
|
13
|
Liu PW, Zhang H, Werley CA, Pichler M, Ryan SJ, Lewarch CL, Jacques J, Grooms J, Ferrante J, Li G, Zhang D, Bremmer N, Barnett A, Chantre R, Elder AE, Cohen AE, Williams LA, Dempsey GT, McManus OB. A phenotypic screening platform for chronic pain therapeutics using all-optical electrophysiology. Pain 2024; 165:922-940. [PMID: 37963235 PMCID: PMC10950549 DOI: 10.1097/j.pain.0000000000003090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 08/30/2023] [Indexed: 11/16/2023]
Abstract
ABSTRACT Chronic pain associated with osteoarthritis (OA) remains an intractable problem with few effective treatment options. New approaches are needed to model the disease biology and to drive discovery of therapeutics. We present an in vitro model of OA pain, where dorsal root ganglion (DRG) sensory neurons were sensitized by a defined mixture of disease-relevant inflammatory mediators, here called Sensitizing PAin Reagent Composition or SPARC. Osteoarthritis-SPARC components showed synergistic or additive effects when applied in combination and induced pain phenotypes in vivo. To measure the effect of OA-SPARC on neural firing in a scalable format, we used a custom system for high throughput all-optical electrophysiology. This system enabled light-based membrane voltage recordings from hundreds of neurons in parallel with single cell and single action potential resolution and a throughput of up to 500,000 neurons per day. A computational framework was developed to construct a multiparameter OA-SPARC neuronal phenotype and to quantitatively assess phenotype reversal by candidate pharmacology. We screened ∼3000 approved drugs and mechanistically focused compounds, yielding data from over 1.2 million individual neurons with detailed assessment of functional OA-SPARC phenotype rescue and orthogonal "off-target" effects. Analysis of confirmed hits revealed diverse potential analgesic mechanisms including ion channel modulators and other mechanisms including MEK inhibitors and tyrosine kinase modulators. Our results suggest that the Raf-MEK-ERK axis in DRG neurons may integrate the inputs from multiple upstream inflammatory mediators found in osteoarthritis patient joints, and MAPK pathway activation in DRG neurons may contribute to chronic pain in patients with osteoarthritis.
Collapse
Affiliation(s)
- Pin W. Liu
- Quiver Bioscience, Cambridge, MA, United States
| | | | | | | | | | | | | | | | | | - Guangde Li
- Quiver Bioscience, Cambridge, MA, United States
| | - Dawei Zhang
- Quiver Bioscience, Cambridge, MA, United States
| | | | | | | | | | - Adam E. Cohen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, United States
| | | | | | | |
Collapse
|
14
|
Orszaghova Z, Galikova D, Lesko P, Obertova J, Rejlekova K, Sycova-Mila Z, Palacka P, Kalavska K, Svetlovska D, Mladosievicova B, Mardiak J, Mego M, Chovanec M. Chemotherapy-Induced Peripheral Neuropathy (CIPN) as a Predictor of Decreased Quality of Life in Testicular Germ Cell Tumor Survivors. Clin Genitourin Cancer 2024; 22:102067. [PMID: 38555680 DOI: 10.1016/j.clgc.2024.102067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/22/2024] [Accepted: 02/12/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Chemotherapy-induced peripheral neuropathy (CIPN) after curative treatment for testicular germ cell tumors (GCTs) has been previously reported. It has been shown that CIPN can contribute to impaired quality of life (QOL) in cancer survivors. Herein, we aimed to evaluate CIPN in association with QOL in GCT survivors. PATIENTS AND METHODS European Organization for Research and Treatment of Cancer (EORTC) Quality of Life - Chemotherapy-Induced Peripheral Neuropathy questionnaire (QLQ-CIPN20) and Quality of Life Questionnaire (QLQ-C30) were prospectively completed by GCT survivors (N = 151) at National Cancer Institute in Slovakia during their annual follow-up. The median follow-up was 10 years (range 4-30). Upon obtaining the scores from each questionnaire, each score from QLQ-C30 was correlated with CIPN defined as high or low (above and below median) as obtained from CIPN20. RESULTS GCT survivors with high overall CIPN score reported impaired QOL in QLQ-C30. The global health status was lower in survivors with high CIPN versus low CIPN (mean score ± SEM: 67.17 ± 2.00 vs. 86.18 ± 1.76, P < .00001). Survivors with high CIPN reported worse physical, role, emotional, cognitive, and social functioning compared to survivors with low CIPN (all P < .00001). CIPN high survivors perceived more fatigue, nausea, pain, dyspnea, sleeping disorders, and appetite loss compared to CIPN low survivors (all P < .004). Higher burden of CIPN was associated with more financial problems vs CIPN low (mean score ± SEM: 19.70 ± 2.64 vs. 6.67 ± 2.32, P = .00025). Spearman analysis has confirmed negative correlation of overall CIPN20 score with QLQ-C30 global health status (R = -0.53, P < .0001). CONCLUSION CIPN is a strong predictor of impairment in QOL among GCT survivors. Molecular mechanisms of neurotoxicity should be intensively studied to find preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Zuzana Orszaghova
- Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Dominika Galikova
- Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Peter Lesko
- Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Jana Obertova
- Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Katarina Rejlekova
- Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Zuzana Sycova-Mila
- Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Patrik Palacka
- Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Katarina Kalavska
- Translational Research Unit, Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Daniela Svetlovska
- Translational Research Unit, Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Beata Mladosievicova
- Department of Clinical Pathophysiology, Comenius University, Faculty of Medicine, Bratislava, Slovakia
| | - Jozef Mardiak
- Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Michal Mego
- Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia
| | - Michal Chovanec
- Department of Oncology, Comenius University, Faculty of Medicine and National Cancer Institute, Bratislava, Slovakia.
| |
Collapse
|
15
|
Saleh T. Therapy-induced senescence is finally escapable, what is next? Cell Cycle 2024; 23:713-721. [PMID: 38879812 PMCID: PMC11229739 DOI: 10.1080/15384101.2024.2364579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 05/17/2024] [Indexed: 07/06/2024] Open
Abstract
Several breakthrough articles have recently confirmed the ability of tumor cells to escape the stable cell cycle arrest imposed by Therapy-Induced Senescence (TIS). Subsequently, accepting the hypothesis that TIS is escapable should encourage serious reassessments of the fundamental roles of senescence in cancer treatment. The potential for escape from TIS undermines the well-established tumor suppressor function of senescence, proposes it as a mechanism of tumor dormancy leading to disease recurrence and invites for further investigation of its unfavorable contribution to cancer therapy outcomes. Moreover, escaping TIS strongly indicates that the elimination of senescent tumor cells, primarily through pharmacological means, is a suitable approach for increasing the efficacy of cancer treatment, one that still requires further exploration. This commentary provides an overview of the recent evidence that unequivocally demonstrated the ability of therapy-induced senescent tumor cells in overcoming the terminal growth arrest fate and provides future perspectives on the roles of TIS in tumor biology.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| |
Collapse
|
16
|
Li XC, Chen H, Chen Y, Chu YX, Mi WL, Wang YQ, Mao-Ying QL. Spinal Neuronal miR-124 Inhibits Microglial Activation and Contributes to Preventive Effect of Electroacupuncture on Chemotherapy-Induced Peripheral Neuropathy in Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:410-420. [PMID: 38088802 DOI: 10.4049/jimmunol.2300539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 11/16/2023] [Indexed: 01/18/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a persistent and irreversible side effect of antineoplastic agents. Patients with CIPN usually show chronic pain and sensory deficits with glove-and-stocking distribution. However, whether spinal neuronal microRNA (miR)-124 is involved in cisplatin-induced peripheral neuropathy remains to be studied. In this study, miR-124 was significantly reduced in the spinal dorsal horn in CIPN mice. Overexpression of neuronal miR-124 induced by injecting adeno-associated virus with neuron-specific promoter into the spinal cord of mice prevented the development of mechanical allodynia, sensory deficits, and the loss of intraepidermal nerve fibers induced by cisplatin. Meanwhile, cisplatin-induced M1 microglia activation and the release of proinflammatory cytokines were significantly inhibited by overexpression of neuronal miR-124. Furthermore, electroacupuncture (EA) treatment upregulated miR-124 expression in the spinal dorsal horn of CIPN mice. Interestingly, downregulation of spinal neuronal miR-124 significantly inhibited the regulatory effect of EA on CIPN and microglia activity as well as spinal neuroinflammation induced by cisplatin. These results demonstrate that spinal neuronal miR-124 is involved in the prevention and treatment of EA on cisplatin-induced peripheral neuropathy in mice. Our findings suggest that spinal neuronal miR-124 might be a potential target for EA effect, and we provide, to our knowledge, a new experimental basis for EA prevention of CIPN.
Collapse
Affiliation(s)
- Xiao-Chen Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Hui Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yu Chen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Yu-Xia Chu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, People's Republic of China
| | - Wen-Li Mi
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, People's Republic of China
| | - Yan-Qing Wang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, People's Republic of China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, People's Republic of China
| | - Qi-Liang Mao-Ying
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institute of Acupuncture Research, Institutes of Integrative Medicine, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
17
|
Saleh T, Naffa R, Barakat NA, Ismail MA, Alotaibi MR, Alsalem M. Cisplatin Provokes Peripheral Nociception and Neuronal Features of Therapy-Induced Senescence and Calcium Dysregulation in Rats. Neurotox Res 2024; 42:10. [PMID: 38294571 DOI: 10.1007/s12640-024-00690-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/01/2024]
Abstract
Therapy-Induced Senescence (TIS) is a form of senescence that is typically described in malignant cells in response to the exposure of cancer chemotherapy or radiation but can also be precipitated in non-malignant cells. TIS has been shown to contribute to the development of several cancer therapy-related adverse effects; however, evidence on its role in mediating chemotherapy-induced neurotoxicity, such as Chemotherapy-induced Peripheral Neuropathy (CIPN), is limited. We here show that cisplatin treatment over two cycles (cumulative dose of 23 mg/kg) provoked mechanical allodynia and thermal hyperalgesia in Sprague-Dawley rats. Isolation of dorsal root ganglia (DRG) from the cisplatin-treated rats demonstrated robust SA-β-gal upregulation at both day 8 (after the first cycle) and day 18 (after the second cycle), decreased lmnb1 expression, increased expression of cdkn1a and cdkn2a, and of several factors of the Senescence-associated Secretory Phenotype (SASP) (Il6, Il1b, and mmp9). Moreover, single-cell calcium imaging of cultured DRGs revealed a significant increase in terms of the magnitude of KCl-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats. No significant change was observed in terms of the magnitude of capsaicin-evoked calcium responses in cisplatin-treated rats compared to vehicle-treated rats but with decreased area under the curve of the responses in cisplatin-treated rats. Further evidence to support the contribution of TIS to therapy adverse effects is required but should encourage the use of senescence-modulating agents (senotherapeutics) as novel palliative approaches to mitigate chemotherapy-induced neurotoxicity.
Collapse
Affiliation(s)
- Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| | - Randa Naffa
- Department of Basic Dental Sciences, Faculty of Dentistry, Al-Ahliyya Amman University, Amman, Jordan
| | - Noor A Barakat
- Department of Pharmacy, Faculty of Pharmacy, Middle East University, Amman, Jordan
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mohammad A Ismail
- Cell Therapy Center (CTC), The University of Jordan, Amman, Jordan
- Adelaide Medical School, South Australian ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, South Australia, Australia
| | - Moureq R Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Mohammad Alsalem
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|
18
|
Alsalem M, Ellaithy A, Bloukh S, Haddad M, Saleh T. Targeting therapy-induced senescence as a novel strategy to combat chemotherapy-induced peripheral neuropathy. Support Care Cancer 2024; 32:85. [PMID: 38177894 DOI: 10.1007/s00520-023-08287-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is a treatment-limiting adverse effect of anticancer therapy that complicates the lifestyle of many cancer survivors. There is currently no gold-standard for the assessment or management of CIPN. Subsequently, understanding the underlying mechanisms that lead to the development of CIPN is essential for finding better pharmacological therapy. Therapy-induced senescence (TIS) is a form of senescence that is triggered in malignant and non-malignant cells in response to the exposure to chemotherapy. Recent evidence has also suggested that TIS develops in the dorsal root ganglia of rodent models of CIPN. Interestingly, several components of the senescent phenotype are commensurate with the currently established primary processes implicated in the pathogenesis of CIPN including mitochondrial dysfunction, oxidative stress, and neuroinflammation. In this article, we review the literature that supports the hypothesis that TIS could serve as a holistic mechanism leading to CIPN, and we propose the potential for investigating senotherapeutics as means to mitigate CIPN in cancer survivors.
Collapse
Affiliation(s)
- Mohammad Alsalem
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Amr Ellaithy
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sarah Bloukh
- Department of Anatomy and Histology, School of Medicine, The University of Jordan, Amman, 11942, Jordan
| | - Mansour Haddad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Yarmouk University, Irbid, 21163, Jordan
| | - Tareq Saleh
- Department of Pharmacology and Public Health, Faculty of Medicine, The Hashemite University, Zarqa, 13133, Jordan.
| |
Collapse
|
19
|
Melo Dos Santos LS, Trombetta-Lima M, Eggen B, Demaria M. Cellular senescence in brain aging and neurodegeneration. Ageing Res Rev 2024; 93:102141. [PMID: 38030088 DOI: 10.1016/j.arr.2023.102141] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
Cellular senescence is a state of terminal cell cycle arrest associated with various macromolecular changes and a hypersecretory phenotype. In the brain, senescent cells naturally accumulate during aging and at sites of age-related pathologies. Here, we discuss the recent advances in understanding the accumulation of senescent cells in brain aging and disorders. Here we highlight the phenotypical heterogeneity of different senescent brain cell types, highlighting the potential importance of subtype-specific features for physiology and pathology. We provide a comprehensive overview of various senescent cell types in naturally occurring aging and the most common neurodegenerative disorders. Finally, we critically discuss the potential of adapting senotherapeutics to improve brain health and reduce pathological progression, addressing limitations and future directions for application and development.
Collapse
Affiliation(s)
- L S Melo Dos Santos
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, the Netherlands; School of Sciences, Health and Life, Pontifical Catholic University of Rio Grande do Sul, Ipiranga Avenue, 6681, 90619-900 Porto Alegre, Brazil
| | - M Trombetta-Lima
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA Groningen, the Netherlands; Department of Pharmaceutical Technology and Biopharmacy, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusiglaan 1, 9713AV Groningen, the Netherlands
| | - Bjl Eggen
- Department of Biomedical Sciences of Cells and Systems, section Molecular Neurobiology, University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA Groningen, the Netherlands
| | - M Demaria
- European Research Institute for the Biology of Ageing (ERIBA), University Medical Center Groningen (UMCG), University of Groningen, Antonius Deusinglaan 1, 9715RA, Groningen, the Netherlands.
| |
Collapse
|
20
|
Imai H, Saijo K, Kawamura Y, Kodera S, Komine K, Iwasaki T, Takenaga N, Kasahara Y, Ouchi K, Shirota H, Takahashi M, Ishioka C. Comparison of Efficacy and Safety between Carboplatin-Etoposide and Cisplatin-Etoposide Combination Therapy in Patients with Advanced Neuroendocrine Carcinoma: A Retrospective Study. Oncology 2023; 102:359-367. [PMID: 37903486 PMCID: PMC11251665 DOI: 10.1159/000534747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/20/2023] [Indexed: 11/01/2023]
Abstract
INTRODUCTION Neuroendocrine carcinoma (NEC) is characterized by a poor prognosis and is generally treated with platinum and etoposide combination therapy as first-line chemotherapy. However, it remains uncertain whether carboplatin and etoposide combination therapy (CE) and cisplatin and etoposide combination therapy (PE) have comparable treatment efficacy. In this retrospective analysis, we compared the efficacy and safety of CE and PE in patients with NEC. METHODS We retrospectively reviewed the patient's clinical record from 2005 to 2022 at the Department of Medical Oncology, Tohoku University Hospital. Patients who received either CE or PE were included in the study. Statistical analyses were performed using JMP Pro 16.0 (SAS Institute Inc., Cary, NC, USA). RESULTS A total of 104 patients were enrolled, with 73 patients assigned to the CE group and 31 patients assigned to the PE group. Statistically, the response rate, progression-free survival time and overall survival time were 42.6%, 5.1 months (95% CI: 3.5-6.3) and 13.6 months (95% CI: 8.9-17.4), respectively, in the CE groups and 44.4%, 5.6 months (95% CI: 3.1-7.0) and 12.5 months (95% CI: 11.2-14.6), respectively, in the PE groups. There was no significant difference in treatment efficacy between the CE and the PE groups. However, the number of patients with elevated creatinine (3.35 mg/dL and 3.88 mg/dL in 2 patients, respectively) was significantly higher in the PE group than in the CE group. CONCLUSION The efficacy of CE and PE in patients with NEC is comparable. However, the incidence of renal dysfunction was found to be significantly higher in the PE group than in the CE group.
Collapse
Affiliation(s)
- Hiroo Imai
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan,
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan,
| | - Ken Saijo
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshifumi Kawamura
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Shuto Kodera
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keigo Komine
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Tomoyuki Iwasaki
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Noriko Takenaga
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yuki Kasahara
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kota Ouchi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hidekazu Shirota
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masanobu Takahashi
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Chikashi Ishioka
- Department of Medical Oncology, Tohoku University Hospital, Sendai, Japan
- Department of Clinical Oncology, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
21
|
Du J, Cheng N, Deng Y, Xiang P, Liang J, Zhang Z, Hei Z, Li X. Astrocyte senescence-like response related to peripheral nerve injury-induced neuropathic pain. Cell Mol Biol Lett 2023; 28:65. [PMID: 37582709 PMCID: PMC10428597 DOI: 10.1186/s11658-023-00474-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/28/2023] [Indexed: 08/17/2023] Open
Abstract
BACKGROUND Peripheral nerve damage causes neuroinflammation, which plays a critical role in establishing and maintaining neuropathic pain (NeP). The mechanisms contributing to neuroinflammation remain poorly elucidated, and pharmacological strategies for NeP are limited. Thus, in this study, we planned to explore the possible link between astrocyte senescence and NeP disorders following chronic sciatic nerve injury. METHODS An NeP animal model was established by inducing chronic constrictive injury (CCI) to the sciatic nerve in adult rats. A senolytic drug combination of dasatinib and quercetin was gavaged daily from the first postoperative day until the end of the study. Paw mechanical withdrawal threshold (PMWT) and paw thermal withdrawal latency (PTWL) were evaluated to assess behaviors in response to pain in the experimental rats. Senescence-associated β-galactosidase staining, western blot analysis, and immunofluorescence were applied to examine the levels of proinflammatory factors and severity of the senescence-like response in the spinal cord. Lipopolysaccharide (LPS) was administered to induce senescence of spinal astrocytes in primary cultures in vitro, to explore the potential impacts of senescence on the secretion of proinflammatory factors. Furthermore, single-cell RNA sequencing (scRNA-seq) was conducted to identify senescence-related molecular responses in spinal astrocytes under neuropathic pain. RESULTS Following sciatic nerve CCI, rats exhibited reduced PMWT and PTWL, increased levels of spinal proinflammatory factors, and an enhanced degree of senescence in spinal astrocytes. Treatment with dasatinib and quercetin effectively attenuated spinal neuroinflammation and mitigated the hypersensitivities of the rats subjected to sciatic nerve CCI. Mechanistically, the dasatinib-quercetin combination reversed senescence in LPS-stimulated primary cultured astrocytes and decreased the levels of proinflammatory factors. The scRNA-seq data revealed four potential senescence-related genes in the spinal astrocyte population, and the expression of clusterin (CLU) protein was validated via in vitro experiments. CONCLUSION The findings indicate the potential role of astrocyte senescence in neuroinflammation following peripheral nerve injury, and suggest that targeting CLU activation in astrocytes might provide a novel therapeutic strategy to treat NeP.
Collapse
Affiliation(s)
- Jingyi Du
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Nan Cheng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yifan Deng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ping Xiang
- Department of Medical Quality Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510000, China
| | - Jianfen Liang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhenye Zhang
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
22
|
Kumon H, Yoshino Y, Ozaki T, Funahashi Y, Mori H, Ueno M, Ozaki Y, Yamazaki K, Ochi S, Iga JI, Ueno SI. Gestational Exposure to Haloperidol Changes Cdkn1a and Apaf1 mRNA Expressions in Mouse Hippocampus. Brain Res Bull 2023; 199:110662. [PMID: 37150328 DOI: 10.1016/j.brainresbull.2023.110662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
BACKGROUND The onset of schizophrenia is associated with both genetic and environmental risks during brain development. Environmental factors during pregnancy can represent risk factors for schizophrenia, and we have previously reported that several microRNA and mRNA expression changes in fetal brains exposed to haloperidol during pregnancy may be related to the onset of this disease. This study aimed to replicate that research and focused on apoptotic-related gene expression changes. METHODS Haloperidol (1mg/kg) or aripiprazole (1mg/kg) was injected into pregnant mice. Using RNA sequencing for the hippocampus of each offspring born from pregnant mice exposed to haloperidol, we analyzed genes identified as changed in our previous report and validated two apoptosis-related genes (Cdkn1a and Apaf1) using quantitative polymerase chain reaction (qPCR) methods. Furthermore, we attempted to elucidate the direct effects of haloperidol and aripiprazole on those mRNA expressions in in vitro experiments. RESULTS RNA sequencing successfully replicated 16 up-regulated and 5 down-regulated genes in this study. Of those, up-regulations of Cdkn1a and Apaf1 mRNA expression were successfully validated by direct quantification. Moreover, haloperidol and aripiprazole dose-dependent upregulation of both mRNA expressions were confirmed in a Neuro2a cell line. CONCLUSIONS In the hippocampus of offspring, intraperitoneal injection of haloperidol to pregnant mice induced up-regulation of apoptotic genes that representing the phenotypic change without apoptosis. These findings will be useful for understanding the molecular biological mechanisms underlying the effects of antipsychotics on the fetal brain.
Collapse
Affiliation(s)
- Hiroshi Kumon
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yuta Yoshino
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Tomoki Ozaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yu Funahashi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Hiroaki Mori
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Mariko Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Yuki Ozaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Kiyohiro Yamazaki
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Shinichiro Ochi
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| | - Jun-Ichi Iga
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan.
| | - Shu-Ichi Ueno
- Department of Neuropsychiatry, Molecules and Function, Ehime University Graduate School of Medicine, Shitsukawa, Toon, Ehime 791-0295, Japan
| |
Collapse
|
23
|
Chen Y, Gu Y, Hu H, Liu H, Li W, Huang C, Chen J, Liang L, Liu Y. Design, synthesis and biological evaluation of liposome entrapped iridium(III) complexes toward SGC-7901 cells. J Inorg Biochem 2023; 241:112134. [PMID: 36706490 DOI: 10.1016/j.jinorgbio.2023.112134] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/18/2023] [Accepted: 01/18/2023] [Indexed: 01/22/2023]
Abstract
In this study, two new iridium(III) polypyridyl complexes [Ir(bzq)2(DIPH)](PF6) (bzq = deprotonated benzo[h]quinoline, DIPH = 4-(2,5-dibromo-4-(1H-imidazo[4,5-f][1,10]phenanthrolim-2-yl)-4-hydroxybutan-2-one) (Ir1) and [Ir(piq)2(DIPH)](PF6) (piq = deprotonated 1-phenylisoquinoline) (Ir2) were synthesized and characterized by elemental analysis, HRMS, 1H and 13C NMR. The cytotoxic activity of Ir1, Ir2, Ir1lipo and Ir2lipo against cancer cells SGC-7901, HepG2, A549, HeLa, B16 and normal NIH3T3 cells in vitro was evaluated using 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) method. Ir1 and Ir2 showed no cytotoxic activity, but their liposome-entrapped Ir1 (Ir1lipo) and Ir2 (Ir2lipo) showed significant cellular activity, especially sensitive to SGC-7901 with IC50 values of 4.7 ± 0.2 and 12.4 ± 0.5 μM, respectively. The cellular uptake, endoplasmic reticulum (ER) localization, autophagy, tubulin polymerization, glutathione (GSH), malondialdehyde (MDA) and release of cytochrome c were investigated to explore the mechanisms of apoptosis. The calreticulin (CRT), heat shock protein 70 (HSP70), high mobility group box 1 (HMGB1) were also explored. Western blotting showed that Ir1lipo and Ir2lipo inhibited PI3K (phosphoinositide-3 kinase), AKT (protein kinase B), p-AKT and activated Bcl-2 (B-cell lymphoma-2) protein and apoptosis-regulated factor caspase 3 (cysteinyl aspartate specific proteinase-3) and cleaving PARP (poly ADP-ribose polymerase). The results demonstrated that Ir1lipo and Ir2lipo induce cell apoptosis through targeting the endoplasmic reticulum (ER), cause oxidative stress damage, inhibiting PI3K/AKT signaling pathway, immunogenic cell death (ICD) and inhibit the cell growth at G2/M phase.
Collapse
Affiliation(s)
- Yichuan Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yiying Gu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Huiyan Hu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Jing Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
24
|
Kinin B1 and B2 Receptors Contribute to Cisplatin-Induced Painful Peripheral Neuropathy in Male Mice. Pharmaceutics 2023; 15:pharmaceutics15030852. [PMID: 36986713 PMCID: PMC10051506 DOI: 10.3390/pharmaceutics15030852] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Cisplatin is the preferential chemotherapeutic drug for highly prevalent solid tumours. However, its clinical efficacy is frequently limited due to neurotoxic effects such as peripheral neuropathy. Chemotherapy-induced peripheral neuropathy is a dose-dependent adverse condition that negatively impacts quality of life, and it may determine dosage limitations or even cancer treatment cessation. Thus, it is urgently necessary to identify pathophysiological mechanisms underlying these painful symptoms. As kinins and their B1 and B2 receptors contribute to the development of chronic painful conditions, including those induced by chemotherapy, the contribution of these receptors to cisplatin-induced peripheral neuropathy was evaluated via pharmacological antagonism and genetic manipulation in male Swiss mice. Cisplatin causes painful symptoms and impaired working and spatial memory. Kinin B1 (DALBK) and B2 (Icatibant) receptor antagonists attenuated some painful parameters. Local administration of kinin B1 and B2 receptor agonists (in sub-nociceptive doses) intensified the cisplatin-induced mechanical nociception attenuated by DALBK and Icatibant, respectively. In addition, antisense oligonucleotides to kinin B1 and B2 receptors reduced cisplatin-induced mechanical allodynia. Thus, kinin B1 and B2 receptors appear to be potential targets for the treatment of cisplatin-induced painful symptoms and may improve patients’ adherence to treatment and their quality of life.
Collapse
|
25
|
Stellon D, Talbot J, Hewitt AW, King AE, Cook AL. Seeing Neurodegeneration in a New Light Using Genetically Encoded Fluorescent Biosensors and iPSCs. Int J Mol Sci 2023; 24:1766. [PMID: 36675282 PMCID: PMC9861453 DOI: 10.3390/ijms24021766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Neurodegenerative diseases present a progressive loss of neuronal structure and function, leading to cell death and irrecoverable brain atrophy. Most have disease-modifying therapies, in part because the mechanisms of neurodegeneration are yet to be defined, preventing the development of targeted therapies. To overcome this, there is a need for tools that enable a quantitative assessment of how cellular mechanisms and diverse environmental conditions contribute to disease. One such tool is genetically encodable fluorescent biosensors (GEFBs), engineered constructs encoding proteins with novel functions capable of sensing spatiotemporal changes in specific pathways, enzyme functions, or metabolite levels. GEFB technology therefore presents a plethora of unique sensing capabilities that, when coupled with induced pluripotent stem cells (iPSCs), present a powerful tool for exploring disease mechanisms and identifying novel therapeutics. In this review, we discuss different GEFBs relevant to neurodegenerative disease and how they can be used with iPSCs to illuminate unresolved questions about causes and risks for neurodegenerative disease.
Collapse
Affiliation(s)
- David Stellon
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anna E. King
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
26
|
Sharma KK, Fatima N, Ali Z, Moshin M, Chandra P, Verma A, Goshain O, Kumar G. Neuropathy, its Profile and Experimental Nerve Injury Neuropathic Pain Models: A Review. Curr Pharm Des 2023; 29:3343-3356. [PMID: 38058089 DOI: 10.2174/0113816128274200231128065425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 10/17/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
Neuropathy is a terrible disorder that has a wide range of etiologies. Drug-induced neuropathy, which happens whenever a chemical agent damages the peripheral nerve system, has been linked here to the iatrogenic creation of some drugs. It is potentially permanent and causes sensory impairments and paresthesia that typically affects the hands, feet, and stockings; motor participation is uncommon. It might appear suddenly or over time, and the long-term outlook varies. The wide range of chronic pain conditions experienced by people has been one of the main obstacles to developing new, more effective medications for the treatment of neuropathic pain. Animal models can be used to examine various neuropathic pain etiologies and symptoms. Several models investigate the peripheral processes of neuropathic pain, whereas some even investigate the central mechanisms, such as drug induce models like vincristine, cisplatin, bortezomib, or thalidomide, etc., and surgical models like sciatic nerve chronic constriction injury (CCI), sciatic nerve ligation through spinal nerve ligation (SNL), sciatic nerve damage caused by a laser, SNI (spared nerve injury), etc. The more popular animal models relying on peripheral nerve ligatures are explained. In contrast to chronic sciatic nerve contraction, which results in behavioral symptoms of less reliable stressful neuropathies, (SNI) spared nerve injury generates behavioral irregularities that are more feasible over a longer period. This review summarizes the latest methods models as well as clinical ideas concerning this mechanism. Every strongest current information on neuropathy is discussed, along with several popular laboratory models for causing neuropathy.
Collapse
Affiliation(s)
- Krishana Kumar Sharma
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Nishat Fatima
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Zeeshan Ali
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Mohd Moshin
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Anurag Verma
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Omprakash Goshain
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh 244001, India
| | - Gajendra Kumar
- Department of Chemistry, Constituent Government College (M.J.P.R.U.), Hasanpur, Uttar Pradesh 244241, India
| |
Collapse
|
27
|
Yin Y, Zhou Y, Zhou J, Zhao L, Hu H, Xiao M, Niu B, Peng J, Dai Y, Tang Y. Cisplatin causes erectile dysfunction by decreasing endothelial and smooth muscle content and inducing cavernosal nerve senescence in rats. Front Endocrinol (Lausanne) 2023; 14:1096723. [PMID: 36761198 PMCID: PMC9905444 DOI: 10.3389/fendo.2023.1096723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/10/2023] [Indexed: 01/26/2023] Open
Abstract
INTRODUCTION Cisplatin (cis-diamminedichloroplatinum II, CDDP), a drug widely used for cancer worldwide, may affect erectile function, but its side effects have not received enough attention. To investigate the effect of CDDP on erectile function and its possible mechanism. METHODS Sprague-Dawley rats were intraperitoneally administered CDDP (CDDP group) or the same volume of normal saline (control group). Erectile function was evaluated after a one-week washout. Then, histologic changes in the corpus cavernosum and cavernous nerve (CN) were measured. Other Sprague-Dawley rats were used to isolate the major pelvic ganglion and cavernous nerve (MPG/CN). RSC96 cells were then treated with CDDP. SA-β-gal staining was used to identify senescent cells, and qPCR was used to detect the senescence-associated secretory phenotype (SASP). Finally, the supernatant of RSC96 cells was used to culture MPG/CN. Erectile function was measured after administration of CDDP. The cavernosum levels of α-SMA, CD31, eNOS, and γ-H2AX, the apoptosis rate and the expression of p16, p21 and p53 in CN were also assayed. The senescent phenotype of RSC96 cells treated with CDDP was identified, and neurite growth from the MPG/CN was photographed and measured. RESULTS The CDDP group had a significantly lower ICP/MAP ratio than the control group. Compared to the control group, the CDDP group exhibited significantly lower α-SMA, CD31 and eNOS levels and significantly higher γ-H2AX and apoptosis rates in corpus cavernosum. In addition, CDDP increased some senescence markers p16, p21 and p53 in CN. In vitro, CDDP induced RSC96 senescence and SASP, and the supernatant of senescent cells slowed neurite outgrowth of MPG/CN. DISCUSSIONS CDDP treatment could induce erectile dysfunction, by affecting the content of endothelial and smooth muscle and causing SASP in CN. The results indicate that CDDP treatment should be considered as a risk factor for ED. Clinicians should pay more attention to the erectile function of cancer patients who receive CDDP treatment.
Collapse
Affiliation(s)
- Yinghao Yin
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Yihong Zhou
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jun Zhou
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Liangyu Zhao
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Hongji Hu
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ming Xiao
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Bin Niu
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Jingxuan Peng
- Department of Urology, First Affiliated Hospital of Jishou University, Jishou, Hunan, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- *Correspondence: Yingbo Dai, ; Yuxin Tang,
| | - Yuxin Tang
- Department of Urology, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
- *Correspondence: Yingbo Dai, ; Yuxin Tang,
| |
Collapse
|
28
|
Rashid MA, Oliveros A, Kim YS, Jang MH. Nicotinamide Mononucleotide Prevents Cisplatin-Induced Mitochondrial Defects in Cortical Neurons Derived from Human Induced Pluripotent Stem Cells. Brain Plast 2022; 8:143-152. [PMID: 36721392 PMCID: PMC9837732 DOI: 10.3233/bpl-220143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 11/09/2022] Open
Abstract
Background Chemotherapy-induced cognitive impairment (CICI) is a neurotoxic side effect of chemotherapy that has yet to have an effective treatment. Objective Using cisplatin, a platinum-based chemotherapy together with excitatory cortical neurons derived from human induced pluripotent cells (iPSCs) to model of CICI, our recent study demonstrated that dysregulation of brain NAD+ metabolism contributes to cisplatin-induced impairments in neurogenesis and cognitive function, which was prevented by administration of the NAD+ precursor, nicotinamide mononucleotide (NMN). However, it remains unclear how cisplatin causes neurogenic dysfunction and the mechanism by which NMN prevents cisplatin-induced cognitive impairment. Given that mitochondrial dysfunction is thought to play a prominent role in age-related neurodegenerative disease and chemotherapy-induced neurotoxicity, we sought to explore if NMN prevents chemotherapy-related neurotoxicity by attenuating cisplatin-induced mitochondrial damage. Results We demonstrate that cisplatin induces neuronal DNA damage, increases generation of mitochondrial reactive oxygen species (ROS) and decreases ATP production, all of which are indicative of oxidative DNA damage and mitochondrial functional defects. Ultrastructural analysis revealed that cisplatin caused loss of cristae membrane integrity and matrix swelling in human cortical neurons. Notably, pretreatment with NMN prevents cisplatin-induced defects in mitochondria of human cortical neurons. Conclusion Our results suggest that increased mitochondrial oxidative stress and functional defects play key roles in cisplatin-induced neurotoxicity. Thus, NMN may be an effective therapeutic strategy to prevent cisplatin-induced deleterious effects on mitochondria, making this organelle a key factor in amelioration of cisplatin-induced cognitive impairments.
Collapse
Affiliation(s)
- Mohammad Abdur Rashid
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alfredo Oliveros
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mi-Hyeon Jang
- Department of Neurosurgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
29
|
Calls A, Torres‐Espin A, Tormo M, Martínez‐Escardó L, Bonet N, Casals F, Navarro X, Yuste VJ, Udina E, Bruna J. A transient inflammatory response contributes to oxaliplatin neurotoxicity in mice. Ann Clin Transl Neurol 2022; 9:1985-1998. [PMID: 36369764 PMCID: PMC9735376 DOI: 10.1002/acn3.51691] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/14/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Peripheral neuropathy is a relevant dose-limiting adverse event that can affect up to 90% of oncologic patients with colorectal cancer receiving oxaliplatin treatment. The severity of neurotoxicity often leads to dose reduction or even premature cessation of chemotherapy. Unfortunately, the limited knowledge about the molecular mechanisms related to oxaliplatin neurotoxicity leads to a lack of effective treatments to prevent the development of this clinical condition. In this context, the present work aimed to determine the exact molecular mechanisms involved in the development of oxaliplatin neurotoxicity in a murine model to try to find new therapeutical targets. METHODS By single-cell RNA sequencing (scRNA-seq), we studied the transcriptomic profile of sensory neurons and satellite glial cells (SGC) of the Dorsal Root Ganglia (DRG) from a well-characterized mouse model of oxaliplatin neurotoxicity. RESULTS Analysis of scRNA-seq data pointed to modulation of inflammatory processes in response to oxaliplatin treatment. In this line, we observed increased levels of NF-kB p65 protein, pro-inflammatory cytokines, and immune cell infiltration in DRGs and peripheral nerves of oxaliplatin-treated mice, which was accompanied by mechanical allodynia and decrease in sensory nerve amplitudes. INTERPRETATION Our data show that, in addition to the well-described DNA damage, oxaliplatin neurotoxicity is related to an exacerbated pro-inflammatory response in DRG and peripheral nerves, and open new insights in the development of anti-inflammatory strategies as a treatment for preventing peripheral neuropathy induced by oxaliplatin.
Collapse
Affiliation(s)
- Aina Calls
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Abel Torres‐Espin
- Department of Neurological Surgery, Brain and Spinal Injury CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Marc Tormo
- Genomics Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain,Scientific IT Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain
| | - Laura Martínez‐Escardó
- Department of Biochemistry, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Núria Bonet
- Genomics Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain
| | - Ferran Casals
- Genomics Core Facility, Departament de Ciències Experimentals i de la SalutUniversitat Pompeu Fabra, Parc de Recerca Biomèdica de BarcelonaBarcelonaSpain,Departament de Genètica, Microbiologia i Estadística, Facultat de BiologiaUniversitat de BarcelonaBarcelonaSpain
| | - Xavier Navarro
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Víctor J. Yuste
- Department of Biochemistry, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain
| | - Esther Udina
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain
| | - Jordi Bruna
- Department of Cell Biology, Physiology, and Immunology, Institute of NeuroscienceUniversitat Autònoma de BarcelonaBellaterraSpain,Biomedical Research Center Network on Neurodegenerative Diseases (CIBERNED)BellaterraSpain,Unit of Neuro‐Oncology, Hospital Universitari de BellvitgeBellvitge Institute for Biomedical Research (IDIBELL), L'Hospitalet de LlobregatBarcelonaSpain
| |
Collapse
|
30
|
Li W, Shi C, Wu X, Zhang Y, Liu H, Wang X, Huang C, Liang L, Liu Y. Light activation of iridium(III) complexes driving ROS production and DNA damage enhances anticancer activity in A549 cells. J Inorg Biochem 2022; 236:111977. [PMID: 36030672 DOI: 10.1016/j.jinorgbio.2022.111977] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/10/2022] [Accepted: 08/19/2022] [Indexed: 12/15/2022]
Abstract
The work aimed to synthesize and characterize two iridium(III) complexes [Ir(ppy)2(IPPH)](PF6) (Ir1, IPPH = (2S,3R,5S,6R)-2-(2-(1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenoxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol, ppy = 2-phenylpyridine), [Ir(piq)2(IPPH)](PF6) (Ir2, piq = 1-phenylisoquinoline). The cytotoxicity of the complexes against BEL-7402, A549, HCT-116, B16 cancer cells and normal LO2 was evaluated through 3-(4,5-dimethylthiazole-2-yl)-2,5-biphenyl tetrazolium bromide (MTT) method. The complexes show no cytotoxic activity (IC50 > 100 μM) against these cancer cells, while their cytotoxicity can significantly be elevated upon illumination. The IC50 values range from 0.2 ± 0.05 to 35.5 ± 3.5 μM. The cellular uptake, endoplasmic reticulum and mitochondria localization, reactive oxygen species, the change of mitochondrial membrane potential, γ-H2AX levels, cycle arrest, apoptosis and the expression of B-cell lymphoma-2 were investigated. The calreticulin (CRT), heat shock protein 70 (HSP70), high mobility group box 1 (HMGB1) were explored. This study demonstrates that photoactivatable complexes induce cell death in A549 through ROS-mediated endoplasmic reticulum stress-mitochondrial pathway, DNA damage pathways, immunogenic cell death (ICD), activation of PI3K/AKT signaling pathway and inhibit the cell growth at S phase.
Collapse
Affiliation(s)
- Wenlong Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Chuanling Shi
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiaoyun Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuanyuan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Haimei Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Xiuzhen Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Chunxia Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lijuan Liang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yunjun Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Advanced Drug Delivery Systems and Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| |
Collapse
|
31
|
Alotaibi M, Al-Aqil F, Alqahtani F, Alanazi M, Nadeem A, Ahmad SF, Lapresa R, Alharbi M, Alshammari A, Alotaibi M, Saleh T, Alrowis R. Alleviation of cisplatin-induced neuropathic pain, neuronal apoptosis, and systemic inflammation in mice by rapamycin. Front Aging Neurosci 2022; 14:891593. [PMID: 36248001 PMCID: PMC9554141 DOI: 10.3389/fnagi.2022.891593] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/15/2022] [Indexed: 11/30/2022] Open
Abstract
Platinum-based chemotherapeutic treatment of cancer patients is associated with debilitating adverse effects. Several adverse effects have been well investigated, and can be managed satisfactorily, but chemotherapy-induced peripheral neuropathy (CIPN) remains poorly treated. Our primary aim in this study was to investigate the neuroprotective effect of the immunomodulatory drug rapamycin in the mitigation of cisplatin-induced neurotoxicity. Pain assays were performed in vivo to determine whether rapamycin would prevent or significantly decrease cisplatin-induced neurotoxicity in adult male Balb/c mice. Neuropathic pain induced by both chronic and acute exposure to cisplatin was measured by hot plate assay, cold plate assay, tail-flick test, and plantar test. Rapamycin co-treatment resulted in significant reduction in cisplatin-induced nociceptive-like symptoms. To understand the underlying mechanisms behind rapamycin-mediated neuroprotection, we investigated its effect on certain inflammatory mediators implicated in the propagation of chemotherapy-induced neurotoxicity. Interestingly, cisplatin was found to significantly increase peripheral IL-17A expression and CD8- T cells, which were remarkably reversed by the pre-treatment of mice with rapamycin. In addition, rapamycin reduced the cisplatin-induced neuronal apoptosis marked by decreased neuronal caspase-3 activity. The rapamycin neuroprotective effect was also associated with reversal of the changes in protein expression of p21Cip1, p53, and PUMA. Collectively, rapamycin alleviated some features of cisplatin-induced neurotoxicity in mice and can be further investigated for the treatment of cisplatin-induced peripheral neuropathy.
Collapse
Affiliation(s)
- Moureq Alotaibi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- *Correspondence: Moureq Alotaibi,
| | - Faten Al-Aqil
- Deanship of Scientific Research, King Saud University, Riyadh, Saudi Arabia
| | - Faleh Alqahtani
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Miteb Alanazi
- Pharmacy Services, King Saud University Medical City, Riyadh, Saudi Arabia
| | - Ahmed Nadeem
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Rebeca Lapresa
- Institute of Functional Biology and Genomics, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, University Hospital of Salamanca, Consejo Superior de Investigaciones Científicas (CSIC), University of Salamanca, Salamanca, Spain
| | - Metab Alharbi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muteb Alotaibi
- Department of Neurology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Tareq Saleh
- Department of Basic Medical Sciences, Faculty of Medicine, The Hashemite University, Zarqa, Jordan
| | - Raed Alrowis
- Department of Periodotics and Community Dentistry, College of Dentistry, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
32
|
Shannonhouse J, Bernabucci M, Gomez R, Son H, Zhang Y, Ai CH, Ishida H, Kim YS. Meclizine and Metabotropic Glutamate Receptor Agonists Attenuate Severe Pain and Ca 2+ Activity of Primary Sensory Neurons in Chemotherapy-Induced Peripheral Neuropathy. J Neurosci 2022; 42:6020-6037. [PMID: 35772967 PMCID: PMC9351649 DOI: 10.1523/jneurosci.1064-21.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) affects ∼68% of patients undergoing chemotherapy, causing debilitating neuropathic pain and reducing quality of life. Cisplatin is a commonly used platinum-based chemotherapeutic drug known to cause CIPN, possibly by causing oxidative stress damage to primary sensory neurons. Metabotropic glutamate receptors (mGluRs) are widely hypothesized to be involved in pain processing and pain mitigation. Meclizine is an H1 histamine receptor antagonist known to have neuroprotective effects, including an anti-oxidative effect. Here, we used a mouse model of cisplatin-induced CIPN using male and female mice to test agonists of mGluR8 and Group II mGluR as well as meclizine as interventions to reduce cisplatin-induced pain. We performed behavioral pain tests, and we imaged Ca2+ activity of the large population of dorsal root ganglia (DRG) neurons in vivo For the latter, we used a genetically-encoded Ca2+ indicator, Pirt-GCaMP3, which enabled us to monitor different drug interventions at the level of the intact DRG neuronal ensemble. We found that CIPN increased spontaneous Ca2+ activity in DRG neurons, increased number of Ca2+ transients, and increased hyper-responses to mechanical, thermal, and chemical stimuli. We found that mechanical and thermal pain caused by CIPN was significantly attenuated by the mGluR8 agonist, (S)-3,4-DCPG, the Group II mGluR agonist, LY379268, and the H1 histamine receptor antagonist, meclizine. DRG neuronal Ca2+ activity elevated by CIPN was attenuated by LY379268 and meclizine, but not by (S)-3,4-DCPG. Furthermore, meclizine and LY379268 attenuated cisplatin-induced weight loss. These results suggest that Group II mGluR agonist, mGluR8 agonist, and meclizine are promising candidates as new treatment options for CIPN, and studies of their mechanisms are warranted.SIGNIFICANCE STATEMENT Chemotherapy-induced peripheral neuropathy (CIPN) is a painful condition that affects most chemotherapy patients and persists several months or longer after treatment ends. Research on CIPN mechanism is extensive but has produced only few clinically useful treatments. Using in vivo GCaMP Ca2+ imaging in live animals over 1800 neurons/dorsal root ganglia (DRG) at once, we have characterized the effects of the chemotherapeutic drug, cisplatin and three treatments that decrease CIPN pain. Cisplatin increases sensory neuronal Ca2+ activity and develops various sensitization. Metabotropic glutamate receptor (mGluR) agonist, LY379268 or the H1 histamine receptor antagonist, meclizine decreases cisplatin's effects on neuronal Ca2+ activity and reduces pain hypersensitivity. Our results and experiments provide insights into cellular effects of cisplatin and drugs preventing CIPN pain.
Collapse
Affiliation(s)
| | - Matteo Bernabucci
- Department of Neuroscience and Cell Biology, Rutgers Robert Wood Johnson Medical School, Piscataway, NJ 08854
| | - Ruben Gomez
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Hyeonwi Son
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Yan Zhang
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Chih-Hsuan Ai
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Hirotake Ishida
- Department of Oral & Maxillofacial Surgery, School of Dentistry
| | - Yu Shin Kim
- Department of Oral & Maxillofacial Surgery, School of Dentistry
- Programs in Integrated Biomedical Sciences, Translational Sciences, Biomedical Engineering, Radiological Sciences, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
33
|
Cellular senescence in neuroinflammatory disease: new therapies for old cells? Trends Mol Med 2022; 28:850-863. [DOI: 10.1016/j.molmed.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/08/2022] [Accepted: 07/22/2022] [Indexed: 11/23/2022]
|
34
|
Ahmed YM, Orfali R, Hamad DS, Rateb ME, Farouk HO. Sustainable Release of Propranolol Hydrochloride Laden with Biconjugated-Ufasomes Chitosan Hydrogel Attenuates Cisplatin-Induced Sciatic Nerve Damage in In Vitro/In Vivo Evaluation. Pharmaceutics 2022; 14:1536. [PMID: 35893792 PMCID: PMC9394333 DOI: 10.3390/pharmaceutics14081536] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
Peripheral nerve injuries significantly impact patients' quality of life and poor functional recovery. Chitosan-ufasomes (CTS-UFAs) exhibit biomimetic features, making them a viable choice for developing novel transdermal delivery for neural repair. This study aimed to investigate the role of CTS-UFAs loaded with the propranolol HCl (PRO) as a model drug in enhancing sciatica in cisplatin-induced sciatic nerve damage in rats. Hence, PRO-UFAs were primed, embedding either span 20 or 60 together with oleic acid and cholesterol using a thin-film hydration process based on full factorial design (24). The influence of formulation factors on UFAs' physicochemical characteristics and the optimum formulation selection were investigated using Design-Expert® software. Based on the optimal UFA formulation, PRO-CTS-UFAs were constructed and characterized using transmission electron microscopy, stability studies, and ex vivo permeation. In vivo trials on rats with a sciatic nerve injury tested the efficacy of PRO-CTS-UFA and PRO-UFA transdermal hydrogels, PRO solution, compared to normal rats. Additionally, oxidative stress and specific apoptotic biomarkers were assessed, supported by a sciatic nerve histopathological study. PRO-UFAs and PRO-CTS-UFAs disclosed entrapment efficiency of 82.72 ± 2.33% and 85.32 ± 2.65%, a particle size of 317.22 ± 6.43 and 336.12 ± 4.9 nm, ζ potential of -62.06 ± 0.07 and 65.24 ± 0.10 mV, and accumulatively released 70.95 ± 8.14% and 64.03 ± 1.9% PRO within 6 h, respectively. Moreover, PRO-CTS-UFAs significantly restored sciatic nerve structure, inhibited the cisplatin-dependent increase in peripheral myelin 22 gene expression and MDA levels, and further re-established sciatic nerve GSH and CAT content. Furthermore, they elicited MBP re-expression, BCL-2 mild expression, and inhibited TNF-α expression. Briefly, our findings proposed that CTS-UFAs are promising to enhance PRO transdermal delivery to manage sciatic nerve damage.
Collapse
Affiliation(s)
- Yasmin M. Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt;
| | - Raha Orfali
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Doaa S. Hamad
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| | - Mostafa E. Rateb
- School of Computing, Engineering and Physical Sciences, University of the West of Scotland, Paisley PA1 2BE, UK
| | - Hanan O. Farouk
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62521, Egypt; (D.S.H.); (H.O.F.)
| |
Collapse
|
35
|
Senotherapy Protects against Cisplatin-Induced Ovarian Injury by Removing Senescent Cells and Alleviating DNA Damage. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:9144644. [PMID: 35693700 PMCID: PMC9187433 DOI: 10.1155/2022/9144644] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/02/2022] [Indexed: 11/26/2022]
Abstract
Ovarian damage induced by platinum-based chemotherapy seriously affects young women with cancer, manifesting as infertility, early menopause, and premature ovarian insufficiency. However, effective prevention strategies for such damage are lacking. Senescent cells may be induced by chemotherapeutic agents. We hypothesized that cisplatin can lead to senescence in ovarian cells during the therapeutic process, and senolytic drugs can protect animals against cisplatin-induced ovarian injury. Here, we demonstrated the existence of senescent cells in cisplatin-treated ovaries, identified the senescence-associated secretory phenotype, and observed significant improvement of ovarian function by treatment with metformin or dasatinib and quercetin (DQ) independently or in combination. These senotherapies improved both oocyte quality and fertility, increased the ovarian reserve, and enhanced hormone secretion in cisplatin-exposed mice. Additionally, attenuated fibrosis, reorganized subcellular structure, and mitigated DNA damage were observed in the ovaries of senotherapeutic mice. Moreover, RNA sequencing analysis revealed upregulation of the proliferation-related genes Ki, Prrx2, Sfrp4, and Megfl0; and the antioxidative gene H2-Q10 after metformin plus DQ treatment. Gene ontology analysis further revealed that combining senotherapies enhanced ovarian cell differentiation, development, and communication. In this study, we demonstrated that metformin plus DQ recovered ovarian function to a greater extent compared to metformin or DQ independently, with more follicular reserve, increased pups per litter, and reduced DNA damage. Collectively, our work indicates that senotherapies might prevent cisplatin-induced ovarian injury by removing senescent cells and reducing DNA damage, which represent a promising therapeutic avenue to prevent chemotherapy-induced ovarian damage.
Collapse
|
36
|
Behrouzi A, Xia H, Thompson EL, Kelley MR, Fehrenbacher JC. Oxidative DNA Damage and Cisplatin Neurotoxicity Is Exacerbated by Inhibition of OGG1 Glycosylase Activity and APE1 Endonuclease Activity in Sensory Neurons. Int J Mol Sci 2022; 23:ijms23031909. [PMID: 35163831 PMCID: PMC8836551 DOI: 10.3390/ijms23031909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 02/04/2023] Open
Abstract
Cisplatin can induce peripheral neuropathy, which is a common complication of anti-cancer treatment and negatively impacts cancer survivors during and after completion of treatment; therefore, the mechanisms by which cisplatin alters sensory neuronal function to elicit neuropathy are the subject of much investigation. Our previous work suggests that the DNA repair activity of APE1/Ref-1, the rate-limiting enzyme of the base excision repair (BER) pathway, is critical for neuroprotection against cisplatin. A specific role for 8-oxoguanine DNA glycosylase-1 (OGG1), the glycosylase that removes the most common oxidative DNA lesion, and putative coordination of OGG1 with APE1/Ref-1 in sensory neurons, has not been investigated. We investigated whether inhibiting OGG1 glycosylase activity with the small molecule inhibitor, TH5487, and/or APE1/Ref-1 endonuclease activity with APE Repair Inhibitor III would alter the neurotoxic effects of cisplatin in sensory neuronal cultures. Sensory neuron function was assessed by calcitonin gene-related peptide (CGRP) release, as a marker of sensitivity and by neurite outgrowth. Cisplatin altered neuropeptide release in an inverse U-shaped fashion, with low concentrations enhancing and higher concentrations diminishing CGRP release. Pretreatment with BER inhibitors exacerbated the functional effects of cisplatin and enhanced 8oxo-dG and adduct lesions in the presence of cisplatin. Our studies demonstrate that inhibition of OGG1 and APE1 endonuclease activity enhances oxidative DNA damage and exacerbates neurotoxicity, thus limiting oxidative DNA damage in sensory neurons that might alleviate cisplatin-induced neuropathy.
Collapse
Affiliation(s)
- Adib Behrouzi
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.B.); (H.X.); (E.L.T.); (M.R.K.)
| | - Hanyu Xia
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.B.); (H.X.); (E.L.T.); (M.R.K.)
| | - Eric L. Thompson
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.B.); (H.X.); (E.L.T.); (M.R.K.)
| | - Mark R. Kelley
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; (A.B.); (H.X.); (E.L.T.); (M.R.K.)
- Department of Pediatrics, Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Jill C. Fehrenbacher
- Department of Pharmacology and Toxicology, Stark Neuroscience Research Institute, Indiana University Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Correspondence: ; Tel.: +1-317-274-8360
| |
Collapse
|
37
|
D'Agnelli S, Amodeo G, Franchi S, Verduci B, Baciarello M, Panerai AE, Bignami EG, Sacerdote P. Frailty and pain, human studies and animal models. Ageing Res Rev 2022; 73:101515. [PMID: 34813977 DOI: 10.1016/j.arr.2021.101515] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 11/08/2021] [Accepted: 11/11/2021] [Indexed: 11/01/2022]
Abstract
The hypothesis that pain can predispose to frailty development has been recently investigated in several clinical studies suggesting that frailty and pain may share some mechanisms. Both pain and frailty represent important clinical and social problems and both lack a successful treatment. This circumstance is mainly due to the absence of in-depth knowledge of their pathological mechanisms. Evidence of shared pathways between frailty and pain are preliminary. Indeed, many clinical studies are observational and the impact of pain treatment, and relative pain-relief, on frailty onset and progression has never been investigated. Furthermore, preclinical research on this topic has yet to be performed. Specific researches on the pain-frailty relation are needed. In this narrative review, we will attempt to point out the most relevant findings present in both clinical and preclinical literature on the topic, with particular attention to genetics, epigenetics and inflammation, in order to underline the existing gaps and the potential future interventional strategies. The use of pain and frailty animal models discussed in this review might contribute to research in this area.
Collapse
|
38
|
Bruna J, Calls A, Yuste VJ. Senescence in neurons: an open issue. Aging (Albany NY) 2021; 13:16902-16903. [PMID: 34264202 PMCID: PMC8312433 DOI: 10.18632/aging.203329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/10/2021] [Indexed: 11/25/2022]
Affiliation(s)
- Jordi Bruna
- Neuro-Oncology Unit, Hospital Universitari de Bellvitge-ICO L'Hospitalet (IDIBELL), Barcelona, Spain.,Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Aina Calls
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Victor J Yuste
- Department of Biochemistry, Institute of Neuroscience, Autonomous University of Barcelona, Bellaterra, Spain
| |
Collapse
|
39
|
Abstract
PURPOSE OF THE REVIEW The neuromuscular complications of cancer therapy include chemotherapy-induced peripheral neurotoxicity (CIPN), immune-related neuromuscular complications to immune checkpoint inhibitors and radiation-induced neuropathy/plexopathy. With a wider focus on CIPN, we will discuss new pathogenetic insights, recent predictive biomarkers and emerging therapies for neuromuscular complications of cancer therapy. RECENT FINDINGS Findings from recent preclinical studies have improved our knowledge on new CIPN pathogenetic pathways, including the activation of senescence-like processes in neurons, axonal degeneration and neuroinflammation. Metabolomics and serum neurofilament light chain levels appear the most promising biomarkers to predict CIPN development and severity. There is some recent evidence of promising pharmacological compounds to prevent or treat CIPN, and new drugs are in early development and testing. SUMMARY A multimodal assessment, with neurophysiological, imaging and patient-reported outcome measures, coupled with the use of reliable blood or genetic biomarkers, may offer pathogenetic grounds for future preventive and symptomatic strategies for the multidisciplinary treatment of neuromuscular complications of cancer therapy.
Collapse
|
40
|
Abdelgawad IY, Sadak KT, Lone DW, Dabour MS, Niedernhofer LJ, Zordoky BN. Molecular mechanisms and cardiovascular implications of cancer therapy-induced senescence. Pharmacol Ther 2021; 221:107751. [PMID: 33275998 PMCID: PMC8084867 DOI: 10.1016/j.pharmthera.2020.107751] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/16/2020] [Accepted: 11/23/2020] [Indexed: 12/11/2022]
Abstract
Cancer treatment has been associated with accelerated aging that can lead to early-onset health complications typically experienced by older populations. In particular, cancer survivors have an increased risk of developing premature cardiovascular complications. In the last two decades, cellular senescence has been proposed as an important mechanism of premature cardiovascular diseases. Cancer treatments, specifically anthracyclines and radiation, have been shown to induce senescence in different types of cardiovascular cells. Additionally, clinical studies identified increased systemic markers of senescence in cancer survivors. Preclinical research has demonstrated the potential of several approaches to mitigate cancer therapy-induced senescence. However, strategies to prevent and/or treat therapy-induced cardiovascular senescence have not yet been translated to the clinic. In this review, we will discuss how therapy-induced senescence can contribute to cardiovascular complications. Thereafter, we will summarize the current in vitro, in vivo, and clinical evidence regarding cancer therapy-induced cardiovascular senescence. Then, we will discuss interventional strategies that have the potential to protect against therapy-induced cardiovascular senescence. To conclude, we will highlight challenges and future research directions to mitigate therapy-induced cardiovascular senescence in cancer survivors.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA
| | - Karim T Sadak
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA; University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55455, USA; University of Minnesota Masonic Cancer Center, Minneapolis, MN 55455, USA
| | - Diana W Lone
- University of Minnesota Masonic Children's Hospital, Minneapolis, MN 55455, USA
| | - Mohamed S Dabour
- Clinical Pharmacy Department, Faculty of Pharmacy, Tanta University, Tanta 31527, Egypt
| | - Laura J Niedernhofer
- Institute on the Biology of Aging and Metabolism and Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| |
Collapse
|
41
|
Wen J, Bao M, Tang M, He X, Yao X, Li L. Low magnitude vibration alleviates age-related bone loss by inhibiting cell senescence of osteogenic cells in naturally senescent rats. Aging (Albany NY) 2021; 13:12031-12045. [PMID: 33888646 PMCID: PMC8109117 DOI: 10.18632/aging.202907] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 02/18/2021] [Indexed: 04/14/2023]
Abstract
Dysfunction of bone marrow mesenchymal stem cells (BMSCs), osteoblasts and osteocytes may be one of the main causes of bone loss in the elderly. In the present study, we found osteogenic cells from aged rats all exhibited senescence changes, with the most pronounced senescence changes in osteocytes. Meanwhile, the proliferative capacity and functional activity of osteogenic cells from aged rats were suppressed. Osteogenic differentiation capacity of BMSCs from aged rats decreased while adipogenic capacity increased. The mineralization capacity, ALP activity and osteogenic proteins expression of osteoblasts from aged rats decreased. Additionally, osteocytes from aged rats up-expressed sclerosteosis protein, a negative regulator of bone formation. To inhibit osteogenic cell senescence, we use low magnitude vibration (LMV) to eliminate the senescent osteogenic cells. After LMV treatment, the number of osteogenic cells staining positively for senescence-associated-β-galactosidase (SA-β-Gal) decreased significantly. Besides, the expression of anti-aging protein SIRT1 was upregulated significantly, while p53 and p21 were downregulated significantly after LMV treatment. Thus, the LMV can inhibit the senescence of osteogenic cells partly through the Sirt1/p53/p21 axis. Furthermore, LMV was found to promote bone formation of aged rats. These results suggest that the inhibition of osteogenic cell senescence by LMV is a valuable treatment to prevent or delay osteoporosis.
Collapse
Affiliation(s)
- Jirui Wen
- Institute of Biomedical Engineering, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Mingyue Bao
- Institute of Biomedical Engineering, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Min Tang
- Institute of Biomedical Engineering, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xueling He
- Laboratory Animal Center, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinghong Yao
- Institute of Biomedical Engineering, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| | - Liang Li
- Institute of Biomedical Engineering, West China School of Basic Medical Science and Forensic Medicine, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
42
|
Sah E, Krishnamurthy S, Ahmidouch MY, Gillispie GJ, Milligan C, Orr ME. The Cellular Senescence Stress Response in Post-Mitotic Brain Cells: Cell Survival at the Expense of Tissue Degeneration. Life (Basel) 2021; 11:229. [PMID: 33799628 PMCID: PMC7998276 DOI: 10.3390/life11030229] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/23/2021] [Accepted: 03/02/2021] [Indexed: 01/10/2023] Open
Abstract
In 1960, Rita Levi-Montalcini and Barbara Booker made an observation that transformed neuroscience: as neurons mature, they become apoptosis resistant. The following year Leonard Hayflick and Paul Moorhead described a stable replicative arrest of cells in vitro, termed "senescence". For nearly 60 years, the cell biology fields of neuroscience and senescence ran in parallel, each separately defining phenotypes and uncovering molecular mediators to explain the 1960s observations of their founding mothers and fathers, respectively. During this time neuroscientists have consistently observed the remarkable ability of neurons to survive. Despite residing in environments of chronic inflammation and degeneration, as occurs in numerous neurodegenerative diseases, often times the neurons with highest levels of pathology resist death. Similarly, cellular senescence (hereon referred to simply as "senescence") now is recognized as a complex stress response that culminates with a change in cell fate. Instead of reacting to cellular/DNA damage by proliferation or apoptosis, senescent cells survive in a stable cell cycle arrest. Senescent cells simultaneously contribute to chronic tissue degeneration by secreting deleterious molecules that negatively impact surrounding cells. These fields have finally collided. Neuroscientists have begun applying concepts of senescence to the brain, including post-mitotic cells. This initially presented conceptual challenges to senescence cell biologists. Nonetheless, efforts to understand senescence in the context of brain aging and neurodegenerative disease and injury emerged and are advancing the field. The present review uses pre-defined criteria to evaluate evidence for post-mitotic brain cell senescence. A closer interaction between neuro and senescent cell biologists has potential to advance both disciplines and explain fundamental questions that have plagued their fields for decades.
Collapse
Affiliation(s)
- Eric Sah
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
| | - Sudarshan Krishnamurthy
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Bowman Gray Center for Medical Education, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Mohamed Y. Ahmidouch
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Departments of Biology and Chemistry, Wake Forest University, Winston-Salem, NC 27109, USA
| | - Gregory J. Gillispie
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Carol Milligan
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA;
| | - Miranda E. Orr
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA; (E.S.); (S.K.); (M.Y.A.); (G.J.G.)
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
- Salisbury VA Medical Center, Salisbury, NC 28144, USA
| |
Collapse
|
43
|
Zhou RH, Chen C, Jin SH, Li J, Xu ZH, Ye L, Zhou JG. Co-expression gene modules involved in cisplatin-induced peripheral neuropathy according to sensitivity, status, and severity. J Peripher Nerv Syst 2020; 25:366-376. [PMID: 32779320 DOI: 10.1111/jns.12407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/03/2020] [Accepted: 08/05/2020] [Indexed: 02/05/2023]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) is among the most disabling and frustrating problems for cancer survivors. The neurotoxicity caused by cisplatin varies greatly among patients, and few predictors of appearance, duration of symptoms, susceptibility, or severity are available. A deeper understanding of the mechanisms underlying individual differences in status, severity, or sensitivity in response to cisplatin treatment is therefore required. By analyzing the GSE64174 gene expression profile and constructing a weighted gene co-expression network analysis (WGCNA) network, we screened gene modules and hub genes related to CIPN status, severity and sensitivity. We first identified the transcriptome profile of mouse dorsal root ganglion (DRG) samples and transformed their genes to human DRG counterparts. We then constructed WGCNA gene modules via optimal soft-threshold power-identification and module-preservation analysis. Comprehensive analysis and identification of module hub genes were performed via functional-enrichment analysis and significant common hub genes were identified, including "Cytoscape_cytoHubba," "Cytoscape_MCODE," and "Metascape_MCODE." Brown, green, and blue modules were selected to represent CIPN sensitivity, status, and severity, respectively, via trait-module correlational analysis. Additionally, functional enrichment analysis results indicated that these three modules were associated with some crucial biological functions, such as neutrophil migration, chemokine-mediated signaling pathway, and PI3K-Akt signaling pathway. We then identified seven common hub genes via three methods, including CXCL10, CCL21, CCR2, CXCR4, TLR4, NPY1R, and GALR2, related to CIPN status, severity and sensitivity. Our results provide possible targets and mechanism insights into the development and progress of CIPN, which can guide further transformation and pre-clinical research.
Collapse
Affiliation(s)
- Rui-Hao Zhou
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Chan Chen
- Department of Anesthesiology and Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - Su-Han Jin
- Department of Orthodontics, Affiliated Stomatological Hospital of Zunyi Medical University, Zunyi, China
| | - Jun Li
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Zi-Hao Xu
- School of Public Health, Nanchang University, Nanchang, China
| | - Ling Ye
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Jian-Guo Zhou
- Department of Oncology, Affiliated Hospital of Zunyi Medical University, Zunyi, China.,Department of Radiation Oncology, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|