1
|
Wang K, Xiao Y, Ren J, Zuo C, Mu L, Li Q, Song Y. Ferroptosis and low-grade Glioma: The breakthrough potential of NUAK2. Free Radic Biol Med 2025; 234:203-219. [PMID: 40286882 DOI: 10.1016/j.freeradbiomed.2025.04.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2025] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Low-grade glioma (LGG) is a primary brain tumor with high cellular heterogeneity and recurrence, leading to poor prognosis. Standard treatments (surgery, radiotherapy, and chemotherapy) have limited efficacy. Ferroptosis, an iron-dependent form of regulated cell death, is a potential therapeutic target, while dysregulated ferroptosis-related genes (FRGs) may drive tumor progression and therapy resistance. METHODS This study integrated multi-omics data from The Cancer Genome Atlas (TCGA), Chinese Glioma Genome Atlas (CGGA), and Gene Expression Omnibus (GEO) to identify FRGs associated with LGG prognosis. Single-cell RNA sequencing (scRNA-seq) and pseudotime trajectory analysis were performed to investigate their functional roles. Key findings were validated through in vitro and in vivo experiments. RESULTS We identified 345 FRGs associated with LGG prognosis, which are involved in oxidative stress response, cell proliferation, and immune regulation. High-risk patients exhibited an immunosuppressive tumor microenvironment with elevated levels of M2 macrophages and Treg cells but reduced CD8+ T cell infiltration. Pseudotime trajectory analysis highlighted the dynamic roles of macrophages and astrocytes in immune evasion and microenvironment remodeling. Notably, the NUAK2 gene emerged as a key driver of tumor progression and immune suppression. In vitro and in vivo experiments confirmed that targeting NUAK2 significantly reduced tumor cell viability and growth, underscoring its critical regulatory role in LGG. CONCLUSIONS Our study provides comprehensive insights into the role of FRGs in LGG prognosis and tumor microenvironment regulation, with a particular focus on the NUAK2 gene. As a potential therapeutic target, NUAK2's critical role in tumor progression and immune evasion offers a new direction for LGG treatment. Future research should focus on validating NUAK2's role in larger cohorts and exploring its clinical application as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Kan Wang
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China; Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150000, Heilongjiang Province, China
| | - Yifei Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, 150000, Heilongjiang Province, China
| | - Jiangbin Ren
- Department of Neurosurgey, Huanhu Hospital Affiliated to Tianjin Medical University, Tianjin City, 300200, China
| | - Chengcheng Zuo
- Department of Otolaryngology, Huzhou Central Hospital, Huzhou, 313000, China
| | - Luyan Mu
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China
| | - Qingla Li
- Department of Neurosurgery, Second Hospital of Heilongjiang Province, Harbin City, 150028, Heilongjiang Province, China.
| | - Yuwen Song
- Department of Neurosurgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin City, 150001, Heilongjiang Province, China.
| |
Collapse
|
2
|
Badve C, Nirappel A, Lo S, Orringer DA, Olson JJ. Congress of neurological surgeons systematic review and evidence-based guidelines for the role of imaging in newly diagnosed WHO grade II diffuse glioma in adults: update. J Neurooncol 2025:10.1007/s11060-025-05043-8. [PMID: 40338482 DOI: 10.1007/s11060-025-05043-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 04/09/2025] [Indexed: 05/09/2025]
Abstract
TARGET POPULATION Adult patients with suspected or histologically proven WHO Grade II diffuse glioma. QUESTION 1: In adult patients with suspected or histologically proven WHO Grade II diffuse glioma, do advanced MRI techniques using magnetic resonance spectroscopy, perfusion weighted imaging or diffusion weighted imaging provide superior assessment of tumor grade, margins, progression, treatment-related effects, and prognosis compared to standard neuroimaging? RECOMMENDATION Level II: The use of diffusion imaging and dynamic susceptibility contrast (DSC), dynamic contrast enhancement (DCE) and arterial spin labeling (ASL) sequences are suggested to differentiate WHO Grade II diffuse glioma from higher grade gliomas when this is not accomplished by T2 weighted and pre- and post-gadolinium contrast enhanced T1 weighted imaging. LEVEL III The use of diffusion and perfusion is suggested for obtaining information in genomics, prognosis, and post treatment monitoring when this information would be of value to the clinician and is not obtained through other methods. LEVEL III The use of MR Spectroscopy is suggested to differentiate WHO Grade II diffuse glioma from higher grade gliomas when this is not accomplished by standard MRI, perfusion and diffusion techniques and when such information would be of value to the clinician. QUESTION 2: In adult patients with suspected or histologically proven WHO Grade II diffuse glioma, does molecular imaging using amino acid PET tracers provide superior assessment of tumor grade, margins, progression, treatment-related effects, and prognosis compared to standard neuroimaging? RECOMMENDATION Level III: If not already evident by MRI studies, the addition of amino acid PET with FET and FDOPA as a tracer is suggested to help determine if a brain lesion is a low grade glioma or high grade glioma. LEVEL III If the standard clinical prognostic parameters are unclear and novel PET tracers are available, the clinician may consider FET to assist in determination of prognosis in an individual with grade II diffuse glioma. LEVEL III Clinicians may use FDOPA PET in addition to MRI if additional information is required for detection of tumor progression.
Collapse
Affiliation(s)
- Chaitra Badve
- University Hospitals Cleveland Medical Center, Cleveland, USA.
- Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA.
| | - Abraham Nirappel
- Department of Radiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Simon Lo
- Department of Radiation Oncology, University of Washington, Seattle, WA, USA
| | - Daniel A Orringer
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Jeffrey J Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
3
|
Li D, Chen Y, Wong TF, Yang Q, Guo C, Jiang X, Ke C, Zhang X, Zeng J, Lv Y, Wu S, Wang J, Sai K, Mou Y, Chen Z. Management and survival trends for diffuse gliomas diagnosed at a single neurooncology center in China during 2000 to 2020. Sci Rep 2025; 15:12574. [PMID: 40221458 PMCID: PMC11993593 DOI: 10.1038/s41598-025-95693-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Currently reported survival outcomes for gliomas exhibit significant variability and controversy. In this study, we aim to provide survival data in Chinese populations by conducting a retrospective analysis of management and survival trends in a large cohort of glioma patients from a single institute in China. A total of 1206 patients with newly diagnosed gliomas treated between 2000 and 2020 were enrolled, including 537 glioblastoma (WHO grade 4), 450 astrocytomas (grade 2/3) and 219 oligodendroglial tumors (grade 2/3). The estimated overall survival at 5 years was 18.9% for glioblastoma, 58.8% for astrocytomas, and 80.7% for oligodendroglial tumors, while median survival was 17.2 months, 82.8 months, and not reached, respectively. The survival trend has increased over the past decades for all types of gliomas. Additionally, similar survival trends were observed between grade 2 and 3 IDH-mutant gliomas. Rising trends were observed in patients undergoing postsurgical radiation and chemotherapy. Multivariate analysis identified adjuvant radiochemotherapy as an independent factor for better prognosis in glioblastoma and astrocytomas. In summary, despite its retrospective nature, this cohort of glioma patients exhibits favorable survival outcomes compared to global statistics, indicating a geographical disparity in glioma prognosis. The promotion of adjuvant chemoradiotherapy contributes to improved prognosis.
Collapse
Affiliation(s)
- Depei Li
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Yinsheng Chen
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Tang-Fai Wong
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- Department of Neurosurgery, Macao Kiang Wu Hospital, Macao, P. R. China
| | - Qunying Yang
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - ChengCheng Guo
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Xiaobing Jiang
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Chao Ke
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Xiangheng Zhang
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Jing Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
- Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Yanchun Lv
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
- Department of Radiology, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Shaoxiong Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
- Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, P. R. China
| | - Jian Wang
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Ke Sai
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Yonggao Mou
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China
| | - Zhongping Chen
- Department of Neurosurgery and Neuro-oncology, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, 510060, P. R. China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P. R. China.
| |
Collapse
|
4
|
Zhang W, Xie Y, Chen F, Xie B, Yin Z. Development and validation of a neutrophil extracellular traps-related gene signature for lower-grade gliomas. Comput Biol Med 2025; 188:109844. [PMID: 39978096 DOI: 10.1016/j.compbiomed.2025.109844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
There is growing evidence linking neutrophil extracellular traps (NETs) to tumor genesis, growth, distant metastasis, and tumor-related thrombosis. However, the roles of NETs-related genes (NETRGs) on LGG prognosis remain unclear. The purpose of this study was to integrate multiple machine learning techniques and experiment validation to develop a reliable NETs-based signature that opens up novel approaches for assessing the prognosis and treatment response of LGG patients. Consensus clustering, k-means clustering and Nonnegative Matrix Factorization was used for the TCGA-LGG dataset and identified two NETs-related subgroups. The prognostic hallmark and nomogram for LGG were developed, which consist of five differentially expressed NETRGs (FPR1, PTAFR, SLC11A1, ICAM1, LTF) based on nine analytic approaches. The ROC curves and calibration curves of our NETRGs signature and nomogram exhibited strong and robust prognosis prediction abilities in both the TCGA-LGG training set and CGGA-325, CGGA-693 validation sets. The prognosis for LGG individuals in the low-risk category was better. The TISCH was used to examine the five NETRGs at the single-cell level. Common immunological checkpoints were expressed at greater levels in high-risk individuals. LGG individuals in the low-risk category posses a higher likelihood of being sensitive to Carmustine and Vincristine, as indicated by the drug sensitivity analysis. The qRT-PCR experiment and immunohistochemistry images confirmed that the expression of FPR1, PTAFR, SLC11A1 and ICAM1 are higher in low-grade oligodendroglioma. The NETRGs signature and nomogram can accurately and conveniently predict the LGG patients' prognosis, which can facilitate individualized treatment and the improvement of prognosis.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning Province, China
| | - Youlong Xie
- Joint International Research Laboratory of Reproduction and Development of the Ministry of Education of China, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Fengming Chen
- Hunan Provincial Key Laboratory of the Traditional Chinese Medicine Agricultural Biogenomics, Changsha Medical University, 410129, China
| | - Biao Xie
- Department of Health Statistics, School of Public Health, Chongqing Medical University, Chongqing, 400016, China
| | - Zhihua Yin
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, 110122, Liaoning Province, China.
| |
Collapse
|
5
|
Falcão L, Cerqueira GA, Gonçalves JPF, de Andrade JFT, de Azevedo Figueiredo Trocoli CP, Medrado-Nunes GS, Santos VEC, Pustilnik HN, Fontes JHM, Dos Passos GS. Influence of supratotal resection on overall survival and progression of tumor in gliomas grade 2 and 3: a systematic review and meta-analysis. Neurosurg Rev 2025; 48:281. [PMID: 40032671 DOI: 10.1007/s10143-025-03428-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/14/2025] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Recurrence after resection is a major factor in poor prognosis for grade 2 and 3 gliomas. The effect of Supratotal Resection (STR) on recurrence timing remains debated. This meta-analysis examines overall survival (OS) and tumor progression in grade 2 and 3 gliomas after supratotal resection. METHODS Studies on patients with grade II and III gliomas who underwent supratotal resection were included, with comparisons to subtotal, partial, and total resections. The primary outcomes were overall survival (OS) and tumor progression, while secondary outcomes included return-to-work (RTW) rates, malignant transformations and cognitive impairments. RESULTS We included 954 patients from 8 studies, mean age was 39 (± 16) years. The mean OS for patients undergoing supratotal resection was 17.45 (95% CI: 3.39 to 89.74, p < 0.05) compared to TR. The OR for RTW in the STR group versus TR group was 0.12 (95% CI: 0.01 to 1.28, p = 0.08). Tumor progression OR was, no statistical significantly, 0.15 (95% CI: 0.00 to 38.00, p = 0.5), and the likelihood of malignancy was reduced 0.03 (95% CI: 0.01 to 0.18, p < 0.01) compared to the TR group. In the immediate pos-operatory, when comparing STR with TR, the OR of language impairment was 5.47 (95% CI: 2.73 to 10.97, p < 0.01) and cognitive impairment was 0.38 (95% CI: 0.17 to 0.58). During the follow-up, the OR of language impairment was 0.68 (95% CI: 0.25 to 1.81, p = 0.44) and cognitive impairment was 0.34 (95% CI: 0.03 to 3.61, p = 0.37) comparing STR with TR. CONCLUSION Patients with grade 2 and 3 gliomas undergoing supratotal resection showed significantly higher overall survival, fewer malignant transformations and language impairments in immediate pos-operatory. While there was a trend towards higher return-to-work rates, progression of tumor and better cognitive status during the follow-up, it was not statistically significant. Further studies are needed for definitive conclusions. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Luciano Falcão
- Bahiana School of Medicine and Public Health, Av. Dom João VI, 275 - Brotas, Salvador, BA, 40290-000, Brazil.
| | - Gabriel Araújo Cerqueira
- Bahiana School of Medicine and Public Health, Av. Dom João VI, 275 - Brotas, Salvador, BA, 40290-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Yang L, Xie X, Zhang J, Luo C, Bu L, Wu S, Deng W, Yao Y, Zhang X, Chen H. Nonenhancing Margin and Pial Invasion in Magnetic Resonance Imaging can Predict Isocitrate Dehydrogenase Status in Glioma Patients. World Neurosurg 2025; 195:123624. [PMID: 39732457 DOI: 10.1016/j.wneu.2024.123624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND The presence of isocitrate dehydrogenase (IDH) mutations and 1p/19q codeletion significantly influences the diagnosis and prognosis of patients with lower-grade gliomas (LGGs). The ability to predict these molecular signatures preoperatively can inform surgical strategies. This study sought to establish an interpretable imaging feature set for predicting molecular signatures and overall survival in LGGs. METHODS A cohort of 113 patients with grade 2 or 3 glioma (66 with mutated IDH and 47 with wild-type IDH) was analyzed. The feature set, chief complaints, and onset symptoms were integrated into a logistic regression model to predict IDH mutation and 1p/19q codeletion statuses. Receiver operator characteristic and area under the curve analyses were performed. The predictive model was externally validated using a public database from The Cancer Genome Atlas. RESULTS Smooth nonenhancing margin and pial invasion were significant predictors of IDH mutation, with odds ratio values of 3.55 (P = 0.03) and 7.89 (P = 1.0 × 10-3), respectively. Using the Visually Accessible Rembrandt Images feature set alone to predict IDH mutation status yielded an area under the curve value of 0.83, which increased to 0.85 and 0.87 when incorporating clinical information and onset symptoms for predicting IDH mutation and 1p/19q codeletion, respectively. CONCLUSIONS Gliomas with IDH mutations were more likely to exhibit smooth nonenhancing margins and pial invasion. In clinical practice, imaging prediction allows for the assessment of IDH mutation to shift from a postoperative outcome to a preoperative guidance indicator, facilitating more precise treatment for patients with LGGs.
Collapse
Affiliation(s)
- Luhao Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Xian Xie
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Jie Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Chen Luo
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Linghao Bu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shuai Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China
| | - Wei Deng
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China
| | - Ye Yao
- Department of Biostatistics, School of Public Health, Fudan University, Shanghai, China; National Clinical Research Centre for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China; Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, China
| | - Xiaoluo Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Shanghai, China.
| | - Hong Chen
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Himstead AS, Chen JW, Chu E, Perez-Rosendahl MA, Zheng M, Mathew S, Yuen CA. Expanded Use of Vorasidenib in Non-Enhancing Recurrent CNS WHO Grade 3 Oligodendroglioma. Biomedicines 2025; 13:201. [PMID: 39857783 PMCID: PMC11762706 DOI: 10.3390/biomedicines13010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Anaplastic oligodendrogliomas (AOs) are central nervous system (CNS) World Health Organization (WHO) grade 3 gliomas characterized by isocitrate dehydrogenase (IDH) mutation (m)IDH and 1p/19q codeletion. AOs are typically treated with surgery and chemoradiation. However, chemoradiation can cause detrimental late neurocognitive morbidities and an accelerated disease course. The recently regulatory-approved vorasidenib, a brain-penetrating oral inhibitor of IDH1/2, has altered the treatment paradigm for recurrent/residual non-enhancing surgically resected CNS WHO grade 2 mIDH gliomas. Though vorasidenib can delay the time to chemoradiation for grade 2 gliomas, the implications for vorasidenib in non-grade 2 mIDH gliomas are not well understood. Results: We present a case of a 71-year-old male with a grade 3 non-enhancing oligodendroglioma successfully treated with vorasidenib with an 11% reduction in residual tumor volume. Vorasidenib was well tolerated in our patient with a mild elevation in his liver transaminases that resolved following a brief interruption in treatment. Conclusions: Our case suggests that vorasidenib may impart therapeutic benefits in this setting. This case illustrates the need for further investigation into these less commonly addressed scenarios and treatment strategies that extend beyond current guidelines.
Collapse
Affiliation(s)
- Alexander S. Himstead
- Department of Neurological Surgery, University of California, Irvine, CA 92697, USA; (A.S.H.); (J.W.C.)
| | - Jefferson W. Chen
- Department of Neurological Surgery, University of California, Irvine, CA 92697, USA; (A.S.H.); (J.W.C.)
| | - Eleanor Chu
- Department of Radiological Sciences, University of California, Irvine, CA 92697, USA;
| | - Mari A. Perez-Rosendahl
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA 92697, USA;
| | - Michelle Zheng
- UC Irvine Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Sherin Mathew
- Department of Research, University of California, Irvine, CA 92697, USA
| | - Carlen A. Yuen
- Department of Neurology, Division of Neuro-Oncology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
8
|
Darlix A, Bady P, Deverdun J, Lefort K, Rigau V, Le Bars E, Meriadec J, Carrière M, Coget A, Santarius T, Matys T, Duffau H, Hegi ME. Clinical value of the MGMT promoter methylation score in IDHmt low-grade glioma for predicting benefit from temozolomide treatment. Neurooncol Adv 2025; 7:vdae224. [PMID: 40041202 PMCID: PMC11877643 DOI: 10.1093/noajnl/vdae224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025] Open
Abstract
Background Diffuse IDH mutant low-grade gliomas (IDHmt LGG) (World Health Organization grade 2) typically affect young adults. The outcome is variable, with survival ranging from 5 to over 20 years. The timing and choice of initial treatments after surgery remain controversial. In particular, radiotherapy is associated with early and late cognitive toxicity. Over 90% of IDHmt LGG exhibit some degree of promoter methylation of the repair gene O(6)-methylguanine-DNA methytransferase (MGMTp) that when expressed blunts the effect of alkylating agent chemotherapy, for example, temozolomide (TMZ). However, the clinical value of MGMTp methylation predicting benefit from TMZ in IDHmt LGG is unclear. Methods Patients treated in the EORTC-22033 phase III trial comparing TMZ versus radiotherapy served as training set to establish a cutoff based on the MGMT-STP27 methylation score. A validation cohort was established with patients treated in a single-center first-line with TMZ after surgery/surgeries. Results The MGMT-STP27 methylation score was associated with better progression-free survival (PFS) in the training cohort treated with TMZ, but not radiotherapy. In the validation cohort, an association with next treatment-free survival (P = .045) after TMZ was observed, and a trend using RANO criteria (P = .07). A cutoff value set above the 95% confidence interval of being methylated was significantly associated with PFS in the TMZ-treated training cohort, but not in the radiotherapy arm. However, this cutoff could not be confirmed in the test cohort. Conclusions While the MGMTp methylation score was associated with better outcomes in TMZ-treated IDHmt LGG, a cutoff could not be established to guide treatment decisions.
Collapse
Affiliation(s)
- Amélie Darlix
- Institute of Functional Genomics IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
- Department of Medical Oncology, Institut Régional du Cancer de Montpellier, University of Montpellier, Montpellier, France
| | - Pierre Bady
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Translational Data Science & Biomedical Data Science Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neuroscience Research Center and Service of Neurosurgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Jérémy Deverdun
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Department of Neuroradiology, I2FH, Institut d’Imagerie Fonctionnelle Humaine, Montpellier University Medical Center, Montpellier, France
| | - Karine Lefort
- Department of Laboratory Medicine and Pathology, Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Valérie Rigau
- Department of Neuropathology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Emmanuelle Le Bars
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Department of Neuroradiology, I2FH, Institut d’Imagerie Fonctionnelle Humaine, Montpellier University Medical Center, Montpellier, France
| | - Justine Meriadec
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Mathilde Carrière
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Arthur Coget
- Department of Neuroradiology, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| | - Thomas Santarius
- Department of Neurosurgery, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute of Functional Genomics IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| | - Monika E Hegi
- Departments of Oncology and Clinical Neurosciences, L. Lundin and Family Brain Tumor Research Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Neuroscience Research Center and Service of Neurosurgery, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
9
|
Kinslow CJ, Mehta MP. Future Directions in the Treatment of Low-Grade Gliomas. Cancer J 2025; 31:e0759. [PMID: 39841425 DOI: 10.1097/ppo.0000000000000759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
ABSTRACT There is major interest in deintensifying therapy for isocitrate dehydrogenase-mutant low-grade gliomas, including with single-agent cytostatic isocitrate dehydrogenase inhibitors. These efforts need head-to-head comparisons with proven modalities, such as chemoradiotherapy. Ongoing clinical trials now group tumors by intrinsic molecular subtype, rather than classic clinical risk factors. Advances in imaging, surgery, and radiotherapy have improved outcomes in low-grade gliomas. Emerging biomarkers, targeted therapies, immunotherapy, radionuclides, and novel medical devices are a promising frontier for future treatment. Diverse representation in glioma research and clinical trials will help to ensure that advancements in care are realized by all groups.
Collapse
Affiliation(s)
| | - Minesh P Mehta
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, FL
| |
Collapse
|
10
|
Song D, Fan G, Chang M. Research Progress on Glioma Microenvironment and Invasiveness Utilizing Advanced Multi-Parametric Quantitative MRI. Cancers (Basel) 2024; 17:74. [PMID: 39796702 PMCID: PMC11719598 DOI: 10.3390/cancers17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
Magnetic resonance imaging (MRI) currently serves as the primary diagnostic method for glioma detection and monitoring. The integration of neurosurgery, radiation therapy, pathology, and radiology in a multi-disciplinary approach has significantly advanced its diagnosis and treatment. However, the prognosis remains unfavorable due to treatment resistance, inconsistent response rates, and high recurrence rates after surgery. These factors are closely associated with the complex molecular characteristics of the tumors, the internal heterogeneity, and the relevant external microenvironment. The complete removal of gliomas presents challenges due to their infiltrative growth pattern along the white matter fibers and perivascular space. Therefore, it is crucial to comprehensively understand the molecular features of gliomas and analyze the internal tumor heterogeneity in order to accurately characterize and quantify the tumor invasion range. The multi-parameter quantitative MRI technique provides an opportunity to investigate the microenvironment and aggressiveness of glioma tumors at the cellular, blood perfusion, and cerebrovascular response levels. Therefore, this review examines the current applications of advanced multi-parameter quantitative MRI in glioma research and explores the prospects for future development.
Collapse
Affiliation(s)
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China;
| | - Miao Chang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China;
| |
Collapse
|
11
|
Wang X, Yang W, Jian M, Liang Y, Yang Z, Chen Y, Ma B, Wang C, Hou Z, Deng Z, Liu H, Xie J, Han R. The characteristics of auditorial event-related potential under propofol sedation associated with preoperative cognitive performance in glioma patients. Front Neurosci 2024; 18:1431406. [PMID: 39610867 PMCID: PMC11603416 DOI: 10.3389/fnins.2024.1431406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024] Open
Abstract
Background Glioma patients often experience neurocognitive deficits, particularly mild cognitive impairment (MCI), which affects their perioperative safety. The use of auditory event-related potentials (AERPs) might be a promising method for reflecting perioperative cognitive function in patients, even under unresponsive sedation. In this study, we aimed to investigate the relationships between the AERP under sedation and preoperative cognitive performance in glioma patients. Methods Patients with primary supratentorial gliomas who were scheduled for elective craniotomy under general anesthesia were included in this prospective observational study. The patients were categorized into MCI and non-MCI groups based on their preoperative Montreal Cognitive Assessment (MoCA) scores. AERP characteristics, including mismatch negativity (MMN), P300, and event-related spectral perturbation (ERSP) in the theta bands, were analyzed under different propofol-induced sedation conditions. Differences in these parameters between groups and their relationships with preoperative cognitive performance were subsequently investigated. Results Twenty-nine eligible patients were included in the analysis. Compared to that in the non-MCI group, the average amplitude of the MMN component evoked by the novel stimulus significantly decreased during the recovery period in the MCI group (-3.895 ± 1.961 μV vs. -1.617 ± 1.831 μV, p = 0.003). Theta-ERSPs also differed between the two groups under standard (0.021 ± 0.658 μV2/Hz vs. 0.515 ± 0.622 μV2/Hz, p = 0.048) and novel (0.212 ± 0.584 μV2/Hz vs. 0.823 ± 0.931 μV2/Hz, p = 0.041) stimulation conditions under light sedation. After correcting for age, education level, site of lesion, WHO pathological grade and combined symptomatic epilepsy as confounders, the frontal theta-ERSP induced by standard and novel stimuli under light sedation was inversely related to the preoperative MoCA score (standard stimuli: β = -0.491, p = 0.011; novel stimuli: β = -0.594, p = 0.007), as was the average MMN amplitude induced by novel stimuli during the recovery period (β = -0.356, p = 0.035). Conclusion The AERP neural response characteristics of glioma patients during propofol sedation were associated with preoperative cognitive performance, which might be a potential neurophysiological indicator for monitoring perioperative cognitive function, especially theta-ERSP.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wanning Yang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Minyu Jian
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yi Liang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zuocheng Yang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yiwei Chen
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bo Ma
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chengwei Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zonggang Hou
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhenghai Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Haiyang Liu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jian Xie
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
12
|
Vaz-Salgado MÁ, García BC, Pérez IF, Munárriz BJ, Domarco PS, González AH, Villar MV, Caro RL, Delgado MLV, Sánchez JMS. SEOM-GEINO clinical guidelines for grade 2 gliomas (2023). Clin Transl Oncol 2024; 26:2856-2865. [PMID: 38662171 PMCID: PMC11467015 DOI: 10.1007/s12094-024-03456-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/08/2024] [Indexed: 04/26/2024]
Abstract
The 2021 World Health Organization (WHO) classification has updated the definition of grade 2 gliomas and the presence of isocitrate dehydrogenase (IDH) mutation has been deemed the cornerstone of diagnosis. Though slow-growing and having a low proliferative index, grade 2 gliomas are incurable by surgery and complementary treatments are vital to improving prognosis. This guideline provides recommendations on the multidisciplinary treatment of grade 2 astrocytomas and oligodendrogliomas based on the best evidence available.
Collapse
Affiliation(s)
- María Ángeles Vaz-Salgado
- Medical Oncology Department, Hospital Universitario Ramón y Cajal, Instituto Ramón y Cajal de Investigación Sanitaria (Irycis) CIBERONC, Madrid, Spain.
| | - Belén Cigarral García
- Medical Oncology Department, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Isaura Fernández Pérez
- Medical Oncology Department, Hospital Alvaro Cunqueiro-Complejo Hospitalario Universitario de Vigo, Pontevedra, Spain
| | | | - Paula Sampedro Domarco
- Medical Oncology Department, Complexo Hospitalario Universitario de Ourense (CHUO), Orense, Spain
| | - Ainhoa Hernández González
- Medical Oncology Department, Hospital Germans Trias I Pujol(ICO)-Badalona, Instituto Catalán de Oncología, Barcelona, Spain
| | - María Vieito Villar
- Medical Oncology Department, Hospital Universitario Vall D'Hebron, Barcelona, Spain
| | - Raquel Luque Caro
- Medical Oncology Department, Hospital Universitario Virgen de las Nieves, Instituto de Investigación Biosanitaria Ibs.Granada, Granada, Spain
| | | | - Juan Manuel Sepúlveda Sánchez
- Neuro-Oncology Unit, HM Universitario Sanchinarro-CIOCC, Madrid, Spain.
- Medical Oncology Department, Hospital Universitario 12 de Octubre, Instituto de Investigación 12 de Octubre (I+12), Madrid, Spain.
| |
Collapse
|
13
|
Yang J, Shen L, Zhou J, Wu J, Yue C, Wang T, Chai S, Cai Y, Xu D, Lei Y, Zhao J, Zhou Y, Mei Z, Xiong N. A Novel Mitochondrial-Related Gene Signature for the Prediction of Prognosis and Therapeutic Efficacy in Lower-Grade Glioma. Biochem Genet 2024:10.1007/s10528-024-10928-w. [PMID: 39356352 DOI: 10.1007/s10528-024-10928-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 09/15/2024] [Indexed: 10/03/2024]
Abstract
Lower-grade glioma (LGG) is a common primary brain tumor with a highly heterogeneous clinical presentation, and its prognosis cannot be accurately predicted by current histopathology. It has been found that mitochondria play an important role in hypoxia, angiogenesis, and energy metabolism in glioma, and mitochondrial function may have an important impact on LGG prognosis. The goal of this study was to develop a novel prognostic model based on Mitochondrial-related genes (MRGs). We first analyzed the somatic alterations profiles of MRGs in patients with LGG and found that somatic alterations were common in LGG and correlated with prognosis. Using RNA-seq data from TCGA and CGGA, 12 prognosis-related MRGs were identified to construct a mitochondrial activation score (MiAS) model by combining univariate regression and LASSO regression analysis. The model and nomogram were evaluated using the area under the ROC curve with AUC = 0.910. The model was closely correlated with the clinical characteristics of LGG patients and performed well in predicting the prognosis of LGG patients with significantly shorter overall survival (OS) time in the high-MiAS group. GSVA and GSEA results showed that oxidative stress, pro-cancer, and immune-related pathways were significantly enriched in the high-MiAS group. CIBERSORT results showed that MiAS was significantly associated with immune cell infiltration in LGG. Macrophage M1 and follicular helper T cells had increased infiltration in the high-MiAS group. TIDE predicted a better immunotherapy outcome in patients in the low-MiAS group. Finally, using data from the CTRPv2 and GDSC2 datasets to assess chemotherapy response in LGG, it was predicted that the chemotherapeutic agents AZD6482, MG-132, and PLX-4720 might be potential agents for patients in the high-MiAS group of LGG. In addition, we performed in vitro experiments and found that knockdown of OCIAD2 expression reduced the abilities of glioma cells to proliferate, migrate, and invade. In contrast, overexpression of OCIAD2 enhanced these abilities of glioma cells. This study found that MRGs were correlated with LGG patient prognosis, which is expected to provide new treatment strategies for LGG patients with different MiAS.
Collapse
Affiliation(s)
- Jingyi Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Lei Shen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Jiabin Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Ji Wu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Chuqiao Yue
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Tiansheng Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Songshan Chai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Yuankun Cai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Dongyuan Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Yu Lei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Jingwei Zhao
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Yixuan Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Zhimin Mei
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China
| | - Nanxiang Xiong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, No.169, Donghu Road, Wuhan, 430071, Hubei, China.
| |
Collapse
|
14
|
Niu X, Chang T, Zhang Y, Liu Y, Yang Y, Mao Q. Variable screening and model construction for prognosis of elderly patients with lower-grade gliomas based on LASSO-Cox regression: a population-based cohort study. Front Immunol 2024; 15:1447879. [PMID: 39324140 PMCID: PMC11422072 DOI: 10.3389/fimmu.2024.1447879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background This study aimed to identify prognostic factors for survival and develop a prognostic nomogram to predict the survival probability of elderly patients with lower-grade gliomas (LGGs). Methods Elderly patients with histologically confirmed LGG were recruited from the Surveillance, Epidemiology, and End Results (SEER) database. These individuals were randomly allocated to the training and validation cohorts at a 2:1 ratio. First, Kaplan-Meier survival analysis and subgroup analysis were performed. Second, variable screening of all 13 variables and a comparison of predictive models based on full Cox regression and LASSO-Cox regression analyses were performed, and the key variables in the optimal model were selected to construct prognostic nomograms for OS and CSS. Finally, a risk stratification system and a web-based dynamic nomogram were constructed. Results A total of 2307 elderly patients included 1220 males and 1087 females, with a median age of 72 years and a mean age of 73.30 ± 6.22 years. Among them, 520 patients (22.5%) had Grade 2 gliomas, and 1787 (77.5%) had Grade 3 gliomas. Multivariate Cox regression analysis revealed four independent prognostic factors (age, WHO grade, surgery, and chemotherapy) that were used to construct the full Cox model. In addition, LASSO-Cox regression analysis revealed five prognostic factors (age, WHO grade, surgery, radiotherapy, and chemotherapy), and a LASSO model was constructed. A comparison of the two models revealed that the LASSO model with five variables had better predictive performance than the full Cox model with four variables. Ultimately, five key variables based on LASSO-Cox regression were utilized to develop prognostic nomograms for predicting the 1-, 2-, and 5-year OS and CSS rates. The nomograms exhibited relatively good predictive ability and clinical utility. Moreover, the risk stratification system based on the nomograms effectively divided patients into low-risk and high-risk subgroups. Conclusion Variable screening based on LASSO-Cox regression was used to determine the optimal prediction model in this study. Prognostic nomograms could serve as practical tools for predicting survival probabilities, categorizing these patients into different mortality risk subgroups, and developing personalized decision-making strategies for elderly patients with LGGs. Moreover, the web-based dynamic nomogram could facilitate its use in the clinic.
Collapse
Affiliation(s)
| | | | | | - Yanhui Liu
- Department of Neurosurgery, Neurosurgery Research Laboratory, and West China Glioma Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Yang
- Department of Neurosurgery, Neurosurgery Research Laboratory, and West China Glioma Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qing Mao
- Department of Neurosurgery, Neurosurgery Research Laboratory, and West China Glioma Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Wang W, Wang Y, Meng W, Guo E, He H, Huang G, He W, Wu Y. Prediction of Glioma enhancement pattern using a MRI radiomics-based model. Medicine (Baltimore) 2024; 103:e39512. [PMID: 39252245 PMCID: PMC11384064 DOI: 10.1097/md.0000000000039512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Contrast-MRI scans carry risks associated with the chemical contrast agents. Accurate prediction of enhancement pattern of gliomas has potential in avoiding contrast agent administration to patients. This study aimed to develop a machine learning radiomics model that can accurately predict enhancement pattern of gliomas based on T2 fluid attenuated inversion recovery images. A total of 385 cases of pathologically-proven glioma were retrospectively collected with preoperative magnetic resonance T2 fluid attenuated inversion recovery images, which were divided into enhancing and non-enhancing groups. Predictive radiomics models based on machine learning with 6 different classifiers were established in the training cohort (n = 201), and tested both in the internal validation cohort (n = 85) and the external validation cohort (n = 99). Receiver-operator characteristic curve was used to assess the predictive performance of these radiomics models. This study demonstrated that the radiomics model comprising of 15 features using the Gaussian process as a classifier had the highest predictive performance in both the training cohort and the internal validation cohort, with the area under the curve being 0.88 and 0.80, respectively. This model showed an area under the curve, sensitivity, specificity, positive predictive value and negative predictive value of 0.81, 0.98, 0.61, 0.82, 0.76 and 0.96, respectively, in the external validation cohort. This study suggests that the T2-FLAIR-based machine learning radiomics model can accurately predict enhancement pattern of glioma.
Collapse
Affiliation(s)
- Wen Wang
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Yu Wang
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - WenYi Meng
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - ErJia Guo
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - HuiShan He
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - GuangLong Huang
- Department of Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - WenLe He
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - YuanKui Wu
- Department of Medical Imaging, Nanfang Hospital, Southern Medical University, Guangzhou, China
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China
| |
Collapse
|
16
|
Schiff D. Low-Grade Gliomas: A New Mutation, New Targeted Therapy, and Many Questions. Neurology 2024; 103:e209688. [PMID: 39008801 DOI: 10.1212/wnl.0000000000209688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024] Open
Abstract
The discovery in 2008 that many adult gliomas harbor a hitherto unknown mutation in the metabolic gene isocitrate dehydrogenase (IDH) initiated revolutionary advances in our understanding of the biology, and correspondingly our classification, of gliomas. IDH mutations are found in most nonglioblastoma adult gliomas and portend a better prognosis. Massive efforts have unraveled many of the pleiotropic cellular effects of these mutations and spawned several lines of investigation to target the effect to therapeutic benefit. In this article are reviewed the implications of the IDH mutation in gliomas, in particular focusing on recent studies that have culminated in a rare positive phase 3 trial in these generally refractory tumors.
Collapse
Affiliation(s)
- David Schiff
- From the Departments of Neurology, Neurological Surgery, and Medicine, University of Virginia Health System
| |
Collapse
|
17
|
Wang L, Zheng Z, Zheng J, Zhang G, Wang Z. The Potential Significance of the EMILIN3 Gene in Augmenting the Aggressiveness of Low-Grade Gliomas is Noteworthy. Cancer Manag Res 2024; 16:711-730. [PMID: 38952353 PMCID: PMC11215280 DOI: 10.2147/cmar.s463694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024] Open
Abstract
Purpose Low-grade gliomas (LGG) are common brain tumors with high mortality rates. Cancer cell invasion is a significant factor in tumor metastasis. Novel biomarkers are urgently needed to predict LGG prognosis effectively. Methods The data for LGG were obtained from the Bioinformatics database. A consensus clustering analysis was performed to identify molecular subtypes linked with invasion in LGG. Differential expression analysis was performed to identify differentially expressed genes (DEGs) between the identified clusters. Enrichment analyses were then conducted to explore the function for DEGs. Prognostic signatures were placed, and their predictive power was assessed. Furthermore, the invasion-related prognostic signature was validated using the CGGA dataset. Subsequently, clinical specimens were procured in order to validate the expression levels of the distinct genes examined in this research, and to further explore the impact of these genes on the glioma cell line LN229 and HS-683. Results Two invasion-related molecular subtypes of LGG were identified, and we sifted 163 DEGs between them. The enrichment analyses indicated that DEGs are mainly related to pattern specification process. Subsequently, 10 signature genes (IGF2BP2, SRY, CHI3L1, IGF2BP3, MEOX2, ABCC3, HOXC4, OTP, METTL7B, and EMILIN3) were sifted out to construct a risk model. Besides, the survival (OS) in the high-risk group was lower. The performance of the risk model was verified. Furthermore, a highly reliable nomogram was generated. Cellular experiments revealed the ability to promote cell viability, value-addedness, migratory ability, invasive ability, and colony-forming ability of the glioma cell line LN229 and HS-683. The qRT-PCR analysis of clinical glioma samples showed that these 10 genes were expressed at higher levels in high-grade gliomas than in low-grade gliomas, suggesting that these genes are associated with poor prognosis of gliomas. Conclusion Our study sifted out ten invasion-related biomarkers of LGG, providing a reference for treatments and prognostic prediction in LGG.
Collapse
Affiliation(s)
- Li`ao Wang
- Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, 300203, People’s Republic of China
| | - Zhiming Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Jia Zheng
- Department of Neurosurgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People’s Republic of China
| | - Guifeng Zhang
- Department of Neurology, Liaocheng People’s Hospital, Liaocheng, 252004, People’s Republic of China
| | - Zheng Wang
- Department of Neurosurgery, Liaocheng Traditional Chinese Medicine Hospital, Liaocheng, 252000, People’s Republic of China
| |
Collapse
|
18
|
Gue R, Lakhani DA. The 2021 World Health Organization Central Nervous System Tumor Classification: The Spectrum of Diffuse Gliomas. Biomedicines 2024; 12:1349. [PMID: 38927556 PMCID: PMC11202067 DOI: 10.3390/biomedicines12061349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The 2021 edition of the World Health Organization (WHO) classification of central nervous system tumors introduces significant revisions across various tumor types. These updates, encompassing changes in diagnostic techniques, genomic integration, terminology, and grading, are crucial for radiologists, who play a critical role in interpreting brain tumor imaging. Such changes impact the diagnosis and management of nearly all central nervous system tumor categories, including the reclassification, addition, and removal of specific tumor entities. Given their pivotal role in patient care, radiologists must remain conversant with these revisions to effectively contribute to multidisciplinary tumor boards and collaborate with peers in neuro-oncology, neurosurgery, radiation oncology, and neuropathology. This knowledge is essential not only for accurate diagnosis and staging, but also for understanding the molecular and genetic underpinnings of tumors, which can influence treatment decisions and prognostication. This review, therefore, focuses on the most pertinent updates concerning the classification of adult diffuse gliomas, highlighting the aspects most relevant to radiological practice. Emphasis is placed on the implications of new genetic information on tumor behavior and imaging findings, providing necessary tools to stay abreast of advancements in the field. This comprehensive overview aims to enhance the radiologist's ability to integrate new WHO classification criteria into everyday practice, ultimately improving patient outcomes through informed and precise imaging assessments.
Collapse
Affiliation(s)
- Racine Gue
- Department of Neuroradiology, West Virginia University, Morgantown, WV 26506, USA
| | - Dhairya A. Lakhani
- Department of Neuroradiology, West Virginia University, Morgantown, WV 26506, USA
- Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
19
|
Chen X, Peng YN, Cheng FL, Cao D, Tao AY, Chen J. Survival Analysis of Patients Undergoing Intraoperative Contrast-enhanced Ultrasound in the Surgical Treatment of Malignant Glioma. Curr Med Sci 2024; 44:399-405. [PMID: 38632142 DOI: 10.1007/s11596-024-2840-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 01/02/2024] [Indexed: 04/19/2024]
Abstract
OBJECTIVE Complete resection of malignant gliomas is often challenging. Our previous study indicated that intraoperative contrast-enhanced ultrasound (ICEUS) could aid in the detection of residual tumor remnants and the total removal of brain lesions. This study aimed to investigate the survival rates of patients undergoing resection with or without the use of ICEUS and to assess the impact of ICEUS on the prognosis of patients with malignant glioma. METHODS A total of 64 patients diagnosed with malignant glioma (WHO grade HI and IV) who underwent surgery between 2012 and 2018 were included. Among them, 29 patients received ICEUS. The effects of ICEUS on overall survival (OS) and progression-free survival (PFS) of patients were evaluated. A quantitative analysis was performed to compare ICEUS parameters between gliomas and the surrounding tissues. RESULTS The ICEUS group showed better survival rates both in OS and PFS than the control group. The univariate analysis revealed that age, pathology and ICEUS were significant prognostic factors for PFS, with only age being a significant prognostic factor for OS. In multivariate analysis, age and ICEUS were significant prognostic factors for both OS and PFS. The quantitative analysis showed that the intensity and transit time of microbubbles reaching the tumors were significantly different from those of microbubbles reaching the surrounding tissue. CONCLUSION ICEUS facilitates the identification of residual tumors. Age and ICEUS are prognostic factors for malignant glioma surgery, and use of ICEUS offers a better prognosis for patients with malignant glioma.
Collapse
Affiliation(s)
- Xu Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Ya-Ni Peng
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fang-Ling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dan Cao
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - An-Yu Tao
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Jian Chen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
20
|
Zhang F, Lv M, He Y. Identification of a novel disulfideptosis-related gene signature for prognostic implication in lower-grade gliomas. Aging (Albany NY) 2024; 16:6054-6067. [PMID: 38546389 PMCID: PMC11042955 DOI: 10.18632/aging.205688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 02/20/2024] [Indexed: 04/23/2024]
Abstract
Lower-grade gliomas (GBMLGG) are common, fatal, and difficult-to-treat cancers. The current treatment choices have impressive efficacy constraints. As a result, the development of effective treatments and the identification of new therapeutic targets are urgent requirements. Disulfide metabolism is the cause of the non-apoptotic programmed cell death known as disulfideptosis, which was only recently discovered. The mRNA expression data and related clinical information of GBMLGG patients downloaded from public databases were used in this study to investigate the prognostic significance of genes involved in disulfideptosis. In the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) cohort, our findings showed that many disulfidptosis-related genes were expressed differently in normal and GBMLGG tissues. It was discovered that IQ motif-containing GTPase-activating protein 1 (IQGAP1) is a key gene that influences the outcome of GBMLGG. Besides, a nomogram model was built to foresee the visualization of GBMLGG patients. In addition, in vivo and in vitro validation of IQGAP1's cancer-promoting function was done. In conclusion, we discovered a gene signature associated with disulfideptosis that can effectively predict OS in GBMLGG patients. As a result, treating disulfideptosis may be a viable alternative for GBMLGG patients.
Collapse
Affiliation(s)
- Fuqiang Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Meihong Lv
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yi He
- Department of Urology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
21
|
Yang J, Shen L, Yang J, Qu Y, Gong C, Zhou F, Liu Y, Luo M, Zhao L. Complement and coagulation cascades are associated with prognosis and the immune microenvironment of lower-grade glioma. Transl Cancer Res 2024; 13:112-136. [PMID: 38410234 PMCID: PMC10894340 DOI: 10.21037/tcr-23-906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 11/29/2023] [Indexed: 02/28/2024]
Abstract
Background Abnormal coagulation is a common feature of glioma. There is a strong correlation between coagulation and the complement system, named complement and coagulation cascades (CCC). However, the role of CCC genes in lower-grade glioma (LGG) remains unclear. This study aimed to investigate the role of CCC genes in LGG. Methods In total, 5,628 differential expressed genes were identified between 498 LGG tissues from The Cancer Genome Atlas (TCGA) and 207 normal brain tissues from Genotype-Tissue Expression Project (GTEx). Among them, 20 overlapped CCC genes were identified as differentially expressed CCC genes. Then, comprehensive bioinformatics analysis was used to investigate the role of CCC genes in LGG; 271 LGG tissues from the Chinese Glioma Genome Atlas (CGGA) were used as the validation dataset. Cell Counting Kit-8 (CCK8) proliferation assay, colony formation assay, and wound healing assay were conducted to explore the anti-glioma effect of the sensitive drugs we predicted. Results We constructed a risk signature consisting of six CCC genes, including F2R, SERPINA1, TFPI, C1QC, C2, and C3AR1. The CCC gene-based risk signature could accurately predict the prognosis of patients with LGG. In addition, we found that the JAK-STAT, NOD-like receptor, Notch, PI3K-Akt, and Rap1 signaling pathways might be activated and had crosstalk with CCC in the high-risk group. Our findings analyses demonstrated that samples in high- and low-risk groups had different immune landscapes. Moreover, patients in the high-risk group might have greater resistance to immunotherapy. We validated the accuracy of the risk signature in predicting immunotherapy response in two public immunotherapy cohorts, GSE135222 and GSE78220. By means of oncoPredict, MG-132, BMS-536924, PLX-4720, and AZD6482 were identified as potential sensitive drugs for high-risk patients, of which MG-132 was particularly recommended for high-risk patients. We performed in vitro experiments to explore the anti-glioma effect of MG-132, and the results demonstrated MG-132 could inhibit the proliferation and migration of glioma cells. Conclusions Our findings show that CCC genes are associated with the prognosis and immune infiltration of LGG and provide possible immunotherapeutic and novel chemotherapeutic strategies for patients with LGG based on the risk signature.
Collapse
Affiliation(s)
- Jianmei Yang
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, China
| | - Lei Shen
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jingyi Yang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yinzong Qu
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, China
| | - Chengxian Gong
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, China
| | - Fang Zhou
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, China
| | - Yuhan Liu
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, China
| | - Ming Luo
- Department of Neurosurgery, Wuhan No. 1 Hospital, Wuhan, China
| | - Li Zhao
- Department of Gastroenterology, Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan, China
| |
Collapse
|
22
|
何 慧, 郭 二, 蒙 文, 王 彧, 王 雯, 何 文, 吴 元, 阳 维. [Predicting cerebral glioma enhancement pattern using a machine learning-based magnetic resonance imaging radiomics model]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:194-200. [PMID: 38293992 PMCID: PMC10878898 DOI: 10.12122/j.issn.1673-4254.2024.01.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Indexed: 02/01/2024]
Abstract
OBJECTIVE To establish a machine learning radiomics model that can accurately predict MRI enhancement patterns of glioma based on T2 fluid attenuated inversion recovery (T2-FLAIR) images for optimizing the workflow of magnetic resonance imaging (MRI) examinations of glioma patients. METHODS We retrospectively collected preoperative MR T2-FLAIR images from 385 patients with pathologically confirmed glioma, who were divided into enhancing and non-enhancing groups according to the enhancement pattern. Predictive radiomics models were established using Gaussian Process, Linear Regression, Linear Regression-Least absolute shrinkage and selection operator, Support Vector Machine, Linear Discriminant Analysis or Naive Bayes as the classifiers in the training cohort (n=201)and tested both in the internal (n=85) and external validation cohorts (n=99). The receiver-operating characteristic curve was used to assess the predictive performance of the models. RESULTS The predictive model constructed based on 15 radiomics features using Gaussian Process as the classifier had the best predictive performance in both the training cohort and the internal validation cohort, with areas under the curve (AUC) of 0.88 (95% CI: 0.81-0.94) and 0.80 (95% CI: 0.71-0.88), respectively. In the external validation cohort, the model showed an AUC of 0.81 (95% CI: 0.71-0.90) with sensitivity, specificity, positive predictive value and negative predictive value of 0.98, 0.61, 0.76 and 0.96, respectively. CONCLUSION The T2-FLAIR-based machine learning radiomics model can accurately predict the enhancement pattern of gliomas on MRI.
Collapse
Affiliation(s)
- 慧珊 何
- 南方医科大学南方医院(第一临床医学院),广东 广州 510515Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - 二嘉 郭
- 南方医科大学南方医院(第一临床医学院),广东 广州 510515Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - 文仪 蒙
- 南方医科大学南方医院(第一临床医学院),广东 广州 510515Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - 彧 王
- 南方医科大学南方医院(第一临床医学院),广东 广州 510515Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - 雯 王
- 南方医科大学南方医院(第一临床医学院),广东 广州 510515Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - 文乐 何
- 广东三九脑科医院影像中心,广东 广州 510515Medical Imaging Center, Guangdong 999 Brain Hospital, Guangzhou 510515, China
| | - 元魁 吴
- 南方医科大学南方医院(第一临床医学院),广东 广州 510515Nanfang Hospital/First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - 维 阳
- 南方医科大学生物医学工程学院,广东 广州 510515School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
23
|
Xu D, Li P, Zhang C, Shen Y, Cai J, Wei Q, Cao M, Xu Z, Wu D, Wang H, Bi X, Wang B, Li K. Development of an m6A-Related lncRNAs Signature Predicts Tumor Stemness and Prognosis for Low-Grade Glioma Patients. Stem Cells Int 2024; 2024:2062283. [PMID: 38229597 PMCID: PMC10791469 DOI: 10.1155/2024/2062283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 10/25/2023] [Accepted: 11/22/2023] [Indexed: 01/18/2024] Open
Abstract
Background Growing evidence has revealed that m6A modification of long noncoding RNAs (lncRNAs) dynamically controls tumor stemness and tumorigenesis-related processes. However, the prognostic significance of m6A-related lncRNAs and their associations with stemness in low-grade glioma (LGG) remain to be clarified. Methods A multicenter transcriptome analysis of lncRNA expression in 1,247 LGG samples was performed in this study. The stemness landscape of LGG tumors was presented and associations with clinical features were revealed. The m6A-related lncRNAs were identified between stemness groups and were further prioritized via least absolute shrinkage and selection operator Cox regression analysis. A risk score model based on m6A-related lncRNAs was constructed and validated in external LGG datasets. Results Based on the expression of LINC02984, PFKP-DT, and CRNDE, a risk model and nomogram were constructed; they successfully predicted the survival of patients and were extended to external datasets. Significant correlations were observed between the risk score and tumor stemness. Moreover, patients in different risk groups exhibited distinct tumor immune microenvironments and immune signatures. We finally provided several potential compounds suitable for specific risk groups, which may aid in LGG treatment. Conclusions This novel signature presents noteworthy value in the prediction of prognosis and stemness status for LGG patients and will foster future research on the development of clinical regimens.
Collapse
Affiliation(s)
- Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Peihu Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Chunrui Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100020, China
| | - Yutong Shen
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Jiale Cai
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Qingchen Wei
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Meng Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Zhizhou Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Deng Wu
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Hong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Bo Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Hainan General Hospital, Hainan Affiliated Hospital of Hainan Medical University, Haikou 571199, China
| |
Collapse
|
24
|
Bhatia A, Moreno R, Reiner AS, Nandakumar S, Walch HS, Thomas TM, Nicklin PJ, Choi Y, Skakodub A, Malani R, Prabhakaran V, Tiwari P, Diaz M, Panageas KS, Mellinghoff IK, Bale TA, Young RJ. Tumor Volume Growth Rates and Doubling Times during Active Surveillance of IDH-mutant Low-Grade Glioma. Clin Cancer Res 2024; 30:106-115. [PMID: 37910594 PMCID: PMC10841595 DOI: 10.1158/1078-0432.ccr-23-1180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/03/2023] [Accepted: 10/30/2023] [Indexed: 11/03/2023]
Abstract
PURPOSE Isocitrate dehydrogenase-mutant (IDH-mt) gliomas are incurable primary brain tumors characterized by a slow-growing phase over several years followed by a rapid-growing malignant phase. We hypothesized that tumor volume growth rate (TVGR) on MRI may act as an earlier measure of clinical benefit during the active surveillance period. EXPERIMENTAL DESIGN We integrated three-dimensional volumetric measurements with clinical, radiologic, and molecular data in a retrospective cohort of IDH-mt gliomas that were observed after surgical resection in order to understand tumor growth kinetics and the impact of molecular genetics. RESULTS Using log-linear mixed modeling, the entire cohort (n = 128) had a continuous %TVGR per 6 months of 10.46% [95% confidence interval (CI), 9.11%-11.83%] and a doubling time of 3.5 years (95% CI, 3.10-3.98). High molecular grade IDH-mt gliomas, defined by the presence of homozygous deletion of CDKN2A/B, had %TVGR per 6 months of 19.17% (95% CI, 15.57%-22.89%) which was significantly different from low molecular grade IDH-mt gliomas with a growth rate per 6 months of 9.54% (95% CI, 7.32%-11.80%; P < 0.0001). Using joint modeling to comodel the longitudinal course of TVGR and overall survival, we found each one natural logarithm tumor volume increase resulted in more than a 3-fold increase in risk of death (HR = 3.83; 95% CI, 2.32-6.30; P < 0.0001). CONCLUSIONS TVGR may be used as an earlier measure of clinical benefit and correlates well with the WHO 2021 molecular classification of gliomas and survival. Incorporation of TVGR as a surrogate endpoint into future prospective studies of IDH-mt gliomas may accelerate drug development.
Collapse
Affiliation(s)
- Ankush Bhatia
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, New York
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Raquel Moreno
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Anne S Reiner
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Subhiksha Nandakumar
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Henry S Walch
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Teena M Thomas
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Philip J Nicklin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Ye Choi
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Anna Skakodub
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Rachna Malani
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Vivek Prabhakaran
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Pallavi Tiwari
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI
| | - Maria Diaz
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Katherine S. Panageas
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York City, New York
| | - Robert J Young
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, New York
| |
Collapse
|
25
|
Chen L, Zhang J, Chi C, Che W, Dong G, Wang J, Du Y, Wang R, Zhu Z, Tian J, Ji N, Chen X, Li D. Lower-grade gliomas surgery guided by GRPR-targeting PET/NIR dual-modality image probe: a prospective and single-arm clinical trial. Theranostics 2024; 14:819-829. [PMID: 38169486 PMCID: PMC10758047 DOI: 10.7150/thno.91554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/08/2023] [Indexed: 01/05/2024] Open
Abstract
Purpose: Lower-grade gliomas (LGGs) are a group of infiltrative growing glial brain tumors characterized by intricate intratumoral heterogeneity and subtle visual appearance differences from non-tumor tissue, which can lead to errors in pathologic tissue sampling. Although 5-ALA fluorescence has been an essential method for visualizing gliomas during surgery, its effectiveness is limited in the case of LGGs due to low sensitivity. Therefore, we developed a novel PET/NIR dual-modality image probe targeting gastrin-releasing peptide receptor (GRPR) in glioma cells to enhance tumor visualization and improve the accuracy of sampling. Methods: A prospective, non-randomized, single-center feasibility clinical trial (NCT03407781) was conducted in the referral center from October 21, 2016, to August 17, 2018. Consecutive enrollment included patients suspected of having LGGs and considered suitable candidates for surgical removal. Group 1 comprised ten patients who underwent preoperative 68Ga-IRDye800CW-BBN PET/MRI assessment followed by intraoperative fluorescence-guided surgery. Group 2 included 42 patients who underwent IRDye800CW-BBN fluorescence-guided surgery. The primary endpoints were the predictive value of preoperative PET imaging for intraoperative fluorescence and the sensitivity and specificity of fluorescence-guided sampling. Results: Thirty-nine patients were included in the in-depth analysis of endpoints, with 25 (64.1%) exhibiting visible fluorescence, while 14 (35.9%) did not. The preoperative positive PET uptake exhibited a greater accuracy in predicting intraoperative fluorescence compared to MRI enhancement (100% [10/10] vs. 87.2% [34/39]). A total of 125 samples were harvested during surgery. Compared with pathology, subjective fluorescence intensity showed a sensitivity of 88.6% and a specificity of 88.2% in identifying WHO grade III samples. For WHO grade II samples, the sensitivity and specificity of fluorescence were 54.7% and 88.2%, respectively. Conclusion: This study has demonstrated the feasibility of the novel dual-modality imaging technique for integrated pre- and intraoperative targeted imaging via the same molecular receptor in surgeries for LGGs. The PET/NIR dual-modality probe exhibits promise for preoperative surgical planning in fluorescence-guided surgery and provides greater accuracy in guiding tumor sampling compared to 5-ALA in patients with LGGs.
Collapse
Affiliation(s)
- Liangpeng Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Jingjing Zhang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chongwei Chi
- Key Laboratory of Molecular Imaging, Chinese Academy of Science, Beijing, China
| | - Wenqiang Che
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Gehong Dong
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Junmei Wang
- Department of Pathology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yanru Du
- Department of Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Rongxi Wang
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Zhaohui Zhu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Chinese Academy of Science, Beijing, China
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China
| |
Collapse
|
26
|
Zhu L, Yuan F, Wang X, Zhu R, Guo W. Cuproptosis-related gene-located DNA methylation in lower-grade glioma: Prognosis and tumor microenvironment. Cancer Biomark 2024; 40:185-198. [PMID: 38578883 PMCID: PMC11307024 DOI: 10.3233/cbm-230341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/01/2024] [Indexed: 04/07/2024]
Abstract
Cuproptosis a novel copper-dependent cell death modality, plays a crucial part in the oncogenesis, progression and prognosis of tumors. However, the relationships among DNA-methylation located in cuproptosis-related genes (CRGs), overall survival (OS) and the tumor microenvironment remain undefined. In this study, we systematically assessed the prognostic value of CRG-located DNA-methylation for lower-grade glioma (LGG). Clinical and molecular data were sourced from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. We employed Cox hazard regression to examine the associations between CRG-located DNA-methylation and OS, leading to the development of a prognostic signature. Kaplan-Meier survival and time-dependent receiver operating characteristic (ROC) analyses were utilized to gauge the accuracy of the signature. Gene Set Enrichment Analysis (GSEA) was applied to uncover potential biological functions of differentially expressed genes between high- and low-risk groups. A three CRG-located DNA-methylation prognostic signature was established based on TCGA database and validated in GEO dataset. The 1-year, 3-year, and 5-year area under the curve (AUC) of ROC curves in the TCGA dataset were 0.884, 0.888, and 0.859 while those in the GEO dataset were 0.943, 0.761 and 0.725, respectively. Cox-regression-analyses revealed the risk signature as an independent risk factor for LGG patients. Immunogenomic profiling suggested that the signature was associated with immune infiltration level and immune checkpoints. Functional enrichment analysis indicated differential enrichment in cell differentiation in the hindbrain, ECM receptor interactions, glycolysis and reactive oxygen species pathway across different groups. We developed and verified a novel CRG-located DNA-methylation signature to predict the prognosis in LGG patients. Our findings emphasize the potential clinical implications of CRG-located DNA-methylation indicating that it may serve as a promising therapeutic target for LGG patients.
Collapse
Affiliation(s)
- Liucun Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Fa Yuan
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Xue Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Rui Zhu
- School of Life Sciences, Shanghai University, Shanghai, China
- Department of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, Shanghai, China
| | - Wenna Guo
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Willems YCP, Vaassen F, Zegers CML, Postma AA, Jaspers J, Romero AM, Unipan M, Swinnen A, Anten M, Teernstra O, Compter I, van Elmpt W, Eekers DBP. Anatomical changes in resection cavity during brain radiotherapy. J Neurooncol 2023; 165:479-486. [PMID: 38095775 DOI: 10.1007/s11060-023-04505-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 12/29/2023]
Abstract
BACKGROUND AND PURPOSE Brain tumors are in general treated with a maximal safe resection followed by radiotherapy of remaining tumor including the resection cavity (RC) and chemotherapy. Anatomical changes of the RC during radiotherapy can have impact on the coverage of the target volume. The aim of the current study was to quantify the potential changes of the RC and to identify risk factors for RC changes. MATERIALS AND METHODS Sixteen patients treated with pencil beam scanning proton therapy between October 2019 and April 2020 were retrospectively analyzed. The RC was delineated on pre-treatment computed tomography (CT) and magnetic resonance imaging, and weekly CT-scans during treatment. Isotropic expansions were applied to the pre-treatment RC (1-5 mm). The percentage of volume of the RC during treatment within the expanded pre-treatment volumes was quantified. Potential risk factors (volume of RC, time interval surgery-radiotherapy and relationship of RC to the ventricles) were evaluated using Spearman's rank correlation coefficient. RESULTS The average variation in relative RC volume during treatment was 26.1% (SD 34.6%). An expansion of 4 mm was required to cover > 95% of the RC volume in > 90% of patients. There was a significant relationship between the absolute volume of the pre-treatment RC and the volume changes during treatment (Spearman's ρ = - 0.644; p = 0.007). CONCLUSION RCs are dynamic after surgery. Potentially, an additional margin in brain cancer patients with an RC should be considered, to avoid insufficient target coverage. Future research on local recurrence patterns is recommended.
Collapse
Affiliation(s)
- Yves C P Willems
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Femke Vaassen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands.
| | - Catharina M L Zegers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Alida A Postma
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Jaap Jaspers
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Alejandra Méndez Romero
- Department of Radiation Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Mirko Unipan
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Ans Swinnen
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Monique Anten
- Department of Neurology, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Onno Teernstra
- Department of Neurosurgery, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Inge Compter
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Wouter van Elmpt
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Daniëlle B P Eekers
- Department of Radiation Oncology (Maastro), GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, Maastricht, The Netherlands
| |
Collapse
|
28
|
Qin H, Abulaiti A, Maimaiti A, Abulaiti Z, Fan G, Aili Y, Ji W, Wang Z, Wang Y. Integrated machine learning survival framework develops a prognostic model based on inter-crosstalk definition of mitochondrial function and cell death patterns in a large multicenter cohort for lower-grade glioma. J Transl Med 2023; 21:588. [PMID: 37660060 PMCID: PMC10474752 DOI: 10.1186/s12967-023-04468-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 08/24/2023] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND Lower-grade glioma (LGG) is a highly heterogeneous disease that presents challenges in accurately predicting patient prognosis. Mitochondria play a central role in the energy metabolism of eukaryotic cells and can influence cell death mechanisms, which are critical in tumorigenesis and progression. However, the prognostic significance of the interplay between mitochondrial function and cell death in LGG requires further investigation. METHODS We employed a robust computational framework to investigate the relationship between mitochondrial function and 18 cell death patterns in a cohort of 1467 LGG patients from six multicenter cohorts worldwide. A total of 10 commonly used machine learning algorithms were collected and subsequently combined into 101 unique combinations. Ultimately, we devised the mitochondria-associated programmed cell death index (mtPCDI) using machine learning models that exhibited optimal performance. RESULTS The mtPCDI, generated by combining 18 highly influential genes, demonstrated strong predictive performance for prognosis in LGG patients. Biologically, mtPCDI exhibited a significant correlation with immune and metabolic signatures. The high mtPCDI group exhibited enriched metabolic pathways and a heightened immune activity profile. Of particular importance, our mtPCDI maintains its status as the most potent prognostic indicator even following adjustment for potential confounding factors, surpassing established clinical models in predictive strength. CONCLUSION Our utilization of a robust machine learning framework highlights the significant potential of mtPCDI in providing personalized risk assessment and tailored recommendations for metabolic and immunotherapy interventions for individuals diagnosed with LGG. Of particular significance, the signature features highly influential genes that present further prospects for future investigations into the role of PCD within mitochondrial function.
Collapse
Affiliation(s)
- Hu Qin
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Aimitaji Abulaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Aierpati Maimaiti
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Zulihuma Abulaiti
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, Xinjiang, China
| | - Guofeng Fan
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Yirizhati Aili
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Wenyu Ji
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Zengliang Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China
| | - Yongxin Wang
- Department of Neurosurgery, Neurosurgery Centre, The First Affiliated Hospital of Xinjiang Medical University, No. 137, South Liyushan Road, Xinshi District, Urumqi City, 830054, Xinjiang, China.
| |
Collapse
|
29
|
Jiang H, Zhu Q, Wang X, Li M, Shen S, Yang C, Zhao X, Li M, Ma G, Zhao X, Chen X, Yang J, Lin S. Characterization and clinical implications of different malignant transformation patterns in diffuse low-grade gliomas. Cancer Sci 2023; 114:3708-3718. [PMID: 37332121 PMCID: PMC10475770 DOI: 10.1111/cas.15889] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/08/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023] Open
Abstract
Malignant transformation (MT) of low-grade gliomas (LGGs) to a higher-grade variant seems inevitable, yet it remains unclear which LGG patients will progress to grade 3 or even directly to grade 4 after receiving a long course of treatment. To elucidate this, we conducted a retrospective cohort study based on 229 adults with recurrent LGG. Our study aimed to disclose the characteristics of different MT patterns and to build predictive models for patients with LGG. Patients were allocated into group 2-2 (n = 81, 35.4%), group 2-3 (n = 91, 39.7%), and group 2-4 (n = 57, 24.9%), based on their MT patterns. Patients who underwent MT showed lower Karnofsky performance scale (KPS) scores, larger tumor sizes, smaller extents of resection (EOR), higher Ki-67 indices, lower rates of 1p/19q codeletion, but higher rates of subventricular involvement, radiotherapy, chemotherapy, astrocytoma, and post-progression enhancement (PPE) compared with those in group 2-2 (p < 0.01). On multivariate logistic regression, 1p/19q codeletion, Ki-67 index, radiotherapy, EOR, and KPS score were independently associated with MT (p < 0.05). Survival analyses demonstrated that patients in group 2-2 had the longest survival, followed by group 2-3 and then group 2-4 (p < 0.0001). Based on these independent parameters, we constructed a nomogram model that exhibited superior potential (sensitivity: 0.864, specificity: 0.814, and accuracy: 0.843) compared with PPE in early prediction of MT. Combining the factors of 1p/19q codeletion, Ki-67 index, radiotherapy, EOR, and KPS score that were presented at initial diagnosis could precisely forecast the subsequent MT patterns of patients with LGG.
Collapse
Affiliation(s)
- Haihui Jiang
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Qinghui Zhu
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Xijie Wang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Mingxiao Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Shaoping Shen
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Chuanwei Yang
- Department of Neurosurgery, Henan Provincial People's HospitalPeople's Hospital of Zhengzhou University, Zhengzhou UniversityZhengzhouChina
| | - Xuzhe Zhao
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Ming Li
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Guofo Ma
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Xiaofang Zhao
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Xiaodong Chen
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Jun Yang
- Department of NeurosurgeryPeking University Third Hospital, Peking UniversityBeijingChina
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
- National Clinical Research Center for Neurological Diseases, Center of Brain TumorBeijing Institute for Brain Disorders and Beijing Key Laboratory of Brain TumorBeijingChina
| |
Collapse
|
30
|
Pan M, Cheng L, Wang Y, Lyu C, Hou C, Zhang Q. Exploration of 2D and 3D-QSAR analysis and docking studies for novel dihydropteridone derivatives as promising therapeutic agents targeting glioblastoma. Front Pharmacol 2023; 14:1249041. [PMID: 37719847 PMCID: PMC10501407 DOI: 10.3389/fphar.2023.1249041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
Background: Dihydropteridone derivatives represent a novel class of PLK1 inhibitors, exhibiting promising anticancer activity and potential as chemotherapeutic drugs for glioblastoma. Objective: The aim of this study is to develop 2D and 3D-QSAR models to validate the anticancer activity of dihydropteridone derivatives and identify optimal structural characteristics for the design of new therapeutic agents. Methods: The Heuristic method (HM) was employed to construct a 2D-linear QSAR model, while the gene expression programming (GEP) algorithm was utilized to develop a 2D-nonlinear QSAR model. Additionally, the CoMSIA approach was introduced to investigate the impact of drug structure on activity. A total of 200 novel anti-glioma dihydropteridone compounds were designed, and their activity levels were predicted using chemical descriptors and molecular field maps. The compounds with the highest activity were subjected to molecular docking to confirm their binding affinity. Results: Within the analytical purview, the coefficient of determination (R2) for the HM linear model is elucidated at 0.6682, accompanied by an R2 cv of 0.5669 and a residual sum of squares (S2) of 0.0199. The GEP nonlinear model delineates coefficients of determination for the training and validation sets at 0.79 and 0.76, respectively. Empirical modeling outcomes underscore the preeminence of the 3D-QSAR model, succeeded by the GEP nonlinear model, whilst the HM linear model manifested suboptimal efficacy. The 3D paradigm evinced an exemplary fit, characterized by formidable Q2 (0.628) and R2 (0.928) values, complemented by an impressive F-value (12.194) and a minimized standard error of estimate (SEE) at 0.160. The most significant molecular descriptor in the 2D model, which included six descriptors, was identified as "Min exchange energy for a C-N bond" (MECN). By combining the MECN descriptor with the hydrophobic field, suggestions for the creation of novel medications were generated. This led to the identification of compound 21E.153, a novel dihydropteridone derivative, which exhibited outstanding antitumor properties and docking capabilities. Conclusion: The development of 2D and 3D-QSAR models, along with the innovative integration of contour maps and molecular descriptors, offer novel concepts and techniques for the design of glioblastoma chemotherapeutic agents.
Collapse
Affiliation(s)
- Meichen Pan
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Lingxue Cheng
- Department of Gastroenterology, 960th Hospital of the Chinese People’s Liberation Army, Jinan, China
| | - Yiguo Wang
- Medical Laboratory Center, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Chunyi Lyu
- First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Chao Hou
- Department of Gastroenterology, 960th Hospital of the Chinese People’s Liberation Army, Jinan, China
| | - Qiming Zhang
- Medical Laboratory Center, Chinese Academy of Traditional Chinese Medicine, Beijing, China
| |
Collapse
|
31
|
Affiliation(s)
- David Schiff
- From the Division of Neuro-Oncology, Department of Neurology, University of Virginia School of Medicine, Charlottesville
| |
Collapse
|
32
|
Picca A, Bruno F, Nichelli L, Sanson M, Rudà R. Advances in molecular and imaging biomarkers in lower-grade gliomas. Expert Rev Neurother 2023; 23:1217-1231. [PMID: 37982735 DOI: 10.1080/14737175.2023.2285472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
INTRODUCTION Lower-grade (grade 2-3) gliomas (LGGs) constitutes a group of primary brain tumors with variable clinical behaviors and treatment responses. Recent advancements in molecular biology have redefined their classification, and novel imaging modalities emerged for the noninvasive diagnosis and follow-up. AREAS COVERED This review comprehensively analyses the current knowledge on molecular and imaging biomarkers in LGGs. Key molecular alterations, such as IDH mutations and 1p/19q codeletion, are discussed for their prognostic and predictive implications in guiding treatment decisions. Moreover, the authors explore theranostic biomarkers for the potential of tailored therapies. Additionally, they also describe the utility of advanced imaging modalities, including widely available techniques, as dynamic susceptibility contrast perfusion-weighted imaging and less validated, emerging approaches, for the noninvasive LGGs characterization and follow-up. EXPERT OPINION The integration of molecular markers enhanced the stratification of LGGs, leading to the new concept of integrated histomolecular classification. While the IDH mutation is an established key prognostic and predictive marker, recent results from IDH inhibitors trials showed its potential value as a theranostic marker. In this setting, advanced MRI techniques such as 2-D-hydroxyglutarate spectroscopy are very promising for the noninvasive diagnosis and monitoring of LGGs. This progress offers exciting prospects for personalized medicine and improved treatment outcomes in LGGs.
Collapse
Affiliation(s)
- Alberto Picca
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Francesco Bruno
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| | - Lucia Nichelli
- Service de Neuroradiologie, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
| | - Marc Sanson
- Service de Neurologie 2 Mazarin, Hôpital Universitaire Pitié-Salpêtrière, AP-HP, Paris, France
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau-Paris Brain Institute-ICM, AP-HP, Paris, France
| | - Roberta Rudà
- Division of Neuro-Oncology, Department of Neuroscience "Rita Levi Montalcini", University and City of Health and Science University Hospital, Turin, Italy
| |
Collapse
|
33
|
Yang W, Wang X, Liu H, Li M, Liu X, Lin N, Hu L, Han R. Electroencephalography characteristics of patients with supratentorial glioma in different consciousness states induced by propofol. Neurosci Lett 2023; 808:137284. [PMID: 37142112 DOI: 10.1016/j.neulet.2023.137284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/24/2023] [Accepted: 04/29/2023] [Indexed: 05/06/2023]
Abstract
Gliomas are the most common primary intracranial malignant tumors. Some of these patients exhibit previously clinically undetected neurological deficits after sedation. The absence of neurophysiological evidence for this phenomenon limits the use of time-sensitive monitoring methods. The study aims to compare differences between glioma patients under sedation and those without intracranial lesions by comparing their EEG features. Twenty-one patients without intracranial tumors and 21 with frontal lobe supratentorial gliomas were enrolled. The EEG power spectrum of the glioma group was comparable to that of the control group for both sides of the brain (P>0.05 for all frequencies). Compared with those without intracranial lesions, the weighted phase lag index (wPLI) in the alpha and beta bands on the non-occupied side decreased. Glioma patients had weaker functional connectivity during sedation than patients without intracranial lesions, manifesting as reduced functional connectivity on the non-occupied side.
Collapse
Affiliation(s)
- Wanning Yang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xinxin Wang
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Haiyang Liu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Muhan Li
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Xiaoyuan Liu
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Nan Lin
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, PR China
| | - Ruquan Han
- Department of Anesthesiology, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
| |
Collapse
|
34
|
Zhang G, Tai P, Fang J, Chen A, Chen X, Cao K. Molecular subtypes based on centrosome-related genes can predict prognosis and therapeutic responsiveness in patients with low-grade gliomas. Front Oncol 2023; 13:1157115. [PMID: 37051542 PMCID: PMC10083401 DOI: 10.3389/fonc.2023.1157115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/07/2023] [Indexed: 03/29/2023] Open
Abstract
BackgroundAbnormalities in centrosome regulatory genes can induce chromosome instability, cell differentiation errors, and tumorigenesis. However, a limited number of comprehensive analyses of centrosome-related genes have been performed in low-grade gliomas (LGG).MethodsLGG data were extracted from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. The ConsensusClusterPlus” R package was used for unsupervised clustering. We constructed a centrosome-related genes (CRGs) signature using a random forest model, lasso Cox model, and multivariate Cox model, and quantified the centrosome-related risk score (centS). The prognostic prediction efficacy of centS was evaluated using a Receiver Operating Characteristic (ROC) curve. Immune cell infiltration and genomic mutational landscapes were evaluated using the ESTIMATE algorithm, single-sample Gene Set Enrichment Analysis (ssGSEA) algorithm, and “maftools” R package, respectively. Differences in clinical features, isocitrate dehydrogenase (IDH) mutation, 1p19q codeletion, O6-methylguanine-DNA methyltransferase promoter (MGMTp) methylation, and response to antitumor therapy between the high- and low-centS groups were explored. “pRRophetic” R packages were used for temozolomide (TMZ) sensitivity analysis. qRT-PCR verified the differential expression of the centrosomal gene team, the core of which is CEP135, between LGG cells and normal cells.ResultsTwo distinct CRG-based clusters were identified using consensus unsupervised clustering analysis. The prognosis, biological characteristics, and immune cell infiltration of the two clusters differed significantly. A well-performing centS signature was developed to predict the prognosis of patients with LGG based on 12 potential CRGs. We found that patients in the high-centS group showed poorer prognosis and lower proportion of IDH mutation and 1p19q codeletion compared to those in the low-centS group. Furthermore, patients in the high-centS group showed higher sensitivity to TMZ, higher tumor mutation burden, and immune cell infiltration. Finally, we identified a centrosomal gene team whose core was CEP135, and verified their differential expression between LGG cells and normal glial cells.ConclusionOur findings reveal a novel centrosome-related signature for predicting the prognosis and therapeutic responsiveness of patients with LGG. This may be helpful for the accurate clinical treatment of LGG.
Collapse
|
35
|
Girardi F, Matz M, Stiller C, You H, Marcos Gragera R, Valkov MY, Bulliard JL, De P, Morrison D, Wanner M, O'Brian DK, Saint-Jacques N, Coleman MP, Allemani C, Hamdi-Chérif M, Kara L, Meguenni K, Regagba D, Bayo S, Cheick Bougadari T, Manraj SS, Bendahhou K, Ladipo A, Ogunbiyi OJ, Somdyala NIM, Chaplin MA, Moreno F, Calabrano GH, Espinola SB, Carballo Quintero B, Fita R, Laspada WD, Ibañez SG, Lima CA, Da Costa AM, De Souza PCF, Chaves J, Laporte CA, Curado MP, de Oliveira JC, Veneziano CLA, Veneziano DB, Almeida ABM, Latorre MRDO, Rebelo MS, Santos MO, Azevedo e Silva G, Galaz JC, Aparicio Aravena M, Sanhueza Monsalve J, Herrmann DA, Vargas S, Herrera VM, Uribe CJ, Bravo LE, Garcia LS, Arias-Ortiz NE, Morantes D, Jurado DM, Yépez Chamorro MC, Delgado S, Ramirez M, Galán Alvarez YH, Torres P, Martínez-Reyes F, Jaramillo L, Quinto R, Castillo J, Mendoza M, Cueva P, Yépez JG, Bhakkan B, Deloumeaux J, Joachim C, Macni J, Carrillo R, Shalkow Klincovstein J, Rivera Gomez R, Perez P, Poquioma E, Tortolero-Luna G, Zavala D, Alonso R, Barrios E, Eckstrand A, Nikiforuk C, Woods RR, Noonan G, Turner D, Kumar E, Zhang B, Dowden JJ, Doyle GP, Saint-Jacques N, Walsh G, Anam A, De P, McClure CA, Vriends KA, Bertrand C, et alGirardi F, Matz M, Stiller C, You H, Marcos Gragera R, Valkov MY, Bulliard JL, De P, Morrison D, Wanner M, O'Brian DK, Saint-Jacques N, Coleman MP, Allemani C, Hamdi-Chérif M, Kara L, Meguenni K, Regagba D, Bayo S, Cheick Bougadari T, Manraj SS, Bendahhou K, Ladipo A, Ogunbiyi OJ, Somdyala NIM, Chaplin MA, Moreno F, Calabrano GH, Espinola SB, Carballo Quintero B, Fita R, Laspada WD, Ibañez SG, Lima CA, Da Costa AM, De Souza PCF, Chaves J, Laporte CA, Curado MP, de Oliveira JC, Veneziano CLA, Veneziano DB, Almeida ABM, Latorre MRDO, Rebelo MS, Santos MO, Azevedo e Silva G, Galaz JC, Aparicio Aravena M, Sanhueza Monsalve J, Herrmann DA, Vargas S, Herrera VM, Uribe CJ, Bravo LE, Garcia LS, Arias-Ortiz NE, Morantes D, Jurado DM, Yépez Chamorro MC, Delgado S, Ramirez M, Galán Alvarez YH, Torres P, Martínez-Reyes F, Jaramillo L, Quinto R, Castillo J, Mendoza M, Cueva P, Yépez JG, Bhakkan B, Deloumeaux J, Joachim C, Macni J, Carrillo R, Shalkow Klincovstein J, Rivera Gomez R, Perez P, Poquioma E, Tortolero-Luna G, Zavala D, Alonso R, Barrios E, Eckstrand A, Nikiforuk C, Woods RR, Noonan G, Turner D, Kumar E, Zhang B, Dowden JJ, Doyle GP, Saint-Jacques N, Walsh G, Anam A, De P, McClure CA, Vriends KA, Bertrand C, Ramanakumar AV, Davis L, Kozie S, Freeman T, George JT, Avila RM, O’Brien DK, Holt A, Almon L, Kwong S, Morris C, Rycroft R, Mueller L, Phillips CE, Brown H, Cromartie B, Ruterbusch J, Schwartz AG, Levin GM, Wohler B, Bayakly R, Ward KC, Gomez SL, McKinley M, Cress R, Davis J, Hernandez B, Johnson CJ, Morawski BM, Ruppert LP, Bentler S, Charlton ME, Huang B, Tucker TC, Deapen D, Liu L, Hsieh MC, Wu XC, Schwenn M, Stern K, Gershman ST, Knowlton RC, Alverson G, Weaver T, Desai J, Rogers DB, Jackson-Thompson J, Lemons D, Zimmerman HJ, Hood M, Roberts-Johnson J, Hammond W, Rees JR, Pawlish KS, Stroup A, Key C, Wiggins C, Kahn AR, Schymura MJ, Radhakrishnan S, Rao C, Giljahn LK, Slocumb RM, Dabbs C, Espinoza RE, Aird KG, Beran T, Rubertone JJ, Slack SJ, Oh J, Janes TA, Schwartz SM, Chiodini SC, Hurley DM, Whiteside MA, Rai S, Williams MA, Herget K, Sweeney C, Kachajian J, Keitheri Cheteri MB, Migliore Santiago P, Blankenship SE, Conaway JL, Borchers R, Malicki R, Espinoza J, Grandpre J, Weir HK, Wilson R, Edwards BK, Mariotto A, Rodriguez-Galindo C, Wang N, Yang L, Chen JS, Zhou Y, He YT, Song GH, Gu XP, Mei D, Mu HJ, Ge HM, Wu TH, Li YY, Zhao DL, Jin F, Zhang JH, Zhu FD, Junhua Q, Yang YL, Jiang CX, Biao W, Wang J, Li QL, Yi H, Zhou X, Dong J, Li W, Fu FX, Liu SZ, Chen JG, Zhu J, Li YH, Lu YQ, Fan M, Huang SQ, Guo GP, Zhaolai H, Wei K, Chen WQ, Wei W, Zeng H, Demetriou AV, Mang WK, Ngan KC, Kataki AC, Krishnatreya M, Jayalekshmi PA, Sebastian P, George PS, Mathew A, Nandakumar A, Malekzadeh R, Roshandel G, Keinan-Boker L, Silverman BG, Ito H, Koyanagi Y, Sato M, Tobori F, Nakata I, Teramoto N, Hattori M, Kaizaki Y, Moki F, Sugiyama H, Utada M, Nishimura M, Yoshida K, Kurosawa K, Nemoto Y, Narimatsu H, Sakaguchi M, Kanemura S, Naito M, Narisawa R, Miyashiro I, Nakata K, Mori D, Yoshitake M, Oki I, Fukushima N, Shibata A, Iwasa K, Ono C, Matsuda T, Nimri O, Jung KW, Won YJ, Alawadhi E, Elbasmi A, Ab Manan A, Adam F, Nansalmaa E, Tudev U, Ochir C, Al Khater AM, El Mistiri MM, Lim GH, Teo YY, Chiang CJ, Lee WC, Buasom R, Sangrajrang S, Suwanrungruang K, Vatanasapt P, Daoprasert K, Pongnikorn D, Leklob A, Sangkitipaiboon S, Geater SL, Sriplung H, Ceylan O, Kög I, Dirican O, Köse T, Gurbuz T, Karaşahin FE, Turhan D, Aktaş U, Halat Y, Eser S, Yakut CI, Altinisik M, Cavusoglu Y, Türkköylü A, Üçüncü N, Hackl M, Zborovskaya AA, Aleinikova OV, Henau K, Van Eycken L, Atanasov TY, Valerianova Z, Šekerija M, Dušek L, Zvolský M, Steinrud Mørch L, Storm H, Wessel Skovlund C, Innos K, Mägi M, Malila N, Seppä K, Jégu J, Velten M, Cornet E, Troussard X, Bouvier AM, Guizard AV, Bouvier V, Launoy G, Dabakuyo Yonli S, Poillot ML, Maynadié M, Mounier M, Vaconnet L, Woronoff AS, Daoulas M, Robaszkiewicz M, Clavel J, Poulalhon C, Desandes E, Lacour B, Baldi I, Amadeo B, Coureau G, Monnereau A, Orazio S, Audoin M, D’Almeida TC, Boyer S, Hammas K, Trétarre B, Colonna M, Delafosse P, Plouvier S, Cowppli-Bony A, Molinié F, Bara S, Ganry O, Lapôtre-Ledoux B, Daubisse-Marliac L, Bossard N, Uhry Z, Estève J, Stabenow R, Wilsdorf-Köhler H, Eberle A, Luttmann S, Löhden I, Nennecke AL, Kieschke J, Sirri E, Justenhoven C, Reinwald F, Holleczek B, Eisemann N, Katalinic A, Asquez RA, Kumar V, Petridou E, Ólafsdóttir EJ, Tryggvadóttir L, Murray DE, Walsh PM, Sundseth H, Harney M, Mazzoleni G, Vittadello F, Coviello E, Cuccaro F, Galasso R, Sampietro G, Giacomin A, Magoni M, Ardizzone A, D’Argenzio A, Di Prima AA, Ippolito A, Lavecchia AM, Sutera Sardo A, Gola G, Ballotari P, Giacomazzi E, Ferretti S, Dal Maso L, Serraino D, Celesia MV, Filiberti RA, Pannozzo F, Melcarne A, Quarta F, Andreano A, Russo AG, Carrozzi G, Cirilli C, Cavalieri d’Oro L, Rognoni M, Fusco M, Vitale MF, Usala M, Cusimano R, Mazzucco W, Michiara M, Sgargi P, Boschetti L, Marguati S, Chiaranda G, Seghini P, Maule MM, Merletti F, Spata E, Tumino R, Mancuso P, Cassetti T, Sassatelli R, Falcini F, Giorgetti S, Caiazzo AL, Cavallo R, Piras D, Bella F, Madeddu A, Fanetti AC, Maspero S, Carone S, Mincuzzi A, Candela G, Scuderi T, Gentilini MA, Rizzello R, Rosso S, Caldarella A, Intrieri T, Bianconi F, Contiero P, Tagliabue G, Rugge M, Zorzi M, Beggiato S, Brustolin A, Gatta G, De Angelis R, Vicentini M, Zanetti R, Stracci F, Maurina A, Oniščuka M, Mousavi M, Steponaviciene L, Vincerževskienė I, Azzopardi MJ, Calleja N, Siesling S, Visser O, Johannesen TB, Larønningen S, Trojanowski M, Macek P, Mierzwa T, Rachtan J, Rosińska A, Kępska K, Kościańska B, Barna K, Sulkowska U, Gebauer T, Łapińska JB, Wójcik-Tomaszewska J, Motnyk M, Patro A, Gos A, Sikorska K, Bielska-Lasota M, Didkowska JA, Wojciechowska U, Forjaz de Lacerda G, Rego RA, Carrito B, Pais A, Bento MJ, Rodrigues J, Lourenço A, Mayer-da-Silva A, Coza D, Todescu AI, Valkov MY, Gusenkova L, Lazarevich O, Prudnikova O, Vjushkov DM, Egorova A, Orlov A, Pikalova LV, Zhuikova LD, Adamcik J, Safaei Diba C, Zadnik V, Žagar T, De-La-Cruz M, Lopez-de-Munain A, Aleman A, Rojas D, Chillarón RJ, Navarro AIM, Marcos-Gragera R, Puigdemont M, Rodríguez-Barranco M, Sánchez Perez MJ, Franch Sureda P, Ramos Montserrat M, Chirlaque López MD, Sánchez Gil A, Ardanaz E, Guevara M, Cañete-Nieto A, Peris-Bonet R, Carulla M, Galceran J, Almela F, Sabater C, Khan S, Pettersson D, Dickman P, Staehelin K, Struchen B, Egger Hayoz C, Rapiti E, Schaffar R, Went P, Mousavi SM, Bulliard JL, Maspoli-Conconi M, Kuehni CE, Redmond SM, Bordoni A, Ortelli L, Chiolero A, Konzelmann I, Rohrmann S, Wanner M, Broggio J, Rashbass J, Stiller C, Fitzpatrick D, Gavin A, Morrison DS, Thomson CS, Greene G, Huws DW, Grayson M, Rawcliffe H, Allemani C, Coleman MP, Di Carlo V, Girardi F, Matz M, Minicozzi P, Sanz N, Ssenyonga N, James D, Stephens R, Chalker E, Smith M, Gugusheff J, You H, Qin Li S, Dugdale S, Moore J, Philpot S, Pfeiffer R, Thomas H, Silva Ragaini B, Venn AJ, Evans SM, Te Marvelde L, Savietto V, Trevithick R, Aitken J, Currow D, Fowler C, Lewis C. Global survival trends for brain tumors, by histology: analysis of individual records for 556,237 adults diagnosed in 59 countries during 2000-2014 (CONCORD-3). Neuro Oncol 2023; 25:580-592. [PMID: 36355361 PMCID: PMC10013649 DOI: 10.1093/neuonc/noac217] [Show More Authors] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Survival is a key metric of the effectiveness of a health system in managing cancer. We set out to provide a comprehensive examination of worldwide variation and trends in survival from brain tumors in adults, by histology. METHODS We analyzed individual data for adults (15-99 years) diagnosed with a brain tumor (ICD-O-3 topography code C71) during 2000-2014, regardless of tumor behavior. Data underwent a 3-phase quality control as part of CONCORD-3. We estimated net survival for 11 histology groups, using the unbiased nonparametric Pohar Perme estimator. RESULTS The study included 556,237 adults. In 2010-2014, the global range in age-standardized 5-year net survival for the most common sub-types was broad: in the range 20%-38% for diffuse and anaplastic astrocytoma, from 4% to 17% for glioblastoma, and between 32% and 69% for oligodendroglioma. For patients with glioblastoma, the largest gains in survival occurred between 2000-2004 and 2005-2009. These improvements were more noticeable among adults diagnosed aged 40-70 years than among younger adults. CONCLUSIONS To the best of our knowledge, this study provides the largest account to date of global trends in population-based survival for brain tumors by histology in adults. We have highlighted remarkable gains in 5-year survival from glioblastoma since 2005, providing large-scale empirical evidence on the uptake of chemoradiation at population level. Worldwide, survival improvements have been extensive, but some countries still lag behind. Our findings may help clinicians involved in national and international tumor pathway boards to promote initiatives aimed at more extensive implementation of clinical guidelines.
Collapse
Affiliation(s)
- Fabio Girardi
- Cancer Survival Group, London School of Hygiene and Tropical Medicine, London, UK.,Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK.,Division of Medical Oncology 2, Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | - Melissa Matz
- Cancer Survival Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Charles Stiller
- National Cancer Registration and Analysis Service, Public Health England, London, UK
| | - Hui You
- Cancer Information Analysis Unit, Cancer Institute NSW, St Leonards, New South Wales, Australia
| | - Rafael Marcos Gragera
- Epidemiology Unit and Girona Cancer Registry, Catalan Institute of Oncology, Girona, Spain
| | - Mikhail Y Valkov
- Department of Radiology, Radiotherapy and Oncology, Northern State Medical University, Arkhangelsk, Russia
| | - Jean-Luc Bulliard
- Centre for Primary Care and Public Health (Unisanté), University of Lausanne, Lausanne, Switzerland.,Neuchâtel and Jura Tumour Registry, Neuchâtel, Switzerland
| | - Prithwish De
- Surveillance and Cancer Registry, and Research Office, Clinical Institutes and Quality Programs, Ontario Health, Toronto, Ontario, Canada
| | - David Morrison
- Scottish Cancer Registry, Public Health Scotland, Edinburgh, UK
| | - Miriam Wanner
- Cancer Registry Zürich, Zug, Schaffhausen and Schwyz, University Hospital Zürich, Zürich, Switzerland
| | - David K O'Brian
- Alaska Cancer Registry, Alaska Department of Health and Social Services, Anchorage, Alaska, USA
| | - Nathalie Saint-Jacques
- Department of Medicine and Community Health and Epidemiology, Centre for Clinical Research, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Michel P Coleman
- Cancer Survival Group, London School of Hygiene and Tropical Medicine, London, UK.,Cancer Division, University College London Hospitals NHS Foundation Trust, London, UK
| | - Claudia Allemani
- Cancer Survival Group, London School of Hygiene and Tropical Medicine, London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Ozair A, Bhat V, Alisch RS, Khosla AA, Kotecha RR, Odia Y, McDermott MW, Ahluwalia MS. DNA Methylation and Histone Modification in Low-Grade Gliomas: Current Understanding and Potential Clinical Targets. Cancers (Basel) 2023; 15:1342. [PMID: 36831683 PMCID: PMC9954183 DOI: 10.3390/cancers15041342] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/02/2023] [Accepted: 02/14/2023] [Indexed: 02/22/2023] Open
Abstract
Gliomas, the most common type of malignant primary brain tumor, were conventionally classified through WHO Grades I-IV (now 1-4), with low-grade gliomas being entities belonging to Grades 1 or 2. While the focus of the WHO Classification for Central Nervous System (CNS) tumors had historically been on histopathological attributes, the recently released fifth edition of the classification (WHO CNS5) characterizes brain tumors, including gliomas, using an integration of histological and molecular features, including their epigenetic changes such as histone methylation, DNA methylation, and histone acetylation, which are increasingly being used for the classification of low-grade gliomas. This review describes the current understanding of the role of DNA methylation, demethylation, and histone modification in pathogenesis, clinical behavior, and outcomes of brain tumors, in particular of low-grade gliomas. The review also highlights potential diagnostic and/or therapeutic targets in associated cellular biomolecules, structures, and processes. Targeting of MGMT promoter methylation, TET-hTDG-BER pathway, association of G-CIMP with key gene mutations, PARP inhibition, IDH and 2-HG-associated processes, TERT mutation and ARL9-associated pathways, DNA Methyltransferase (DNMT) inhibition, Histone Deacetylase (HDAC) inhibition, BET inhibition, CpG site DNA methylation signatures, along with others, present exciting avenues for translational research. This review also summarizes the current clinical trial landscape associated with the therapeutic utility of epigenetics in low-grade gliomas. Much of the evidence currently remains restricted to preclinical studies, warranting further investigation to demonstrate true clinical utility.
Collapse
Affiliation(s)
- Ahmad Ozair
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Faculty of Medicine, King George’s Medical University, Lucknow 226003, India
| | - Vivek Bhat
- St. John’s Medical College, Bangalore 560034, India
| | - Reid S. Alisch
- Department of Neurosurgery, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Atulya A. Khosla
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Rupesh R. Kotecha
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Yazmin Odia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Michael W. McDermott
- Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL 33176, USA
| | - Manmeet S. Ahluwalia
- Miami Cancer Institute, Baptist Health South Florida, Miami, FL 33176, USA
- Miami Neuroscience Institute, Baptist Health South Florida, Miami, FL 33176, USA
| |
Collapse
|
37
|
Miller JJ, Gonzalez Castro LN, McBrayer S, Weller M, Cloughesy T, Portnow J, Andronesi O, Barnholtz-Sloan JS, Baumert BG, Berger MS, Bi WL, Bindra R, Cahill DP, Chang SM, Costello JF, Horbinski C, Huang RY, Jenkins RB, Ligon KL, Mellinghoff IK, Nabors LB, Platten M, Reardon DA, Shi DD, Schiff D, Wick W, Yan H, von Deimling A, van den Bent M, Kaelin WG, Wen PY. Isocitrate dehydrogenase (IDH) mutant gliomas: A Society for Neuro-Oncology (SNO) consensus review on diagnosis, management, and future directions. Neuro Oncol 2023; 25:4-25. [PMID: 36239925 PMCID: PMC9825337 DOI: 10.1093/neuonc/noac207] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Isocitrate dehydrogenase (IDH) mutant gliomas are the most common adult, malignant primary brain tumors diagnosed in patients younger than 50, constituting an important cause of morbidity and mortality. In recent years, there has been significant progress in understanding the molecular pathogenesis and biology of these tumors, sparking multiple efforts to improve their diagnosis and treatment. In this consensus review from the Society for Neuro-Oncology (SNO), the current diagnosis and management of IDH-mutant gliomas will be discussed. In addition, novel therapies, such as targeted molecular therapies and immunotherapies, will be reviewed. Current challenges and future directions for research will be discussed.
Collapse
Affiliation(s)
- Julie J Miller
- Stephen E. and Catherine Pappas Center for Neuro-Oncology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - L Nicolas Gonzalez Castro
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Samuel McBrayer
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd, Dallas, Texas, 75235, USA
| | - Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland
| | | | - Jana Portnow
- Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Ovidiu Andronesi
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Jill S Barnholtz-Sloan
- Informatics and Data Science (IDS), Center for Biomedical Informatics and Information Technology (CBIIT), Trans-Divisional Research Program (TDRP), Division of Cancer Epidemiology and Genetics (DCEG), National Cancer Institute (NCI), Bethesda, MD, USA
| | - Brigitta G Baumert
- Cantonal Hospital Graubunden, Institute of Radiation-Oncology, Chur, Switzerland
| | - Mitchell S Berger
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Wenya Linda Bi
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Boston, MA, USA
| | - Ranjit Bindra
- Department of Therapeutic Radiology, Brain Tumor Center, Yale School of Medicine, New Haven, CT, USA
| | - Daniel P Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Susan M Chang
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Joseph F Costello
- Department of Neurosurgery, University of California-San Francisco, San Francisco, California, USA
| | - Craig Horbinski
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Raymond Y Huang
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Robert B Jenkins
- Individualized Medicine Research, Mayo Clinic, Department of Laboratory Medicine and Pathology, Rochester, Minnesota 55901, USA
| | - Keith L Ligon
- Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ingo K Mellinghoff
- Department of Neurology, Evnin Family Chair in Neuro-Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - L Burt Nabors
- Department of Neurology, Heersink School of Medicine, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael Platten
- CCU Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David A Reardon
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Diana D Shi
- Harvard Medical School, Boston, MA, USA
- Department of Radiation Oncology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - David Schiff
- Division of Neuro-Oncology, Department of Neurology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Wolfgang Wick
- Neuro-Oncology at the German Cancer Research Center (DKFZ), Program Chair of Neuro-Oncology at the National Center for Tumor Diseases (NCT), and Neurology and Chairman at the Neurology Clinic in Heidelberg, Heidelberg, Germany
| | - Hai Yan
- Genetron Health Inc, Gaithersburg, Maryland 20879, USA
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, and, Clinical Cooperation Unit Neuropathology, German Cancer Research Center (DKFZ), and, DKTK, INF 224, 69120 Heidelberg, Germany
| | - Martin van den Bent
- Brain Tumour Centre, Erasmus MC Cancer Institute, Groene Hilledijk 301, 3075 EA Rotterdam, The Netherlands
| | - William G Kaelin
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Patrick Y Wen
- Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Department of Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| |
Collapse
|
38
|
Jiang H, Sun Z, Li F, Chen Q. Prognostic value of γ‐aminobutyric acidergic synapse-associated signature for lower-grade gliomas. Front Immunol 2022; 13:983569. [PMID: 36405708 PMCID: PMC9668880 DOI: 10.3389/fimmu.2022.983569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Background Synapse-associated proteins (SAPs) play important roles in central nervous system (CNS) tumors. Recent studies have reported that γ-aminobutyric acidergic (GABAergic) synapses also play critical roles in the development of gliomas. However, biomarkers of GABAergic synapses in low-grade gliomas (LGGs) have not yet been reported. Methods mRNA data from normal brain tissue and gliomas were obtained from the Genotype-Tissue Expression (GTEx) and The Cancer Genome Atlas (TCGA) databases, respectively. A validation dataset was also obtained from the Chinese Glioma Genome Atlas (CGGA) database. The expression patterns of GABAergic synapse-related genes (GSRGs) were evaluated with difference analysis in LGGs. Then, a GABAergic synapse-related risk signature (GSRS) was constructed with least absolute shrinkage and selection operator (LASSO) Cox regression analysis. According to the expression value and coefficients of identified GSRGs, the risk scores of all LGG samples were calculated. Univariate and multivariate Cox regression analyses were conducted to evaluate related risk scores for prognostic ability. Correlations between characteristics of the tumor microenvironment (TME) and risk scores were explored with single-sample gene set enrichment analysis (ssGSEA) and immunity profiles in LGGs. The GSRS-related pathways were investigated by gene set variation analysis (GSVA). Real-time PCR and the Human Protein Atlas (HPA) database were applied to explore related expression of hub genes selected in the GSRS. Results Compared with normal brain samples, 25 genes of 31 GSRGs were differentially expressed in LGG samples. A constructed five-gene GSRS was related to clinicopathological features and prognosis of LGGs by the LASSO algorithm. It was shown that the risk score level was positively related to the infiltrating level of native CD4 T cells and activated dendritic cells. GSVA identified several cancer-related pathways associated with the GSRS, such as P53 pathways and the JAK-STAT signaling pathway. Additionally, CA2, PTEN, OXTR, and SLC6A1 (hub genes identified in the GSRS) were regarded as the potential predictors in LGGs. Conclusion A new five-gene GSRS was identified and verified by bioinformatics methods. The GSRS provides a new perspective in LGG that may contribute to more accurate prediction of prognosis of LGGs.
Collapse
Affiliation(s)
- Hongxiang Jiang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Zhiqiang Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Fei Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Fei Li, ; Qianxue Chen,
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- *Correspondence: Fei Li, ; Qianxue Chen,
| |
Collapse
|
39
|
Lai G, Zhong X, Liu H, Deng J, Li K, Xie B. Development of a Hallmark Pathway-Related Gene Signature Associated with Immune Response for Lower Grade Gliomas. Int J Mol Sci 2022; 23:ijms231911971. [PMID: 36233273 PMCID: PMC9570050 DOI: 10.3390/ijms231911971] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Although some biomarkers have been used to predict prognosis of lower-grade gliomas (LGGs), a pathway-related signature associated with immune response has not been developed. A key signaling pathway was determined according to the lowest adjusted p value among 50 hallmark pathways. The least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox analyses were performed to construct a pathway-related gene signature. Somatic mutation, drug sensitivity and prediction of immunotherapy analyses were conducted to reveal the value of this signature in targeted therapies. In this study, an allograft rejection (AR) pathway was considered as a crucial signaling pathway, and we constructed an AR-related five-gene signature, which can independently predict the prognosis of LGGs. High-AR LGG patients had higher tumor mutation burden (TMB), Immunophenscore (IPS), IMmuno-PREdictive Score (IMPRES), T cell-inflamed gene expression profile (GEP) score and MHC I association immunoscore (MIAS) than low-AR patients. Most importantly, our signature can be validated in four immunotherapy cohorts. Furthermore, IC50 values of the six classic chemotherapeutic drugs were significantly elevated in the low-AR group compared with the high-AR group. This signature might be regarded as an underlying biomarker in predicting prognosis for LGGs, possibly providing more therapeutic strategies for future clinical research.
Collapse
|
40
|
Zhao S, Chi H, Ji W, He Q, Lai G, Peng G, Zhao X, Cheng C. A Bioinformatics-Based Analysis of an Anoikis-Related Gene Signature Predicts the Prognosis of Patients with Low-Grade Gliomas. Brain Sci 2022; 12:1349. [PMID: 36291283 PMCID: PMC9599312 DOI: 10.3390/brainsci12101349] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/27/2022] [Accepted: 10/03/2022] [Indexed: 11/16/2022] Open
Abstract
Low-grade glioma (LGG) is a highly aggressive disease in the skull. On the other hand, anoikis, a specific form of cell death induced by the loss of cell contact with the extracellular matrix, plays a key role in cancer metastasis. In this study, anoikis-related genes (ANRGs) were used to identify LGG subtypes and to construct a prognostic model for LGG patients. In addition, we explored the immune microenvironment and enrichment pathways between different subtypes. We constructed an anoikis-related gene signature using the TCGA (The Cancer Genome Atlas) cohort and investigated the differences between different risk groups in clinical features, mutational landscape, immune cell infiltration (ICI), etc. Kaplan-Meier analysis showed that the characteristics of ANRGs in the high-risk group were associated with poor prognosis in LGG patients. The risk score was identified as an independent prognostic factor. The high-risk group had higher ICI, tumor mutation load (TMB), immune checkpoint gene expression, and therapeutic response to immune checkpoint blockers (ICB). Functional analysis showed that these high-risk and low-risk groups had different immune statuses and drug sensitivity. Risk scores were used together with LGG clinicopathological features to construct a nomogram, and Decision Curve Analysis (DCA) showed that the model could enable patients to benefit from clinical treatment strategies.
Collapse
Affiliation(s)
- Songyun Zhao
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214000, China
| | - Hao Chi
- Clinical Medicine College, Southwest Medical University, Luzhou 646000, China
| | - Wei Ji
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214000, China
| | - Qisheng He
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214000, China
| | - Guichuan Lai
- Department of Epidemiology and Health Statistics, School of Public Health, Chongqing Medical University, Yixue Road, Chongqing 400016, China
| | - Gaoge Peng
- Clinical Medicine College, Southwest Medical University, Luzhou 646000, China
| | - Xiaoyu Zhao
- Department of Neurosurgery, The First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China
| | - Chao Cheng
- Department of Neurosurgery, Wuxi People’s Hospital Affiliated to Nanjing Medical University, Wuxi 214000, China
| |
Collapse
|
41
|
Zha L, Wang J, Cheng X. The effects of
RNA
methylation on immune cells development and function. FASEB J 2022; 36:e22552. [DOI: 10.1096/fj.202200716r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/23/2022] [Accepted: 09/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Ling‐Feng Zha
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases Wuhan China
| | - Jing‐Lin Wang
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases Wuhan China
| | - Xiang Cheng
- Department of Cardiology Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Biological Targeted Therapy, Hubei Provincial Engineering Research Center of Immunological Diagnosis and Therapy for Cardiovascular Diseases Wuhan China
| |
Collapse
|
42
|
Yuan F, Wang Y, Cai X, Du C, Zhu J, Tang C, Yang J, Ma C. N6-methyladenosine-related microRNAs risk model trumps the isocitrate dehydrogenase mutation status as a predictive biomarker for the prognosis and immunotherapy in lower grade gliomas. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:553-569. [PMID: 36226036 PMCID: PMC9549064 DOI: 10.37349/etat.2022.00100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 06/23/2022] [Indexed: 11/24/2022] Open
Abstract
Aim Lower grade gliomas [LGGs; World Health Organization (WHO) grades 2 and 3], owing to the heterogeneity of their clinical behavior, present a therapeutic challenge to neurosurgeons. The aim of this study was to explore the N6-methyladenosine (m6A) modification landscape in the LGGs and to develop an m6A-related microRNA (miRNA) risk model to provide new perspectives for the treatment and prognostic assessment of LGGs. Methods Messenger RNA (mRNA) and miRNA expression data of LGGs were extracted from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. An m6A-related miRNA risk model was constructed via least absolute shrinkage and selection operator (LASSO), univariate, and multivariate Cox regression analysis. Next, Kaplan-Meier analysis, principal-component analysis (PCA), functional enrichment analysis, immune infiltrate analysis, dynamic nomogram, and drug sensitivity prediction were used to evaluate this risk model. Results Firstly, six m6A-related miRNAs with independent prognostic value were selected based on clinical information and used to construct a risk model. Subsequently, compared with low-risk group, LGGs in the high-risk group had a higher m6A writer and reader scores, but a lower eraser score. Moreover, LGGs in the high-risk group had a significantly worse clinical prognosis than those in the low-risk group. Simultaneously, this risk model outperformed other clinicopathological variables in the prognosis prediction of LGGs. Immune infiltrate analysis revealed that the proportion of M2 macrophages, regulatory T (Treg) cells, and the expression levels of exhausted immune response markers were significantly higher in the high-risk group than in the low-risk group. Finally, this study constructed an easy-to-use and free dynamic nomogram to help clinicians use this risk model to aid in diagnosis and prognosis assessment. Conclusions This study developed a m6A-related risk model and uncovered two different m6A modification landscapes in LGGs. Moreover, this risk model may provide guidance and help in clinical prognosis assessment and immunotherapy response prediction for LGGs.
Collapse
Affiliation(s)
- Feng Yuan
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Yingshuai Wang
- Department of Internal Medicine III, University Hospital Munich, Ludwig Maximilians-University Munich, 80807 Munich, Germany
| | - Xiangming Cai
- School of Medicine, Southeast university, Nanjing 210002, Jiangsu, China
| | - Chaonan Du
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Junhao Zhu
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Chao Tang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Jin Yang
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
| | - Chiyuan Ma
- Department of Neurosurgery, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing 210002, Jiangsu, China
- School of Medicine, Southeast university, Nanjing 210002, Jiangsu, China
- Department of Neurosurgery, Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing 210002, Jiangsu, China
- Department of Neurosurgery, The Affiliated Jinling Hospital of Nanjing Medical University, Nanjing 210002, Jiangsu, China
| |
Collapse
|
43
|
Deacu M, Popescu S, Docu Axelerad A, Topliceanu TS, Aschie M, Bosoteanu M, Cozaru GC, Cretu AM, Voda RI, Orasanu CI. Prognostic Factors of Low-Grade Gliomas in Adults. Curr Oncol 2022; 29:7327-7342. [PMID: 36290853 PMCID: PMC9600247 DOI: 10.3390/curroncol29100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/22/2022] [Accepted: 09/29/2022] [Indexed: 11/22/2022] Open
Abstract
Adult low-grade gliomas are a rare and aggressive pathology of the central nervous system. Some of their characteristics contribute to the patient's life expectancy and to their management. This study aimed to characterize and identify the main prognostic factors of low-grade gliomas. The six-year retrospective study statistically analyzed the demographic, imaging, and morphogenetic characteristics of the patient group through appropriate parameters. Immunohistochemical tests were performed: IDH1, Ki-67, p53, and Nestin, as well as FISH tests on the CDKN2A gene and 1p/19q codeletion. The pathology was prevalent in females, with patients having an average age of 56.31 years. The average tumor volume was 41.61 cm3, producing a midline shift with an average of 7.5 mm. Its displacement had a negative impact on survival. The presence of a residual tumor resulted in decreased survival and is an independent risk factor for mortality. Positivity for p53 identified a low survival rate. CDKN2A mutations were an independent risk factor for mortality. We identified that a negative prognosis is influenced by the association of epilepsy with headache, tumor volume, and immunoreactivity to IDH1 and p53. Independent factors associated with mortality were midline shift, presence of tumor residue, and CDKN2A gene deletions and amplifications.
Collapse
Affiliation(s)
- Mariana Deacu
- Clinical Service of Pathology, Departments of Pathology, Sfantul Apostol Andrei Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Steliana Popescu
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Department of Radiology, Sfantul Apostol Andrei Emergency County Hospital, 900591 Constanta, Romania
| | - Any Docu Axelerad
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Department of Neurology, Sfantul Apostol Andrei Emergency County Hospital, 900591 Constanta, Romania
| | - Theodor Sebastian Topliceanu
- Center for Research and Development of the Morphological and Genetic Studyies of Malignant Pathology (CEDMOG), Ovidius University of Constanta, 900591 Constanta, Romania
| | - Mariana Aschie
- Clinical Service of Pathology, Departments of Pathology, Sfantul Apostol Andrei Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
- Academy of Medical Sciences of Romania, 030167 Bucharest, Romania
| | - Madalina Bosoteanu
- Clinical Service of Pathology, Departments of Pathology, Sfantul Apostol Andrei Emergency County Hospital, 900591 Constanta, Romania
- Faculty of Medicine, “Ovidius” University of Constanta, 900470 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studyies of Malignant Pathology (CEDMOG), Ovidius University of Constanta, 900591 Constanta, Romania
- Clinical Service of Pathology, Departments of Genetics, Sfantul Apostol Andrei Emergency County Hospital, 900591 Constanta, Romania
| | - Ana Maria Cretu
- Clinical Service of Pathology, Departments of Pathology, Sfantul Apostol Andrei Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studyies of Malignant Pathology (CEDMOG), Ovidius University of Constanta, 900591 Constanta, Romania
| | - Raluca Ioana Voda
- Clinical Service of Pathology, Departments of Pathology, Sfantul Apostol Andrei Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studyies of Malignant Pathology (CEDMOG), Ovidius University of Constanta, 900591 Constanta, Romania
| | - Cristian Ionut Orasanu
- Clinical Service of Pathology, Departments of Pathology, Sfantul Apostol Andrei Emergency County Hospital, 900591 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studyies of Malignant Pathology (CEDMOG), Ovidius University of Constanta, 900591 Constanta, Romania
- Correspondence: ; Tel.: +40-72-281-4037
| |
Collapse
|
44
|
Yuan Y, Yu Y, Guo Y, Chu Y, Chang J, Hsu Y, Liebig PA, Xiong J, Yu W, Feng D, Yang B, Chen L, Wang H, Yue Q, Mao Y. Noninvasive Delineation of Glioma Infiltration with Combined 7T Chemical Exchange Saturation Transfer Imaging and MR Spectroscopy: A Diagnostic Accuracy Study. Metabolites 2022; 12:901. [PMID: 36295803 PMCID: PMC9607140 DOI: 10.3390/metabo12100901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 09/14/2022] [Accepted: 09/19/2022] [Indexed: 11/16/2022] Open
Abstract
For precise delineation of glioma extent, amino acid PET is superior to conventional MR imaging. Since metabolic MR sequences such as chemical exchange saturation transfer (CEST) imaging and MR spectroscopy (MRS) were developed, we aimed to evaluate the diagnostic accuracy of combined CEST and MRS to predict glioma infiltration. Eighteen glioma patients of different tumor grades were enrolled in this study; 18F-fluoroethyltyrosine (FET)-PET, amide proton transfer CEST at 7 Tesla(T), MRS and conventional MR at 3T were conducted preoperatively. Multi modalities and their association were evaluated using Pearson correlation analysis patient-wise and voxel-wise. Both CEST (R = 0.736, p < 0.001) and MRS (R = 0.495, p = 0.037) correlated with FET-PET, while the correlation between CEST and MRS was weaker. In subgroup analysis, APT values were significantly higher in high grade glioma (3.923 ± 1.239) and IDH wildtype group (3.932 ± 1.264) than low grade glioma (3.317 ± 0.868, p < 0.001) or IDH mutant group (3.358 ± 0.847, p < 0.001). Using high FET uptake as the standard, the CEST/MRS combination (AUC, 95% CI: 0.910, 0.907−0.913) predicted tumor infiltration better than CEST (0.812, 0.808−0.815) or MRS (0.888, 0.885−0.891) alone, consistent with contrast-enhancing and T2-hyperintense areas. Probability maps of tumor presence constructed from the CEST/MRS combination were preliminarily verified by multi-region biopsies. The combination of 7T CEST/MRS might serve as a promising non-radioactive alternative to delineate glioma infiltration, thus reshaping the guidance for tumor resection and irradiation.
Collapse
Affiliation(s)
- Yifan Yuan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| | - Yang Yu
- National Center for Neurological Disorders, Shanghai 201112, China
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Yu Guo
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| | - Yinghua Chu
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 310000, China
| | - Jun Chang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
| | - Yicheng Hsu
- MR Collaboration, Siemens Healthineers Ltd., Shanghai 310000, China
| | | | - Ji Xiong
- National Center for Neurological Disorders, Shanghai 201112, China
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Wenwen Yu
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Danyang Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Baofeng Yang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
| | - Liang Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai 200433, China
- Human Phenome Institute, Fudan University, Shanghai 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai 200433, China
| | - Qi Yue
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Shanghai 201112, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, Fudan University, Shanghai 200032, China
| |
Collapse
|
45
|
Tang G, Tan L, Yuan H, Yin W. Glycosylation modification patterns reveal distinct tumor metabolism and immune microenvironment landscape in lower-grade gliomas. Front Cell Dev Biol 2022; 10:886989. [PMID: 36092703 PMCID: PMC9452883 DOI: 10.3389/fcell.2022.886989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022] Open
Abstract
Glycosylation alterations, a key driver throughout tumorigenesis and tumor progression, could regulate the microenvironment and immune response as well as lead to harmful metabolism and cell signaling. In this study, we first comprehensively evaluated the glycosylation modification patterns of LGGs based on glycosyltransferase family genes and systematically integrated these modification patterns with tumor metabolism and immune microenvironment characteristics. Glycosylation score was also developed to quantify glycosylation modification patterns of individuals. As a result, two glycosylation modification patterns were identified, with distinct prognosis, metabolism, and immune microenvironment features. The glycosylation subtype A and cluster A were characterized by higher carbohydrates and amino acid metabolism activity, higher levels of infiltrating cells, and poor prognosis, whereas an opposite modification pattern was observed in glycosylation subtype B and cluster B. In addition, a high glycosylation score is closer to a microenvironment characterized by chronic inflammation, immunosuppression, and tumor promotion. Following analysis and validation, the glycosylation score was a reliable and independent prognostic index. More importantly, the glycosylation score influenced the response to immunotherapy, chemotherapy, or targeted therapy, which provided a novel insight into promoting personalized therapy in the future and may contribute to developing novel therapeutic drugs or exploring promising drug combination therapy strategies.
Collapse
Affiliation(s)
- Guihua Tang
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, The College of Clinical Medicine of Human Normal University, Changsha, China
| | - Liming Tan
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, The College of Clinical Medicine of Human Normal University, Changsha, China
- *Correspondence: Liming Tan, ; Hao Yuan, ; Wen Yin,
| | - Hao Yuan
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital, The First Affiliated Hospital of Hunan Normal University, The College of Clinical Medicine of Human Normal University, Changsha, China
- *Correspondence: Liming Tan, ; Hao Yuan, ; Wen Yin,
| | - Wen Yin
- Department of Neurosurgery, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Liming Tan, ; Hao Yuan, ; Wen Yin,
| |
Collapse
|
46
|
Bao JH, Lu WC, Duan H, Ye YQ, Li JB, Liao WT, Li YC, Sun YP. Identification of a novel cuproptosis-related gene signature and integrative analyses in patients with lower-grade gliomas. Front Immunol 2022; 13:933973. [PMID: 36045691 PMCID: PMC9420977 DOI: 10.3389/fimmu.2022.933973] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/22/2022] [Indexed: 12/20/2022] Open
Abstract
Background Cuproptosis is a newly discovered unique non-apoptotic programmed cell death distinguished from known death mechanisms like ferroptosis, pyroptosis, and necroptosis. However, the prognostic value of cuproptosis and the correlation between cuproptosis and the tumor microenvironment (TME) in lower-grade gliomas (LGGs) remain unknown. Methods In this study, we systematically investigated the genetic and transcriptional variation, prognostic value, and expression patterns of cuproptosis-related genes (CRGs). The CRG score was applied to quantify the cuproptosis subtypes. We then evaluated their values in the TME, prognostic prediction, and therapeutic responses in LGG. Lastly, we collected five paired LGG and matched normal adjacent tissue samples from Sun Yat-sen University Cancer Center (SYSUCC) to verify the expression of signature genes by quantitative real-time PCR (qRT-PCR) and Western blotting (WB). Results Two distinct cuproptosis-related clusters were identified using consensus unsupervised clustering analysis. The correlation between multilayer CRG alterations with clinical characteristics, prognosis, and TME cell infiltration were observed. Then, a well-performed cuproptosis-related risk model (CRG score) was developed to predict LGG patients' prognosis, which was evaluated and validated in two external cohorts. We classified patients into high- and low-risk groups according to the CRG score and found that patients in the low-risk group showed significantly higher survival possibilities than those in the high-risk group (P<0.001). A high CRG score implies higher TME scores, more significant TME cell infiltration, and increased mutation burden. Meanwhile, the CRG score was significantly correlated with the cancer stem cell index, chemoradiotherapy sensitivity-related genes and immune checkpoint genes, and chemotherapeutic sensitivity, indicating the association with CRGs and treatment responses. Univariate and multivariate Cox regression analyses revealed that the CRG score was an independent prognostic predictor for LGG patients. Subsequently, a highly accurate predictive model was established for facilitating the clinical application of the CRG score, showing good predictive ability and calibration. Additionally, crucial CRGs were further validated by qRT-PCR and WB. Conclusion Collectively, we demonstrated a comprehensive overview of CRG profiles in LGG and established a novel risk model for LGG patients' therapy status and prognosis. Our findings highlight the potential clinical implications of CRGs, suggesting that cuproptosis may be the potential therapeutic target for patients with LGG.
Collapse
Affiliation(s)
- Jia-hao Bao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wei-cheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Hao Duan
- Department of Neurosurgery/Neuro-oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Ya-qi Ye
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China
| | - Jiang-bo Li
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wen-ting Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| | - Yong-chun Li
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Sun Yat-sen University Cancer Center, Collaborative Innovation for Cancer Medicine, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| | - Yang-peng Sun
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China,*Correspondence: Yang-peng Sun, ; Yong-chun Li, ; Wen-ting Liao,
| |
Collapse
|
47
|
Current Considerations in the Treatment of Grade 3 Gliomas. Curr Treat Options Oncol 2022; 23:1219-1232. [PMID: 35913658 DOI: 10.1007/s11864-022-01000-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Treatment recommendations for grade 3 gliomas are guided by their histopathologic and molecular phenotype. In the 2021 WHO classification, these tumors are categorized into two types, grade 3 IDH mutant (IDHmt), 1p/19q codeleted oligodendroglioma and IDH mutant astrocytoma. Treatment consists of maximal safe surgery, followed by radiation therapy (RT) and alkylating agent-based chemotherapy. Based on the updated CATNON result, RT followed by temozolomide improves outcome in patients with non-codeleted grade 3 IDHmt astrocytoma. In patients with IDHmt, codeleted oligodendroglioma, the addition of procarbazine, CCNU, and vincristine regimen is the recommended treatment, based on large randomized controlled trials. These current treatments prolong the overall survival to up to 10 years in patients with grade 3 IDHmt astrocytoma and 14 years in grade 3 IDHmt codeleted oligodendroglioma. Treatment options at recurrence include re-resection, re-irradiation, and other cytotoxic chemotherapy; however, these are of limited benefit. Novel agents targeting IDH mutation and its metabolic effects are currently under investigation to improve the outcome of these patients.
Collapse
|
48
|
Kurdi M, Moshref RH, Katib Y, Faizo E, Najjar AA, Bahakeem B, Bamaga AK. Simple approach for the histomolecular diagnosis of central nervous system gliomas based on 2021 World Health Organization Classification. World J Clin Oncol 2022; 13:567-576. [PMID: 36157161 PMCID: PMC9346424 DOI: 10.5306/wjco.v13.i7.567] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/24/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023] Open
Abstract
The classification of central nervous system (CNS) glioma went through a sequence of developments, between 2006 and 2021, started with only histological approach then has been aided with a major emphasis on molecular signatures in the 4th and 5th editions of the World Health Organization (WHO). The recent reformation in the 5th edition of the WHO classification has focused more on the molecularly defined entities with better characterized natural histories as well as new tumor types and subtypes in the adult and pediatric populations. These new subclassified entities have been incorporated in the 5th edition after the continuous exploration of new genomic, epigenomic and transcriptomic discovery. Indeed, the current guidelines of 2021 WHO classification of CNS tumors and European Association of Neuro-Oncology (EANO) exploited the molecular signatures in the diagnostic approach of CNS gliomas. Our current review presents a practical diagnostic approach for diffuse CNS gliomas and circumscribed astrocytomas using histomolecular criteria adopted by the recent WHO classification. We also describe the treatment strategies for these tumors based on EANO guidelines.
Collapse
Affiliation(s)
- Maher Kurdi
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| | - Rana H Moshref
- Department of Neurosciences, King Faisal Specialist Hospital and Research Center, Jeddah 213733, Saudi Arabia
| | - Yousef Katib
- Department of Radiology, Faculty of Medicine, Taibah University, Almadinah Almunawwarah 213733, Saudi Arabia
| | - Eyad Faizo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, Tabuk University, Tabuk 213733, Saudi Arabia
| | - Ahmed A Najjar
- College of Medicine, Taibah University, Almadinah Almunawwarah 213733, Saudi Arabia
| | - Basem Bahakeem
- Faculty of Medicine, Umm-Alqura University, Makkah 213733, Saudi Arabia
| | - Ahmed K Bamaga
- Department of Pediatric, Neuromuscular Medicine Unit, Faculty of Medicine and King Abdulaziz University Hospital, King Abdulaziz University, Jeddah 213733, Saudi Arabia
| |
Collapse
|
49
|
Internò V, Triggiano G, De Santis P, Stucci LS, Tucci M, Porta C. Molecular Aberrations Stratify Grade 2 Astrocytomas Into Several Rare Entities: Prognostic and Therapeutic Implications. Front Oncol 2022; 12:866623. [PMID: 35756624 PMCID: PMC9226400 DOI: 10.3389/fonc.2022.866623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/05/2022] [Indexed: 11/13/2022] Open
Abstract
The identification of specific molecular aberrations guides the prognostic stratification and management of grade 2 astrocytomas. Mutations in isocitrate dehydrogenase (IDH) 1 and 2, found in the majority of adult diffuse low-grade glioma (DLGG), seem to relate to a favorable prognosis compared to IDH wild-type (IDH-wt) counterparts. Moreover, the IDH-wt group can develop additional molecular alterations worsening the prognosis, such as epidermal growth factor receptor amplification (EGFR-amp) and mutation of the promoter of telomerase reverse transcriptase (pTERT-mut). This review analyzes the prognostic impact and therapeutic implications of genetic alterations in adult LGG.
Collapse
Affiliation(s)
- Valeria Internò
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| | - Giacomo Triggiano
- Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| | | | | | - Marco Tucci
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| | - Camillo Porta
- Department of Interdisciplinary Medicine, University of Bari 'Aldo Moro', Bari, Italy.,Division of Medical Oncology, Policlinico Hospital of Bari, Bari, Italy
| |
Collapse
|
50
|
High-dose salvage re-irradiation in recurrent/progressive adult diffuse gliomas: development of a novel prognostic scoring system. Cancer Radiother 2022; 26:994-1001. [PMID: 35715356 DOI: 10.1016/j.canrad.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/21/2021] [Accepted: 01/24/2022] [Indexed: 11/21/2022]
Abstract
PURPOSE Over the past two decades, high-dose salvage re-irradiation (re-RT) has been used increasingly in the multimodality management of adults with recurrent/progressive diffuse glioma. Several factors that determine outcomes following re-RT have been incorporated into prognostic models to guide patient selection. We aimed to develop a novel four-tiered prognostic model incorporating relevant molecular markers from our single-institutional cohort of patients treated with high-dose salvage re-RT for recurrent/progressive diffuse glioma. MATERIAL AND METHODS Various patient, disease, and treatment-related factors impacting upon survival following salvage re-RT were identified through univariate analysis. Each of these prognostic factors was further subdivided and assigned scores of 0 (low-risk), 1 (intermediate-risk), or 2 (high-risk). Scores from individual prognostic factors were added to derive the cumulative score (ranging from 0 to 16), with increasing scores indicating worsening prognosis. RESULTS A total of 111 adults with recurrent/progressive diffuse glioma treated with salvage high-dose re-RT were included. We could assign patients into four prognostic subgroups (A=15 patients, score 0-3); (B=50 patients, score 4-7); (C=33 patients, score 8-10); and (D=13 patients, score 11-16) with completely non-overlapping survival curves suggesting the good discriminatory ability. Post-re-RT survival was significantly higher in Group A compared to groups B, C, and D, respectively (stratified log-rank p-value <0.0001). CONCLUSION There exists a lack of universally acceptable 'standard-of-care' salvage therapy for recurrent/progressive diffuse glioma. A novel four-tiered prognostic scoring system incorporating traditional factors as well as relevant molecular markers is proposed for selecting patients appropriately for high-dose salvage re-RT that warrants validation in a non-overlapping cohort.
Collapse
|