1
|
Zhou M, Tian M, Li Z, Wang C, Guo Z. Overview of splicing variation in ovarian cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189288. [PMID: 39993511 DOI: 10.1016/j.bbcan.2025.189288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/14/2025] [Accepted: 02/14/2025] [Indexed: 02/26/2025]
Abstract
Ovarian cancer remains one of the deadliest gynecological malignancies, with a persistently high mortality rate despite promising advancements in immunotherapy. Aberrant splicing events play a crucial role in cancer heterogeneity and treatment resistance. Many splicing variants, especially those involving key molecular markers such as BRCA1/2, are closely linked to disease progression and treatment outcomes. These variants and related splicing factors hold significant clinical value as diagnostic and prognostic biomarkers and therapeutic targets. This review provides a comprehensive overview of splicing variants in ovarian cancer, emphasizing their role in metastasis and resistance, and offers insights to advance biomarker development and treatment strategies.
Collapse
Affiliation(s)
- Min Zhou
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Mengdie Tian
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhuoer Li
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Chunli Wang
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zhiqiang Guo
- From the Department of Gynecology and Obstetrics, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
2
|
Liu L, Niu K, Yang Z, Song J, Wei D, Zhang R, Tao K. Osteopontin: an indispensable component in common liver, pancreatic, and biliary related disease. J Cancer Res Clin Oncol 2024; 150:508. [PMID: 39572438 PMCID: PMC11582231 DOI: 10.1007/s00432-024-06038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND The liver, gallbladder, and pancreas constitute a critically important system of digestive and endocrine organs in the human body, performing essential and complex physiological functions. At present, diseases of this digestive system have a high incidence in the world and is a more common disease. However, osteopontin (OPN) plays a crucial role in common liver, pancreatic, and biliary diseases, and its mechanisms of action merit further exploration and study. METHODS We performed an analysis to assess the role of osteopontin in liver, pancreatic, and biliary diseases, focusing on its significance in these conditions. RESULTS Osteopontin, a profoundly phosphorylated glycoprotein, can be utilized as a diagnostic marker for hepatocellular carcinoma and cholangiopathies. Additionally it assists in the treatment of non-alcoholic fatty liver disease and promotes the proliferation, migration, and invasion of pancreatic cancer cells. Furthermore, osteopontin regulates inflammatory responses in chronic pancreatitis. CONCLUSIONS This review offers a thorough analysis of the genetic and protein architecture of OPN, and elucidates the relationship between osteopontin and liver, pancreatic, and biliary diseases. Furthermore, exclusive focus is lavished on the potential utility of OPN as a biomarker and an innovative therapeutic target in the management of these disorder.
Collapse
Affiliation(s)
- Lu Liu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhipeng Yang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China
| | - Junbo Song
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China
| | - Dan Wei
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ruohan Zhang
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China.
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
3
|
Wang S, Xiao Y, Tian J, Dai B, Tao Z, Liu J, Sun Z, Liu X, Li Y, Zhao G, Cui Y, Wang F, Liu S. Targeted Macrophage CRISPR-Cas13 mRNA Editing in Immunotherapy for Tendon Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311964. [PMID: 38302097 DOI: 10.1002/adma.202311964] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/12/2024] [Indexed: 02/03/2024]
Abstract
CRISPR-Cas13 holds substantial promise for tissue repair through its RNA editing capabilities and swift catabolism. However, conventional delivery methods fall short in addressing the heightened inflammatory response orchestrated by macrophages during the acute stages of tendon injury. In this investigation, macrophage-targeting cationic polymers are systematically screened to facilitate the entry of Cas13 ribonucleic-protein complex (Cas13 RNP) into macrophages. Notably, SPP1 (OPN encoding)-producing macrophages are recognized as a profibrotic subtype that emerges during the inflammatory stage. By employing ROS-responsive release mechanisms tailored for macrophage-targeted Cas13 RNP editing systems, the overactivation of SPP1 is curbed in the face of an acute immune microenvironment. Upon encapsulating this composite membrane around the tendon injury site, the macrophage-targeted Cas13 RNP effectively curtails the emergence of injury-induced SPP1-producing macrophages in the acute phase, leading to diminished fibroblast activation and mitigated peritendinous adhesion. Consequently, this study furnishes a swift RNA editing strategy for macrophages in the inflammatory phase triggered by ROS in tendon injury, along with a pioneering macrophage-targeted carrier proficient in delivering Cas13 into macrophages efficiently.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yao Xiao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jian Tian
- Department of Orthopedics, Soochow University Affiliated Wuxi Ninth People's Hospital, Wuxi, 214061, China
| | - Bo Dai
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zaijin Tao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Jingwen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Zhenyu Sun
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Xuanzhe Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yanhao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Gang Zhao
- Department of Orthopedics, Soochow University Affiliated Wuxi Ninth People's Hospital, Wuxi, 214061, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fei Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shen Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
4
|
Koroknai V, Szász I, Jámbor K, Balázs M. Expression pattern of osteopontin isoforms in malignant melanoma cell lines. Clin Transl Sci 2024; 17:e13694. [PMID: 38058256 PMCID: PMC10772848 DOI: 10.1111/cts.13694] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/16/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023] Open
Abstract
Osteopontin (OPN) is a secreted integrin-binding protein that plays a role in inflammation, cellular viability, cell adhesion and migration, cancer development, and diabetes through different mechanisms. The splice variants of OPN can play essential roles in cancer development, progression, and metastasis formation; however, limited data are available about the role of OPN isoforms in human malignant melanoma. Our goal was to define the gene expression patterns of five OPN variants (OPN4, OPN5, OPNa, OPNb, and OPNc), integrin, and CD44 receptor genes in primary and metastatic melanoma-originated cell lines (n = 19), and to explore the association of the expression patterns with clinicopathological parameters. We evaluated the invasive property of the cell lines and investigated the potential association between the invasion and gene expression of OPN isoforms. We found a significant rise in the expression of OPNc in the invasive cell lines compared to the noninvasive cells and detected significantly higher expression of the OPN splice variants in melanoma cell lines originating from more advanced stages tumors than cell lines originating from early-stage melanomas. The correlation analysis revealed that all five OPN variants positively correlated with ITGB3 and ITGA9, whereas OPN5 positively correlated with ITGB1, ITGAV, ITGA6, and CD44. OPN can activate extracellular signal-regulated kinase signaling through binding to α9β1 integrin, promoting melanoma tumor cell migration. It is possible that such associations between OPN splice variants and integrin receptors may play a role in melanoma progression. In conclusion, our findings suggest that high expression of OPNc correlates with the invasive behavior of melanoma cells.
Collapse
Affiliation(s)
- Viktoria Koroknai
- Department of Public Health and Epidemiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- HUN‐REN‐DE Public Health Research GroupUniversity of DebrecenDebrecenHungary
| | - István Szász
- Department of Public Health and Epidemiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- HUN‐REN‐DE Public Health Research GroupUniversity of DebrecenDebrecenHungary
| | - Krisztina Jámbor
- Department of Public Health and Epidemiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
| | - Margit Balázs
- Department of Public Health and Epidemiology, Faculty of MedicineUniversity of DebrecenDebrecenHungary
- HUN‐REN‐DE Public Health Research GroupUniversity of DebrecenDebrecenHungary
| |
Collapse
|
5
|
Osteopontin Splicing Isoforms Contribute to Endometriotic Proliferation, Migration, and Epithelial-Mesenchymal Transition in Endometrial Epithelial Cells. Int J Mol Sci 2022; 23:ijms232315328. [PMID: 36499654 PMCID: PMC9738877 DOI: 10.3390/ijms232315328] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 12/12/2022] Open
Abstract
Osteopontin (OPN) isoforms, including OPNb and OPNc, promote malignancy and may contribute to the pathogenesis of endometriosis, a benign disorder with multiple characteristics resembling malignant tumors. In our experiments, OPNb and OPNc were significantly overexpressed in both endometriosis and adenomyosis compared to the normal endometrium. Upregulation of CD44v and the epithelial-mesenchymal transition (EMT) process was also present in endometriotic lesions. Overexpression of OPNb and OPNc splicing variants in endometriotic cells evoked morphological changes, actin remodeling, cell proliferation, cell migration, and EMT through binding OPN ligand receptors CD44 and αvβ3, subsequently activating the PI3K and NF-ĸB pathways. We elucidated the causal role of OPN splice variants in regulating endometriotic cell growth, which may promote the development of OPN-targeted therapies for patients suffering from endometriotic disorders.
Collapse
|
6
|
El-Benhawy SA, Sakr OA, Fahmy EI, Ali RA, Hussein MS, Nassar EM, Salem SM, Abu-Samra N, Elzawawy S. Assessment of Serum Hypoxia Biomarkers Pre- and Post-radiotherapy in Patients with Brain Tumors. J Mol Neurosci 2022; 72:2303-2312. [PMID: 36121548 PMCID: PMC9726784 DOI: 10.1007/s12031-022-02065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/02/2022] [Indexed: 12/13/2022]
Abstract
Hypoxia is a prevalent hallmark of many malignant neoplasms. The aim was to assess the serum hypoxia biomarkers HIF-1α, VEGF, osteopontin, erythropoietin, caveolin-1, GLUT-1, and LDH pre- and post-radiotherapy in patients with brain tumors. The study was conducted on 120 subjects were divided into two groups: group I: 40 healthy volunteers as control group. Group II: 80 brain tumor patients were subdivided into glioblastoma subgroup: 40 glioblastoma patients, meningioma subgroup: 40 malignant meningioma patients. Two venous blood samples were collected from every patient prior to and following RT and one sample from controls. Biomarkers were assayed by ELISA. In glioblastoma subgroup, HIF-1α, VEGF, and LDH were significantly increased after RT. On the contrary, these biomarkers were significantly decreased after RT in malignant meningioma subgroup. Osteopontin was significantly increased after RT in both subgroups. Regarding erythropoietin, it was significantly decreased in both subgroups when compared to before RT. Caveolin-1 showed a significant increase in glioblastoma subgroup after RT comparing to before RT. GLUT-1 was significantly increased after RT in both subgroups comparing to before RT. Association of significant elevation of hypoxia biomarkers either pre- or post-RT with aggressive tumor such as glioblastoma indicates that, they are markers of malignancy and may have a role in tumor development and progression.
Collapse
Affiliation(s)
- Sanaa A El-Benhawy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ola A Sakr
- Cancer Management and Research Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Enayat I Fahmy
- Radiation Sciences Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Raed A Ali
- Radiology and Medical Imaging Department, Faculty of Technology of Medical Sciences, Baghdad University, Baghdad, Iraq
| | - Mohamed S Hussein
- Radiology Department, Faculty of Applied Medical Sciences, October 6 University, October, Egypt
| | - Esraa M Nassar
- Radiology Department, Faculty of Applied Medical Sciences, October 6 University, October, Egypt
| | - Sherif M Salem
- Department of Neurosurgery, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nehal Abu-Samra
- Department of Basic Sciences, Faculty of Physical Therapy, Pharos University, Alexandria, Egypt.
| | - Sherif Elzawawy
- Clinical Oncology Department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
7
|
Tan Y, Zhao L, Yang YG, Liu W. The Role of Osteopontin in Tumor Progression Through Tumor-Associated Macrophages. Front Oncol 2022; 12:953283. [PMID: 35898884 PMCID: PMC9309262 DOI: 10.3389/fonc.2022.953283] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022] Open
Abstract
Osteopontin (OPN) is a multifunctional phosphorylated protein. It is widely involved in solid tumor progression, such as intensification of macrophage recruitment, inhibition of T-cell activity, aggravation of tumor interstitial fibrosis, promotion of tumor metastasis, chemotherapy resistance, and angiogenesis. Most of these pathologies are affected by tumor-associated macrophages (TAMs), an important component of the tumor microenvironment (TME). TAMs have been extensively characterized, including their subsets, phenotypes, activation status, and functions, and are considered a promising therapeutic target for cancer treatment. This review focuses on the interaction between OPN and TAMs in mediating tumor progression. We discuss the strategies for targeting OPN and TAMs to treat cancer and factors that may affect the therapeutic outcomes of blocking OPN or depleting TAMs. We also discuss the role of cancer cell- vs. TAM-derived OPN in tumorigenesis, the mechanisms of how OPN affects TAM recruitment and polarization, and why OPN could mediate anti-tumor and pro-tumor effects, as well as previously reported discrepancies.
Collapse
Affiliation(s)
- Yuying Tan
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Lei Zhao
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
- International Center of Future Science, Jilin University, Changchun, China
- *Correspondence: Yong-Guang Yang, ; Wentao Liu,
| | - Wentao Liu
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
- National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, China
- *Correspondence: Yong-Guang Yang, ; Wentao Liu,
| |
Collapse
|
8
|
Cai X, Zhang H, Li T. The role of SPP1 as a prognostic biomarker and therapeutic target in head and neck squamous cell carcinoma. Int J Oral Maxillofac Surg 2021; 51:732-741. [PMID: 34489157 DOI: 10.1016/j.ijom.2021.07.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 05/05/2021] [Accepted: 07/26/2021] [Indexed: 01/02/2023]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignancies and has a low 5-year survival rate. Mounting evidence suggests that oral potentially malignant disorders, such as oral leukoplakia (OLK), may progress to HNSCC. Given that OLK and HNSCC are often insidious and asymptomatic, the identification of markers of OLK malignant transformation and therapeutic targets in HNSCC is critical. Using various online tools and publicly available gene expression datasets, the secreted phosphoprotein 1 gene (SPP1) was identified as a significant differentially expressed gene among OLK, HNSCC, and non-cancerous tissues. SPP1 mRNA levels were elevated in HNSCC tissues and were associated with cancer stage, tumor grade, and human papillomavirus infection status. High SPP1 mRNA levels were correlated with poor overall survival of HNSCC patients. In contrast, SPP1 mutations were not significantly associated with overall survival, although their frequency in HNSCC was very low (0.6%). Furthermore, SPP1 expression levels in HNSCC were positively correlated with the infiltration of CD4+ cells, macrophages, neutrophils, and dendritic cells. The study results suggest that SPP1 may represent a diagnostic and prognostic biomarker, as well as a potential therapeutic target in HNSCC.
Collapse
Affiliation(s)
- X Cai
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Haidian District, Beijing, People's Republic of China; Research Unit of Precision Pathological Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, People's Republic of China
| | - H Zhang
- Research Unit of Precision Pathological Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, People's Republic of China; Central Laboratory, Peking University School and Hospital of Stomatology, Beijing, People's Republic of China.
| | - T Li
- Department of Oral Pathology, Peking University School and Hospital of Stomatology, Haidian District, Beijing, People's Republic of China; Research Unit of Precision Pathological Diagnosis in Tumors of the Oral and Maxillofacial Regions, Chinese Academy of Medical Sciences (2019RU034), Beijing, People's Republic of China.
| |
Collapse
|
9
|
Ferdowsi S, Ghaffari SH, Shiraji ST, Mousavi SA, Mohammadi S. Investigation of the Osteopontin isoforms expression in patients with acute myeloid leukemia. Med Oncol 2021; 38:102. [PMID: 34313836 DOI: 10.1007/s12032-021-01539-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/21/2021] [Indexed: 12/01/2022]
Abstract
Acute myeloid leukemia (AML) is one of the major hematological malignancies. Advances in molecular research have greatly improved our understanding of the process of leukemia formation in AML. Osteopontin (OPN) is a novel molecule that mediates critical processes for cancer progression. The aim of this study was to investigate the relative expression of OPN gene isoforms in AML patients on days 0, 14, and 28 after chemotherapy. The bone marrow samples were collected from 40 newly diagnosed AML patients (24 male and 16 female with a mean age of 30 years) at the initial time of diagnosis, 14 and 28 days after treatment. The peripheral blood samples of 10 healthy individuals were also collected as the control group. The expression of OPN isoforms was investigated by Real-Time Quantitative PCR. The expression of VEGFc/STAT3/CXCR4 was also investigated by Real-Time PCR. Findings indicated that OPNb and OPNc isoforms had significantly overexpression in AML patients on 14 and 28 days after treatment compared to normal samples (P < 0.05). The level of OPNb and OPNc isoforms was increased significantly in M0, M1, and M2 subgroups with overexpression of VEGFc/STAT3/CXCR4, 28 days after starting chemotherapy (P < 0.05). Our results suggested that OPNb and OPNc isoforms play a major role in cancer relapse. Therefore, they can be used as a valuable prognostic and diagnostic biomarker for relapse of the AML disease. However, these findings need confirmation with further studies.
Collapse
Affiliation(s)
- Shirin Ferdowsi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran
| | - Seyed H Ghaffari
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sahar Tavakkoli Shiraji
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Asadollah Mousavi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Mohammadi
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Tehran, Iran. .,Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran. .,Research Institute for Oncology, Hematology and Cell Therapy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Larionova I, Kazakova E, Gerashchenko T, Kzhyshkowska J. New Angiogenic Regulators Produced by TAMs: Perspective for Targeting Tumor Angiogenesis. Cancers (Basel) 2021; 13:cancers13133253. [PMID: 34209679 PMCID: PMC8268686 DOI: 10.3390/cancers13133253] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 06/15/2021] [Accepted: 06/22/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Since the targeting of a single pro-angiogenic factor fails to improve oncological disease outcome, significant efforts have been made to identify new pro-angiogenic factors that could compensate for the deficiency of current therapy or act independently as single drugs. Our review aims to present the state-of-the art for well-known and recently described factors produced by macrophages that induce and regulate angiogenesis. A number of positive and negative regulators of angiogenesis in the tumor microenvironment are produced by tumor-associated macrophages (TAMs). Accumulating evidence has indicated that, apart from the well-known angiogenic factors, there are plenty of novel angiogenesis-regulating proteins that belong to different classes. We summarize the data regarding the direct or indirect mechanisms of the interaction of these factors with endothelial cells during angiogenesis. We highlight the recent findings that explain the limitations in the efficiency of current anti-angiogenic therapy approaches. Abstract Angiogenesis is crucial to the supply of a growing tumor with nutrition and oxygen. Inhibition of angiogenesis is one of the main treatment strategies for colorectal, lung, breast, renal, and other solid cancers. However, currently applied drugs that target VEGF or receptor tyrosine kinases have limited efficiency, which raises a question concerning the mechanism of patient resistance to the already developed drugs. Tumor-associated macrophages (TAMs) were identified in the animal tumor models as a key inducer of the angiogenic switch. TAMs represent a potent source not only for VEGF, but also for a number of other pro-angiogenic factors. Our review provides information about the activity of secreted regulators of angiogenesis produced by TAMs. They include members of SEMA and S100A families, chitinase-like proteins, osteopontin, and SPARC. The COX-2, Tie2, and other factors that control the pro-angiogenic activity of TAMs are also discussed. We highlight how these recent findings explain the limitations in the efficiency of current anti-angiogenic therapy. Additionally, we describe genetic and posttranscriptional mechanisms that control the expression of factors regulating angiogenesis. Finally, we present prospects for the complex targeting of the pro-angiogenic activity of TAMs.
Collapse
Affiliation(s)
- Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
- Correspondence: (I.L.); (J.K.)
| | - Elena Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
| | - Tatiana Gerashchenko
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia;
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, 634050 Tomsk, Russia;
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, University of Heidelberg, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
- Correspondence: (I.L.); (J.K.)
| |
Collapse
|
11
|
Chaudhary R, Morris RJ, Steinson E. The multifactorial roles of microglia and macrophages in the maintenance and progression of glioblastoma. J Neuroimmunol 2021; 357:577633. [PMID: 34153803 DOI: 10.1016/j.jneuroim.2021.577633] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 06/11/2021] [Indexed: 01/18/2023]
Abstract
The functional characteristics of glial cells, in particular microglia, have attained considerable importance in several diseases, including glioblastoma, the most hostile and malignant type of intracranial tumor. Microglia performs a highly significant role in the brain's inflammatory response mechanism. They exhibit anti-tumor properties via phagocytosis and the activation of a number of different cytotoxic substances. Some tumor-derived factors, however, transform these microglial cells into immunosuppressive and tumor-supportive, facilitating survival and progression of tumorigenic cells. Glioma-associated microglia and/or macrophages (GAMs) accounts for a large proportion of glioma infiltrating cells. Once within the tumor, GAMs exhibit a distinct phenotype of initiation that subsequently supports the growth and development of tumorigenic cells, angiogenesis and stimulates the infiltration of healthy brain regions. Interventions that suppress or prohibit the induction of GAMs at the tumor site or attenuate their immunological activities accommodating anti-tumor actions are likely to exert positive impact on glioblastoma treatment. In the present paper, we aim to summarize the most recent knowledge of microglia and its physiology, as well as include a very brief description of different molecular factors involved in microglia and glioblastoma interplay. We further address some of the major signaling pathways that regulate the baseline motility of glioblastoma progression. Finally, we discussed a number of therapeutic approaches regarding glioblastoma treatment.
Collapse
Affiliation(s)
- Rishabh Chaudhary
- Department of Pharmaceutical Sciences, Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Raebareli Road, Lucknow, India.
| | - Rhianna J Morris
- Department of Pharmacology, University of Oxford, Mansfield Road, Oxford OX1 3QT, United Kingdom
| | - Emma Steinson
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
12
|
Nishikawa M, Inoue A, Ohnishi T, Yano H, Ozaki S, Kanemura Y, Suehiro S, Ohtsuka Y, Kohno S, Ohue S, Shigekawa S, Watanabe H, Kitazawa R, Tanaka J, Kunieda T. Hypoxia-induced phenotypic transition from highly invasive to less invasive tumors in glioma stem-like cells: Significance of CD44 and osteopontin as therapeutic targets in glioblastoma. Transl Oncol 2021; 14:101137. [PMID: 34052625 PMCID: PMC8175402 DOI: 10.1016/j.tranon.2021.101137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 01/13/2023] Open
Abstract
CD44, upregulated by HIF-1α under 1%O2, induces highly invasive phenotype GSCs. HIF-2α-activated OPN under 5%O2 promotes less-invasive/proliferative type GSCs. CD44 and OPN knockdowns inhibit in vitro/vivo GSCs invasion and proliferation.
The poor prognosis of glioblastoma multiforme (GBM) is primarily due to highly invasive glioma stem-like cells (GSCs) in tumors. Upon GBM recurrence, GSCs with highly invasive and highly migratory activities must assume a less-motile state and proliferate to regenerate tumor mass. Elucidating the molecular mechanism underlying this transition from a highly invasive phenotype to a less-invasive, proliferative tumor could facilitate the identification of effective molecular targets for treating GBM. Here, we demonstrate that severe hypoxia (1% O2) upregulates CD44 expression via activation of hypoxia-inducible factor (HIF-1α), inducing GSCs to assume a highly invasive tumor. In contrast, moderate hypoxia (5% O2) upregulates osteopontin expression via activation of HIF-2α. The upregulated osteopontin inhibits CD44-promoted GSC migration and invasion and stimulates GSC proliferation, inducing GSCs to assume a less-invasive, highly proliferative tumor. These data indicate that the GSC phenotype is determined by interaction between CD44 and osteopontin. The expression of both CD44 and osteopontin is regulated by differential hypoxia levels. We found that CD44 knockdown significantly inhibited GSC migration and invasion both in vitro and in vivo. Mouse brain tumors generated from CD44-knockdown GSCs exhibited diminished invasiveness, and the mice survived significantly longer than control mice. In contrast, siRNA-mediated silencing of the osteopontin gene decreased GSC proliferation. These results suggest that interaction between CD44 and osteopontin plays a key role in tumor progression in GBM; inhibition of both CD44 and osteopontin may represent an effective therapeutic approach for suppressing tumor progression, thus resulting in a better prognosis for patients with GBM.
Collapse
Affiliation(s)
- Masahiro Nishikawa
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Akihiro Inoue
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan.
| | - Takanori Ohnishi
- Department of Neurosurgery, Washokai Sadamoto Hospital, Matsuyama, Ehime 790-0052, Japan
| | - Hajime Yano
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Saya Ozaki
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan; Department of Neurosurgery, National Hospital Organization Osaka National Hospital, Osaka 540-0006, Japan
| | - Satoshi Suehiro
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Yoshihiro Ohtsuka
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Shohei Kohno
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Shiro Ohue
- Department of Neurosurgery, Ehime Prefectural Central Hospital, Matsuyama, Ehime 790-0024, Japan
| | - Seiji Shigekawa
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Hideaki Watanabe
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Riko Kitazawa
- Division of Diagnostic Pathology, Ehime University Hospital, Toon, Ehime 791-0295, Japan
| | - Junya Tanaka
- Department of Molecular and Cellular Physiology, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| |
Collapse
|
13
|
Silva GR, Mattos DS, Bastos ACF, Viana BPPB, Brum MCM, Ferreira LB, Gimba ERP. Osteopontin-4 and Osteopontin-5 splice variants are expressed in several tumor cell lines. Mol Biol Rep 2020; 47:8339-8345. [PMID: 33006711 DOI: 10.1007/s11033-020-05867-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/25/2020] [Indexed: 02/07/2023]
Abstract
Among osteopontin splice variants (OPN-SV), the expression profile of osteopontin-4 (OPN4) and osteopontin-5 (OPN5) has not been addressed in distinct cancer types. We herein aimed to investigate their expression in several cancer cell lines, besides comparing it in relation to the three previously described OPN-SV: OPNa, OPNb and OPNc. Total RNA from cancer cell lines, including prostate (PC3 and DU145), ovarian (A2780), breast (MCF-7 and MDA-MB-231), colorectal (Caco-2, HT-29 and HCT-116), thyroid (TT, TPC1 and 8505c) and lung (A549 and NCI-H460) was extracted, followed by cDNA synthesis. OPN-SV transcript analysis by RT-PCR or RT-qPCR were performed using OPN-SV specific oligonucleotides and gapdh and actin transcripts were used as housekeeping controls. OPN4 and OPN5 transcripts displayed co-expression in most tested cell lines. OPN4 was found expressed in similar or higher levels in relation to OPN5. Moreover, in most tested cell lines, OPN4 is also expressed in similar levels to OPNa or OPNb. The expression of OPN5 is also generally variable in relation to the other OPN-SV, but expressed in similar or higher levels in relation to OPNc, depending on each tested cell line. OPN4 and OPN5 seem to be co-expressed in several tumor types and OPN4 is one of the most overexpressed OPN-SV in distinct tumor cell lines. Once both OPN4 and OPN5 are differentially expressed and also evidence tumor-specific expression patterns, we hypothesize that similarly to the other OPN-SV, they also possibly contribute to key aspects of tumor progression, what should be further functionally investigated in distinct tumor models.
Collapse
Affiliation(s)
- Gabriela Ribeiro Silva
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil.,Programa de Pós-Graduação Em Ciências Biomédicas, Fisiologia E Farmacologia, Instituto Biomédico, Av. Prof. Hernani Melo, Niterói, 101, CEP24210-130, Brazil
| | - Daniella Santos Mattos
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil.,Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil
| | - Ana Clara Fonseca Bastos
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil.,Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil
| | - Bruna Prunes Pena Baroni Viana
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil.,Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil
| | - Mariana Concentino Menezes Brum
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil.,Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil
| | - Luciana Bueno Ferreira
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil.,Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil
| | - Etel Rodrigues Pereira Gimba
- Programa de Oncobiologia Celular e Molecular, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil. .,Programa de Pós-Graduação Stricto Sensu em Oncologia, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil. .,Divisão de Pesquisa Clínica, Instituto Nacional de Câncer, Rua André Cavalcanti, 37, 3° andar, Rio de Janeiro, CEP: 20 231 050, Brazil. .,Departamento de Ciências da Natureza, Instituto de Humanidades E Saúde, Universidade Federal Fluminense, Rua Recife 1-7, Bairro Bela Vista, Rio das Ostras, RJ, CEP 28880-000, Brazil. .,Programa de Pós-Graduação Em Ciências Biomédicas, Fisiologia E Farmacologia, Instituto Biomédico, Av. Prof. Hernani Melo, Niterói, 101, CEP24210-130, Brazil.
| |
Collapse
|
14
|
Linhares P, Carvalho B, Vaz R, Costa BM. Glioblastoma: Is There Any Blood Biomarker with True Clinical Relevance? Int J Mol Sci 2020; 21:E5809. [PMID: 32823572 PMCID: PMC7461098 DOI: 10.3390/ijms21165809] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma (GBM) is the most frequent malignant primary brain tumor in adults, characterized by a highly aggressive, inflammatory and angiogenic phenotype. It is a remarkably heterogeneous tumor at several levels, including histopathologically, radiographically and genetically. The 2016 update of the WHO Classification of Tumours of the Central Nervous System highlighted molecular parameters as paramount features for the diagnosis, namely IDH1/2 mutations that distinguish primary and secondary GBM. An ideal biomarker is a molecule that can be detected/quantified through simple non- or minimally invasive methods with the potential to assess cancer risk; promote early diagnosis; increase grading accuracy; and monitor disease evolution and treatment response, as well as fundamentally being restricted to one aspect. Blood-based biomarkers are particularly attractive due to their easy access and have been widely used for various cancer types. A number of serum biomarkers with multiple utilities for glioma have been reported that could classify glioma grades more precisely and provide prognostic value among these patients. At present, screening for gliomas has no clinical relevance. This is because of the low incidence, the lack of sensitive biomarkers in plasma, and the observation that gliomas may develop apparently de novo within few weeks or months. To the best of our knowledge, there is no routine use of a serum biomarker for clinical follow-up. The purpose of this paper is to review the serum biomarkers described in the literature related to glioblastoma and their possible relationship with clinical features.
Collapse
Affiliation(s)
- Paulo Linhares
- Neurosurgery Department, Centro Hospitalar São João, Alameda Prof Hernani Monteiro, 4200–319 Porto, Portugal; (P.L.); (R.V.)
- Clinical Neurosciences and Mental Health Department, Faculty of Medicine, University of Oporto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Bruno Carvalho
- Neurosurgery Department, Centro Hospitalar São João, Alameda Prof Hernani Monteiro, 4200–319 Porto, Portugal; (P.L.); (R.V.)
- Clinical Neurosciences and Mental Health Department, Faculty of Medicine, University of Oporto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Rui Vaz
- Neurosurgery Department, Centro Hospitalar São João, Alameda Prof Hernani Monteiro, 4200–319 Porto, Portugal; (P.L.); (R.V.)
- Clinical Neurosciences and Mental Health Department, Faculty of Medicine, University of Oporto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Bruno M. Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, 4710-057 Braga, Portugal
| |
Collapse
|
15
|
|
16
|
Deep sequencing and automated histochemistry of human tissue slice cultures improve their usability as preclinical model for cancer research. Sci Rep 2019; 9:19961. [PMID: 31882946 PMCID: PMC6934722 DOI: 10.1038/s41598-019-56509-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 12/12/2019] [Indexed: 02/02/2023] Open
Abstract
Cancer research requires models closely resembling the tumor in the patient. Human tissue cultures can overcome interspecies limitations of animal models or the loss of tissue architecture in in vitro models. However, analysis of tissue slices is often limited to histology. Here, we demonstrate that slices are also suitable for whole transcriptome sequencing and present a method for automated histochemistry of whole slices. Tumor and peritumoral tissue from a patient with glioblastoma was processed to slice cultures, which were treated with standard therapy including temozolomide and X-irradiation. Then, RNA sequencing and automated histochemistry were performed. RNA sequencing was successfully accomplished with a sequencing depth of 243 to 368 x 106 reads per sample. Comparing tumor and peritumoral tissue, we identified 1888 genes significantly downregulated and 2382 genes upregulated in tumor. Treatment significantly downregulated 2017 genes, whereas 1399 genes were upregulated. Pathway analysis revealed changes in the expression profile of treated glioblastoma tissue pointing towards downregulated proliferation. This was confirmed by automated analysis of whole tissue slices stained for Ki67. In conclusion, we demonstrate that RNA sequencing of tissue slices is possible and that histochemical analysis of whole tissue slices can be automated which increases the usability of this preclinical model.
Collapse
|
17
|
Zhang W, Cheng J, Diao P, Wang D, Zhang W, Jiang H, Wang Y. Therapeutically targeting head and neck squamous cell carcinoma through synergistic inhibition of LSD1 and JMJD3 by TCP and GSK-J1. Br J Cancer 2019; 122:528-538. [PMID: 31848446 PMCID: PMC7028736 DOI: 10.1038/s41416-019-0680-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 10/29/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The histone demethylase LSD1 is a key mediator driving tumorigenesis, which holds potential as a promising therapeutic target. However, treatment with LSD1 inhibitors alone failed to result in complete cancer regression. METHODS The synergistic effects of TCP (a LSD1 inhibitor) and GSK-J1 (a JMJD3 inhibitor) against HNSCC were determined in vitro and in preclinical animal models. Genes modulated by chemical agents or siRNAs in HNSCC cells were identified by RNA-seq and further functionally interrogated by bioinformatics approach. Integrative siRNA-mediated gene knockdown, rescue experiment and ChIP-qPCR assays were utilised to characterise the mediators underlying the therapeutic effects conferred by TCP and GSK-J1. RESULTS Treatment with TCP and GSK-J1 impaired cell proliferation, induced apoptosis and senescence in vitro, which were largely recapitulated by simultaneous LSD1 and JMJD3 knockdown. Combinational treatment inhibited tumour growth and progression in vivo. Differentially expressed genes modulated by TCP and GSK-J1 were significantly enriched in cell proliferation, apoptosis and cancer-related pathways. SPP1 was identified as the mediator of synergy underlying the pro-apoptosis effects conferred by TCP and GSK-J1. Co-upregulation of LSD1 and JMJD3 associated with worse prognosis in patients with HNSCC. CONCLUSIONS Our findings revealed a novel therapeutic strategy of simultaneous LSD1 and JMJD3 inhibition against HNSCC.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Jie Cheng
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Pengfei Diao
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Dongmiao Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Wei Zhang
- Department of Oral Pathology, Affiliated Stomatological Hospital, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital, Nanjing Medical University, 210029, Nanjing, P. R. China
| | - Yanling Wang
- Jiangsu Key Laboratory of Oral Disease, Nanjing Medical University, 210029, Nanjing, P. R. China.
| |
Collapse
|
18
|
Wein M, Huelter-Hassler D, Nelson K, Fretwurst T, Nahles S, Finkenzeller G, Altmann B, Steinberg T. Differential osteopontin expression in human osteoblasts derived from iliac crest and alveolar bone and its role in early stages of angiogenesis. J Bone Miner Metab 2019; 37:105-117. [PMID: 29327303 DOI: 10.1007/s00774-017-0900-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
In our previous study, we revealed significant differences of osteopontin (OPN) gene expression in primary human osteoblasts (HOBs) derived from iliac crest bone (iHOBs) and alveolar bone (aHOBs). The present study aims at assigning this discriminative expression to a possible biologic function. OPN is known to be involved in several pathologic and physiologic processes, among others angiogenesis. Therefore, we studied the reaction of human umbilical vein endothelial cells (HUVECs) to HOB-derived OPN regarding angiogenesis. To this end, human primary explant cultures of both bone entities from ten donors were established. Subsequent transcription analysis detected higher gene expression of OPN in iHOBs compared to aHOBs, thereby confirming the results of our previous study. This difference was particularly apparent when cultures were derived from female donors. Hence, OPN protein expression as well as the angiogenic potential of OPN was analyzed, originating from HOBs of one female donor. In accordance to the gene expression level, secreted OPN was more abundant in the supernatant of iHOBs than in aHOBs. Moreover, secreted OPN was found to stimulate migration of HUVECs, but not proliferation or tube formation. These results indicate an involvement in very early stages of angiogenesis and a functional distinction of OPN from HOBs derived from different bone entities.
Collapse
Affiliation(s)
- Martin Wein
- Department of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Diana Huelter-Hassler
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Department of Orthodontics, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Katja Nelson
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tobias Fretwurst
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susanne Nahles
- Department of Oral- and Maxillofacial Surgery, Charité Campus Virchow, Berlin, Germany
| | - Guenter Finkenzeller
- Department of Plastic and Hand Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Brigitte Altmann
- G.E.R.N. Tissue Replacement, Regeneration and Neogenesis, Department of Oral and Maxillofacial Surgery, Medical Center, University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Thorsten Steinberg
- Department of Oral Biotechnology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Hugstetterstrasse 55, 79106, Freiburg, Germany.
| |
Collapse
|
19
|
Wei J, Marisetty A, Schrand B, Gabrusiewicz K, Hashimoto Y, Ott M, Grami Z, Kong LY, Ling X, Caruso H, Zhou S, Wang YA, Fuller GN, Huse J, Gilboa E, Kang N, Huang X, Verhaak R, Li S, Heimberger AB. Osteopontin mediates glioblastoma-associated macrophage infiltration and is a potential therapeutic target. J Clin Invest 2018; 129:137-149. [PMID: 30307407 DOI: 10.1172/jci121266] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 10/04/2018] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma is highly enriched with macrophages, and osteopontin (OPN) expression levels correlate with glioma grade and the degree of macrophage infiltration; thus, we studied whether OPN plays a crucial role in immune modulation. Quantitative PCR, immunoblotting, and ELISA were used to determine OPN expression. Knockdown of OPN was achieved using complementary siRNA, shRNA, and CRISPR/Cas9 techniques, followed by a series of in vitro functional migration and immunological assays. OPN gene-deficient mice were used to examine the roles of non-tumor-derived OPN on survival of mice harboring intracranial gliomas. Patients with mesenchymal glioblastoma multiforme (GBM) show high OPN expression, a negative survival prognosticator. OPN is a potent chemokine for macrophages, and its blockade significantly impaired the ability of glioma cells to recruit macrophages. Integrin αvβ5 (ITGαvβ5) is highly expressed on glioblastoma-infiltrating macrophages and constitutes a major OPN receptor. OPN maintains the M2 macrophage gene signature and phenotype. Both tumor-derived and host-derived OPN were critical for glioma development. OPN deficiency in either innate immune or glioma cells resulted in a marked reduction in M2 macrophages and elevated T cell effector activity infiltrating the glioma. Furthermore, OPN deficiency in the glioma cells sensitized them to direct CD8+ T cell cytotoxicity. Systemic administration in mice of 4-1BB-OPN bispecific aptamers was efficacious, increasing median survival time by 68% (P < 0.05). OPN is thus an important chemokine for recruiting macrophages to glioblastoma, mediates crosstalk between tumor cells and the innate immune system, and has the potential to be exploited as a therapeutic target.
Collapse
Affiliation(s)
- Jun Wei
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anantha Marisetty
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Brett Schrand
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Konrad Gabrusiewicz
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Yuuri Hashimoto
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Martina Ott
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Zacharia Grami
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Ling-Yuan Kong
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Xiaoyang Ling
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Hillary Caruso
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | - Gregory N Fuller
- Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason Huse
- Neuropathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eli Gilboa
- Department of Microbiology & Immunology, Dodson Interdisciplinary Immunotherapy Institute, Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida, USA
| | - Nannan Kang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xingxu Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Roel Verhaak
- Jackson Laboratory of Genomic Medicine, Farmington, Connecticut, USA
| | - Shulin Li
- Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Amy B Heimberger
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
20
|
Osteopontin at the Crossroads of Inflammation and Tumor Progression. Mediators Inflamm 2017; 2017:4049098. [PMID: 28769537 PMCID: PMC5523273 DOI: 10.1155/2017/4049098] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 06/04/2017] [Indexed: 12/13/2022] Open
Abstract
Complex interactions between tumor and host cells regulate systemic tumor dissemination, a process that begins early at the primary tumor site and goes on until tumor cells detach themselves from the tumor mass and start migrating into the blood or lymphatic vessels. Metastatic cells colonize the target organs and are capable of surviving and growing at distant sites. In this context, osteopontin (OPN) appears to be a key determinant of the crosstalk between cancer cells and the host microenvironment, which in turn modulates immune evasion. OPN is overexpressed in several human carcinomas and has been implicated in inflammation, tumor progression, and metastasis. Thus, it represents one of the most attracting targets for cancer therapy. Within the tumor mass, OPN is secreted in various forms either by the tumor itself or by stroma cells, and it can exert either pro- or antitumorigenic effects according to the cell type and tumor microenvironment. Thus, targeting OPN for therapeutic purposes needs to take into account the heterogeneous functions of the multiple OPN forms with regard to cancer formation and progression. In this review, we will describe the role of systemic, tumor-derived, and stroma-derived OPN, highlighting its pivotal role at the crossroads of inflammation and tumor progression.
Collapse
|
21
|
Kijewska M, Kocyk M, Kloss M, Stepniak K, Korwek Z, Polakowska R, Dabrowski M, Gieryng A, Wojtas B, Ciechomska IA, Kaminska B. The embryonic type of SPP1 transcriptional regulation is re-activated in glioblastoma. Oncotarget 2017; 8:16340-16355. [PMID: 28030801 PMCID: PMC5369967 DOI: 10.18632/oncotarget.14092] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 12/16/2016] [Indexed: 11/25/2022] Open
Abstract
Osteopontin (SPP1, a secreted phosphoprotein 1) is primarily involved in immune responses, tissue remodelling and biomineralization. However, it is also overexpressed in many cancers and regulates tumour progression by increasing migration, invasion and cancer stem cell self-renewal. Mechanisms of SPP1 overexpression in gliomas are poorly understood. We demonstrate overexpression of two out of five SPP1 isoforms in glioblastoma (GBM) and differential isoform expression in glioma cell lines. Up-regulated SPP1 expression is associated with binding of the GLI1 transcription factor to the promoter and OCT4 (octamer-binding transcription factor 4) to the first SPP1 intron of the SPP1 gene in human glioma cells but not in non-transformed astrocytes. GLI1 knockdown reduced SPP1 mRNA and protein levels in glioma cells. GLI1 and OCT4 are known regulators of stem cell pluripotency. GBMs contain rare cells that express stem cell markers and display ability to self-renew. We reveal that SPP1 is overexpressed in glioma initiating cells defined by high rhodamine 123 efflux, sphere forming capacity and stemness marker expression. Forced differentiation of human glioma spheres reduced SPP1 expression. Knockdown of SPP1, GLI1 or CD44 with siRNAs diminished sphere formation. C6 glioma cells stably depleted of Spp1 displayed reduced sphere forming capacity and downregulated stemness marker expression. Overexpression of the wild type Spp1, but not Spp1 lacking a Cd44 binding domain, rescued cell ability to form spheres. Our findings show re-activation of the embryonic-type transcriptional regulation of SPP1 in malignant gliomas and point to the importance of SPP1-CD44 interactions in self-renewal and pluripotency glioma initiating cells.
Collapse
Affiliation(s)
- Magdalena Kijewska
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Marta Kocyk
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Michal Kloss
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Karolina Stepniak
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Zbigniew Korwek
- Laboratory of Molecular Bases of Aging, The Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | | | - Michal Dabrowski
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Anna Gieryng
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bartosz Wojtas
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Iwona A Ciechomska
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| | - Bozena Kaminska
- Laboratory of Molecular Neurobiology, The Nencki Institute of Experimental Biology of the Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
22
|
Hao C, Cui Y, Owen S, Li W, Cheng S, Jiang WG. Human osteopontin: Potential clinical applications in cancer (Review). Int J Mol Med 2017; 39:1327-1337. [PMID: 28440483 PMCID: PMC5428945 DOI: 10.3892/ijmm.2017.2964] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/10/2017] [Indexed: 12/11/2022] Open
Abstract
Human osteopontin (OPN) is a glycosylated phosphoprotein which is expressed in a variety of tissues in the body. In recent years, accumulating evidence has indicated that the aberrant expression of OPN is closely associated with tumourigensis, progression and most prominently with metastasis in several tumour types. In this review, we present the current knowledge on the expression profiles of OPN and its main splice variants in human cancers, as well as the potential implications in patient outcome. We also discuss its putative clinical application as a cancer biomarker and as a therapeutic target.
Collapse
Affiliation(s)
- Chengcheng Hao
- Department of Biochemistry and Molecular Biology
- Beijing Key Laboratory of Cancer and Metastasis Research, Capital Medical University, Beijing 100069, P.R. China
| | - Yuxin Cui
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Sionen Owen
- Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Wenbin Li
- Department of Oncology, Beijing Shijitan Hospital, Capital Medical University, Beijing 100038, P.R. China
| | - Shan Cheng
- Department of Biochemistry and Molecular Biology
- Beijing Key Laboratory of Cancer and Metastasis Research, Capital Medical University, Beijing 100069, P.R. China
| | - Wen G. Jiang
- Correspondence to: Professor Wen G. Jiang, Cardiff China Medical Research Collaborative, Cardiff University School of Medicine, Henry Wellcome Building, Heath Park Way, Cardiff CF14 4XN, UK, E-mail:
| |
Collapse
|
23
|
An Z, Liu Y, Song ZG, Tang H, Yuan Y, Xu ZY. Mechanisms of aortic dissection smooth muscle cell phenotype switch. J Thorac Cardiovasc Surg 2017. [PMID: 28625769 DOI: 10.1016/j.jtcvs.2017.05.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECTIVE To investigate the expression of Nanog homeobox (NANOG) in thoracic aortic dissection (TAD) and the role of NANOG in regulating human aortic vascular smooth muscle cells (VSMCs) phenotype switch. METHODS Aortic specimens were collected from 20 patients undergoing TAD and 10 controls. VSMCs were isolated by adherent cultivation approach. The expression of NANOG, osteopontin (OPN), and VSMCs phenotype markers were determined by quantitative real-time polymerase chain reaction, Western blot, immunohistochemistry, and immunofluorescence. Cell counting, scratch wound-healing assay, Transwell migration, and apoptosis assays were used for cell function assessment. Deoxyribonucleic acid-protein binding detection was performed by chromatin immunoprecipitation. RESULTS Our experiment results showed that NANOG and OPN were highly expressed in TAD aortic wall and VSMCs, both accompanying VSMCs phenotype switch. Overexpression of NANOG induced the up-regulation of VSMCs synthetic marker matrix metalloproteinase 2 and the down-regulation of VSMCs contractile markers α-smooth muscle actin and smooth muscle 22α. Overexpression of NANOG also enhanced the proliferation, migration, and antiapoptosis capabilities of VSMCs. The results also showed that these functions of NANOG was via OPN and NANOG directly up-regulated OPN by binding to its promoter region. CONCLUSIONS Our study suggests that NANOG is highly expressed in TAD aortic wall and VSMCs. Increased NANOG promotes VSMCs phenotype switch by directly up-regulating OPN through binding to its promoter region.
Collapse
Affiliation(s)
- Zhao An
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Zhi-Gang Song
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Hao Tang
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yang Yuan
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| | - Zhi-Yun Xu
- Department of Cardiovascular Surgery, Changhai Hospital, Second Military Medical University, Shanghai, China.
| |
Collapse
|
24
|
Immune microenvironment of gliomas. J Transl Med 2017; 97:498-518. [PMID: 28287634 DOI: 10.1038/labinvest.2017.19] [Citation(s) in RCA: 389] [Impact Index Per Article: 48.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 12/13/2022] Open
Abstract
High-grade gliomas are rapidly progressing tumors of the central nervous system (CNS) with a very poor prognosis despite extensive resection combined with radiation and/or chemotherapy. Histopathological and flow cytometry analyses of human and rodent experimental gliomas revealed heterogeneity of a tumor and its niche, composed of reactive astrocytes, endothelial cells, and numerous immune cells. Infiltrating immune cells consist of CNS resident (microglia) and peripheral macrophages, granulocytes, myeloid-derived suppressor cells (MDSCs), and T lymphocytes. Intratumoral density of glioma-associated microglia/macrophages (GAMs) and MDSCs is the highest in malignant gliomas and inversely correlates with patient survival. Although GAMs have a few innate immune functions intact, their ability to be stimulated via TLRs, secrete cytokines, and upregulate co-stimulatory molecules is not sufficient to initiate antitumor immune responses. Moreover, tumor-reprogrammed GAMs release immunosuppressive cytokines and chemokines shaping antitumor responses. Both GAMs and MDSCs have ability to attract T regulatory lymphocytes to the tumor, but MDSCs inhibit cytotoxic responses mediated by natural killer cells, and block the activation of tumor-reactive CD4+ T helper cells and cytotoxic CD8+ T cells. The presence of regulatory T cells may further contribute to the lack of effective immune activation against malignant gliomas. We review the immunological aspects of glioma microenvironment, in particular composition and various roles of the immune cells infiltrating malignant human gliomas and experimental rodent gliomas. We describe tumor-derived signals and mechanisms driving myeloid cell accumulation and reprogramming. Although, understanding the complexity of cell-cell interactions in glioma microenvironment is far from being achieved, recent studies demonstrated several glioma-derived factors that trigger migration, accumulation, and reprogramming of immune cells. Identification of these factors may facilitate development of immunotherapy for gliomas as immunomodulatory and immune evasion mechanisms employed by malignant gliomas pose an appalling challenge to brain tumor immunotherapy.
Collapse
|
25
|
Briones-Orta MA, Avendaño-Vázquez SE, Aparicio-Bautista DI, Coombes JD, Weber GF, Syn WK. Osteopontin splice variants and polymorphisms in cancer progression and prognosis. Biochim Biophys Acta Rev Cancer 2017; 1868:93-108.A. [PMID: 28254527 DOI: 10.1016/j.bbcan.2017.02.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/24/2017] [Accepted: 02/25/2017] [Indexed: 12/12/2022]
Abstract
Osteopontin (OPN) is an extracellular matrix protein that is overexpressed in various cancers and promotes oncogenic features including cell proliferation, survival, migration, and angiogenesis, among others. OPN can participate in the regulation of the tumor microenvironment, affecting both cancer and neighboring cells. Here, we review the roles of OPN splice variants (a, b, c) in cancer development, progression, and prognosis, and also discuss the identities of isoforms 4 and 5. We also discussed how single-nucleotide polymorphisms (SNPs) of the OPN gene are an additional factor influencing the level of OPN in individuals, modulating the risks of cancer development and outcome.
Collapse
Affiliation(s)
| | | | | | - Jason D Coombes
- Regeneration and Repair, Institute of Hepatology, Foundation for Liver Research, London, United Kingdom
| | - Georg F Weber
- James L. Winkle College of Pharmacy, University of Cincinnati Academic Health Center, Cincinnati, OH, United States
| | - Wing-Kin Syn
- Regeneration and Repair, Institute of Hepatology, Foundation for Liver Research, London, United Kingdom; Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, Charleston, SC., United States; Section of Gastroenterology, Ralph H Johnson Veteran Affairs Medical Center, Charleston, SC, United States.
| |
Collapse
|
26
|
Viloria K, Hill NJ. Embracing the complexity of matricellular proteins: the functional and clinical significance of splice variation. Biomol Concepts 2017; 7:117-32. [PMID: 27135623 DOI: 10.1515/bmc-2016-0004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 03/24/2016] [Indexed: 01/02/2023] Open
Abstract
Matricellular proteins influence wide-ranging fundamental cellular processes including cell adhesion, migration, growth and differentiation. They achieve this both through interactions with cell surface receptors and regulation of the matrix environment. Many matricellular proteins are also associated with diverse clinical disorders including cancer and diabetes. Alternative splicing is a precisely regulated process that can produce multiple isoforms with variable functions from a single gene. To date, the expression of alternate transcripts for the matricellular family has been reported for only a handful of genes. Here we analyse the evidence for alternative splicing across the matricellular family including the secreted protein acidic and rich in cysteine (SPARC), thrombospondin, tenascin and CCN families. We find that matricellular proteins have double the average number of splice variants per gene, and discuss the types of domain affected by splicing in matricellular proteins. We also review the clinical significance of alternative splicing for three specific matricellular proteins that have been relatively well characterised: osteopontin (OPN), tenascin-C (TNC) and periostin. Embracing the complexity of matricellular splice variants will be important for understanding the sometimes contradictory function of these powerful regulatory proteins, and for their effective clinical application as biomarkers and therapeutic targets.
Collapse
|
27
|
Ge Q, Ruan CC, Ma Y, Tang XF, Wu QH, Wang JG, Zhu DL, Gao PJ. Osteopontin regulates macrophage activation and osteoclast formation in hypertensive patients with vascular calcification. Sci Rep 2017; 7:40253. [PMID: 28091516 PMCID: PMC5238370 DOI: 10.1038/srep40253] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 12/05/2016] [Indexed: 11/12/2022] Open
Abstract
Vascular calcification (VC) is a highly regulated ectopic mineral deposition process involving immune cell infiltration in the vasculatures, which has been recognized to be promoted by hypertension. The matricellular glycoprotein osteopontin (OPN) is strongly induced in myeloid cells as a potential inflammatory mediator of vascular injury. This study aims to examine whether OPN is involved in the regulation of macrophage activation and osteoclast formation in hypertensive subjects with VC. We firstly found an increased proportion of CD11c+CD163- pro-inflammatory peripheral monocytes in hypertensive subjects with VC compared to those without VC by flow cytometric analysis. Primary cultured macrophages from hypertensive subjects with VC also showed altered expression profile of inflammatory factors and higher serum OPN level. Exogenous OPN promoted the differentiation of peripheral monocytes into an alternative, anti-inflammatory phenotype, and inhibited macrophage-to-osteoclast differentiation from these VC patients. In addition, calcified vessels showed increased osteoclasts accumulation accompanied with decreased macrophages infiltration in the of hypertensive subjects. Taken together, these demonstrated that OPN exerts an important role in the monocytes/macrophage phenotypic differentiation from hypertensive patients with VC, which includes reducing inflammatory factor expression and attenuating osteoclast formation.
Collapse
Affiliation(s)
- Qian Ge
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Cheng-Chao Ruan
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Ma
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Feng Tang
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qi-Hong Wu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Guang Wang
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ding-Liang Zhu
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ping-Jin Gao
- State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension and Department of Hypertension, Ruijin Hospital and Shanghai Institute of Hypertension, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Laboratory of Vascular Biology and Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
28
|
Boguslawska J, Sokol E, Rybicka B, Czubaty A, Rodzik K, Piekielko-Witkowska A. microRNAs target SRSF7 splicing factor to modulate the expression of osteopontin splice variants in renal cancer cells. Gene 2016; 595:142-149. [DOI: 10.1016/j.gene.2016.09.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 09/19/2016] [Accepted: 09/21/2016] [Indexed: 12/30/2022]
|
29
|
RETRACTED ARTICLE: Prognostic Significance of Osteopontin and Carbonic Anhydrase 9 in Human Brain Tumors: A Meta-Analysis. Mol Neurobiol 2015. [DOI: 10.1007/s12035-014-8904-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
30
|
Miragliotta V, Pirone A, Donadio E, Abramo F, Ricciardi MP, Theoret CL. Osteopontin expression in healing wounds of horses and in human keloids. Equine Vet J 2014; 48:72-7. [PMID: 25290989 DOI: 10.1111/evj.12372] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/30/2014] [Indexed: 01/20/2023]
Abstract
REASONS FOR PERFORMING STUDY Convincing evidence shows that persistent or excessive expression of osteopontin (OPN) is linked to fibroproliferation of various organs in laboratory animals and in man, such that its downregulation is a logical therapeutic objective. OBJECTIVES To investigate OPN expression in an equine model of wound healing and in clinical specimens of equine exuberant granulation tissue and human keloids in an effort to better understand the contribution of this protein to inflammation-associated skin fibrosis. STUDY DESIGN Description of gene and protein expression in an experimental equine model of wound healing and clinical specimens in horse and man. METHODS Osteopontin gene expression was evaluated by quantitative PCR, while protein expression was investigated by means of immunohistochemical staining. RESULTS Quantitative PCR showed that the OPN gene is expressed in normal intact skin of horses and continues to be expressed during the wound-healing process. An increase in gene expression was observed throughout the phases of wound healing, with a final decrease at wound closure. The protein was not detected in normal skin. Keratinocytes in wound-edge samples did not express the protein, whereas dermal immunoreactivity was confined to inflammatory cells. Healed wounds were devoid of staining. Equine exuberant granulation tissue showed immunoreactivity of the surrounding epidermis, infiltrating neutrophils, mononuclear cells, endothelial cells and fibroblasts. Human keloids showed OPN immunoreactivity throughout the epidermis as well as in mononuclear cells and scattered fibroblasts. CONCLUSIONS Immunohistochemical data show a different pattern of expression between normally healing and fibrotic wounds (exuberant granulation tissue and keloids), thus suggesting a role in fibroproliferation in horses and man.
Collapse
Affiliation(s)
- V Miragliotta
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - A Pirone
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - E Donadio
- Department of Pharmacy, University of Pisa, Pisa, Italy
| | - F Abramo
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - M P Ricciardi
- Department of Veterinary Sciences, University of Pisa, Pisa, Italy
| | - C L Theoret
- Department of Veterinary Biomedicine, University of Montreal, Quebec, Canada
| |
Collapse
|
31
|
Qian C, Li P, Yan W, Shi L, Zhang J, Wang Y, Liu H, You Y. Downregulation of osteopontin enhances the sensitivity of glioma U251 cells to temozolomide and cisplatin by targeting the NF-κB/Bcl‑2 pathway. Mol Med Rep 2014; 11:1951-5. [PMID: 25405848 DOI: 10.3892/mmr.2014.2951] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Accepted: 02/25/2014] [Indexed: 11/06/2022] Open
Abstract
Glioma is resistant to the apoptotic effects of chemotherapy and the mechanism underlying its chemoresistance is not currently understood. In a previous study, we reported that osteopontin (OPN) was overexpressed in glioma tissues and had an important anti‑apoptotic effect. Furthermore, overexpression of OPN was observed following chemotherapy. To elucidate whether OPN plays a role in chemotherapy resistance and to investigate its downstream signaling pathway, this study used small interfering RNA (siRNA) to silence the expression of OPN in U251 human neuronal glioma astrocytoma cells. OPN downregulation in U251 cells enhanced the apoptotic effects induced by temozolomide (TMZ) and cisplatin (DDP). Furthermore, OPN siRNA suppressed the nuclear factor κ‑light‑chain‑enhancer of activated B cells (NF‑κB) activation and B cell lymphoma 2 (Bcl‑2) expression that was induced by chemotherapy. Taken together, these results demonstrated that the expression levels of OPN are involved in glioma chemoresistance. Knockdown of OPN through siRNA enhanced the effects of TMZ and DDP chemotherapy by targeting the NF‑κB/Bcl‑2 pathway.
Collapse
Affiliation(s)
- Chunfa Qian
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ping Li
- Department of Neurosurgery, The Second Hospital of Anhui Medical University, Hefei, Anhui 230601, P.R. China
| | - Wei Yan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Lei Shi
- Department of Neurosurgery, The First People's Hospital of Kunshan Affiliated to Jiangsu University, Suzhou, Jiangsu 215300, P.R. China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yingyi Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Hongyi Liu
- Department of Neurosurgery, Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
32
|
Wolak T. Osteopontin - a multi-modal marker and mediator in atherosclerotic vascular disease. Atherosclerosis 2014; 236:327-37. [PMID: 25128758 DOI: 10.1016/j.atherosclerosis.2014.07.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/26/2014] [Accepted: 07/07/2014] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a chronic inflammatory process of the vessel wall with systemic correlates. It is now well established that patients' outcome is tightly linked to atherosclerotic plaque stability, potentially more so than to the mere plaque size. Osteopontin (OPN) is an integrin-binding ligand, N-linked glycoprotein, which was recognized as a significant participant in the atherosclerotic inflammatory milieu. Evidence from several genetic mouse models suggests that OPN is an enhancer of atherosclerosis. This may be mediated by its capacity to enhance inflammation in the atherosclerotic plaque. Interestingly, OPN may also possess potentially protective vascular effects, such as attenuation of vascular calcification. In humans circulating levels of OPN were found to be independently associated with the severity of coronary atherosclerosis. Moreover, several studies report that high plasma OPN levels were associated with increased risk for major adverse cardiac events. This review aims to critically assess current understanding of the role of OPN in the atherosclerotic process, from animal models to clinical practice. Specific focus is given to evaluating whether OPN could serve as a marker for monitoring coronary atherosclerosis severity, and in parallel, assess the evidence for its role as a mediator in the pathogenic pathways leading to atherosclerotic vascular disease.
Collapse
Affiliation(s)
- Talya Wolak
- Hypertension Unit Faculty of Health Sciences, Soroka University Medical Center, Ben-Gurion University of the Negev, Be'er-Sheva, Israel.
| |
Collapse
|
33
|
OPN and αvβ3 expression are predictors of disease severity and worse prognosis in hepatocellular carcinoma. PLoS One 2014; 9:e87930. [PMID: 24498405 PMCID: PMC3912195 DOI: 10.1371/journal.pone.0087930] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Accepted: 01/01/2014] [Indexed: 12/17/2022] Open
Abstract
Expressions of OPN and αvβ3 are associated with a poor prognosis in many malignancies. However, their relationship in hepatocellular carcinoma remains unclear. We systematically collected hepatocellular carcinoma tissue samples from 305 patients over 3 years, and analyzed the status of OPN and αvβ3 in hepatocellular carcinoma and correlate expression with patient disease status and survival outcome. Our study results indicated that OPN and αvβ3 are expressed at significantly higher rates in hepatocellular carcinoma compared with adjacent non-tumorous tissue (69.5% vs 18.4%, p<0.01 and 77.4% vs 21.6%, p<0.01, respectively). Both OPN and αvβ3 expression levels are associated with poor prognostic factors, including tumor size, capsular invasion, tumor thrombus of the portal vein, metastasis of the lymph node and clinical staging. Patients expressing OPN and αvβ3 had significantly shorter survival compared with patients negative for protein expression (p<0.01). Multivariate analysis also showed that both OPN and αvβ3 expression are independent prognostic factors for poorer survival in hepatocellular carcinoma. By this study, we conclude that OPN and αvβ3 are negative prognostic predictors in patients with hepatocellular carcinoma. The expressions of both OPN and αvβ3 are associated with worse survival outcome.
Collapse
|
34
|
Deng B, Zhang XF, Zhu XC, Huang H, Jia HL, Ye QH, Dong QZ, Qin LX. Correlation and prognostic value of osteopontin and Bcl-2 in hepatocellular carcinoma patients after curative resection. Oncol Rep 2013; 30:2795-2803. [PMID: 24065086 DOI: 10.3892/or.2013.2737] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Accepted: 08/09/2013] [Indexed: 12/19/2022] Open
Abstract
Osteopontin (OPN) may facilitate tumorigenesis and metastasis through prevention of tumor cells from apoptosis. Although previous studies have suggested involvement of enhanced Bcl-2 protein family expression, the role of OPN together with Bcl-2 in hepatocellular carcinoma (HCC) remains unknown. In this study, we used western blotting to detect the OPN and Bcl-2 expression levels in cell lines with different OPN backgrounds and HCC tissues, and tumor tissue microarrays to examine OPN and Bcl-2 expression levels in 454 HCC cases. The Kaplan-Meier method and log-rank test were applied to investigate the predictive values of OPN and Bcl-2 in HCC patients. In vitro assays indicated that OPN expression increased concordantly with increasing metastatic potential in MHCC97-H, MHCC97-L, HepG2 and SMMC-7721 cell lines by western blotting, whereas Bcl-2 expression declined. In addition, Bcl-2 was highly upregulated in OPN knockdown MHCC97-H cell lines. Furthermore, in HCC tissues, it was confirmed that OPN levels were also significantly higher in recurrent tumor tissues compared to non-recurrent tissues by western blotting (p<0.001), whereas the contrary occurred in Bcl-2 (p=0.046). Using immunohistochemistry analysis, patients with higher OPN levels had significantly shorter median survival time and recurrence time compared to the lower ones, although the opposite occurred in Bcl-2 levels. Of note, when OPN and Bcl-2 were combined, we found that the co-index of OPN/Bcl-2 was an independent prognostic factor for both overall survival (p<0.001) and time to recurrence (p<0.001). Our findings demonstrate that OPN/Bcl-2 expression is a promising independent predictor of recurrence and survival in HCC. Additionally, Bcl-2 levels may be regulated by OPN in the HCC microenvironment.
Collapse
Affiliation(s)
- Biao Deng
- Liver Cancer Institute and Zhongshan Hospital, Institutes of Biomedical Sciences, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai 200032, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Lamour V, Nokin MJ, Henry A, Castronovo V, Bellahcène A. [SIBLING proteins: molecular tools for tumor progression and angiogenesis]. Med Sci (Paris) 2013; 29:1018-25. [PMID: 24280506 DOI: 10.1051/medsci/20132911019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The small integrin-binding ligand N-linked glycoprotein (SIBLING) family consists of osteopontin (OPN), bonesialoprotein (BSP), dentin matrix protein 1 (DMP1), dentin sialophosphoprotein (DSPP) and matrix extracellular phosphoglycoprotein (MEPE). These proteins, initially identified in bone and teeth, share many structural characteristics. It is now well established that they are over expressed in many tumors and play a critical role at different steps of cancer development. In this review, we describe the roles of SIBLING proteins at different stages of cancer progression including cancer cell adhesion, proliferation, migration, invasion, metastasis and angiogenesis.
Collapse
Affiliation(s)
- Virginie Lamour
- Laboratoire de recherche sur les métastases, GIGA (groupe interdisciplinaire de génoprotéomique appliquée)-Cancer, Université de Liège, Building 23, Sart Tilman, 4000 Liège, Belgique
| | | | | | | | | |
Collapse
|
36
|
Coniglio SJ, Segall JE. Review: molecular mechanism of microglia stimulated glioblastoma invasion. Matrix Biol 2013; 32:372-80. [PMID: 23933178 DOI: 10.1016/j.matbio.2013.07.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Revised: 07/28/2013] [Accepted: 07/28/2013] [Indexed: 01/01/2023]
Abstract
Glioblastoma multiforme is one of the deadliest human cancers and is characterized by a high degree of microglia and macrophage infiltration. The role of these glioma infiltrating macrophages (GIMs) in disease progression has been the subject of recent investigation. While initially thought to reflect an immune response to the tumor, the balance of evidence clearly suggests GIMs can have potent tumor-tropic functions and assist in glioma cell growth and infiltration into normal brain. In this review, we focus on the evidence for GIMs aiding mediating glioblastoma motility and invasion. We survey the literature for molecular pathways that are involved in paracrine interaction between glioma cells and GIMs and assess which of these might serve as attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Salvatore J Coniglio
- Albert Einstein College of Medicine, Department of Anatomy and Structural Biology, Bronx, NY 10461, United States.
| | | |
Collapse
|
37
|
Baumann BC, Kao GD, Mahmud A, Harada T, Swift J, Chapman C, Xu X, Discher DE, Dorsey JF. Enhancing the efficacy of drug-loaded nanocarriers against brain tumors by targeted radiation therapy. Oncotarget 2013; 4:64-79. [PMID: 23296073 PMCID: PMC3702208 DOI: 10.18632/oncotarget.777] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a common, usually lethal disease with a median survival of only ~15 months. It has proven resistant in clinical trials to chemotherapeutic agents such as paclitaxel that are highly effective in vitro, presumably because of impaired drug delivery across the tumor's blood-brain barrier (BBB). In an effort to increase paclitaxel delivery across the tumor BBB, we linked the drug to a novel filomicelle nanocarrier made with biodegradable poly(ethylene-glycol)-block-poly(ε-caprolactone-r-D,L-lactide) and used precisely collimated radiation therapy (RT) to disrupt the tumor BBB's permeability in an orthotopic mouse model of GBM. Using a non-invasive bioluminescent imaging technique to assess tumor burden and response to therapy in our model, we demonstrated that the drug-loaded nanocarrier (DLN) alone was ineffective against stereotactically implanted intracranial tumors yet was highly effective against GBM cells in culture and in tumors implanted into the flanks of mice. When targeted cranial RT was used to modulate the tumor BBB, the paclitaxel-loaded nanocarriers became effective against the intracranial tumors. Focused cranial RT improved DLN delivery into the intracranial tumors, significantly improving therapeutic outcomes. Tumor growth was delayed or halted, and survival was extended by >50% (p<0.05) compared to the results obtained with either RT or the DLN alone. Combinations of RT and chemotherapeutic agents linked to nanocarriers would appear to be an area for future investigations that could enhance outcomes in the treatment of human GBM.
Collapse
Affiliation(s)
- Brian C Baumann
- Department of Radiation Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Osteopontin and splice variant expression level in human malignant glioma: radiobiologic effects and prognosis after radiotherapy. Radiother Oncol 2013; 108:535-40. [PMID: 23891093 DOI: 10.1016/j.radonc.2013.06.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 11/21/2022]
Abstract
BACKGROUND AND PURPOSE We investigated the role of the hypoxia-associated secreted glycoprotein osteopontin (OPN) in the response of malignant glioma to radiotherapy by characterizing OPN and its splice variants in vitro and in patient material. MATERIAL AND METHODS The effect of siRNA knockdown of OPN splice variants on cellular and radiobiologic behavior was analyzed in U251MG cells using OpnS siRNA (inhibition of all OPN splice variants) and OpnAC siRNA (knockdown only of OPNa and OPNc). OPN and splice variant mRNA levels were quantified in archival material of 41 glioblastoma tumor samples. Plasma OPN was prospectively measured in 33 malignant glioma patients. RESULTS Inhibition of OPNa and OPNc (OpnAC) reduced clonogenic survival in U251MG cells but did not affect proliferation, migration or apoptosis. Knockdown of all OPN splice variants (OpnS) resulted in an even stronger inhibition of clonogenic survival, while cell proliferation and migration were reduced and rate of apoptosis was increased. Additional irradiation had additive effects with both siRNAs. Plasma OPN increased continuously in malignant glioma patients and was associated with poor survival. CONCLUSIONS OPNb is partially able to compensate the effects of OPNa and OPNc knockdown in U251MG cells. High OPN plasma levels at the end of radiotherapy are associated with poor survival.
Collapse
|
39
|
Longitudinal expression analysis of αv integrins in human gliomas reveals upregulation of integrin αvβ3 as a negative prognostic factor. J Neuropathol Exp Neurol 2013; 72:194-210. [PMID: 23399898 DOI: 10.1097/nen.0b013e3182851019] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Integrin inhibitors targeting αv series integrins are being tested for their therapeutic potential in patients with brain tumors, but pathologic studies have been limited by lack of antibodies suitable for immunohistochemistry (IHC) on formalin-fixed, paraffin-embedded specimens. We compared the expression of αv integrins by IHC in brain tumor and normal human brain samples with gene expression data in a public database using new rabbit monoclonal antibodies against αvβ3, αvβ5, αvβ6, and αvβ8 complexes using both manual and automated microscopy analyses. Glial tumors usually shared an αvβ3-positive/αvβ5-positive/αvβ8-positive/αvβ6-negative phenotype. In 94 WHO (World Health Organization) grade II astrocytomas, 85 anaplastic astrocytomas WHO grade III, and 324 glioblastomas from archival sources, expression of integrins generally increased with grade of malignancy. Integrins αvβ3 and αvβ5 were expressed in many glioma vessels; the intensity of vascular expression of αvβ3 increased with grade of malignancy, whereas αvβ8 was absent. Analysis of gene expression in an independent cohort showed a similar increase in integrin expression with tumor grade, particularly of ITGB3 and ITGB8; ITGB6 was not expressed, consistent with the IHC data. Parenchymal αvβ3 expression and ITGB3 gene overexpression in glioblastomas were associated with a poor prognosis, as revealed by survival analysis (Kaplan-Meier logrank, p = 0.016). Together, these data strengthen the rationale for anti-integrin treatment of glial tumors.
Collapse
|
40
|
Rullo OJ, Woo JMP, Parsa MF, Hoftman ADC, Maranian P, Elashoff DA, Niewold TB, Grossman JM, Hahn BH, McMahon M, McCurdy DK, Tsao BP. Plasma levels of osteopontin identify patients at risk for organ damage in systemic lupus erythematosus. Arthritis Res Ther 2013; 15:R18. [PMID: 23343383 PMCID: PMC3672798 DOI: 10.1186/ar4150] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 01/02/2013] [Indexed: 12/19/2022] Open
Abstract
Introduction Osteopontin (OPN) has been implicated as a mediator of Th17 regulation via type I interferon (IFN) receptor signaling and in macrophage activity at sites of tissue repair. This study assessed whether increased circulating plasma OPN (cOPN) precedes development of organ damage in pediatric systemic lupus erythematosus (pSLE) and compared it to circulating plasma neutrophil gelatinase-associated lipocalin (cNGAL), a predictor of increased SLE disease activity. Methods cOPN and cNGAL were measured in prospectively followed pSLE (n = 42) and adult SLE (aSLE; n = 23) patients and age-matched controls. Time-adjusted cumulative disease activity and disease damage were respectively assessed using adjusted-mean SLE disease activity index (SLEDAI) (AMS) and SLICC/ACR damage index (SDI). Results Compared to controls, elevated cOPN and cNGAL were observed in pSLE and aSLE. cNGAL preceded worsening SLEDAI by 3-6 months (P = 0.04), but was not associated with increased 6-month AMS. High baseline cOPN, which was associated with high IFNalpha activity and expression of autoantibodies to nucleic acids, positively correlated with 6-month AMS (r = 0.51 and 0.52, P = 0.001 and 0.01 in pSLE and aSLE, respectively) and was associated with SDI increase at 12 months in pSLE (P = 0.001). Risk factors for change in SDI in pSLE were cOPN (OR 7.5, 95% CI [2.9-20], P = 0.03), but not cNGAL, cumulative prednisone, disease duration, immunosuppression use, gender or ancestry using univariate and multivariate logistic regression. The area under the curve (AUC) when generating the receiver-operating characteristic (ROC) of baseline cOPN sensitivity and specificity for the indication of SLE patients with an increase of SDI over a 12 month period is 0.543 (95% CI 0.347-0.738; positive predictive value 95% and negative predictive value 38%). Conclusion High circulating OPN levels preceded increased cumulative disease activity and organ damage in SLE patients, especially in pSLE, and its value as a predictor of poor outcome should be further validated in large longitudinal cohorts.
Collapse
|
41
|
Tang X, Li J, Yu B, Su L, Yu Y, Yan M, Liu B, Zhu Z. Osteopontin splice variants differentially exert clinicopathological features and biological functions in gastric cancer. Int J Biol Sci 2012; 9:55-66. [PMID: 23289017 PMCID: PMC3535534 DOI: 10.7150/ijbs.5280] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 12/10/2012] [Indexed: 12/29/2022] Open
Abstract
Purpose: Gastric cancer (GC) remains a leading cause of death worldwide, and an elevated expression of osteopontin (OPN) may correlate with its poor survival. Alternative splicing of OPN can result in three isoforms, OPN-a, OPN-b and OPN-c. The aim of our current study is to examine the expression pattern and biological functions of OPN splice variants in GC. Methods: Firstly, we evaluated the expression of OPN splice variants in 7 gastric cell lines, 101 pairs of GC tissues and their adjacent non-tumor tissues by Quantative real-time PCR (QT-PCR). Gain-of-function experiments were subsequently performed to determine their diverse roles in malignant behaviors of GC. Besides, their differential effects on the regulation of crucial downstream molecules were further explored in the anti-apoptotic and pro-metastatic process. Results: We found that OPN-b is the dominant kind of OPN isoform in GC cell lines. Although the expression levels of three variants were all elevated in GC tissues, increased OPN-b or OPN-c expression could correlate with clinicopathological features. Functional analyses further showed that OPN-b most strongly promoted GC cell survival possibly by regulation of Bcl-2 family proteins and CD44v expressions. Moreover, OPN-c most effectively stimulated GC metastatic activity by increasing secretion of MMP-2, uPa, and IL-8. Conclusions: Our results suggest that OPN splice variants differentially exert clinicopathological features and biological functions in GC. Therefore, focusing on specific OPN isoform could be a novel direction for developing diagnostic and therapeutic approaches in GC.
Collapse
Affiliation(s)
- Xiaojian Tang
- Shanghai Key Laboratory of Gastric Neoplasms, Department of Surgery, Shanghai Institute of Digestive Surgery, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, 197 Rui Jin Er Road, Shanghai 200025, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gimba ER, Tilli TM. Human osteopontin splicing isoforms: known roles, potential clinical applications and activated signaling pathways. Cancer Lett 2012; 331:11-7. [PMID: 23246372 DOI: 10.1016/j.canlet.2012.12.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 12/18/2022]
Abstract
Human osteopontin is subject to alternative splicing, which generates three isoforms, termed OPNa, OPNb and OPNc. These variants show specific expression and roles in different cell contexts. We present an overview of current knowledge of the expression profile of human OPN splicing isoforms (OPN-SIs), their tissue-specific roles, and the pathways mediating their functional properties in different pathophysiological conditions. We also describe their putative application as biomarkers, and their potential use as therapeutic targets by using antibodies, oligonucleotides or siRNA molecules. This synthesis provides new clues for a better understanding of human OPN splice variants, their roles in normal and pathological conditions, and their possible clinical applications.
Collapse
Affiliation(s)
- E R Gimba
- Universidade Federal Fluminense/Polo Universitário de Rio das Ostras, Rua Recife s/n, CEP: 28890-000, Rio das Ostras, RJ, Brazil.
| | | |
Collapse
|
43
|
Yamaguchi Y, Shao Z, Sharif S, Du XY, Myles T, Merchant M, Harsh G, Glantz M, Recht L, Morser J, Leung LLK. Thrombin-cleaved fragments of osteopontin are overexpressed in malignant glial tumors and provide a molecular niche with survival advantage. J Biol Chem 2012. [PMID: 23204518 DOI: 10.1074/jbc.m112.362954] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Osteopontin (OPN), which is highly expressed in malignant glioblastoma (GBM), possesses inflammatory activity modulated by proteolytic cleavage by thrombin and plasma carboxypeptidase B2 (CPB2) at a highly conserved cleavage site. Full-length OPN (OPN-FL) was elevated in cerebrospinal fluid (CSF) samples from all cancer patients compared with noncancer patients. However, thrombin-cleaved OPN (OPN-R) and thrombin/CPB2-double-cleaved OPN (OPN-L) levels were markedly increased in GBM and non-GBM gliomas compared with systemic cancer and noncancer patients. Cleaved OPN constituted ∼23 and ∼31% of the total OPN in the GBM and non-GBM CSF samples, respectively. OPN-R was also elevated in GBM tissues. Thrombin-antithrombin levels were highly correlated with cleaved OPN, but not OPN-FL, suggesting that the cleaved OPN fragments resulted from increased thrombin and CPB2 in this extracellular compartment. Levels of VEGF and CCL4 were increased in CSF of GBM and correlated with the levels of cleaved OPN. GBM cell lines were more adherent to OPN-R and OPN-L than OPN-FL. Adhesion to OPN altered gene expression, in particular genes involved with cellular processes, cell cycle regulation, death, and inflammation. OPN and its cleaved forms promoted motility of U-87 MG cells and conferred resistance to apoptosis. Although functional mutation of the RGD motif in OPN largely abolished these functions, OPN(RAA)-R regained significant cell binding and signaling function, suggesting that the SVVYGLR motif in OPN-R may substitute for the RGD motif if the latter becomes inaccessible. OPN cleavage contributes to GBM development by allowing more cells to bind in niches where they acquire anti-apoptotic properties.
Collapse
Affiliation(s)
- Yasuto Yamaguchi
- Division of Hematology, Department of Medicine, Stanford University School of Medicine, Stanford, California 94305, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lu DY, Yeh WL, Huang SM, Tang CH, Lin HY, Chou SJ. Osteopontin increases heme oxygenase-1 expression and subsequently induces cell migration and invasion in glioma cells. Neuro Oncol 2012; 14:1367-78. [PMID: 23074199 DOI: 10.1093/neuonc/nos262] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Malignant gliomas are associated with high morbidity and mortality because they are highly invasive into surrounding brain tissue, making complete surgical resection impossible. Osteopontin is abundantly expressed in the brain and is involved in cell adhesion, migration, and invasion. The aim of the present study was to investigate the mechanisms of glioma cell migration. Migration and invasion activity were determined by transwell and wound-healing assays. Gene and protein expressions were analyzed by reverse transcription-PCR, real time-PCR, and Western blotting. Nrf2-DNA binding activity was determined by electrophoretic mobility shift assay. Establishment of migration-prone sublines were performed to select highly migratory glioma. An intracranial xenograft mouse model was used for the in vivo study. Application of recombinant human osteopontin enhanced the migration of glioma cells. Expression of heme oxygenase (HO)-1 mRNA and protein also increased in response to osteopontin stimulation. Osteopontin-induced increase in cell migration was antagonized by HO-1 inhibitor or HO-1 small interfering (si)RNA. Osteopontin-mediated HO-1 expression was reduced by treatment with MEK/ERK and phosphatidylinositol 3-kinase/Akt inhibitors, as well as siRNA against Nrf2. Furthermore, osteopontin stimulated Nrf2 accumulation in the nucleus and increased Nrf2-DNA binding activity. In migration-prone sublines, cells with greater migration ability had higher osteopontin and HO-1 expression, and zinc protoporphyrin IX treatment could effectively reduce the enhanced migration ability. In an intracranial xenograft mouse model, transplantation of migration-prone subline cells exhibited higher cell migration than parental tumor cells. These results indicate that osteopontin activates Nrf2 signaling, resulting in enhanced HO-1 expression and cell migration in glioma cells.
Collapse
Affiliation(s)
- Dah-Yuu Lu
- Graduate Institute of Neural and Cognitive Sciences, China Medical University, Taichung, Taiwan.
| | | | | | | | | | | |
Collapse
|
45
|
Hahnel A, Wichmann H, Greither T, Kappler M, Würl P, Kotzsch M, Taubert H, Vordermark D, Bache M. Prognostic impact of mRNA levels of osteopontin splice variants in soft tissue sarcoma patients. BMC Cancer 2012; 12:131. [PMID: 22471890 PMCID: PMC3364873 DOI: 10.1186/1471-2407-12-131] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/02/2012] [Indexed: 12/14/2022] Open
Abstract
Background It is well known that osteopontin (OPN) plays an important role in tumor progression and that a high OPN expression level in several tumor entities correlates with poor prognosis in cancer patients. However, little is known about the prognostic relevance of the OPN mRNA splice variants. Methods We analyzed the mRNA expression levels of different OPN splice variants in tumor tissue of 124 soft tissue sarcoma (STS) patients. Quantitative real-time PCR (qRT-PCR) was used to analyze the mRNA expression level of three OPN splice variants (OPN-a, -b and -c). Results The multivariate Cox's proportional hazard regression model revealed that high mRNA expression levels of OPN splice variants are significantly associated with poor prognosis in STS patients (n = 124). Women (n = 68) with high mRNA expression levels of OPN-a and OPN-b have an especially elevated risk of tumor-related death (OPN-a: RR = 3.0, P = 0.01, CI = 1.3-6.8; OPN-b: RR = 3.4, P = 0.01, CI = 1.4-8.2). In particular, we found that high mRNA expression levels of OPN-b and OPN-c correlated with a high risk of tumor-related death in STS patients that received radiotherapy (n = 52; OPN-b: RR = 10.3, P < 0.01, CI = 2.0-53.7; OPN-c: RR = 11.4, P < 0.01, CI = 2.2-59.3). Conclusion Our study shows that elevated mRNA expression levels of OPN splice variants are negative prognostic and predictive markers for STS patients. Further studies are needed to clarify the impact of the OPN splice variants on prognosis.
Collapse
Affiliation(s)
- Antje Hahnel
- Department of Radiotherapy, Martin-Luther-University of Halle-Wittenberg, Saale, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Tilli TM, Thuler LC, Matos AR, Coutinho-Camillo CM, Soares FA, da Silva EA, Neves AF, Goulart LR, Gimba ER. Expression analysis of osteopontin mRNA splice variants in prostate cancer and benign prostatic hyperplasia. Exp Mol Pathol 2011; 92:13-9. [PMID: 21963599 DOI: 10.1016/j.yexmp.2011.09.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 09/13/2011] [Indexed: 01/19/2023]
Abstract
Osteopontin splicing isoforms (OPN-SI) present differential expression patterns and specific tumor roles. Our aims were to characterize OPN-SI expression in prostate cancer (PCa) and benign prostate hyperplasia (BPH) tissues, besides evaluating their potential as biomarkers for PCa diagnosis and prognostic implications. Prostatic tissue specimens were obtained from 40 PCa and 30 benign prostate hyperplasia (BPH) patients. Quantitative real time PCR (qRT-PCR) was used to measure OPN-SI mRNA expression. Immunohistochemical analysis was performed using an anti-OPNc polyclonal antibody. Biostatistical analyses evaluated the association of OPN-SI and total Prostate Specific Antigen (PSA) serum levels with clinical and pathological data. PCa tissue samples presented significantly higher levels of OPNa, OPNb and OPNc transcripts (p<0.01) than in BPH specimens. OPN-SI mRNA expression were positively correlated with Gleason Score (p<0.01). ROC curves and logistic regression analyses demonstrated that OPN-SI and PSA were able to distinguish PCa from BPH patients (p<0.01). The OPNc isoform was the most upregulated variant and the best marker to distinguish patients' groups, presenting sensitivity and specificity of 90% and 100%, respectively. Immunohistochemistry analysis also demonstrated OPNc upregulation in PCa samples as compared to BPH tissues. OPNcprotein was also strongly stained PCa tissues presenting High Gleason Score. Multivariate analysis indicated that OPNc expression levels above the cut-off value presented a chance 4-fold higher for PCa occurrence. We conclude that OPN-SI were overexpressed in PCa tissues, strongly associated with PCa occurrence and with tumor cell differentiation. Our results suggest OPNc splicing isoform as an important biomarker contributing to improve PCa diagnosis and prognosis, besides providing insights into early steps of PCa carcinogenesis.
Collapse
Affiliation(s)
- T M Tilli
- Programa de Medicina Experimental, Coordenação de Pesquisa-Instituto Nacional de Câncer, Programa de Pós Graduação Stricto Sensu em Oncologia do INCa, Rio de Janeiro-RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang R, Pan X, Huang Z, Weber GF, Zhang G. Osteopontin enhances the expression and activity of MMP-2 via the SDF-1/CXCR4 axis in hepatocellular carcinoma cell lines. PLoS One 2011; 6:e23831. [PMID: 21909361 PMCID: PMC3166084 DOI: 10.1371/journal.pone.0023831] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Accepted: 07/26/2011] [Indexed: 12/14/2022] Open
Abstract
Background and Aims Osteopontin, SDF-1α, and MMP-2 are important secreted molecules involved in the pathophysiology of human hepatocellular carcinoma (HCC). This study investigates the effect of the SDF-1α/CXCR4 axis on expression and activity of MMP-2 induced by osteopontin. Methods The expression of CXCR4, SDF-1α, MMP-2 and their associated cellular signaling cascades, involving Akt and MAP Kinases, were determined by Western blotting. The activities of MMP-2 and MMP-9 were assayed by gel zymography. The role of the osteopontin receptors integrin αvβ3 and CD44v6 was evaluated using neutralizing antibodies. We also established CXCR4-deficient SMMC7721 cell lines by transfection with miRNA-CXCR4 plasmids and determined cell invasion activity in a transwell assay. Results In comparison with untreated cells, recombinant human osteopontin (rhOPN) up-regulated CXCR4, SDF-1α, and MMP-2 expression about 5-, 4-, and 6-fold on the protein levels through binding to integrin αvβ3 and CD44v6 in hepatocellular carcinoma cells (SMMC7721 and HepG2). Inhibition of the SDF-1α/CXCR4 axis down-regulated the rhOPN-induced MMP-2 expression and activity. rhOPN also activated Akt, p38 and JNK. Down-regulation of CXCR4 decreased the rhOPN-induced invasion in SMMC7721 cells. Conclusion These results indicate that rhOPN up-regulates MMP-2 through the SDF-1α/CXCR4 axis, mediated by binding to integrin αvβ3 and CD44v6 and activating the PI-3K/Akt and JNK pathways in HepG2 and SMMC7721 cells. Therefore, the osteopontin-SDF-1α/CXCR4-MMP-2 system may be a new therapeutic target for treating HCC progression.
Collapse
Affiliation(s)
- Rihua Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaolin Pan
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zuhu Huang
- Department of Infection Diseases, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Georg F. Weber
- University of Cincinnati Academic Health Center, College of Pharmacy, Cincinnati, Ohio, United States of America
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
48
|
Pre- and post-translational regulation of osteopontin in cancer. J Cell Commun Signal 2011; 5:111-22. [PMID: 21516514 DOI: 10.1007/s12079-011-0130-6] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 03/15/2011] [Indexed: 12/15/2022] Open
Abstract
Osteopontin (OPN) is a matricellular protein that binds to a number of cell surface receptors including integrins and CD44. It is expressed in many tissues and secreted into body fluids including blood, milk and urine. OPN plays important physiological roles in bone remodeling, immune response and inflammation. It is also a tumour-associated protein, and elevated OPN levels are associated with tumour formation, progression and metastasis. Research has revealed a promising role for OPN as a cancer biomarker. OPN is subject to alternative splicing, as well as post-translational modifications such as phosphorylation, glycosylation and proteolytic cleavage. Functional differences have been revealed for different isoforms and post-translational modifications. The pattern of isoform expression and post-translational modification is cell-type specific and may influence the potential role of OPN in malignancy and as a cancer biomarker.
Collapse
|
49
|
Nishimichi N, Hayashita-Kinoh H, Chen C, Matsuda H, Sheppard D, Yokosaki Y. Osteopontin undergoes polymerization in vivo and gains chemotactic activity for neutrophils mediated by integrin alpha9beta1. J Biol Chem 2011; 286:11170-8. [PMID: 21321126 DOI: 10.1074/jbc.m110.189258] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Osteopontin (OPN) is an integrin-binding inflammatory cytokine that undergoes polymerization catalyzed by transglutaminase 2. We have previously reported that polymeric OPN (polyOPN), but not unpolymerized OPN (OPN*), attracts neutrophils in vitro by presenting an acquired binding site for integrin α9β1. Among many in vitro substrates for transglutaminase 2, only a few have evidence for in vivo polymerization and concomitant function. Although polyOPN has been identified in bone and aorta, the in vivo functional significance of polyOPN is unknown. To determine whether OPN polymerization contributes to neutrophil recruitment in vivo, we injected OPN* into the peritoneal space of mice. Polymeric OPN was detected by immunoblotting in the peritoneal wash of mice injected with OPN*, and both intraperitoneal and plasma OPN* levels were higher in mice injected with a polymerization-incompetent mutant, confirming that OPN* polymerizes in vivo. OPN* injection induced neutrophil accumulation, which was significantly less following injection of a mutant OPN that was incapable of polymerization. The importance of in vivo polymerization was further confirmed with cystamine, a transglutaminase inhibitor, which blocked the polymerization and attenuated OPN*-mediated neutrophil recruitment. The thrombin-cleaved N-terminal fragment of OPN, another ligand for α9β1, was not responsible for neutrophil accumulation because a thrombin cleavage-incompetent mutant recruited similar numbers of neutrophils as wild type OPN*. Neutrophil accumulation in response to both wild type and thrombin cleavage-incompetent OPN* was reduced in mice lacking the integrin α9 subunit in leukocytes, indicating that α9β1 is required for polymerization-induced recruitment. We have illustrated a physiological role of molecular polymerization by demonstrating acquired chemotactic properties for OPN.
Collapse
Affiliation(s)
- Norihisa Nishimichi
- Cell-Matrix Frontier Laboratory, Biomedical Research Unit, Hiroshima University, Minamiku, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|