1
|
Önner H, Özer H, Gezer B, Körez KM, Cebeci H, Eren OÖ, Köktekir E, Karabağlı H. Comparing the diagnostic performance of DSC-MRI and FAPI PET in differentiating tumor progression from treatment-related changes in IDH-Wildtype Glioblastoma: A pilot study. Eur J Radiol 2025; 187:112075. [PMID: 40188635 DOI: 10.1016/j.ejrad.2025.112075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/19/2025] [Accepted: 03/26/2025] [Indexed: 04/08/2025]
Abstract
OBJECTIVES This pilot study compared the diagnostic performances of DSC-MRI and FAPI PET in differentiating tumor progression (TP) and treatment-related change (TRC) in isocitrate dehydrogenase (IDH) wild-type glioblastoma during follow-up. METHODS IDH wild-type glioblastoma patients who underwent DSC-MRI and FAPI PET were analyzed retrospectively. TP and TRC lesions were confirmed through radiological and clinical follow-up, with a median follow-up period of 8 months (2-12 months). The differences in DSC-MRI (CBVmax, CBVmean, and rCBVmean) and FAPI PET (SUVmax, SUVmean, and TBR SUVmean) parameters between TP and TRC were compared. ROC curve analyses were performed to assess the diagnostic performance. DeLong's test evaluated the differences in AUCs. RESULTS Twelve patients (6 men and 6 women, aged 33-70) with IDH wild-type glioblastoma were enrolled. Totally 18 lesions (8 TRC and 10 TP) were detected. All DSC-MRI and FAPI PET parameters were significantly higher in the TP than in the TRC. CBVmean showed the highest diagnostic performance among all parameters. However, the DeLong test revealed no significant difference in diagnostic performance between DSC-MRI and FAPI PET parameters. CONCLUSIONS Although the CBVmean has excellent diagnostic performance in differentiating TP from TRC, FAPI PET parameters were statistically found to have similar diagnostic performance. FAPI PET may be an alternative modality for patients with IDH wild-type glioblastoma who are unable to undergo DSC-MRI. However, further prospective large cohort studies and clinical validation are necessary.
Collapse
Affiliation(s)
- Hasan Önner
- Selcuk University, Faculty of Medicine, Department of Nuclear Medicine, Konya, Turkey.
| | - Halil Özer
- Selcuk University, Faculty of Medicine, Department of Radiology, Konya, Turkey
| | - Burak Gezer
- Selcuk University, Faculty of Medicine, Department of Neurosurgery, Konya, Turkey
| | - Kazım Muslu Körez
- Selcuk University, Faculty of Medicine, Department of Biostatistics, Konya, Turkey
| | - Hakan Cebeci
- Selcuk University, Faculty of Medicine, Department of Radiology, Konya, Turkey
| | - Orhan Önder Eren
- Selcuk University, Faculty of Medicine, Department of Medical Oncology, Konya, Turkey
| | - Ender Köktekir
- Selcuk University, Faculty of Medicine, Department of Neurosurgery, Konya, Turkey
| | - Hakan Karabağlı
- Selcuk University, Faculty of Medicine, Department of Neurosurgery, Konya, Turkey
| |
Collapse
|
2
|
Dadgar H, Norouzbeigi N, Assadi M, Jafari E, Al-Balooshi B, Al-Ibraheem A, Esmail AA, Marafi F, Haidar M, Al-Alawi HM, Omar Y, Usmani S, Cimini A, Ricci M, Arabi H, Zaidi H. A Prospective Evaluation of Chemokine Receptor-4 (CXCR4) Overexpression in High-grade Glioma Using 68Ga-Pentixafor (Pars-Cixafor™) PET/CT Imaging. Acad Radiol 2025; 32:2247-2256. [PMID: 39690071 DOI: 10.1016/j.acra.2024.11.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024]
Abstract
BACKGROUND While magnetic resonance imaging (MRI) remains the gold standard for morphological imaging, its ability to differentiate between tumor tissue and treatment-induced changes on the cellular level is insufficient. Notably, glioma cells, particularly glioblastoma multiforme (GBM), demonstrate overexpression of chemokine receptor-4 (CXCR4). This study aims to evaluate the feasibility of non-invasive 68Ga-Cixafor™ PET/CT as a tool to improve diagnostic accuracy in patients with high-grade glioma. METHODS In this retrospective analysis, a database of histopathology-confirmed glioma patients with MRI findings consistent with high-grade gliomas was utilized. Within 2 weeks of their MRI, these patients underwent 68Ga-Cixafor™ PET/CT scans to assess CXCR4 expression. Both visual scoring based on established criteria and semi-quantitative measures including maximum standardized uptake value (SUVmax) and tumor-to-background ratios (TBR) were calculated to analyze the PET/CT data. RESULTS Our retrospective study enrolled 29 histologically confirmed glioma patients with MRI findings consistent with high-grade gliomas. All patients underwent 68Ga-Cixafor™ PET/CT scans within 2 weeks of their MRI, specifically at one-hour post-injection time point. Visual assessment based on a standardized scoring system identified 27 positive scans out of 29 (93.1%). Median SUVmax was 2.31 (range: 0.49-9.96) and median TBR was 20 (range: 6.12-124.5). Pathological analysis revealed 5 grade III (17.24%) and 24 grade IV (82.75%) lesions among the 29 patients. Notably, the median SUVmax of grade IV lesions (2.85) was significantly higher than grade III lesions (1.27) (P=0.02). Conversely, there was no significant difference in median TBR between grade IV (20) and grade III (22.37). These findings support the correlation between high CXCR4 expression, particularly in high-grade gliomas, and elevated uptake of 68Ga-Pentixafor. While areas with high uptake showed CXCR4 expression, areas with low uptake did not exhibit noticeable expression (data not shown). CONCLUSION This study demonstrated that 68Ga-Cixafor™ PET exhibits a TBR with minimal cortical uptake, significantly enhancing glioma detection compared to conventional imaging methods. This, combined with the potential therapeutic capabilities of CXCR4-targeting radiopharmaceuticals, highlights the promise of 68Ga-Cixafor™ as a valuable tool for not only improved glioma diagnosis but also personalized treatment strategies.
Collapse
Affiliation(s)
- Habibollah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran (H.D., N.N.)
| | - Nasim Norouzbeigi
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran (H.D., N.N.)
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran (M.A., E.J.)
| | - Esmail Jafari
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Radionuclide Therapy (MIRT), Bushehr Medical University Hospital, Bushehr University of Medical Sciences, Bushehr, Iran (M.A., E.J.)
| | - Batool Al-Balooshi
- Dubai Nuclear medicine & Molecular imaging Center, Dubai Academic Health corporation, DAHC, United Arab Emirates (B.A.B.)
| | - Akram Al-Ibraheem
- Department of Nuclear Medicine, King Hussein Cancer Center, Amman, Jordan (A.A.I.); Division of Nuclear Medicine/Department of Radiology and Nuclear Medicine, University of Jordan, Amman, Jordan (A.A.I.)
| | - Abdulredha A Esmail
- Nuclear Medicine Department, Kuwait Cancer Control Center, Kuwait City, Kuwait (A.A.E.)
| | - Fahad Marafi
- Jaber Alahmad Center of Nuclear Medicine and Molecular Imaging, Kuwait City, Kuwait (F.M.)
| | - Mohamad Haidar
- Diagnostic Clinical Radiology Department, American University of Beirut, Beirut, Lebanon (M.H.)
| | - Haider Muhsin Al-Alawi
- Nuclear Medicine department, Amir Al-momineen Specialty Hospital, Al-Najaf Governorate, Iraq (H.M.A.A.); Middle Euphrates Cancer Hospital, Al-Najaf Governorate, Iraq (H.M.A.A.)
| | - Yehia Omar
- PET-CT department at Misr Radiology Center, Heliopolis, Egypt (Y.O.)
| | - Sharjeel Usmani
- Department of Nuclear Medicine Sultan Qaboos Comprehensive Cancer Care and Research Center (SQCCCRC), Seeb, Oman (S.U.)
| | - Andrea Cimini
- Nuclear Medicine Unit, St. Salvatore Hospital, 67100 L'Aquila, Italy (A.C.)
| | - Maria Ricci
- Nuclear Medicine Unit, Cardarelli Hospital, 86100 Campobasso, Italy (M.R.)
| | - Hossein Arabi
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland (H.A., H.Z.)
| | - Habib Zaidi
- Division of Nuclear Medicine and Molecular Imaging, Department of Medical Imaging, Geneva University Hospital, CH-1211 Geneva 4, Switzerland (H.A., H.Z.); Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, Netherlands (H.Z.); Department of Nuclear Medicine, University of Southern Denmark, Odense, Denmark (H.Z.); University Research and Innovation Center, Óbuda University, Budapest, Hungary (H.Z.).
| |
Collapse
|
3
|
Zhang RZ, Ezhov I, Balcerak M, Zhu A, Wiestler B, Menze B, Lowengrub JS. Personalized predictions of Glioblastoma infiltration: Mathematical models, Physics-Informed Neural Networks and multimodal scans. Med Image Anal 2025; 101:103423. [PMID: 39700844 DOI: 10.1016/j.media.2024.103423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 09/01/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024]
Abstract
Predicting the infiltration of Glioblastoma (GBM) from medical MRI scans is crucial for understanding tumor growth dynamics and designing personalized radiotherapy treatment plans. Mathematical models of GBM growth can complement the data in the prediction of spatial distributions of tumor cells. However, this requires estimating patient-specific parameters of the model from clinical data, which is a challenging inverse problem due to limited temporal data and the limited time between imaging and diagnosis. This work proposes a method that uses Physics-Informed Neural Networks (PINNs) to estimate patient-specific parameters of a reaction-diffusion partial differential equation (PDE) model of GBM growth from a single 3D structural MRI snapshot. PINNs embed both the data and the PDE into a loss function, thus integrating theory and data. Key innovations include the identification and estimation of characteristic non-dimensional parameters, a pre-training step that utilizes the non-dimensional parameters and a fine-tuning step to determine the patient specific parameters. Additionally, the diffuse-domain method is employed to handle the complex brain geometry within the PINN framework. The method is validated on both synthetic and patient datasets, showing promise for personalized GBM treatment through parametric inference within clinically relevant timeframes.
Collapse
Affiliation(s)
- Ray Zirui Zhang
- Department of Mathematics, University of California Irvine, USA.
| | | | | | | | | | | | - John S Lowengrub
- Department of Mathematics, University of California Irvine, USA; Department of Biomedical Engineering, University of California Irvine, USA.
| |
Collapse
|
4
|
Puranik AD, Dev ID, Rangarajan V, Jain Y, Patra S, Purandare NC, Sahu A, Choudhary A, Bhattacharya K, Gupta T, Chatterjee A, Dasgupta A, Moiyadi A, Shetty P, Singh V, Sridhar E, Sahay A, Shah A, Menon N, Ghosh S, Choudhury S, Shah S, Agrawal A, Lakshminarayanan N, Kumar A, Gopalakrishna A. FET PET to differentiate between post-treatment changes and recurrence in high-grade gliomas: a single center multidisciplinary clinic controlled study. Neuroradiology 2025; 67:363-369. [PMID: 39527264 PMCID: PMC11893651 DOI: 10.1007/s00234-024-03495-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
PURPOSE The clinico-radiological dilemma in post-treatment high-grade gliomas, between disease recurrence (TR) and treatment-related changes (TRC), still persists. FET (Fluoro-ethyl-tyrosine) PET has been extensively used as problem-solving modality for cases where MR imaging is inconclusive. We incorporated a systematic imaging and clinical follow-up algorithm in a multi-disciplinary clinic (MDC) setting to analyse our cohort of FET PET in post-treatment gliomas. METHODS We retrospectively analyzed 171 patients of post-treatment grade III and IV glioma with equivocal findings on MRI. 185-222 MBq of 18 F-FET was injected and dedicated static imaging of brain was performed at 20 min. TBR (Tumor to background ratio) was used as semi-quantitative parameter. Cutoff of 2.5 was used for image interpretation. Imaging findings were confirmed with histopathological diagnosis, wherever available or in a multidisciplinary joint clinic based on serial imaging. RESULTS 121 of 171 patients showed recurrent disease on FET PET, on follow up, 109 were confirmed with recurrence; 7 patients showed TRC, whereas 5 were treated with bevacizumab, with no further clinico-radiological deterioration, thus confirming TRC. 50 patients showed TRC on FET PET, on follow up on follow up, 40 were confirmed as true-negative. 10 patients who showed TBR less than 2.5 had confirmed TR on subsequent MR imaging. The overall sensitivity and specificity was 91.6 and 76.9% respectively, with a diagnostic accuracy of 87.13%. CONCLUSION There is potential for FET PET to be used along with MRI in the post treatment algorithm of high-grade glial tumors.
Collapse
Affiliation(s)
- Ameya D Puranik
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India.
| | - Indraja D Dev
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Yash Jain
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Sukriti Patra
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Nilendu C Purandare
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Arpita Sahu
- Department of Radiodiagnosis, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Amitkumar Choudhary
- Department of Radiodiagnosis, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Kajari Bhattacharya
- Department of Radiodiagnosis, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Vikas Singh
- Department of Neurosurgery, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Epari Sridhar
- Department of Pathology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Ayushi Sahay
- Department of Pathology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Aekta Shah
- Department of Pathology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Nandini Menon
- Department of Medical Oncology, Tata Memorial Hospital and Advanced Center for Treatment, Research and Education in Cancer (ACTREC), Homi Bhabha National University, Mumbai, India
| | - Suchismita Ghosh
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Sayak Choudhury
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Sneha Shah
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - Archi Agrawal
- Department of Nuclear Medicine and Molecular Imaging, Homi Bhabha National University, Tata Memorial Hospital, Mumbai, India
| | - N Lakshminarayanan
- Medical Cyclotron Facility, Board of Radiation and Isotope Technology (BRIT), Bhabha Atomic Research Center, Mumbai, India
| | - Amit Kumar
- Medical Cyclotron Facility, Board of Radiation and Isotope Technology (BRIT), Bhabha Atomic Research Center, Mumbai, India
| | - Arjun Gopalakrishna
- Medical Cyclotron Facility, Board of Radiation and Isotope Technology (BRIT), Bhabha Atomic Research Center, Mumbai, India
| |
Collapse
|
5
|
Müller KJ, Forbrig R, Reis J, Wiegand L, Barci E, Kunte SC, Kaiser L, Schönecker S, Schichor C, Harter PN, Thon N, von Baumgarten L, Preusser M, Albert NL. Measurable disease as baseline criterion for response assessment in glioblastoma: A comparison of PET -based (PET RANO 1.0) and MRI-based (RANO) assessments. Neuro Oncol 2025; 27:77-88. [PMID: 39561103 PMCID: PMC11726251 DOI: 10.1093/neuonc/noae208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Recently, criteria based on amino acid positron emission tomography (PET) have been proposed for response assessment in diffuse gliomas (PET RANO 1.0). In this study, we compare the prevalence of measurable disease according to PET RANO 1.0 with magnetic resonance imaging (MRI)-based Response Assessment in Neuro-Oncology (RANO) criteria in glioblastoma. METHODS We retrospectively identified patients with newly diagnosed IDH-wild-type glioblastoma who underwent [18F] Fluoroethyltyrosine (FET) PET and MRI after resection or biopsy and before radio-/radiochemotherapy. Two independent investigators analyzed measurable disease according to PET RANO 1.0 or MRI-RANO criteria. Additionally, lesion size, congruency patterns, and uptake intensity on [18F]FET PET images were assessed. RESULTS We evaluated 125 patients including 49 cases after primary resection and 76 cases after biopsy. Using PET criteria, 113 out of 125 patients (90.4%) had measurable disease, with a median PET-positive volume of 15.34 cm3 (8.83-38.03). With MRI, a significantly lower proportion of patients had measurable disease (57/125, 45.6%; P < .001) with a median sum of maximum cross-sectional diameters of 35.65 mm (26.18-45.98). None of the 12 patients without measurable disease on PET had measurable disease on MRI. Contrariwise, 56/68 patients (82.4%) without measurable disease on MRI exhibited measurable disease on PET. Clinical performance status correlated significantly with PET-positive volume and MRI-based sum of diameters (P < .0059, P < .0087, respectively). CONCLUSIONS [18F]FET PET identifies a higher number of patients with measurable disease compared to conventional MRI in newly diagnosed glioblastoma. PET-based assessment may serve as a novel baseline parameter for evaluating residual tumor burden and improving patient stratification in glioblastoma studies. Further validation in prospective trials is warranted.
Collapse
Affiliation(s)
- Katharina J Müller
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Robert Forbrig
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Jonas Reis
- Institute of Neuroradiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Lilian Wiegand
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Enio Barci
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sophie C Kunte
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Bayerisches Zentrum für Krebsforschung (BZKF), Partner Site Munich, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Christian Schichor
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University/University Hospital, LMU Munich, Munich, Germany
| | - Patrick N Harter
- Bayerisches Zentrum für Krebsforschung (BZKF), Partner Site Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University/University Hospital, LMU Munich, Munich, Germany
- Center for Neuropathology and Prion Research, Faculty of Medicine, LMU Munich, Munich, Germany
| | - Niklas Thon
- Bayerisches Zentrum für Krebsforschung (BZKF), Partner Site Munich, Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University/University Hospital, LMU Munich, Munich, Germany
| | - Louisa von Baumgarten
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- Bayerisches Zentrum für Krebsforschung (BZKF), Partner Site Munich, Munich, Germany
- Department of Neurosurgery, LMU University Hospital, LMU Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University/University Hospital, LMU Munich, Munich, Germany
| | - Matthias Preusser
- Division of Oncology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU University Hospital, LMU Munich, Munich, Germany
- Bayerisches Zentrum für Krebsforschung (BZKF), Partner Site Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, A Partnership Between DKFZ and University/University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
6
|
Chen J, Xu M, Li Z, Kong Z, Cai J, Wang C, Mu BS, Cui XY, Zhang Z, Liu T, Liu Z. A Bis-Boron Amino Acid for Positron Emission Tomography and Boron Neutron Capture Therapy. Angew Chem Int Ed Engl 2025; 64:e202413249. [PMID: 39349362 DOI: 10.1002/anie.202413249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/20/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
Trifluoroborate boronophenylalanine (BBPA) is a boron amino acid analog of 4-boronophenylalanine (BPA) but with a trifluoroborate group (-BF3 -) instead of a carboxyl group (-COOH). Clinical studies have shown that 18F-labeled BBPA ([18F]BBPA) can produce high-contrast tumor images in positron emission tomography (PET). Beyond PET imaging, BBPA is a theranostic agent for boron neutron capture therapy (BNCT). Because BBPA possesses an identical chemical structure to BNCT and PET, it can potentially predict the boron concentration for BNCT using [18F]BBPA-PET. The synthesis of BBPA was achieved by selectively fluorinating the α-aminoborate compound, taking advantage of the varying rates of solvolysis of the B-F bond. The study showcased the high-contrast [18F]BBPA-PET imaging in various tumor models, highlighting its broad applicability for both [18F]BBPA-PET and BBPA-BNCT. [18F]BBPA-PET tumor uptake remains consistent across various doses, including those used in BNCT. This enables accurate estimation of the boron concentration in tumors using [18F]BBPA-PET. With its dual boron structure, BBPA increases boron concentration in tumor cells and tumor tissues compared to BPA. Thus, less boron carrier is needed. This study introduces a new theranostic boron carrier that enhances boron accumulation in tumors, predicts boron concentration, and enhances the accuracy and effectiveness of BNCT.
Collapse
Affiliation(s)
- Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Changping Laboratory, Beijing, 102206, China
| | - Zhu Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
| | - Ziren Kong
- Department of Head and Neck Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jie Cai
- Changping Laboratory, Beijing, 102206, China
| | - Chunhong Wang
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bo-Shuai Mu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xi-Yang Cui
- Changping Laboratory, Beijing, 102206, China
| | - Zizhu Zhang
- Beijing Nuclear Industry Hospital, Beijing, 100045, China
| | - Tong Liu
- Beijing Capture Tech Co. Ltd., Beijing, 102413, China
| | - Zhibo Liu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Changping Laboratory, Beijing, 102206, China
- Peking University-Tsinghua University Center for Life Sciences, Beijing, 100871, China
- Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, 610213, Sichuan, China
| |
Collapse
|
7
|
Lee DY, Oh JS, Kim JW, Oh M, Oh SJ, Lee S, Kim YH, Kim JH, Nam SJ, Song SW, Kim JS. Pre-operative dual-time-point [ 18F]FET PET differentiates CDKN2A/B loss and PIK3CA mutation status in adult-type diffuse glioma: a single-center prospective study. Eur J Nucl Med Mol Imaging 2025; 52:669-682. [PMID: 39365462 DOI: 10.1007/s00259-024-06935-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/29/2024] [Indexed: 10/05/2024]
Abstract
PURPOSE While [18F]FET PET plays a complementary role in glioma imaging, it needs to be more comprehensively understood for improved characterization of glioma prior to surgery given the evolving landscape of molecular neuropathology. Thus, we investigated the utility of pre-operative dual-time-point [18F]FET PET in correlation with next-generation sequencing (NGS) data in patients with adult-type diffuse glioma (ADG). METHODS Adult patients who were suspected to have primary glioma were prospectively recruited between June 2021 and January 2024. They underwent pre-operative dual-time-point static PET/CT at 20 min (early) and 80 min (delay) after [18F]FET injection. Semi-quantitative parameters of the hottest lesion (SUVmax) of tumour and the hottest lesion-to-normal brain ratio (TBRmax) were assessed from each summed image. Furthermore, the percentage changes (△) of SUVmax and TBRmax between two images were calculated. Histopathology of glioma was determined according to the 2021 WHO classification and NGS data. RESULTS This study investigated a dozen genes in 76 patients, of whom 51 had isocitrate dehydrogenase (IDH)-wild-type glioblastoma, 13 had IDH-mutant astrocytoma, and 12 had IDH-mutant oligodendroglioma. Every tumour was [18F]FET-avid having TBRmax more than 1.6. Patients with CDKN2A/B loss had significantly higher values of SUVmax (5.7 ± 1.6 vs. 4.7 ± 1.3, p = 0.004; 5.0 ± 1.4 vs. 4.4 ± 1.2, p = 0.026) and TBRmax (6.5 ± 1.8 vs. 5.1 ± 1.7, p = 0.001; 5.3 ± 1.5 vs. 4.3 ± 1.3, p = 0.004) in both scans than patients without CDKN2A/B loss, even after adjustment for age, MRI enhancement, tumor grade and type of pathology. Furthermore, patients with PIK3CA mutation (16.2 ± 11.8 vs. 6.7 ± 11.6, p = 0.007) had significantly higher △SUVmax than patients without PIK3CA mutation, even after adjustment for age, MRI enhancement, tumor grade, and type of pathology. CONCLUSION Among the dozen genes investigated in this prospective study in patients with ADG, we found out that CDKN2A/B loss and PIK3CA mutation status could be differentiated by pre-operative dual-time-point [18F]FET PET/CT.
Collapse
Affiliation(s)
- Dong Yun Lee
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Jungsu S Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Jeong Won Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Minyoung Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Seungjoo Lee
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Young-Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Jeong Hoon Kim
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Soo Jeong Nam
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea
| | - Sang Woo Song
- Department of Neurosurgery, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| | - Jae Seung Kim
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Korea.
| |
Collapse
|
8
|
Loeber S. MRI Characteristics of Primary Brain Tumors and Advanced Diagnostic Imaging Techniques. Vet Clin North Am Small Anim Pract 2025; 55:23-39. [PMID: 39244440 DOI: 10.1016/j.cvsm.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2024]
Abstract
Extensive descriptions of MRI characteristics of canine and feline brain tumors allow for relatively accurate lesion detection, discrimination, and presumptive diagnosis on MRI. Ambiguous and overlapping MRI features between brain lesion and tumor as well as tumor types is a limitation that necessitates histopathology for final diagnosis, which is often not available antemortem. Non-invasive advanced diagnostic imaging techniques continue to be developed to enhance sensitivity and specificity for brain tumor diagnosis on MRI in dogs and cats.
Collapse
Affiliation(s)
- Samantha Loeber
- Department of Surgical Sciences, University of Wisconsin-Madison, 2015 Linden Drive, Madison, WI 53706, USA.
| |
Collapse
|
9
|
Baumert BG, P M Jaspers J, Keil VC, Galldiks N, Izycka-Swieszewska E, Timmermann B, Grosu AL, Minniti G, Ricardi U, Dhermain F, Weber DC, van den Bent M, Rudà R, Niyazi M, Erridge S. ESTRO-EANO guideline on target delineation and radiotherapy for IDH-mutant WHO CNS grade 2 and 3 diffuse glioma. Radiother Oncol 2025; 202:110594. [PMID: 39454886 DOI: 10.1016/j.radonc.2024.110594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024]
Abstract
PURPOSE This guideline will discuss radiotherapeutic management of IDH-mutant grade 2 and grade 3 diffuse glioma, using the latest 2021 WHO (5th) classification of brain tumours focusing on: imaging modalities, tumour volume delineation, irradiation dose and fractionation. METHODS The ESTRO Guidelines Committee, CNS subgroup, nominated 15 European experts who identified questions for this guideline. Four working groups were established addressing specific questions concerning imaging, target volume delineation, radiation techniques and fractionation. A literature search was performed, and available literature was discussed. A modified two-step Delphi process was used with majority voting resulted in a decision or highlighting areas of uncertainty. RESULTS Key issues identified and discussed included imaging needed to define target definition, target delineation and the size of margins, and technical aspects of treatment including different planning techniques such as proton therapy. CONCLUSIONS The GTV should include any residual tumour volume after surgery, as well as the resection cavity. Enhancing lesions on T1 imaging should be included if they are indicative of residual tumour. In grade 2 tumours, T2/FLAIR abnormalities should be included in the GTV. In grade 3 tumours, T2/FLAIR abnormalities should also be included, except areas that are considered to be oedema which should be omitted from the GTV. A GTV to CTV expansion of 10 mm is recommended in grade 2 tumours and 15 mm in grade 3 tumours. A treatment dose of 50.4 Gy in 28 fractions is recommended in grade 2 tumours and 59.4 Gy in 33 fractions in grade 3 tumours. Radiation techniques with IMRT are the preferred approach.
Collapse
Affiliation(s)
- Brigitta G Baumert
- Institute of Radiation-Oncology, Cantonal Hospital Graubunden, Chur, Switzerland.
| | - Jaap P M Jaspers
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Vera C Keil
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany; Institute of Neuroscience and Medicine (IMN-3), Research Center Juelich, Juelich, Germany; Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
| | - Ewa Izycka-Swieszewska
- Department of Pathology and Neuropathology, Medical University of Gdansk, Gdansk, Poland
| | - Beate Timmermann
- West German Proton Therapy Centre Essen (WPE), University Hospital Essen, Essen, Germany; Department of Particle Therapy, University Hospital Essen, Essen, Germany; West German Cancer Centre (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - Anca L Grosu
- Department of Radiation Oncology, University Medical Center, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Giuseppe Minniti
- Radiation Oncology Unit, Department of Radiological Sciences, Sapienza University of Rome, Rome, Italy
| | | | - Frédéric Dhermain
- Radiation Oncology Department, Gustave Roussy University Hospital, Villejuif, France
| | - Damien C Weber
- Center for Proton Therapy, Paul Scherrer Institute, Villigen PSI, Villingen, Switzerland
| | - Martin van den Bent
- The Brain Tumor Center at Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Maximilian Niyazi
- Center for Neuro-Oncology, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Tübingen, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Sara Erridge
- Edinburgh Cancer Centre, Western General Hospital, Edinburgh, UK; Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Galldiks N, Lohmann P, Friedrich M, Werner JM, Stetter I, Wollring MM, Ceccon G, Stegmayr C, Krause S, Fink GR, Law I, Langen KJ, Tonn JC. PET imaging of gliomas: Status quo and quo vadis? Neuro Oncol 2024; 26:S185-S198. [PMID: 38970818 PMCID: PMC11631135 DOI: 10.1093/neuonc/noae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024] Open
Abstract
PET imaging, particularly using amino acid tracers, has become a valuable adjunct to anatomical MRI in the clinical management of patients with glioma. Collaborative international efforts have led to the development of clinical and technical guidelines for PET imaging in gliomas. The increasing readiness of statutory health insurance agencies, especially in European countries, to reimburse amino acid PET underscores its growing importance in clinical practice. Integrating artificial intelligence and radiomics in PET imaging of patients with glioma may significantly improve tumor detection, segmentation, and response assessment. Efforts are ongoing to facilitate the clinical translation of these techniques. Considerable progress in computer technology developments (eg quantum computers) may be helpful to accelerate these efforts. Next-generation PET scanners, such as long-axial field-of-view PET/CT scanners, have improved image quality and body coverage and therefore expanded the spectrum of indications for PET imaging in Neuro-Oncology (eg PET imaging of the whole spine). Encouraging results of clinical trials in patients with glioma have prompted the development of PET tracers directing therapeutically relevant targets (eg the mutant isocitrate dehydrogenase) for novel anticancer agents in gliomas to improve response assessment. In addition, the success of theranostics for the treatment of extracranial neoplasms such as neuroendocrine tumors and prostate cancer has currently prompted efforts to translate this approach to patients with glioma. These advancements highlight the evolving role of PET imaging in Neuro-Oncology, offering insights into tumor biology and treatment response, thereby informing personalized patient care. Nevertheless, these innovations warrant further validation in the near future.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Michel Friedrich
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Jan-Michael Werner
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Isabelle Stetter
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Michael M Wollring
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Carina Stegmayr
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Sandra Krause
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, University Hospital of Cologne, University of Cologne, Cologne, Germany
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Joerg-Christian Tonn
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
11
|
Ruan D, Sun J, Han C, Cai J, Yu L, Zhao L, Pang Y, Zuo C, Sun L, Wang Z, Tan G, Qu X, Chen H. 68Ga-FAPI-46 PET/CT in the evaluation of gliomas: comparison with 18F-FDG PET/CT and contrast-enhanced MRI. Theranostics 2024; 14:6935-6946. [PMID: 39629119 PMCID: PMC11610146 DOI: 10.7150/thno.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/10/2024] [Indexed: 12/06/2024] Open
Abstract
Rationale: This study compared 68Ga-FAPI-46 PET/CT, 18F-fluorodeoxyglucose (FDG) PET/CT, and contrast-enhanced MRI (CE-MRI) for glioma imaging, classification, and recurrence detection and explored PET parameters and molecular pathological profiles. Methods: Between June 2020 and June 2024, we prospectively enrolled patients with space-occupying lesions in the brain or previously treated gliomas. All patients underwent sequential CE-MRI, 68Ga-FAPI-46, and 18F-FDG PET/CT. Diagnostic accuracy was assessed based on a reference standard, and PET parameters were analysed for correlations with WHO grading and molecular characteristics. Results: Forty-eight patients (median age, 51 years; 32 men) with 40 confirmed gliomas were enrolled. For primary tumour diagnosis, the sensitivity of 68Ga-FAPI-46 PET/CT was equivalent to CE-MRI (95% vs. 100%, P = 0.99) and 18F-FDG PET/CT (95% vs. 77%, P = 0.13). 68Ga-FAPI-46 uptake was higher in grade IV than in grade I-II gliomas (5.03 vs. 1.14, P = 0.02). 68Ga-FAPI-46 PET/CT showed significantly higher maximum standardized uptake value and tumour-to-background ratio (TBR) in recurrent tumours than in treatment-related changes and demonstrated favourable sensitivity and specificity for detecting recurrent gliomas, though not significantly superior to 18F-FDG PET/CT (sensitivity: 100% vs. 85%, P = 0.48; specificity: 100% vs. 80%, P = 0.99) and CE-MRI (sensitivity: 100% vs. 100%, P = NA; specificity: 100% vs. 40%, P = 0.25). Glial fibrillary acidic protein-mutant gliomas exhibited higher 68Ga-FAPI-46 uptake than wild-type gliomas. Conclusion: 68Ga-FAPI-46 PET/CT outperformed 18F-FDG and CE-MRI in diagnosing glioma recurrence, although the results were not statistically significant. For primary glioma diagnosis, 68Ga-FAPI-46 PET/CT, despite having a better TBR, did not surpass 18F-FDG PET/CT and CE-MRI in terms of sensitivity and specificity. However, 68Ga-FAPI-46 PET/CT is superior to 18F-FDG for visualizing and classifying gliomas.
Collapse
Affiliation(s)
- Dan Ruan
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- National Institute for Data Science in Health and Medicine, Department of Electronic Science, Intelligent Medical Imaging R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
| | - Jianping Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Chengkun Han
- Department of Radiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Jiayu Cai
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Lingyu Yu
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Liang Zhao
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Yizhen Pang
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Changjing Zuo
- Department of Nuclear Medicine, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Long Sun
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Zhanxiang Wang
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| | - Guowei Tan
- Department of Neurosurgery, Xiamen Key Laboratory of Brain Center, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Xiaobo Qu
- National Institute for Data Science in Health and Medicine, Department of Electronic Science, Intelligent Medical Imaging R&D Center, Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Xiamen University, Xiamen, China
- Department of Radiology, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| | - Haojun Chen
- Department of Nuclear Medicine and Minnan PET Center, Xiamen Key Laboratory of Radiopharmaceuticals, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rare Earth Photoelectric Functional Materials, Xiamen Institute of Rare Earth Materials, Haixi Institute, Chinese Academy of Sciences, Xiamen, China
| |
Collapse
|
12
|
Robert JA, Leclerc A, Ducloie M, Emery E, Agostini D, Vigne J. Contribution of [ 18F]FET PET in the Management of Gliomas, from Diagnosis to Follow-Up: A Review. Pharmaceuticals (Basel) 2024; 17:1228. [PMID: 39338390 PMCID: PMC11435125 DOI: 10.3390/ph17091228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/14/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024] Open
Abstract
Gliomas, the most common type of primary malignant brain tumors in adults, pose significant challenges in diagnosis and management due to their heterogeneity and potential aggressiveness. This review evaluates the utility of O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) positron emission tomography (PET), a promising imaging modality, to enhance the clinical management of gliomas. We reviewed 82 studies involving 4657 patients, focusing on the application of [18F]FET in several key areas: diagnosis, grading, identification of IDH status and presence of oligodendroglial component, guided resection or biopsy, detection of residual tumor, guided radiotherapy, detection of malignant transformation in low-grade glioma, differentiation of recurrence versus treatment-related changes and prognostic factors, and treatment response evaluation. Our findings confirm that [18F]FET helps delineate tumor tissue, improves diagnostic accuracy, and aids in therapeutic decision-making by providing crucial insights into tumor metabolism. This review underscores the need for standardized parameters and further multicentric studies to solidify the role of [18F]FET PET in routine clinical practice. By offering a comprehensive overview of current research and practical implications, this paper highlights the added value of [18F]FET PET in improving management of glioma patients from diagnosis to follow-up.
Collapse
Affiliation(s)
- Jade Apolline Robert
- CHU de Caen Normandie, UNICAEN, Department of Nuclear Medicine, Normandie Université, 14000 Caen, France; (J.A.R.)
| | - Arthur Leclerc
- Department of Neurosurgery, Caen University Hospital, 14000 Caen, France
- Caen Normandie University, ISTCT UMR6030, GIP Cyceron, 14000 Caen, France
| | - Mathilde Ducloie
- Department of Neurology, Caen University Hospital, 14000 Caen, France
- Centre François Baclesse, Department of Neurology, 14000 Caen, France
| | - Evelyne Emery
- Department of Neurosurgery, Caen University Hospital, 14000 Caen, France
| | - Denis Agostini
- CHU de Caen Normandie, UNICAEN, Department of Nuclear Medicine, Normandie Université, 14000 Caen, France; (J.A.R.)
| | - Jonathan Vigne
- CHU de Caen Normandie, UNICAEN, Department of Nuclear Medicine, Normandie Université, 14000 Caen, France; (J.A.R.)
- CHU de Caen Normandie, UNICAEN Department of Pharmacy, Normandie Université, 14000 Caen, France
- Centre Cyceron, Institut Blood and Brain @ Caen-Normandie, Normandie Université, UNICAEN, INSERM U1237, PhIND, 14000 Caen, France
| |
Collapse
|
13
|
Holzgreve A, Nitschmann A, Maier SH, Büttner M, Schönecker S, Marschner SN, Fleischmann DF, Corradini S, Belka C, la Fougère C, Bodensohn R, Albert NL, Niyazi M. FET PET-based target volume delineation for the radiotherapy of glioblastoma: A pictorial guide to help overcome methodological pitfalls. Radiother Oncol 2024; 198:110386. [PMID: 38880414 DOI: 10.1016/j.radonc.2024.110386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/18/2024]
Abstract
PET is increasingly used for target volume definition in the radiotherapy of glioblastoma, as endorsed by the 2023 ESTRO-EANO guidelines. In view of its growing adoption into clinical practice and upcoming PET-based multi-center trials, this paper aims to assist in overcoming common pitfalls of FET PET-based target delineation in glioblastoma.
Collapse
Affiliation(s)
- Adrien Holzgreve
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; Ahmanson Translational Theranostics Division, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, USA.
| | - Alexander Nitschmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Sebastian H Maier
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Marcel Büttner
- Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Stephan Schönecker
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | | | - Daniel F Fleischmann
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany
| | - Stefanie Corradini
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany
| | - Claus Belka
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Munich, Germany
| | | | - Raphael Bodensohn
- Department of Radiation Oncology, University Hospital, LMU Munich, Munich, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany
| | - Nathalie L Albert
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany; Bavarian Cancer Research Center (BZKF), Munich, Germany; German Cancer Consortium (DKTK), Munich, Germany
| | - Maximilian Niyazi
- Bavarian Cancer Research Center (BZKF), Munich, Germany; Department of Radiation Oncology, University Hospital Tübingen, Tübingen, Germany; German Cancer Consortium (DKTK), Tübingen, Germany
| |
Collapse
|
14
|
Zoghbi M, Moussa MJ, Dagher J, Haroun E, Qdaisat A, Singer ED, Karam YE, Yeung SCJ, Chaftari P. Brain Metastasis in the Emergency Department: Epidemiology, Presentation, Investigations, and Management. Cancers (Basel) 2024; 16:2583. [PMID: 39061222 PMCID: PMC11274762 DOI: 10.3390/cancers16142583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Brain metastases (BMs) are the most prevalent type of cerebral tumor, significantly affecting survival. In adults, lung cancer, breast cancer, and melanoma are the primary cancers associated with BMs. Symptoms often result from brain compression, and patients may present to the emergency department (ED) with life-threatening conditions. The goal of treatment of BMs is to maximize survival and quality of life by choosing the least toxic therapy. Surgical resection followed by cavity radiation or definitive stereotactic radiosurgery remains the standard approach, depending on the patient's condition. Conversely, whole brain radiation therapy is becoming more limited to cases with multiple inoperable BMs and is less frequently used for postoperative control. BMs often signal advanced systemic disease, and patients usually present to the ED with poorly controlled symptoms, justifying hospitalization. Over half of patients with BMs in the ED are admitted, making effective ED-based management a challenge. This article reviews the epidemiology, clinical manifestations, and current treatment options of patients with BMs. Additionally, it provides an overview of ED management and highlights the challenges faced in this setting. An improved understanding of the reasons for potentially avoidable hospitalizations in cancer patients with BMs is needed and could help emergency physicians distinguish patients who can be safely discharged from those who require observation or hospitalization.
Collapse
Affiliation(s)
- Marianne Zoghbi
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Mohammad Jad Moussa
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jim Dagher
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut 1100, Lebanon
| | - Elio Haroun
- Faculty of Medicine, Saint Joseph University of Beirut, Beirut 1100, Lebanon
| | - Aiham Qdaisat
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Emad D. Singer
- Division of Cancer Prevention and Population Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yara E. Karam
- Department of Behavioral Sciences, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sai-Ching J. Yeung
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patrick Chaftari
- Department of Emergency Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
15
|
Galldiks N, Kaufmann TJ, Vollmuth P, Lohmann P, Smits M, Veronesi MC, Langen KJ, Rudà R, Albert NL, Hattingen E, Law I, Hutterer M, Soffietti R, Vogelbaum MA, Wen PY, Weller M, Tonn JC. Challenges, limitations, and pitfalls of PET and advanced MRI in patients with brain tumors: A report of the PET/RANO group. Neuro Oncol 2024; 26:1181-1194. [PMID: 38466087 PMCID: PMC11226881 DOI: 10.1093/neuonc/noae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Indexed: 03/12/2024] Open
Abstract
Brain tumor diagnostics have significantly evolved with the use of positron emission tomography (PET) and advanced magnetic resonance imaging (MRI) techniques. In addition to anatomical MRI, these modalities may provide valuable information for several clinical applications such as differential diagnosis, delineation of tumor extent, prognostication, differentiation between tumor relapse and treatment-related changes, and the evaluation of response to anticancer therapy. In particular, joint recommendations of the Response Assessment in Neuro-Oncology (RANO) Group, the European Association of Neuro-oncology, and major European and American Nuclear Medicine societies highlighted that the additional clinical value of radiolabeled amino acids compared to anatomical MRI alone is outstanding and that its widespread clinical use should be supported. For advanced MRI and its steadily increasing use in clinical practice, the Standardization Subcommittee of the Jumpstarting Brain Tumor Drug Development Coalition provided more recently an updated acquisition protocol for the widely used dynamic susceptibility contrast perfusion MRI. Besides amino acid PET and perfusion MRI, other PET tracers and advanced MRI techniques (e.g. MR spectroscopy) are of considerable clinical interest and are increasingly integrated into everyday clinical practice. Nevertheless, these modalities have shortcomings which should be considered in clinical routine. This comprehensive review provides an overview of potential challenges, limitations, and pitfalls associated with PET imaging and advanced MRI techniques in patients with gliomas or brain metastases. Despite these issues, PET imaging and advanced MRI techniques continue to play an indispensable role in brain tumor management. Acknowledging and mitigating these challenges through interdisciplinary collaboration, standardized protocols, and continuous innovation will further enhance the utility of these modalities in guiding optimal patient care.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
| | | | - Philipp Vollmuth
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
| | - Marion Smits
- Department of Radiology and Nuclear Medicine and Brain Tumour Center, Erasmus MC, Rotterdam, The Netherlands
| | - Michael C Veronesi
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, INM-4), Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD), Germany
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Nathalie L Albert
- Department of Nuclear Medicine, LMU Hospital, Ludwig Maximilians-University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elke Hattingen
- Goethe University, Department of Neuroradiology, University Hospital Frankfurt, Frankfurt, Germany
| | - Ian Law
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital-Rigshospitalet, Copenhagen, Denmark
| | - Markus Hutterer
- Department of Neurology with Acute Geriatrics, Saint John of God Hospital, Linz, Austria
| | - Riccardo Soffietti
- Division of Neuro-Oncology, Department of Neuroscience, University of Turin, Turin, Italy
| | - Michael A Vogelbaum
- Department of Neuro-Oncology and Neurosurgery, Moffit Cancer Center, Tampa, Florida, USA
| | - Patrick Y Wen
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Center, and University Hospital of Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Joerg-Christian Tonn
- German Cancer Consortium (DKTK), Partner Site Munich, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Neurosurgery, University Hospital of Munich (LMU), Munich, Germany
| |
Collapse
|
16
|
Li Z, Chen J, Kong Z, Shi Y, Xu M, Mu BS, Li N, Ma W, Yang Z, Wang Y, Liu Z. A bis-boron boramino acid PET tracer for brain tumor diagnosis. Eur J Nucl Med Mol Imaging 2024; 51:1703-1712. [PMID: 38191817 DOI: 10.1007/s00259-024-06600-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024]
Abstract
PURPOSE Boramino acids are a class of amino acid biomimics that replace the carboxylate group with trifluoroborate and can achieve the 18F-labeled positron emission tomography (PET) and boron neutron capture therapy (BNCT) with identical chemical structure. METHODS This study reports a trifluoroborate-derived boronophenylalanine (BBPA), a derived boronophenylalanine (BPA) for BNCT, as a promising PET tracer for tumor imaging. RESULTS Competition inhibition assays in cancer cells suggested the cell accumulation of [18F]BBPA is through large neutral amino acid transporter type-1 (LAT-1). Of note, [18F]BBPA is a pan-cancer probe that shows notable tumor uptake in B16-F10 tumor-bearing mice. In the patients with gliomas and metastatic brain tumors, [18F]BBPA-PET shows good tumor uptake and notable tumor-to-normal brain ratio (T/N ratio, 18.7 ± 5.5, n = 11), higher than common amino acid PET tracers. The [18F]BBPA-PET quantitative parameters exhibited no difference in diverse contrast-enhanced status (P = 0.115-0.687) suggesting the [18F]BBPA uptake was independent from MRI contrast-enhancement. CONCLUSION This study outlines a clinical trial with [18F]BBPA to achieve higher tumor-specific accumulation for PET, provides a potential technique for brain tumor diagnosis, and might facilitate the BNCT of brain tumors.
Collapse
Affiliation(s)
- Zhu Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Junyi Chen
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University, Beijing, China
| | - Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Head and Neck Surgery, National Clinical Research Center for Cancer/Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yixin Shi
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengxin Xu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University, Beijing, China
| | - Bo-Shuai Mu
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University, Beijing, China
| | - Nan Li
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhi Yang
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Zhibo Liu
- Key Laboratory of Carcinogenesis and Translational Research, Department of Nuclear Medicine, Peking University Cancer Hospital & Institute, Beijing, China.
- Beijing National Laboratory for Molecular Sciences, Radiochemistry and Radiation Chemistry Key Laboratory of Fundamental Science, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals, Peking University, Beijing, China.
- Peking University-Tsinghua University Center for Life Sciences, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
17
|
Lai TH, Wenzel B, Dukić-Stefanović S, Teodoro R, Arnaud L, Maisonial-Besset A, Weber V, Moldovan RP, Meister S, Pietzsch J, Kopka K, Juratli TA, Deuther-Conrad W, Toussaint M. Radiosynthesis and biological evaluation of [ 18F]AG-120 for PET imaging of the mutant isocitrate dehydrogenase 1 in glioma. Eur J Nucl Med Mol Imaging 2024; 51:1085-1096. [PMID: 37982850 PMCID: PMC10881675 DOI: 10.1007/s00259-023-06515-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 11/21/2023]
Abstract
Glioma are clinically challenging tumors due to their location and invasiveness nature, which often hinder complete surgical resection. The evaluation of the isocitrate dehydrogenase mutation status has become crucial for effective patient stratification. Through a transdisciplinary approach, we have developed an 18F-labeled ligand for non-invasive assessment of the IDH1R132H variant by using positron emission tomography (PET) imaging. In this study, we have successfully prepared diastereomerically pure [18F]AG-120 by copper-mediated radiofluorination of the stannyl precursor 6 on a TRACERlab FX2 N radiosynthesis module. In vitro internalization studies demonstrated significantly higher uptake of [18F]AG-120 in U251 human high-grade glioma cells with stable overexpression of mutant IDH1 (IDH1R132H) compared to their wild-type IDH1 counterpart (0.4 vs. 0.013% applied dose/µg protein at 120 min). In vivo studies conducted in mice, exhibited the excellent metabolic stability of [18F]AG-120, with parent fractions of 85% and 91% in plasma and brain at 30 min p.i., respectively. Dynamic PET studies with [18F]AG-120 in naïve mice and orthotopic glioma rat model reveal limited blood-brain barrier permeation along with a low uptake in the brain tumor. Interestingly, there was no significant difference in uptake between mutant IDH1R132H and wild-type IDH1 tumors (tumor-to-blood ratio[40-60 min]: ~1.7 vs. ~1.3). In conclusion, our preclinical evaluation demonstrated a target-specific internalization of [18F]AG-120 in vitro, a high metabolic stability in vivo in mice, and a slightly higher accumulation of activity in IDH1R132H-glioma compared to IDH1-glioma. Overall, our findings contribute to advancing the field of molecular imaging and encourage the evaluation of [18F]AG-120 to improve diagnosis and management of glioma and other IDH1R132H-related tumors.
Collapse
Affiliation(s)
- Thu Hang Lai
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
- Department of Research and Development, ROTOP Pharmaka GmbH, Dresden, Germany
| | - Barbara Wenzel
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Sladjana Dukić-Stefanović
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Rodrigo Teodoro
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Lucie Arnaud
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Inserm, Clermont- Ferrand, France
| | - Aurélie Maisonial-Besset
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Inserm, Clermont- Ferrand, France
| | - Valérie Weber
- Université Clermont Auvergne, Imagerie Moléculaire et Stratégies Théranostiques, UMR 1240, Inserm, Clermont- Ferrand, France
| | - Rareş-Petru Moldovan
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Sebastian Meister
- Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Jens Pietzsch
- Institute of Radiopharmaceutical Cancer Research, Department of Radiopharmaceutical and Chemical Biology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Klaus Kopka
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
- School of Science, Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden, Dresden, Germany
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | - Tareq A Juratli
- National Center for Tumor Diseases (NCT) Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
- Department of Neurosurgery, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Winnie Deuther-Conrad
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany
| | - Magali Toussaint
- Institute of Radiopharmaceutical Cancer Research, Department of Neuroradiopharmaceuticals, Helmholtz-Zentrum Dresden-Rossendorf, Research site Leipzig, Leipzig, Germany.
| |
Collapse
|
18
|
Mardanshahi A, Vaseghi S, Hosseinimehr SJ, Abedi SM, Molavipordanjani S. 99mTc(CO) 3-labeled 1-(2-Pyridyl)piperazine derivatives as radioligands for 5-HT 7 receptors. Ann Nucl Med 2024; 38:139-153. [PMID: 38032496 DOI: 10.1007/s12149-023-01885-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND The 5-hydroxytryptamine receptor (5-HTR) family includes seven classes of receptors. The 5-HT7R is the newest member of this family and contributes to different physiological and pathological processes. As a pathology, glioblastoma multiform (GBM) overexpresses 5-HT7R; hence, this study aims to develop radiolabeled aryl piperazine derivatives as 5-HT7R imaging agents. METHODS: Compounds 6 and 7 as 1-(3-nitropyridin-2-yl)piperazine derivatives were radiolabeled with fac-[99mTc(CO)3(H2O)3]+ and 99mTc(CO)3-[6] and 99mTc(CO)3-[7] were obtained with high radiochemical purity (RCP > 94%). The stability of the radiotracers was evaluated in both saline and mouse serum. Specific binding on different cell lines including U-87 MG, MCF-7, SKBR3, and HT-29 was performed. The biodistribution of these radiotracers was evaluated in normal and U-87 MG Xenografted models. Finally, 99mTc(CO)3-[6] and 99mTc(CO)3-[7] were applied for in vivo imaging in U-87 MG Xenografted models. RESULTS Specific binding study indicates that 99mTc(CO)3-[6] and 99mTc(CO)3-[7] can recognize 5-HT7R of U87-MG cell line. The biodistribution study in normal mice indicates that the brain uptake of 99mTc(CO)3-[6] and 99mTc(CO)3-[7] is the highest at 30 min post-injection (0.8 ± 0.25 and 0.64 ± 0.18%ID/g, respectively). The data of the biodistribution study in the U87-MG xenograft model revealed that these radiotracers could accumulate in the tumor site, and the highest tumor uptake was observed at 60 min post-injection (3.38 ± 0.65 and 3.27 ± 0.5%ID/g, respectively). The injection of pimozide can block the tumor's radiotracer uptake, indicating the binding of these radiotracers to the 5-HT7R. The imaging study in the xenograft model also confirms the biodistribution data. The acquired images clearly show the tumor site, and the tumor-to-muscle ratio for 99mTc(CO)3-[6] and 99mTc(CO)3-[7] at 60 min was 3.33 and 3.88, respectively. CONCLUSIONS: 99mTc(CO)3-[6] and 99mTc(CO)3-[7] can visualize tumor in the U87-MG xenograft model due to their affinity toward 5-HT7R.
Collapse
Affiliation(s)
- Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Samaneh Vaseghi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Seyed Jalal Hosseinimehr
- Department of Radiopharmacy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajjad Molavipordanjani
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
19
|
Zirakchian Zadeh M. The role of conventional and novel PET radiotracers in assessment of myeloma bone disease. Bone 2024; 179:116957. [PMID: 37972747 DOI: 10.1016/j.bone.2023.116957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
Over 80 % of patients with multiple myeloma (MM) experience osteolytic bone lesions, primarily due to an imbalanced interaction between osteoclasts and osteoblasts. This imbalance can lead to several adverse outcomes such as pain, fractures, limited mobility, and neurological impairments. Myeloma bone disease (MBD) raises the expense of management in addition to being a major source of disability and morbidity in myeloma patients. Whole-body x-ray radiography was the gold standard imaging modality for detecting lytic lesions. Osteolytic lesions are difficult to identify at an earlier stage on X-ray since the lesions do not manifest themselves on conventional radiographs until at least 30 % to 50 % of the bone mass has been destroyed. Hence, early diagnosis of osteolytic lesions necessitates the utilization of more complex and advanced imaging modalities, such as PET. One of the PET radiotracers that has been frequently investigated in MM is 18F-FDG, which has demonstrated a high level of sensitivity and specificity in detecting myeloma lesions. However, 18F-FDG PET/CT has several restrictions, and therefore the novel PET tracers that can overcome the limitations of 18F-FDG PET/CT should be further examined in assessment of MBD. The objective of this review article is to thoroughly examine the significance of both conventional and novel PET radiotracers in the assessment of MBD. The intention is to present the information in a manner that would be easily understood by healthcare professionals from diverse backgrounds, while minimizing the use of complex nuclear medicine terminology.
Collapse
Affiliation(s)
- Mahdi Zirakchian Zadeh
- Molecular Imaging and Therapy and Interventional Radiology Services, Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
20
|
Suárez-Piñera M, Rodriguez-Bel L, Alemany M, Pons-Escoda A, Pudis M, Coello A, Reynes G, Vidal N, Cortes-Romera M, Macia M. Visual and semi-quantitative analysis of 6-[ 18F]FDOPA PET/CT in patients with brain tumors and suspected tumor recurrence versus radionecrosis. Rev Esp Med Nucl Imagen Mol 2024; 43:6-13. [PMID: 37813239 DOI: 10.1016/j.remnie.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/09/2023] [Accepted: 08/12/2023] [Indexed: 10/11/2023]
Abstract
INTRODUCTION Amino acid PET is a tool recommended by the main neuroimaging societies in the differential diagnosis between radionecrosis (RNC) and umour recurrence (TR) in brain tumours, but its use in our country is still limited. The aim of this work is to present our experience with 6-[18F]FDOPA PET/CT (FDOPA) in brain tumours (primary and M1), comparing these results with other published results. MATERIAL AND METHODS Retrospective study of 62 patients with suspected tumour recurrence (TR): 42 brain metastases (M1) and 20 primary, who underwent FDOPA. Images were analysed visually and semi-quantitatively, obtaining SUVmax and SUVmaxlesion/SUVmaxstriatum (L/S) and SUVmaxlesion/SUVmaxcortex (L/C) ratios. The diagnostic validity of PET was analysed and the best performing cut-off points were calculated. PET results were compared with clinical-radiological follow-up and/or histopathology. RESULTS TR was identified in 49% of M1 and 76% of brain primaries. The best performing FDOPA interpretation was visual and semi-quantitative, with a sensitivity and specificity in primaries of 94% and 80% and in M1s of 96% and 72% respectively. The cut-off points with the best diagnostic performance were L/C1.44 in M1 and L/C1.55 in primaries. There are discrepant results with other published results. CONCLUSION FDOPA PET/CT is a useful tool in the differential diagnosis between recurrence and RNC in brain tumours. It is needed a standardization to contribute to homogenise FDOPA results a inter-centre level.
Collapse
Affiliation(s)
- M Suárez-Piñera
- Unidad PET IDI, Servicio de Medicina Nuclear, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain; Neuro-Oncology Functional Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain.
| | - L Rodriguez-Bel
- Unidad PET IDI, Servicio de Medicina Nuclear, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Alemany
- Neuro-Oncology Functional Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Servicio de Neurología, Hospital Universitari de Bellvitge-ICO L'Hospitalet (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - A Pons-Escoda
- Neuro-Oncology Functional Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Servicio de Radiología, Sección de Neuroradiología, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Pudis
- Unidad PET IDI, Servicio de Medicina Nuclear, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - A Coello
- Neuro-Oncology Functional Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Servicio de Neurocirugía, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - G Reynes
- Servicio de Física Médica, Hospital Universitari de Bellvitge-ICO L'Hospitalet (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| | - N Vidal
- Neuro-Oncology Functional Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Unidad de Neurooncología, Servicio de Anatomía Patológica, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Cortes-Romera
- Unidad PET IDI, Servicio de Medicina Nuclear, Hospital Universitari de Bellvitge, L'Hospitalet de Llobregat, Barcelona, Spain
| | - M Macia
- Neuro-Oncology Functional Unit, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Servicio de Oncología Radioterápica, Institut Català d'Oncologia (ICO) L'Hospitalet (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|
21
|
Henriksen OM, Muhic A, Lundemann MJ, Larsson HBW, Lindberg U, Andersen TL, Hasselbalch B, Møller S, Marner L, Madsen K, Larsen VA, Poulsen HS, Hansen AE, Law I. Added prognostic value of DCE blood volume imaging in patients with suspected recurrent or residual glioblastoma-A hybrid [ 18F]FET PET/MRI study. Neurooncol Adv 2024; 6:vdae196. [PMID: 39664680 PMCID: PMC11632823 DOI: 10.1093/noajnl/vdae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024] Open
Abstract
Background Magnetic resonance imaging (MRI) cerebral blood volume (CBV) measurements improve the diagnosis of recurrent gliomas. The study investigated the prognostic value of dynamic contrast-enhanced (DCE) CBV imaging in treated IDH wildtype glioblastoma when added to MRI or amino acid positron emission tomography (PET). Methods Hybrid [18F]FET PET/MRI with 2CXM (2-compartment exchange model) DCE from 86 adult patients with suspected recurrent or residual glioblastoma were retrospectively analyzed. High CBV tumor volume (VOLCBV), and contrast-enhancing (VOLCE) and [18F]FET active tumor (VOLFET) volumes were delineated. Absolute and fractional high CBV subvolumes within VOLCE and VOLFET were determined. Associations with overall survival (OS) were assessed by Cox analysis. Results Adjusted for methyltransferase gene status and steroid use all total tumor volumes were individually associated with shorter OS. Adding VOLCBV to VOLCE or VOLFET only the effect of VOLCBV was prognostic of OS (hazard ratio [HR] 1.327, P = .042 and 1.352, P = .011, respectively). High CBV subvolumes within both VOLCE and VOLFET were associated with shorter survival (HR 1.448, P = .042 and 1.416, P = .011, respectively), and the low CBV subvolumes with longer survival (HR 0.504, P = .002 and .365, P = .001, respectively). The fraction of VOLCE and VOLFET with high CBV was a strong predictor of OS with shorter median OS in upper versus lower tertiles (8.3 vs 14.5 months and 7.1 vs 15.6 months, respectively, both P < .001). Conclusions The high CBV tumor volume was a strong prognosticator of survival and allowed for the separation of high- and low-risk subvolumes underlining the heterogeneous physiological environment represented in the contrast-enhancing or metabolically active tumor volumes of treated glioblastoma.
Collapse
Affiliation(s)
- Otto Mølby Henriksen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Aida Muhic
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Michael Juncker Lundemann
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Henrik Bo Wiberg Larsson
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ulrich Lindberg
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Thomas Lund Andersen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Benedikte Hasselbalch
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Søren Møller
- Department of Oncology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Lisbeth Marner
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Karine Madsen
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Vibeke Andrée Larsen
- Department of Radiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Adam Espe Hansen
- Department of Radiology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Ian Law
- Department of Clinical Medicine, Faculty of Health and Medical Science, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
22
|
Karlberg A, Pedersen LK, Vindstad BE, Skjulsvik AJ, Johansen H, Solheim O, Skogen K, Kvistad KA, Bogsrud TV, Myrmel KS, Giskeødegård GF, Ingebrigtsen T, Berntsen EM, Eikenes L. Diagnostic accuracy of anti-3-[ 18F]-FACBC PET/MRI in gliomas. Eur J Nucl Med Mol Imaging 2024; 51:496-509. [PMID: 37776502 PMCID: PMC10774221 DOI: 10.1007/s00259-023-06437-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/06/2023] [Indexed: 10/02/2023]
Abstract
PURPOSE The primary aim was to evaluate whether anti-3-[18F]FACBC PET combined with conventional MRI correlated better with histomolecular diagnosis (reference standard) than MRI alone in glioma diagnostics. The ability of anti-3-[18F]FACBC to differentiate between molecular and histopathological entities in gliomas was also evaluated. METHODS In this prospective study, patients with suspected primary or recurrent gliomas were recruited from two sites in Norway and examined with PET/MRI prior to surgery. Anti-3-[18F]FACBC uptake (TBRpeak) was compared to histomolecular features in 36 patients. PET results were then added to clinical MRI readings (performed by two neuroradiologists, blinded for histomolecular results and PET data) to assess the predicted tumor characteristics with and without PET. RESULTS Histomolecular analyses revealed two CNS WHO grade 1, nine grade 2, eight grade 3, and 17 grade 4 gliomas. All tumors were visible on MRI FLAIR. The sensitivity of contrast-enhanced MRI and anti-3-[18F]FACBC PET was 61% (95%CI [45, 77]) and 72% (95%CI [58, 87]), respectively, in the detection of gliomas. Median TBRpeak was 7.1 (range: 1.4-19.2) for PET positive tumors. All CNS WHO grade 1 pilocytic astrocytomas/gangliogliomas, grade 3 oligodendrogliomas, and grade 4 glioblastomas/astrocytomas were PET positive, while 25% of grade 2-3 astrocytomas and 56% of grade 2-3 oligodendrogliomas were PET positive. Generally, TBRpeak increased with malignancy grade for diffuse gliomas. A significant difference in PET uptake between CNS WHO grade 2 and 4 gliomas (p < 0.001) and between grade 3 and 4 gliomas (p = 0.002) was observed. Diffuse IDH wildtype gliomas had significantly higher TBRpeak compared to IDH1/2 mutated gliomas (p < 0.001). Adding anti-3-[18F]FACBC PET to MRI improved the accuracy of predicted glioma grades, types, and IDH status, and yielded 13.9 and 16.7 percentage point improvement in the overall diagnoses for both readers, respectively. CONCLUSION Anti-3-[18F]FACBC PET demonstrated high uptake in the majority of gliomas, especially in IDH wildtype gliomas, and improved the accuracy of preoperatively predicted glioma diagnoses. CLINICAL TRIAL REGISTRATION ClinicalTrials.gov ID: NCT04111588, URL: https://clinicaltrials.gov/study/NCT04111588.
Collapse
Affiliation(s)
- Anna Karlberg
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway.
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway.
| | | | - Benedikte Emilie Vindstad
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Jarstein Skjulsvik
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, Faculty of Medical and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Håkon Johansen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
| | - Ole Solheim
- Department of Neurosurgery, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Karoline Skogen
- Department of Radiology and Nuclear Medicine, Oslo University Hospitals, Oslo, Norway
| | - Kjell Arne Kvistad
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
| | - Trond Velde Bogsrud
- PET-Centre, University Hospital of North Norway, Tromsø, Norway
- Department of Nuclear Medicine and PET-Centre, Aarhus University Hospital, Aarhus, Denmark
| | | | - Guro F Giskeødegård
- Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tor Ingebrigtsen
- Department of Neurosurgery, University Hospital of North Norway, Tromsø, Norway
- Department of Clinical Medicine, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Erik Magnus Berntsen
- Department of Radiology and Nuclear Medicine, St. Olavs Hospital, Trondheim University Hospital, Prinsesse Kristinas gate 3, N-7030, Trondheim, Norway
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| | - Live Eikenes
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
23
|
Gavryushin AV, Khukhlaeva EA, Veselkov AA, Pronin IN, Konovalov AN. [Primary tumors of the brain stem. State of the problem]. ZHURNAL VOPROSY NEIROKHIRURGII IMENI N. N. BURDENKO 2024; 88:98-104. [PMID: 38549416 DOI: 10.17116/neiro20248802198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Primary brainstem gliomas are still poorly studied in neurooncology. This concept includes tumors with different histological and genetic features, as well as variable clinical course and outcomes. Nevertheless, treatment implies radiotherapy without a clear idea of morphological substrate of disease in 80% of cases. Small number of studies and insufficient data on histological and genetic nature of brainstem tumors complicate clear diagnostic and treatment algorithms. This review provides current information regarding primary glial brainstem tumors. Appropriate problems and objectives are highlighted. The purpose of the review is to provide a comprehensive and updated understanding of the current state of brainstem glial tumors and to identify areas requiring further study for improvement of diagnosis and treatment of these diseases. Brainstem tumors are an understudied problem with small amount of data that complicates optimal treatment strategies. Further researches and histological verification are required to develop new methods of therapy, especially for diffuse forms of neoplasms.
Collapse
Affiliation(s)
- A V Gavryushin
- Burdenko Neurosurgical Center, Moscow, Russia
- National Medical Research Center for Pediatric Hematology, Oncology and Immunology named after Dmitry Rogachev, Moscow, Russia
| | | | | | - I N Pronin
- Burdenko Neurosurgical Center, Moscow, Russia
| | | |
Collapse
|
24
|
Islam S, Inglese M, Grech-Sollars M, Aravind P, Dubash S, Barwick TD, O'Neill K, Wang J, Saleem A, O'Callaghan J, Anchini G, Williams M, Waldman A, Aboagye EO. Feasibility of [ 18F]fluoropivalate hybrid PET/MRI for imaging lower and higher grade glioma: a prospective first-in-patient pilot study. Eur J Nucl Med Mol Imaging 2023; 50:3982-3995. [PMID: 37490079 PMCID: PMC10611885 DOI: 10.1007/s00259-023-06330-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/04/2023] [Indexed: 07/26/2023]
Abstract
PURPOSE MRI and PET are used in neuro-oncology for the detection and characterisation of lesions for malignancy to target surgical biopsy and to plan surgical resections or stereotactic radiosurgery. The critical role of short-chain fatty acids (SCFAs) in brain tumour biology has come to the forefront. The non-metabolised SCFA radiotracer, [18F]fluoropivalate (FPIA), shows low background signal in most tissues except eliminating organs and has appropriate human dosimetry. Tumour uptake of the radiotracer is, however, unknown. We investigated the uptake characteristics of FPIA in this pilot PET/MRI study. METHODS Ten adult glioma subjects were identified based on radiological features using standard-of-care MRI prior to any surgical intervention, with subsequent histopathological confirmation of glioma subtype and grade (lower-grade - LGG - and higher-grade - HGG - patients). FPIA was injected as an intravenous bolus injection (range 342-368 MBq), and dynamic PET and MRI data were acquired simultaneously over 66 min. RESULTS All patients tolerated the PET/MRI protocol. Three patients were reclassified following resection and histology. Tumour maximum standardised uptake value (SUVmax,60) increased in the order LGG (WHO grade 2) < HGG (WHO grade 3) < HGG (WHO grade 4). The net irreversible solute transfer, Ki, and influx rate constant, K1, were significantly higher in HGG (p < 0.05). Of the MRI variables studied, DCE-MRI-derived extravascular-and-extracellular volume fraction (ve) was high in tumours of WHO grade 4 compared with other grades (p < 0.05). SLC25A20 protein expression was higher in HGG compared with LGG. CONCLUSION Tumoural FPIA PET uptake is higher in HGG compared to LGG. This study supports further investigation of FPIA PET/MRI for brain tumour imaging in a larger patient population. CLINICAL TRIAL REGISTRATION Clinicaltrials.gov, NCT04097535.
Collapse
Affiliation(s)
- Shahriar Islam
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Marianna Inglese
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Matthew Grech-Sollars
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Preetha Aravind
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Suraiya Dubash
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Tara D Barwick
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Kevin O'Neill
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - James Wang
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Azeem Saleem
- Invicro Limited, Burlington Danes Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Hull York Medical School, University of Hull, Cottingham Road, Hull, HU6 7RX, UK
| | - James O'Callaghan
- Invicro Limited, Burlington Danes Building, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Giulio Anchini
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Matthew Williams
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Adam Waldman
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, 49 Little France Crescent, Edinburgh, EH16 4SB, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
25
|
van den Bent MJ, Geurts M, French PJ, Smits M, Capper D, Bromberg JEC, Chang SM. Primary brain tumours in adults. Lancet 2023; 402:1564-1579. [PMID: 37738997 DOI: 10.1016/s0140-6736(23)01054-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 09/24/2023]
Abstract
The most frequent adult-type primary CNS tumours are diffuse gliomas, but a large variety of rarer CNS tumour types exists. The classification of these tumours is increasingly based on molecular diagnostics, which is reflected in the extensive molecular foundation of the recent WHO 2021 classification of CNS tumours. Resection as extensive as is safely possible is the cornerstone of treatment in most gliomas, and is now also recommended early in the treatment of patients with radiological evidence of histologically low-grade tumours. For the adult-type diffuse glioma, standard of care is a combination of radiotherapy and chemotherapy. Although treatment with curative intent is not available, combined modality treatment has resulted in long-term survival (>10-20 years) for some patients with isocitrate dehydrogenase (IDH) mutant tumours. Other rarer tumours require tailored approaches, best delivered in specialised centres. Targeted treatments based on molecular alterations still only play a minor role in the treatment landscape of adult-type diffuse glioma, and today are mainly limited to patients with tumours with BRAFV600E (ie, Val600Glu) mutations. Immunotherapy for CNS tumours is still in its infancy, and so far, trials with checkpoint inhibitors and vaccination studies have not shown improvement in patient outcomes in glioblastoma. Current research is focused on improving our understanding of the immunosuppressive tumour environment, the molecular heterogeneity of tumours, and the role of tumour microtube network connections between cells in the tumour microenvironment. These factors all appear to play a role in treatment resistance, and indicate that novel approaches are needed to further improve outcomes of patients with CNS tumours.
Collapse
Affiliation(s)
- Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands.
| | - Marjolein Geurts
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands; Medical Delta, Delft, Netherlands
| | - David Capper
- Department of Neuropathology, Charité - Universitätsmedizin Berlin, Berlin, Germany; German Cancer Consortium, Berlin, Germany; German Cancer Research Center, Heidelberg, Germany
| | - Jacoline E C Bromberg
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Netherlands
| | - Susan M Chang
- Brain Tumor Center, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
26
|
Wang Y, Gao F. Research Progress of CXCR4-Targeting Radioligands for Oncologic Imaging. Korean J Radiol 2023; 24:871-889. [PMID: 37634642 PMCID: PMC10462898 DOI: 10.3348/kjr.2023.0091] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 05/24/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
C-X-C motif chemokine receptor 4 (CXCR4) plays a key role in various physiological functions, such as immune processes and disease development, and can influence angiogenesis, proliferation, and distant metastasis in tumors. Recently, several radioligands, including peptides, small molecules, and nanoclusters, have been developed to target CXCR4 for diagnostic purposes, thereby providing new diagnostic strategies based on CXCR4. Herein, we focus on the recent research progress of CXCR4-targeting radioligands for tumor diagnosis. We discuss their application in the diagnosis of hematological tumors, such as lymphomas, multiple myelomas, chronic lymphocytic leukemias, and myeloproliferative tumors, as well as nonhematological tumors, including tumors of the esophagus, breast, and central nervous system. Additionally, we explored the theranostic applications of CXCR4-targeting radioligands in tumors. Targeting CXCR4 using nuclear medicine shows promise as a method for tumor diagnosis, and further research is warranted to enhance its clinical applicability.
Collapse
Affiliation(s)
- Yanzhi Wang
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Feng Gao
- Key Laboratory for Experimental Teratology of the Ministry of Education and Research Center for Experimental Nuclear Medicine, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
27
|
Sahu A, Mathew R, Ashtekar R, Dasgupta A, Puranik A, Mahajan A, Janu A, Choudhari A, Desai S, Patnam NG, Chatterjee A, Patil V, Menon N, Jain Y, Rangarajan V, Dev I, Epari S, Sahay A, Shetty P, Goda J, Moiyadi A, Gupta T. The complementary role of MRI and FET PET in high-grade gliomas to differentiate recurrence from radionecrosis. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1040998. [PMID: 39355021 PMCID: PMC11440952 DOI: 10.3389/fnume.2023.1040998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 04/11/2023] [Indexed: 10/03/2024]
Abstract
Introduction Conventional magnetic resonance imaging (MRI) has limitations in differentiating tumor recurrence (TR) from radionecrosis (RN) in high-grade gliomas (HGG), which can present with morphologically similar appearances. Multiparametric advanced MR sequences and Positron Emission Tomography (PET) with amino acid tracers can aid in diagnosing tumor metabolism. The role of both modalities on an individual basis and combined performances were investigated in the current study. Materials and Methods Patients with HGG with MRI and PET within three weeks were included in the retrospective analysis. The multiparametric MRI included T1-contrast, T2-weighted sequences, perfusion, diffusion, and spectroscopy. MRI was interpreted by a neuroradiologist without using information from PET imaging. 18F-Fluoroethyl-Tyrosine (FET) uptake was calculated from the areas of maximum enhancement/suspicion, which was assessed by a nuclear medicine physician (having access to MRI to determine tumor-to-white matter ratio over a specific region). A definitive diagnosis of TR or RN was made based on the combination of multidisciplinary joint clinic decisions, histopathological examination, and clinic-radiological follow-up as applicable. Results 62 patients were included in the study between July 2018 and August 2021. The histology during initial diagnosis was glioblastoma, oligodendroglioma, and astrocytoma in 43, 7, and 6 patients, respectively, while in 6, no definitive histological characterization was available. The median time from radiation (RT) was 23 months. 46 and 16 patients had TR and RN recurrence, respectively. Sensitivity, specificity, and accuracy using MRI were 98, 77, and 94%, respectively. Using PET imaging with T/W cut-off of 2.65, sensitivity, specificity, and accuracy were 79, 84, and 80%, respectively. The best results were obtained using both imaging combined with sensitivity, specificity, and accuracy of 98, 100, and 98%, respectively. Conclusion Combined imaging with MRI and FET-PET offers multiparametric assessment of glioma recurrence that is correlative and complimentary, with higher accuracy and clinical value.
Collapse
Affiliation(s)
- Arpita Sahu
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Ronny Mathew
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Renuka Ashtekar
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Archya Dasgupta
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Ameya Puranik
- Department of Nuclear Medicine, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Mahajan
- Department of Radiology, The Clatterbridge Cancer Centre NHS Foundation Trust, Pembroke Place, Liverpool, United Kingdom
| | - Amit Janu
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Amitkumar Choudhari
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Subhash Desai
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Nandakumar G. Patnam
- Department of Radiodiagnosis, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Abhishek Chatterjee
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Vijay Patil
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Nandini Menon
- Department of Medical Oncology, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, India
| | - Yash Jain
- Department of Nuclear Medicine, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Venkatesh Rangarajan
- Department of Nuclear Medicine, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Indraja Dev
- Department of Nuclear Medicine, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Sridhar Epari
- Department of Pathology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Ayushi Sahay
- Department of Pathology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Prakash Shetty
- Department of Neurosurgery, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Jayant Goda
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Aliasgar Moiyadi
- Department of Neurosurgery, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| | - Tejpal Gupta
- Department of Radiation Oncology, Tata Memorial Hospital and Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
28
|
Galldiks N, Lohmann P, Fink GR, Langen KJ. Amino Acid PET in Neurooncology. J Nucl Med 2023; 64:693-700. [PMID: 37055222 DOI: 10.2967/jnumed.122.264859] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/10/2023] [Indexed: 04/15/2023] Open
Abstract
For decades, several amino acid PET tracers have been used to optimize diagnostics in patients with brain tumors. In clinical routine, the most important clinical indications for amino acid PET in brain tumor patients are differentiation of neoplasm from nonneoplastic etiologies, delineation of tumor extent for further diagnostic and treatment planning (i.e., diagnostic biopsy, resection, or radiotherapy), differentiation of treatment-related changes such as pseudoprogression or radiation necrosis after radiation or chemoradiation from tumor progression at follow-up, and assessment of response to anticancer therapy, including prediction of patient outcome. This continuing education article addresses the diagnostic value of amino acid PET for patients with either glioblastoma or metastatic brain cancer.
Collapse
Affiliation(s)
- Norbert Galldiks
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany;
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany; and
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Gereon R Fink
- Department of Neurology, Faculty of Medicine, University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine, Research Center Juelich, Juelich, Germany
- Center for Integrated Oncology, Universities of Aachen, Bonn, Cologne, and Duesseldorf, Germany; and
- Department of Nuclear Medicine, RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
29
|
Karimi M, Mardanshahi A, Irannejad H, Mohammad Abedi S, Molavipordanjani S. Synthesis and evaluation of 99mTc-labeled 1-(2-Pyridyl)piperazine derivatives as radioligands for 5HT 7 receptors. Bioorg Chem 2023; 135:106486. [PMID: 36965286 DOI: 10.1016/j.bioorg.2023.106486] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/27/2023]
Abstract
Glioblastoma multiform (GBM) is one of the most aggressive tumors of the central nervous system in humans. GBM overexpresses serotonin-7 receptors (5-HT7Rs); hence, this study aims to develop 5-HT7R targeted radiotracers. Aryl piperazine derivatives can act as ligands for 5-HT7R. Therefore, compounds 6 and 7 as 1-(3-nitropyridin-2-yl)piperazine derivatives were synthesized and radiolabeled with 99mTcN2+ core. Radiolabeled 6 and 7 (99mTcN-[6] and 99mTcN-[7]) were prepared with high radiochemical purity (RCP > 96%). They displayed high affinity toward U-87 MG cell line 5-HT7R. The calculated Ki for 99mTcN-[7] was lower than that of 99mTcN-[6] (14.85 ± 0.32 vs 22.57 ± 0.73 nM) which indicates the higher affinity of 99mTcN-[7] toward 5-HT7R. A molecular docking study also confirmed the binding of these radiotracers to 5-HT7R. The biodistribution study in normal mice revealed that 99mTcN-[7] has the highest brain accumulation at 30 min post-injection (0.54 ± 0.12 %ID/g) while the uptake of 99mTcN-[6] is much lower (0.14 ± 0.02 %ID/g). The biodistribution study in the xenograft model confirms that the radiotracers recognize the tumor site. 99mTcN-[6], and 99mTcN-[7] showed the highest tumor uptake at 1-hour post-injection (5.44 ± 0.58 vs 4.94 ± 1.65 %ID/g) and tumor-to-muscle ratios were (4.61 vs. 5.61). The injection of pimozide blocks the receptors and significantly reduces the tumor-to-muscle ratios at 1-hour post-injection to 0.81 and 0.31, respectively. In correlation with in vitro study, 99mTcN-[6] and 99mTcN-[7] visualize the tumor site in U-87 MG glioma xenografted nude mice and display the tumor-to-muscle ratios of 7.05 and 6.03.
Collapse
Affiliation(s)
- Maryam Karimi
- Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Mardanshahi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hamid Irannejad
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Mohammad Abedi
- Department of Radiology and Nuclear Medicine, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Sajjad Molavipordanjani
- Pharmaceutical Sciences Research Center, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
30
|
Elahmadawy MA, El-Ayadi M, Ahmed S, Refaat A, Eltaoudy MH, Maher E, Taha H, Elbeltagy M. F18-FET PET in pediatric brain tumors: integrative analysis of image derived parameters and clinico-pathological data. THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2023; 67:46-56. [PMID: 33300749 DOI: 10.23736/s1824-4785.20.03267-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND F18-FET PET has an established diagnostic role in adult brain gliomas. In this study we analyzed image derived static and dynamic parameters with available conventional MRI, histological, clinical and follow-up data in assessment of pediatric brain tumor patients at different stages of the disease. METHODS Forty-four pediatric patients with median age 7 years, diagnosed with brain tumors and underwent forty-seven 18F-FET PET scans either initially (20 scans) or post-therapy (27 scans) were enrolled. Standardized analysis of summed FET PET images early from 10-20 min and late from 30-40 min post-injection were used for static (mean and maximum tumor to brain ratio [TBR] and biological tumor volume [BTV]) parameters evaluation as well as the time activity curve [TAC]. RESULTS Nineteen out of 20 initially assessed patients had pathologically and/or clinico-radiologically proven neoplastic lesions and one patient had pathologically proven abscess. Receiver operator curve (ROC) marked early TBR max 2.95, early TBR mean 1.76, late TBR max 2.5 and late TBR mean 1.74 as discriminator points with diagnostic accuracy reaching 90% when TBR max was combined with dynamic parameters. Significant association was found between initial FET scans, early and late BTV and event free survival (EFS) (P value=0.042 and 0.005 respectively). In post-therapy assessment, the diagnostic accuracy of conventional MRI was 81.48% when used alone and 96.30% when combined with F18-FET PET scan findings. A cutoff point of 3.2 cm3 for late BTV, in post-therapy scans, was successfully marked as a predictor for therapy response (P value 0.042) and was significantly associated with EFS (P value 0.002). In FET-avid / MRI non-enhancing lesions, early TBR max was able to detect highly malignant processes (high-grade tumors in initial scans and residue/recurrence in post-therapy scans) with 80% sensitivity and 100% specificity when cutoff value of 2.25 was used (P value=0.024). In patients with FET-avid brainstem lesions, whether enhancing or non-enhancing in MRI scans, 81.8% were associated with high risk diagnoses and 68.2% of them were associated with poor therapy outcome. The degree of FET uptake matched tumor-grading, but did not show significant association with OS or EFS (P value>0.05). CONCLUSIONS F18-FET PET seems to be an evolving pediatric neuro-imaging technique with valuable diagnostic and prognostic information at initial and post-therapy evaluation.
Collapse
Affiliation(s)
- Mai A Elahmadawy
- Unit of Nuclear Medicine, National Cancer Institute, Cairo University, Cairo, Egypt - .,Children's Cancer Hospital, Cairo, Egypt -
| | - Moatasem El-Ayadi
- Children's Cancer Hospital, Cairo, Egypt.,Department of Pediatric Oncology, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Soha Ahmed
- Department of Clinical Oncology, Aswan University, Aswan, Egypt.,Department of Radiation Oncology, Children's Cancer Hospital, Cairo, Egypt
| | - Amal Refaat
- Children's Cancer Hospital, Cairo, Egypt.,Department of Radio-Diagnosis, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Magdy H Eltaoudy
- Cyclotron Facility, Department of Nuclear Medicine, Children's Cancer Hospital, Cairo, Egypt
| | - Eslam Maher
- Department of Clinical Research, Children's Cancer Hospital, Cairo, Egypt
| | - Hala Taha
- Children's Cancer Hospital, Cairo, Egypt.,Department of Pathology, National Cancer Institute, Cairo, Egypt
| | - Mohamed Elbeltagy
- Department of Neurosurgery, Children's Cancer Hospital, Cairo, Egypt.,Kasr El-Ainy School of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
31
|
Dadgar H, Jokar N, Nemati R, Larvie M, Assadi M. PET tracers in glioblastoma: Toward neurotheranostics as an individualized medicine approach. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2023; 3:1103262. [PMID: 39355049 PMCID: PMC11440984 DOI: 10.3389/fnume.2023.1103262] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/23/2023] [Indexed: 10/03/2024]
Abstract
Over the past decade, theragnostic radiopharmaceuticals have been used in nuclear medicine for both diagnosis and treatment of various tumors. In this review, we carried out a literature search to investigate and explain the role of radiotracers in the theragnostic approach to glioblastoma multiform (GBM). We primarily focused on basic and rather common positron emotion tomography (PET) radiotracers in these tumors. Subsequently, we introduced and evaluated the preclinical and clinical results of theranostic-based biomarkers including integrin receptor family, prostate-specific membrane antigen (PSMA), fibroblast activated protein (FAP), somatostatin receptors (SRS), and chemokine receptor-4 (CXCR4) for patients with GBM to confer the benefit of personalized therapy. Moreover, promising research opportunities that could have a profound impact on the treatment of GBM over the next decade are also highlighted. Preliminary results showed the potential feasibility of the theragnostic approach using theses biomarkers in GBM patients.
Collapse
Affiliation(s)
- Habibullah Dadgar
- Cancer Research Center, RAZAVI Hospital, Imam Reza International University, Mashhad, Iran
| | - Narges Jokar
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Theranostics, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Reza Nemati
- Department of Neurology, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Mykol Larvie
- Department of Radiology, Cleveland Clinic, Cleveland, Ohio
| | - Majid Assadi
- The Persian Gulf Nuclear Medicine Research Center, Department of Molecular Imaging and Theranostics, Bushehr Medical University Hospital, School of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
32
|
Henssen D, Meijer F, Verburg FA, Smits M. Challenges and opportunities for advanced neuroimaging of glioblastoma. Br J Radiol 2023; 96:20211232. [PMID: 36062962 PMCID: PMC10997013 DOI: 10.1259/bjr.20211232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 08/10/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022] Open
Abstract
Glioblastoma is the most aggressive of glial tumours in adults. On conventional magnetic resonance (MR) imaging, these tumours are observed as irregular enhancing lesions with areas of infiltrating tumour and cortical expansion. More advanced imaging techniques including diffusion-weighted MRI, perfusion-weighted MRI, MR spectroscopy and positron emission tomography (PET) imaging have found widespread application to diagnostic challenges in the setting of first diagnosis, treatment planning and follow-up. This review aims to educate readers with regard to the strengths and weaknesses of the clinical application of these imaging techniques. For example, this review shows that the (semi)quantitative analysis of the mentioned advanced imaging tools was found useful for assessing tumour aggressiveness and tumour extent, and aids in the differentiation of tumour progression from treatment-related effects. Although these techniques may aid in the diagnostic work-up and (post-)treatment phase of glioblastoma, so far no unequivocal imaging strategy is available. Furthermore, the use and further development of artificial intelligence (AI)-based tools could greatly enhance neuroradiological practice by automating labour-intensive tasks such as tumour measurements, and by providing additional diagnostic information such as prediction of tumour genotype. Nevertheless, due to the fact that advanced imaging and AI-diagnostics is not part of response assessment criteria, there is no harmonised guidance on their use, while at the same time the lack of standardisation severely hampers the definition of uniform guidelines.
Collapse
Affiliation(s)
- Dylan Henssen
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Frederick Meijer
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Frederik A. Verburg
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| | - Marion Smits
- Department of Medical Imaging, Radboud university medical
center, Nijmegen, The Netherlands
| |
Collapse
|
33
|
Wollring MM, Werner JM, Ceccon G, Lohmann P, Filss CP, Fink GR, Langen KJ, Galldiks N. Clinical applications and prospects of PET imaging in patients with IDH-mutant gliomas. J Neurooncol 2022; 162:481-488. [PMID: 36577872 DOI: 10.1007/s11060-022-04218-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/14/2022] [Indexed: 12/29/2022]
Abstract
PET imaging using radiolabeled amino acids in addition to MRI has become a valuable diagnostic tool in the clinical management of patients with brain tumors. This review provides a comprehensive overview of PET studies in glioma patients with a mutation in the isocitrate dehydrogenase gene (IDH). A considerable fraction of these tumors typically show no contrast enhancement on MRI, especially when classified as grade 2 according to the World Health Organization classification of Central Nervous System tumors. Major diagnostic challenges in this situation are differential diagnosis, target definition for diagnostic biopsies, delineation of glioma extent for treatment planning, differentiation of treatment-related changes from tumor progression, and the evaluation of response to alkylating agents. The main focus of this review is the role of amino acid PET in this setting. Furthermore, in light of clinical trials using IDH inhibitors targeting the mutated IDH enzyme for treating patients with IDH-mutant gliomas, we also aim to give an outlook on PET probes specifically targeting the IDH mutation, which appear potentially helpful for response assessment.
Collapse
Affiliation(s)
- Michael M Wollring
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany.
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany.
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Garry Ceccon
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
| | - Christian P Filss
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
- Department of Nuclear Medicine, University Hospital Aachen, Aachen, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, -4), Research Center Juelich, Leo-Brandt-St., 52425, Juelich, Germany
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener St. 62, 50937, Cologne, Germany
- Center of Integrated Oncology (CIO), Universities of Aachen, Bonn, Cologne, and Duesseldorf, Cologne, Germany
| |
Collapse
|
34
|
A Multi-Disciplinary Approach to Diagnosis and Treatment of Radionecrosis in Malignant Gliomas and Cerebral Metastases. Cancers (Basel) 2022; 14:cancers14246264. [PMID: 36551750 PMCID: PMC9777318 DOI: 10.3390/cancers14246264] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Radiation necrosis represents a potentially devastating complication after radiation therapy in brain tumors. The establishment of the diagnosis and especially the differentiation from progression and pseudoprogression with its therapeutic implications requires interdisciplinary consent and monitoring. Herein, we want to provide an overview of the diagnostic modalities, therapeutic possibilities and an outlook on future developments to tackle this challenging topic. The aim of this report is to provide an overview of the current morphological, functional, metabolic and evolving imaging tools described in the literature in order to (I) identify the best criteria to distinguish radionecrosis from tumor recurrence after the radio-oncological treatment of malignant gliomas and cerebral metastases, (II) analyze the therapeutic possibilities and (III) give an outlook on future developments to tackle this challenging topic. Additionally, we provide the experience of a tertiary tumor center with this important issue in neuro-oncology and provide an institutional pathway dealing with this problem.
Collapse
|
35
|
Raimondi V, Toscani D, Marchica V, Burroughs-Garcia J, Storti P, Giuliani N. Metabolic features of myeloma cells in the context of bone microenvironment: Implication for the pathophysiology and clinic of myeloma bone disease. Front Oncol 2022; 12:1015402. [PMID: 36313705 PMCID: PMC9608343 DOI: 10.3389/fonc.2022.1015402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/27/2022] [Indexed: 11/18/2022] Open
Abstract
Multiple myeloma (MM) is a hematological malignancy characterized by the accumulation of malignant plasma cells (PCs) into the bone marrow (BM). The complex interaction between the BM microenvironment and MM PCs can lead to severe impairment of bone remodeling. Indeed, the BM microenvironment exerts a critical role in the survival of malignant PCs. Growing evidence indicates that MM cells have several metabolic features including enhanced glycolysis and an increase in lactate production through the upregulation of glucose transporters and enzymes. More recently, it has been reported that MM cells arehighly glutamine addicted. Interestingly, these metabolic changes in MM cells may affect BM microenvironment cells by altering the differentiation process of osteoblasts from mesenchymal stromal cells. The identification of glutamine metabolism alterations in MM cells and bone microenvironment may provide a rationale to design new therapeutic approaches and diagnostic tools. The osteolytic lesions are the most frequent clinical features in MM patients, often characterized by pathological fractures and acute pain. The use of the newer imaging techniques such as Magnetic Resonance Imaging (MRI) and combined Positron Emission Tomography (PET) and Computerized Tomography (CT) has been introduced into clinical practice to better define the skeletal involvement. Currently, the PET/CT with 18F-fluorodeoxyglucose (FDG) is the diagnostic gold standard to detect active MM bone disease due to the high glycolytic activity of MM cells. However, new tracers are actively under investigation because a portion of MM patients remains negative at the skeletal level by 18F-FDG. In this review, we will summarize the existing knowledge on the metabolic alterations of MM cells considering their impact on the BM microenvironment cells and particularly in the subsequent formation of osteolytic bone lesions. Based on this, we will discuss the identification of possible new druggable targets and the use of novel metabolic targets for PET imaging in the detection of skeletal lesions, in the staging and treatment response of MM patients.
Collapse
Affiliation(s)
- Vincenzo Raimondi
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Denise Toscani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | | | | | - Paola Storti
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- *Correspondence: Paola Storti, ; Nicola Giuliani,
| | - Nicola Giuliani
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Hematology, “Azienda Ospedaliero-Universitaria di Parma”, Parma, Italy
- *Correspondence: Paola Storti, ; Nicola Giuliani,
| |
Collapse
|
36
|
Kis D, Szivos L, Rekecki M, Shukir BS, Mate A, Hideghety K, Barzo P. Predicting the true extent of glioblastoma based on probabilistic tractography. Front Neurosci 2022; 16:886465. [PMID: 36213748 PMCID: PMC9533086 DOI: 10.3389/fnins.2022.886465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 08/16/2022] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma is the most frequent type of primary brain tumors. Despite the advanced therapy, most of the patients die within 2 years after the diagnosis. The tumor has a typical appearance on MRI: a central hypointensity surrounded by an inhomogeneous, ring-shaped contrast enhancement along its border. Too small to be recognized by MRI, detached individual tumor cells migrate along white matter fiber tracts several centimeters away from the edge of the tumor. Usually these cells are the source of tumor recurrence. If the infiltrated brain areas could be identified, longer survival time could be achieved through supratotal resection and individually planned radiation therapy. Probabilistic tractography is an advanced imaging method that can potentially be used to identify infiltrated pathways, thus the real extent of the glioblastoma. Our study consisted of twenty high grade glioma patients. Probabilistic tractography was started from the tumor. The location of tumor recurrence on follow-up MRI was considered as the primary infiltrated white matter tracts. The results of probabilistic tractography were evaluated at thirteen different thresholds. The overlap with the tumor recurrence of each threshold level was then defined to calculate the sensitivity and specificity. In the group level, sensitivity (81%) and specificity (90%) were the most reliable at 5% threshold level. There were two outliers in the study group, both with high specificity and very low sensitivity. According to our results, probabilistic tractography can help to define the true extent of the glioblastoma at the time of diagnosis with high sensitivity and specificity. Individually planned surgery and irradiation could provide a better chance of survival in these patients.
Collapse
Affiliation(s)
- David Kis
- Department of Neurosurgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
- *Correspondence: David Kis,
| | - Laszlo Szivos
- Department of Neurosurgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Mark Rekecki
- Department of Neurosurgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Bayan Salam Shukir
- Department of Neurosurgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Adrienn Mate
- Department of Neurosurgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Katalin Hideghety
- Department of Oncology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Pal Barzo
- Department of Neurosurgery, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
37
|
Gao X, Gong K, Wang M, Xu B, Han J. Preparation of [ 18F]Alkenyl Fluorides Using No-Carrier-Added [ 18F]AgF via Silver-Mediated Direct Radiofluorination of Alkynes. Org Lett 2022; 24:6438-6442. [DOI: 10.1021/acs.orglett.2c02553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xinyan Gao
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 200032, China
| | - Kehao Gong
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 200032, China
| | - Mingwei Wang
- Department of Nuclear Medicine, Fudan University Shanghai Cancer Center, 270 Dong’An Road, Shanghai 200032, China
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, North Renmin Road 2999, Shanghai 201620, China
| | - Junbin Han
- Institute of Radiation Medicine, Fudan University, Xietu Road 2094, Shanghai 200032, China
| |
Collapse
|
38
|
Castello A, Castellani M, Florimonte L, Ciccariello G, Mansi L, Lopci E. PET radiotracers in glioma: a review of clinical indications and evidence. Clin Transl Imaging 2022. [DOI: 10.1007/s40336-022-00523-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
39
|
Radiotherapy Target Volume Definition in Newly Diagnosed High-Grade Glioma Using 18F-FET PET Imaging and Multiparametric MRI: An Inter Observer Agreement Study. Tomography 2022; 8:2030-2041. [PMID: 36006068 PMCID: PMC9415495 DOI: 10.3390/tomography8040170] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/29/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022] Open
Abstract
Background: The aim of this prospective monocentric study was to assess the inter-observer agreement for tumor volume delineations by multiparametric MRI and 18-F-FET-PET/CT in newly diagnosed, untreated high-grade glioma (HGG) patients. Methods: Thirty patients HGG underwent O-(2-[18F]-fluoroethyl)-l-tyrosine(18F-FET) positron emission tomography (PET), and multiparametric MRI with computation of rCBV map and K2 map. Three nuclear physicians and three radiologists with different levels of experience delineated the 18-F-FET-PET/CT and 6 MRI sequences, respectively. Spatial similarity (Dice and Jaccard: DSC and JSC) and overlap (Overlap: OV) coefficients were calculated between the readers for each sequence. Results: DSC, JSC, and OV were high for 18F-FET PET/CT, T1-GD, and T2-FLAIR (>0.67). The Spearman correlation coefficient between readers was ≥0.6 for these sequences. Cross-comparison of similarity and overlap parameters showed significant differences for DSC and JSC between 18F-FET PET/CT and T2-FLAIR and for JSC between 18F-FET PET/CT and T1-GD with higher values for 18F-FET PET/CT. No significant difference was found between T1-GD and T2-FLAIR. rCBV, K2, b1000, and ADC showed correlation coefficients between readers <0.6. Conclusion: The interobserver agreements for tumor volume delineations were high for 18-F-FET-PET/CT, T1-GD, and T2-FLAIR. The DWI (b1000, ADC), rCBV, and K2-based sequences, as performed, did not seem sufficiently reproducible to be used in daily practice.
Collapse
|
40
|
Kang SY, Moon BS, Yoo MY, Yoon HJ, Kim BS. Clinical Usefulness of 18 F-FET PET in a Pediatric Patient With Suspected Demyelinating Disease. Clin Nucl Med 2022; 47:e562-e564. [PMID: 35384903 DOI: 10.1097/rlu.0000000000004201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT An 11-year-old boy who presented with headache and progressive right-sided weakness exhibited cortical swelling in the parafalcine area of both frontoparietal high convexity and splenium portion of corpus callosum on brain MRI. This suggested the possibility of encephalopathy, but required differential diagnosis from brain tumor. 18 F-FET ( O -(2-[ 18 F]fluoroethyl)- l -tyrosine) PET/CT identified increased uptake along the parafalcine area of the frontoparietal lobes and the splenium portion of the corpus callosum. The relatively low target-to-background ratios were more indicative of inflammatory changes such as demyelinating disease. The patient recovered after empirical steroid and immunoglobulin treatment. Clinically, the patient was diagnosed with acute disseminated encephalomyelitis.
Collapse
Affiliation(s)
- Seo Young Kang
- From the Department of Nuclear Medicine, Ewha Womans University College of Medicine, Seoul, South Korea
| | | | | | | | | |
Collapse
|
41
|
Xu J, Meng Y, Qiu K, Topatana W, Li S, Wei C, Chen T, Chen M, Ding Z, Niu G. Applications of Artificial Intelligence Based on Medical Imaging in Glioma: Current State and Future Challenges. Front Oncol 2022; 12:892056. [PMID: 35965542 PMCID: PMC9363668 DOI: 10.3389/fonc.2022.892056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/22/2022] [Indexed: 12/24/2022] Open
Abstract
Glioma is one of the most fatal primary brain tumors, and it is well-known for its difficulty in diagnosis and management. Medical imaging techniques such as magnetic resonance imaging (MRI), positron emission tomography (PET), and spectral imaging can efficiently aid physicians in diagnosing, treating, and evaluating patients with gliomas. With the increasing clinical records and digital images, the application of artificial intelligence (AI) based on medical imaging has reduced the burden on physicians treating gliomas even further. This review will classify AI technologies and procedures used in medical imaging analysis. Additionally, we will discuss the applications of AI in glioma, including tumor segmentation and classification, prediction of genetic markers, and prediction of treatment response and prognosis, using MRI, PET, and spectral imaging. Despite the benefits of AI in clinical applications, several issues such as data management, incomprehension, safety, clinical efficacy evaluation, and ethical or legal considerations, remain to be solved. In the future, doctors and researchers should collaborate to solve these issues, with a particular emphasis on interdisciplinary teamwork.
Collapse
Affiliation(s)
- Jiaona Xu
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuting Meng
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kefan Qiu
- Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Win Topatana
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shijie Li
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wei
- Department of Neurology, Affiliated Ningbo First Hospital, Ningbo, China
| | - Tianwen Chen
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mingyu Chen
- Department of General Surgery, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| | - Zhongxiang Ding
- Department of Radiology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| | - Guozhong Niu
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Mingyu Chen, ; Zhongxiang Ding, ; Guozhong Niu,
| |
Collapse
|
42
|
Chawla S, Bukhari S, Afridi OM, Wang S, Yadav SK, Akbari H, Verma G, Nath K, Haris M, Bagley S, Davatzikos C, Loevner LA, Mohan S. Metabolic and physiologic magnetic resonance imaging in distinguishing true progression from pseudoprogression in patients with glioblastoma. NMR IN BIOMEDICINE 2022; 35:e4719. [PMID: 35233862 PMCID: PMC9203929 DOI: 10.1002/nbm.4719] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 05/15/2023]
Abstract
Pseudoprogression (PsP) refers to treatment-related clinico-radiologic changes mimicking true progression (TP) that occurs in patients with glioblastoma (GBM), predominantly within the first 6 months after the completion of surgery and concurrent chemoradiation therapy (CCRT) with temozolomide. Accurate differentiation of TP from PsP is essential for making informed decisions on appropriate therapeutic intervention as well as for prognostication of these patients. Conventional neuroimaging findings are often equivocal in distinguishing between TP and PsP and present a considerable diagnostic dilemma to oncologists and radiologists. These challenges have emphasized the need for developing alternative imaging techniques that may aid in the accurate diagnosis of TP and PsP. In this review, we encapsulate the current state of knowledge in the clinical applications of commonly used metabolic and physiologic magnetic resonance (MR) imaging techniques such as diffusion and perfusion imaging and proton spectroscopy in distinguishing TP from PsP. We also showcase the potential of promising imaging techniques, such as amide proton transfer and amino acid-based positron emission tomography, in providing useful information about the treatment response. Additionally, we highlight the role of "radiomics", which is an emerging field of radiology that has the potential to change the way in which advanced MR techniques are utilized in assessing treatment response in GBM patients. Finally, we present our institutional experiences and discuss future perspectives on the role of multiparametric MR imaging in identifying PsP in GBM patients treated with "standard-of-care" CCRT as well as novel/targeted therapies.
Collapse
Affiliation(s)
- Sanjeev Chawla
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Sultan Bukhari
- Rowan School of Osteopathic Medicine at Rowan University, Voorhees, New Jersey, USA
| | - Omar M. Afridi
- Rowan School of Osteopathic Medicine at Rowan University, Voorhees, New Jersey, USA
| | - Sumei Wang
- Department of Cardiology, Lenox Hill Hospital, Northwell Health, New York, New York, USA
| | - Santosh K. Yadav
- Laboratory of Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - Hamed Akbari
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gaurav Verma
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Kavindra Nath
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mohammad Haris
- Laboratory of Functional and Molecular Imaging, Sidra Medicine, Doha, Qatar
| | - Stephen Bagley
- Department of Hematology-Oncology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christos Davatzikos
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Laurie A. Loevner
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Withofs N, Kumar R, Alavi A, Hustinx R. Facts and Fictions About [ 18F]FDG versus Other Tracers in Managing Patients with Brain Tumors: It Is Time to Rectify the Ongoing Misconceptions. PET Clin 2022; 17:327-342. [PMID: 35717096 DOI: 10.1016/j.cpet.2022.03.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
MRI is the first-choice imaging technique for brain tumors. Positron emission tomography can be combined together with multiparametric MRI to increase diagnostic confidence. Radiolabeled amino acids have gained wide clinical acceptance. The reported pooled specificity of [18F]FDG positron emission tomography is high and [18F]FDG might still be the first-choice positron emission tomography tracer in cases of World Health Organization grade 3 to 4 gliomas or [18F]FDG-avid tumors, avoiding the use of more expensive and less available radiolabeled amino acids. The present review discusses the additional value of positron emission tomography with a focus on [18F]FDG and radiolabeled amino acids.
Collapse
Affiliation(s)
- Nadia Withofs
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hopital, Avenue de l'hopital, 1, Liege 1 4000, Belgium; GIGA-CRC in vivo imaging, University of Liege, GIGA CHU - B34 Quartier Hôpital Avenue de l'Hôpital,11, 4000 Liège, Belgium.
| | - Rakesh Kumar
- Diagnostic Nuclear Medicine Division, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Roland Hustinx
- Division of Nuclear Medicine and Oncological Imaging, Department of Medical Physics, CHU of Liege, Quartier Hopital, Avenue de l'hopital, 1, Liege 1 4000, Belgium; GIGA-CRC in vivo imaging, University of Liege, GIGA CHU - B34 Quartier Hôpital Avenue de l'Hôpital,11, 4000 Liège, Belgium
| |
Collapse
|
44
|
Barca C, Foray C, Zinnhardt B, Winkeler A, Herrlinger U, Grauer OM, Jacobs AH. In Vivo Quantitative Imaging of Glioma Heterogeneity Employing Positron Emission Tomography. Cancers (Basel) 2022; 14:cancers14133139. [PMID: 35804911 PMCID: PMC9264799 DOI: 10.3390/cancers14133139] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Glioblastoma is the most common primary brain tumor, highly aggressive by being proliferative, neovascularized and invasive, heavily infiltrated by immunosuppressive glioma-associated myeloid cells (GAMs), including glioma-associated microglia/macrophages (GAMM) and myeloid-derived suppressor cells (MDSCs). Quantifying GAMs by molecular imaging could support patient selection for GAMs-targeting immunotherapy, drug target engagement and further assessment of clinical response. Magnetic resonance imaging (MRI) and amino acid positron emission tomography (PET) are clinically established imaging methods informing on tumor size, localization and secondary phenomena but remain quite limited in defining tumor heterogeneity, a key feature of glioma resistance mechanisms. The combination of different imaging modalities improved the in vivo characterization of the tumor mass by defining functionally distinct tissues probably linked to tumor regression, progression and infiltration. In-depth image validation on tracer specificity, biological function and quantification is critical for clinical decision making. The current review provides a comprehensive overview of the relevant experimental and clinical data concerning the spatiotemporal relationship between tumor cells and GAMs using PET imaging, with a special interest in the combination of amino acid and translocator protein (TSPO) PET imaging to define heterogeneity and as therapy readouts.
Collapse
Affiliation(s)
- Cristina Barca
- European Institute for Molecular Imaging (EIMI), University of Münster, D-48149 Münster, Germany; (C.F.); (B.Z.)
- Correspondence: (C.B.); (A.H.J.)
| | - Claudia Foray
- European Institute for Molecular Imaging (EIMI), University of Münster, D-48149 Münster, Germany; (C.F.); (B.Z.)
| | - Bastian Zinnhardt
- European Institute for Molecular Imaging (EIMI), University of Münster, D-48149 Münster, Germany; (C.F.); (B.Z.)
- Biomarkers & Translational Technologies (BTT), Pharma Research & Early Development (pRED), F. Hoffmann-La Roche Ltd., CH-4070 Basel, Switzerland
| | - Alexandra Winkeler
- Université Paris-Saclay, CEA, CNRS, Inserm, BioMaps, Service Hospitalier Frédéric Joliot, F-91401 Orsay, France;
| | - Ulrich Herrlinger
- Division of Clinical Neuro-Oncology, Department of Neurology, University Hospital Bonn, D-53105 Bonn, Germany;
- Centre of Integrated Oncology (CIO), University Hospital Bonn, D-53127 Bonn, Germany
| | - Oliver M. Grauer
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster, D-48149 Münster, Germany;
| | - Andreas H. Jacobs
- European Institute for Molecular Imaging (EIMI), University of Münster, D-48149 Münster, Germany; (C.F.); (B.Z.)
- Centre of Integrated Oncology (CIO), University Hospital Bonn, D-53127 Bonn, Germany
- Department of Geriatrics with Neurology, Johanniter Hospital, D-53113 Bonn, Germany
- Correspondence: (C.B.); (A.H.J.)
| |
Collapse
|
45
|
Borja AJ, Saini J, Raynor WY, Ayubcha C, Werner TJ, Alavi A, Revheim ME, Nagaraj C. Role of Molecular Imaging with PET/MR Imaging in the Diagnosis and Management of Brain Tumors. PET Clin 2022; 17:431-451. [PMID: 35662494 DOI: 10.1016/j.cpet.2022.03.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Gliomas are the most common primary brain tumors. Hybrid PET/MR imaging has revolutionized brain tumor imaging, allowing for noninvasive, simultaneous assessment of morphologic, functional, metabolic, and molecular parameters within the brain. Molecular information obtained from PET imaging may aid in the detection, classification, prognostication, and therapeutic decision making for gliomas. 18F-fluorodeoxyglucose (FDG) has been widely used in the setting of brain tumor imaging, and multiple techniques may be employed to optimize this methodology. More recently, a number of non-18F-FDG-PET radiotracers have been applied toward brain tumor imaging and are used in clinical practice.
Collapse
Affiliation(s)
- Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Jitender Saini
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, Karnataka 560-029, India
| | - William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Cyrus Ayubcha
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Sognsvannsveien 20, Oslo 0372, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Problemveien 7, Oslo 0315, Norway
| | - Chandana Nagaraj
- Department of Neuro Imaging and Interventional Radiology, National Institute of Mental Health and Neurosciences, Hosur Road, Bengaluru, Karnataka 560-029, India.
| |
Collapse
|
46
|
Ezhov I, Mot T, Shit S, Lipkova J, Paetzold JC, Kofler F, Pellegrini C, Kollovieh M, Navarro F, Li H, Metz M, Wiestler B, Menze B. Geometry-Aware Neural Solver for Fast Bayesian Calibration of Brain Tumor Models. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1269-1278. [PMID: 34928790 DOI: 10.1109/tmi.2021.3136582] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Modeling of brain tumor dynamics has the potential to advance therapeutic planning. Current modeling approaches resort to numerical solvers that simulate the tumor progression according to a given differential equation. Using highly-efficient numerical solvers, a single forward simulation takes up to a few minutes of compute. At the same time, clinical applications of tumor modeling often imply solving an inverse problem, requiring up to tens of thousands of forward model evaluations when used for a Bayesian model personalization via sampling. This results in a total inference time prohibitively expensive for clinical translation. While recent data-driven approaches become capable of emulating physics simulation, they tend to fail in generalizing over the variability of the boundary conditions imposed by the patient-specific anatomy. In this paper, we propose a learnable surrogate for simulating tumor growth which maps the biophysical model parameters directly to simulation outputs, i.e. the local tumor cell densities, whilst respecting patient geometry. We test the neural solver in a Bayesian model personalization task for a cohort of glioma patients. Bayesian inference using the proposed surrogate yields estimates analogous to those obtained by solving the forward model with a regular numerical solver. The near real-time computation cost renders the proposed method suitable for clinical settings. The code is available at https://github.com/IvanEz/tumor-surrogate.
Collapse
|
47
|
Carrete LR, Young JS, Cha S. Advanced Imaging Techniques for Newly Diagnosed and Recurrent Gliomas. Front Neurosci 2022; 16:787755. [PMID: 35281485 PMCID: PMC8904563 DOI: 10.3389/fnins.2022.787755] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 01/19/2022] [Indexed: 12/12/2022] Open
Abstract
Management of gliomas following initial diagnosis requires thoughtful presurgical planning followed by regular imaging to monitor treatment response and survey for new tumor growth. Traditional MR imaging modalities such as T1 post-contrast and T2-weighted sequences have long been a staple of tumor diagnosis, surgical planning, and post-treatment surveillance. While these sequences remain integral in the management of gliomas, advances in imaging techniques have allowed for a more detailed characterization of tumor characteristics. Advanced MR sequences such as perfusion, diffusion, and susceptibility weighted imaging, as well as PET scans have emerged as valuable tools to inform clinical decision making and provide a non-invasive way to help distinguish between tumor recurrence and pseudoprogression. Furthermore, these advances in imaging have extended to the operating room and assist in making surgical resections safer. Nevertheless, surgery, chemotherapy, and radiation treatment continue to make the interpretation of MR changes difficult for glioma patients. As analytics and machine learning techniques improve, radiomics offers the potential to be more quantitative and personalized in the interpretation of imaging data for gliomas. In this review, we describe the role of these newer imaging modalities during the different stages of management for patients with gliomas, focusing on the pre-operative, post-operative, and surveillance periods. Finally, we discuss radiomics as a means of promoting personalized patient care in the future.
Collapse
Affiliation(s)
- Luis R. Carrete
- University of California San Francisco School of Medicine, San Francisco, CA, United States
| | - Jacob S. Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, United States
- *Correspondence: Jacob S. Young,
| | - Soonmee Cha
- Department of Radiology, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
48
|
Zhang-Yin JT, Girard A, Bertaux M. What Does PET Imaging Bring to Neuro-Oncology in 2022? A Review. Cancers (Basel) 2022; 14:cancers14040879. [PMID: 35205625 PMCID: PMC8870476 DOI: 10.3390/cancers14040879] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/01/2022] [Accepted: 02/07/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Positron emission tomography (PET) imaging is increasingly used to supplement MRI in the management of patient with brain tumors. In this article, we provide a review of the current place and perspectives of PET imaging for the diagnosis and follow-up of from primary brain tumors such as gliomas, meningiomas and central nervous system lymphomas, as well as brain metastases. Different PET radiotracers targeting different biological processes are used to accurately depict these brain tumors and provide unique metabolic and biologic information. Radiolabeled amino acids such as [18F]FDOPA or [18F]FET are used for imaging of gliomas while both [18F]FDG and amino acids can be used for brain metastases. Meningiomas can be seen with a high contrast using radiolabeled ligands of somatostatin receptors, which they usually carry. Unconventional tracers that allow the study of other biological processes such as cell proliferation, hypoxia, or neo-angiogenesis are currently being studied for brain tumors imaging. Abstract PET imaging is being increasingly used to supplement MRI in the clinical management of brain tumors. The main radiotracers implemented in clinical practice include [18F]FDG, radiolabeled amino acids ([11C]MET, [18F]FDOPA, [18F]FET) and [68Ga]Ga-DOTA-SSTR, targeting glucose metabolism, L-amino-acid transport and somatostatin receptors expression, respectively. This review aims at addressing the current place and perspectives of brain PET imaging for patients who suffer from primary or secondary brain tumors, at diagnosis and during follow-up. A special focus is given to the following: radiolabeled amino acids PET imaging for tumor characterization and follow-up in gliomas; the role of amino acid PET and [18F]FDG PET for detecting brain metastases recurrence; [68Ga]Ga-DOTA-SSTR PET for guiding treatment in meningioma and particularly before targeted radiotherapy.
Collapse
Affiliation(s)
| | - Antoine Girard
- Department of Nuclear Medicine, Centre Eugène Marquis, Université Rennes 1, 35000 Rennes, France
| | - Marc Bertaux
- Department of Nuclear Medicine, Foch Hospital, 92150 Suresnes, France
| |
Collapse
|
49
|
Lohaus N, Mader C, Jelcic I, Reimann R, Huellner MW. Acute Disseminated Encephalomyelitis in FET PET/MR. Clin Nucl Med 2022; 47:e137-e139. [PMID: 34507326 DOI: 10.1097/rlu.0000000000003879] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
ABSTRACT After 3 weeks of daily headache, a 28-year-old, otherwise healthy woman was admitted to the emergency department with a first-time generalized seizure. CT showed a left frontal mass with perifocal edema. Brain MRI raised the suspicion of cerebral lymphoma. Cerebrospinal fluid analysis revealed mononuclear pleocytosis of 14 cells/μL without malignant cells, normal protein levels, and absence of oligoclonal bands. FET PET/MRI of the lesion showed FET characteristics of inflammatory disease, and acute disseminated encephalomyelitis was suggested as diagnosis. Final histopathological results from brain biopsy confirmed acute disseminated encephalomyelitis.
Collapse
|
50
|
Chen MY, Zeng YC. Pseudoprogression in lung cancer patients treated with immunotherapy. Crit Rev Oncol Hematol 2021; 169:103531. [PMID: 34800651 DOI: 10.1016/j.critrevonc.2021.103531] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/07/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022] Open
Abstract
Lung cancer has attracted much attention because of its high morbidity and mortality worldwide. The advent of immunotherapy approaches, especially the application of immune checkpoint inhibitors (ICIs) has dramatically changed the treatment of lung cancer, but a novel and unexpected pattern of treatment response-- pseudoprogression, has been observed simultaneously which complicates the routine clinical evaluation and management. However, manifestations of pseudoprogression vary and there are many disputes on immune-related response assessment and corresponding treatments for lung cancer. Therefore, we summarized the possible mechanisms, clinical manifestations and corresponding treatment measures of pseudoprogression in lung cancer, as well as potential methods to differentiate pseudoprogression from true tumor progression.
Collapse
Affiliation(s)
- Meng-Yu Chen
- Department of Radiation Oncology, Cancer Center, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Road, Haikou, 570311, China; Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yue-Can Zeng
- Department of Radiation Oncology, Cancer Center, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Road, Haikou, 570311, China.
| |
Collapse
|