1
|
Busch CBE, Meiring S, van Baar ACG, Holleman F, Nieuwdorp M, Bergman JJGHM. Recellularization via electroporation therapy of the duodenum combined with glucagon-like peptide-1 receptor agonist to replace insulin therapy in patients with type 2 diabetes: 12-month results of a first-in-human study. Gastrointest Endosc 2024; 100:896-904. [PMID: 38692517 DOI: 10.1016/j.gie.2024.04.2904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/29/2024] [Accepted: 04/22/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND AND AIMS Studies have shown that hydrothermal duodenal mucosal ablation results in improved glycemic control. Recellularization via electroporation therapy (ReCET) is a novel endoscopic procedure that uses electroporation to induce cellular apoptosis and subsequent reepithelization. In this study, we aimed to eliminate exogenous insulin treatment in type 2 diabetes (T2D) patients through a single ReCET procedure combined with a glucagon-like peptide-1 receptor agonist. Feasibility, safety, and (dose) efficacy of ReCET were assessed. METHODS This first-in-human study included patients with T2D on basal insulin (age, 28-75 years; body mass index, 24-40 kg/m2; glycosylated hemoglobin, ≤64 mmol/mol; C-peptide, ≥0.2 nmol/L). The electroporation dose was optimized during the study, starting with single 600 V and ending with double 750 V treatments. All patients underwent ReCET, after which insulin was discontinued and semaglutide (glucagon-like peptide-1 receptor agonist) was initiated. The primary endpoints were feasibility (procedure time [from catheter in to catheter out], technical success rate), safety, and efficacy (patients off insulin at 6 months; HbA1c, ≤58 mmol/mol). RESULTS Fourteen patients underwent endoscopic ReCET. The median procedure time was 58 (interquartile range, 49-73) minutes. ReCET demonstrated a technical success rate of 100%. No device-related severe adverse events or severe hypoglycemic events were observed. At the 12-month follow-up, 12 (86%) patients remained off exogenous insulin therapy, with significant improvements in glycemic control and metabolic parameters. The 2 patients in whom insulin therapy was reintroduced both received ReCET at the lowest voltage (single 600 V). CONCLUSION These results suggest that ReCET is feasible and safe. In combination with semaglutide, ReCET may be a promising therapeutic option to replace insulin therapy in selected T2D patients while improving glycemic control and metabolic health.
Collapse
Affiliation(s)
- Celine B E Busch
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Suzanne Meiring
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Annieke C G van Baar
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| | - Frits Holleman
- Department of Internal Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, Amsterdam Gastroenterology Endocrinology Metabolism, University of Amsterdam, Amsterdam, The Netherlands
| | - Jacques J G H M Bergman
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Busch CBE, Meiring S, van Baar ACG, Gastaldelli A, DeFronzo R, Mingrone G, Hagen M, White K, Rajagopalan H, Nieuwdorp M, Bergman JJGHM. Insulin sensitivity and beta cell function after duodenal mucosal resurfacing: an open-label, mechanistic, pilot study. Gastrointest Endosc 2024; 100:473-480.e1. [PMID: 38280531 DOI: 10.1016/j.gie.2024.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 01/15/2024] [Accepted: 01/21/2024] [Indexed: 01/29/2024]
Abstract
BACKGROUND AND AIMS The duodenum has been shown to play a key role in glucose homeostasis. Duodenal mucosal resurfacing (DMR) is an endoscopic procedure for patients with type 2 diabetes (T2D) in which the duodenal mucosa is hydrothermally ablated. DMR improves glycemic control, but the underlying mechanisms remain unclear. Here, we report changes in glucoregulatory hormones and indices of insulin sensitivity and beta cell function after DMR. METHODS We included 28 patients on noninsulin glucose-lowering medications who underwent open-label DMR and a mixed meal test (MMT) in Revita-1 or Revita-2 studies. Inclusion criteria were a hemoglobin A1c from 7.6% to 10.4% and a body mass index of 24 to 40 kg/m2. Baseline and 3-month MMT data included plasma glucose, insulin, C-peptide, glucagon-like peptide-1 (GLP-1), and gastric inhibitory polypeptide (GIP) concentrations. Glucoregulatory hormones, insulin sensitivity indices (Homeostatic Model Assessment for Insulin Resistance [HOMA-IR], Matsuda index [MI], and hepatic insulin resistance) and beta cell function (insulinogenic index, disposition index [DI], and insulin secretion rate [ISR]) were assessed. RESULTS Fasting insulin, glucagon, and C-peptide decreased significantly. Insulin sensitivity (HOMA-IR, MI, and hepatic insulin resistance) and beta cell function (DI and ISR) all improved significantly. Declines in postprandial glucose, mainly driven by a decrease in fasting levels, and in postprandial glucagon were observed, whereas GLP-1 and GIP did not change. CONCLUSIONS Insulin sensitivity and insulin secretion improved 3 months after DMR. It is unlikely that incretin changes are responsible for improved glucose control after DMR. These data add to the growing evidence validating the duodenum as a therapeutic target for patients with T2D. (Clinical trial registration numbers: NCT02413567 and NCT03653091.).
Collapse
Affiliation(s)
- Celine B E Busch
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Suzanne Meiring
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Annieke C G van Baar
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Amalia Gastaldelli
- Cardiometabolic Risk Laboratory, CNR Institute of Clinical Physiology, Pisa, Italy
| | - Ralph DeFronzo
- Diabetes Division, University of Texas Health Science Center, Texas Diabetes Institute, San Antonio, Texas, USA
| | - Geltrude Mingrone
- Division of Obesity and Metabolic Diseases, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy; Department of Diabetes, School of Life Course Sciences, King's College London, London, UK
| | - Moira Hagen
- Fractyl Health Inc., Lexington, Massachusetts, USA
| | - Kelly White
- Fractyl Health Inc., Lexington, Massachusetts, USA
| | | | - Max Nieuwdorp
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| | - Jacques J G H M Bergman
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, location AMC, Amsterdam, the Netherlands
| |
Collapse
|
3
|
Busch CBE, Bergman JJGHM, Nieuwdorp M, van Baar ACG. Role of the Intestine and Its Gut Microbiota in Metabolic Syndrome and Obesity. Am J Gastroenterol 2024; 119:1038-1046. [PMID: 38372280 DOI: 10.14309/ajg.0000000000002730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
The metabolic syndrome (MetSyn) is currently one of the biggest global health challenges because of its impact on public health. MetSyn includes the cluster of metabolic disorders including obesity, high blood pressure, hyperglycemia, high triglyceride levels, and hepatic steatosis. Together, these abnormalities increase the cardiovascular risk of individuals and pose a threat to healthcare systems worldwide. To better understand and address this complex issue, recent research has been increasingly focusing on unraveling the delicate interplay between metabolic disorders and the intestines and more specifically our gut microbiome. The gut microbiome entails all microorganisms inhabiting the gastrointestinal tract and plays a pivotal role in metabolic processes and overall health of its host. Emerging evidence proves an association between the gut microbiome composition and aspects of MetSyn, such as obesity. Understanding these relationships is crucial because they offer valuable insights into the mechanisms underlying development and progression of metabolic disorders and possible treatment options. Yet, how should we interpret this relationship? This review focuses on the interplay between the gut and MetSyn. In addition, we have reviewed the existing evidence of the gut microbiome and its association with and impact on metabolic disorders, in an attempt to understand the complex interactions and nature of this association. We also explored potential therapeutic options targeting the gut to modify metabolic disorders and obesity.
Collapse
Affiliation(s)
- Celine B E Busch
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Research Institute, Amsterdam, the Netherlands
| | - Jacques J G H M Bergman
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Research Institute, Amsterdam, the Netherlands
| | - Max Nieuwdorp
- Amsterdam Gastroenterology Endocrinology Metabolism, Research Institute, Amsterdam, the Netherlands
- Department of Internal and Vascular Medicine, Amsterdam University Medical Centers, University of Amsterdam, the Netherlands
| | - Annieke C G van Baar
- Department of Gastroenterology and Hepatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Research Institute, Amsterdam, the Netherlands
| |
Collapse
|
4
|
Devailly G, Fève K, Saci S, Sarry J, Valière S, Lluch J, Bouchez O, Ravon L, Billon Y, Gilbert H, Riquet J, Beaumont M, Demars J. Divergent selection for feed efficiency in pigs altered the duodenum transcriptomic response to feed intake and its DNA methylation profiles. Physiol Genomics 2024; 56:397-408. [PMID: 38497119 DOI: 10.1152/physiolgenomics.00123.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 03/19/2024] Open
Abstract
Feed efficiency is a trait of interest in pigs as it contributes to lowering the ecological and economical costs of pig production. A divergent genetic selection experiment from a Large White pig population was performed for 10 generations, leading to pig lines with relatively low- (LRFI) and high- (HRFI) residual feed intake (RFI). Feeding behavior and metabolic differences have been previously reported between the two lines. We hypothesized that part of these differences could be related to differential sensing and absorption of nutrients in the proximal intestine. We investigated the duodenum transcriptome and DNA methylation profiles comparing overnight fasting with ad libitum feeding in LRFI and HRFI pigs (n = 24). We identified 1,106 differentially expressed genes between the two lines, notably affecting pathways of the transmembrane transport activity and related to mitosis or chromosome separation. The LRFI line showed a greater transcriptomic response to feed intake than the HRFI line. Feed intake affected genes from both anabolic and catabolic pathways in the pig duodenum, such as rRNA production and autophagy. Several nutrient transporter and tight junction genes were differentially expressed between lines and/or by short-term feed intake. We also identified 409 differentially methylated regions in the duodenum mucosa between the two lines, while this epigenetic mark was less affected by feeding. Our findings highlighted that the genetic selection for feed efficiency in pigs changed the transcriptome profiles of the duodenum, and notably its response to feed intake, suggesting key roles for this proximal gut segment in mechanisms underlying feed efficiency.NEW & NOTEWORTHY The duodenum is a key organ for the hunger/satiety loop and nutrient sensing. We investigated how the duodenum transcriptome and DNA methylation profiles are affected by feed intakes in pigs. We observed thousands of changes in gene expression levels between overnight-fasted and fed pigs in high-feed efficiency pig lines, but almost none in the related low-feed efficiency pig line.
Collapse
Affiliation(s)
| | - Katia Fève
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Safia Saci
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Julien Sarry
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Sophie Valière
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Jérôme Lluch
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Olivier Bouchez
- INRAE, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Laure Ravon
- Pig Phenotyping and Innovative Breeding Facility, GenESI, UE1372, INRAE, Surgères, France
| | - Yvon Billon
- Pig Phenotyping and Innovative Breeding Facility, GenESI, UE1372, INRAE, Surgères, France
| | - Hélène Gilbert
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| | - Julie Demars
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France
| |
Collapse
|
5
|
Wang M, Wu S, Ding H, Wang M, Ma J, Xiao J, Wang B, Bao Z, Hu J. Dietary antarctic krill improves antioxidant capacity, immunity and reduces lipid accumulation, insights from physiological and transcriptomic analysis of Plectropomus leopardus. BMC Genomics 2024; 25:210. [PMID: 38408914 PMCID: PMC10895837 DOI: 10.1186/s12864-024-10099-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/08/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Due to its enormous biomass, Antarctic krill (Euphausia superba) plays a crucial role in the Antarctic Ocean ecosystem. In recent years, Antarctic krill has found extensive application in aquaculture, emerging as a sustainable source of aquafeed with ideal nutritional profiles. However, a comprehensive study focused on the detailed effects of dietary Antarctic krill on aquaculture animals, especially farmed marine fishes, is yet to be demonstrated. RESULTS In this study, a comparative experiment was performed using juvenile P. leopardus, fed with diets supplemented with Antarctic krill (the krill group) or without Antarctic krill (the control group). Histological observation revealed that dietary Antarctic krill could reduce lipid accumulation in the liver while the intestine exhibited no obvious changes. Enzyme activity measurements demonstrated that dietary Antarctic krill had an inhibitory effect on oxidative stress in both the intestine and the liver. By comparative transcriptome analysis, a total of 1,597 and 1,161 differentially expressed genes (DEGs) were identified in the intestine and liver, respectively. Functional analysis of the DEGs showed multiple enriched terms significantly related to cholesterol metabolism, antioxidants, and immunity. Furthermore, the expression profiles of representative DEGs, such as dhcr7, apoa4, sc5d, and scarf1, were validated by qRT-PCR and fluorescence in situ hybridization. Finally, a comparative transcriptome analysis was performed to demonstrate the biased effects of dietary Antarctic krill and astaxanthin on the liver of P. leopardus. CONCLUSIONS Our study demonstrated that dietary Antarctic krill could reduce lipid accumulation in the liver of P. leopardus, enhance antioxidant capacities in both the intestine and liver, and exhibit molecular-level improvements in lipid metabolism, immunity, and antioxidants. It will contribute to understanding the protective effects of Antarctic krill in P. leopardus and provide insights into aquaculture nutritional strategies.
Collapse
Affiliation(s)
- Mengya Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Shaoxuan Wu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Hui Ding
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Mingyi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jiayi Ma
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Jie Xiao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
| | - Bo Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China.
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China.
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences/Key Laboratory of Tropical Aquatic Germplasm of Hainan Province, Sanya Oceanographic Institution, Ocean University of China, Qingdao, Sanya, China
- Hainan Yazhou Bay Seed Laboratory, 572025, Sanya, China
| |
Collapse
|
6
|
Steinbach E, Belda E, Alili R, Adriouch S, Dauriat CJG, Donatelli G, Dumont JL, Pacini F, Tuszynski T, Pelloux V, Jacques F, Creusot L, Coles E, Taillandier P, Vazquez Gomez M, Masi D, Mateo V, André S, Kordahi M, Rouault C, Zucker JD, Sokol H, Genser L, Chassaing B, Le Roy T, Clément K. Comparative analysis of the duodenojejunal microbiome with the oral and fecal microbiomes reveals its stronger association with obesity and nutrition. Gut Microbes 2024; 16:2405547. [PMID: 39679619 DOI: 10.1080/19490976.2024.2405547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/24/2024] [Accepted: 09/10/2024] [Indexed: 12/17/2024] Open
Abstract
The intestinal microbiota is increasingly recognized as a crucial player in the development and maintenance of various chronic conditions, including obesity and associated metabolic diseases. While most research focuses on the fecal microbiota due to its easier accessibility, the small intestine, as a major site for nutrient sensing and absorption, warrants further investigation to determine its microbiota composition and functions. Here, we conducted a clinical research project in 30 age- and sex-matched participants with (n = 15) and without (n = 15) obesity. Duodenojejunal fluid was obtained by aspiration during endoscopy. Phenotyping included clinical variables related to metabolic status, lifestyle, and psychosocial factors using validated questionnaires. We performed metagenomic analyses of the oral, duodenojejunal, and fecal microbiome, alongside metabolomic data from duodenojejunal fluid and feces, integrating these data with clinical and lifestyle information. Our results highlight significant associations between duodenojejunal microbiota composition and usual dietary intake, as well as clinical phenotypes, with larger effect sizes than the associations between these variables and fecal microbiota. Notably, we found that the duodenojejunal microbiota of patients with obesity exhibited higher diversity and showed distinct differences in the abundance of several duodenojejunal microbiota species compared with individuals without obesity. Our findings support the relevance of studying the role of the small intestinal microbiota in the pathogenesis of nutrition-related diseases.
Collapse
Affiliation(s)
- Emilie Steinbach
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Eugeni Belda
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Rohia Alili
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Solia Adriouch
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Charlène J G Dauriat
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS UMR8104, Université de Paris, Paris, France
| | - Gianfranco Donatelli
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Jean-Loup Dumont
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Filippo Pacini
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Thierry Tuszynski
- Endoscopy Department, Peupliers Hospital, Ramsay-Santé, Paris, France
| | - Véronique Pelloux
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Flavien Jacques
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Laura Creusot
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
| | - Emavieve Coles
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Paul Taillandier
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Marta Vazquez Gomez
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Davide Masi
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Department of Experimental Medicine, Section of Medical Physiopathology, Food Science and Endocrinology, Sapienza University of Rome, Rome, Italy
| | - Véronique Mateo
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Sébastien André
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Melissa Kordahi
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS UMR8104, Université de Paris, Paris, France
| | - Christine Rouault
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Jean-Daniel Zucker
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Unité de Modélisation Mathématique et Informatique des Systèmes Complexes, UMMISCO, Sorbonne Université, Institut de Recherche pour le Développement (IRD), Paris, France
| | - Harry Sokol
- Sorbonne Université, INSERM UMRS-938, Centre de Recherche Saint-Antoine, CRSA, AP-HP, Paris, France
- Paris Center for Microbiome Medicine, Fédération Hospitalo-Universitaire, Paris, France
- INRAE, UMR1319 Micalis & AgroParisTech, Jouy en Josas, France
| | - Laurent Genser
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Sorbonne Université, Department of Hepato-Biliary and Pancreatic Surgery, Assistance Publique-Hôpitaux de Paris, AP-HP, Pitié-Salpêtrière University Hospital, Paris, France
| | - Benoit Chassaing
- Microbiome-Host Interactions, Institut Pasteur, Université Paris Cité, INSERM, Paris, France
- Mucosal Microbiota in Chronic Inflammatory Diseases, INSERM, CNRS UMR8104, Université de Paris, Paris, France
| | - Tiphaine Le Roy
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
| | - Karine Clément
- Sorbonne Université, Inserm, Nutrition and Obesities: Systemic Approaches, NutriOmics Research Unit, Sorbonne Université, Paris, France
- Assistance Publique Hôpitaux de Paris, Nutrition Department, Pitié-Salpêtrière Hospital, Paris, France
| |
Collapse
|
7
|
Serrano E, Bastard JP, Trystram L, Fellahi S, Soula HA, Thenet S, Oppert JM, Clément K, Poitou C, Genser L. Serum Versus Fecal Calprotectin Levels in Patients with Severe Obesity Before and 6 Months After Roux-Y-Gastric Bypass: Report of the Prospective Leaky-Gut Study. Obes Surg 2023; 33:4017-4025. [PMID: 37924465 DOI: 10.1007/s11695-023-06911-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 11/06/2023]
Abstract
INTRODUCTION Obesity is associated with low-grade inflammation, including intestinal inflammation based on fecal or serum calprotectin (FC-SC) measurement. Roux-en-Y gastric bypass (RYGB) improves obesity-related parameters. However, the association between FC-SC levels and postoperative course and the link with metabolic and inflammatory phenotypes before and after RYGB remains unclear. METHODS We determined SC levels in 48 patients before (T0) and 6 months after (T6M) RYGB. We then analyzed postoperative changes in FC-SC levels and the relationship with inflammation and metabolic status. RESULTS Twenty-three patients (48%) had elevated SC levels (˃2.9 μg/mL) at T0 and T6M. Six of 29 patients (20.7%) had elevated FC concentrations (>50 μg/g) at T0 vs. 16 of 17 patients (94.1%) at T6M (p=0.006). At T0, FC levels correlated with BMI (Rho=0.63; p=0.001) and systemic inflammation (CRP: Rho=0.66, p=0.0006; IL-6: Rho=0.48, p=0.03; haptoglobin: Rho=0.75; p= 0.0006). SC tended to be positively associated with triglyceride levels (Rho=0.34; p=0.08), BMI (Rho=0.34; p=0.08), and inflammatory markers (CRP: Rho=0.33; p=0.09; IL-6: Rho=0.36; p=0.06). FC levels were associated with increased jejunal IL-17+CD8+ T-cell densities (Rho:0.90; p=0.0002). FC and SC were correlated together at T0 (Rho=0.83; p<0.001) but not at T6M. At T6M, SC decreased by 53.6%, whereas FC increased by 79.7%. SC and FC were not associated with any of the variables studied at T6M. CONCLUSION FC is a surrogate marker of systemic and intestinal inflammation and adiposity, whereas SC only tends to correlate with systemic inflammation. At 6 months after RYGB, SC-based systemic inflammation decreased, whereas FC-based intestinal inflammation increased. FC and SC levels follow different trajectories and are unrelated to improvements following bariatric surgery.
Collapse
Affiliation(s)
- Ella Serrano
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France
| | - Jean-Philippe Bastard
- Département de Biochimie-Pharmacologie-Biologie Moléculaire-Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France
- FHU-SENEC, INSERM U955 and Université Paris Est (UPEC), UMR U955, Faculté de Santé, Créteil, France
| | - Laurence Trystram
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Functional Coprology, Paris, France
| | - Soraya Fellahi
- Département de Biochimie-Pharmacologie-Biologie Moléculaire-Génétique Médicale, Assistance Publique-Hôpitaux de Paris, Hôpitaux Universitaires Henri Mondor, Créteil, France
| | - Hedi A Soula
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France
| | - Sophie Thenet
- Sorbonne Université, INSERM, Centre de Recherche Saint-Antoine, CRSA, Paris Center for Microbiome Medicine (PaCeMM) FHU, APHP, EPHE, PSL University, F-75012, F-75014, Paris, France
| | - Jean-Michel Oppert
- Sorbonne Université, Department of Nutrition, Assistance Publique- Hôpitaux de Paris, AP-HP, Pitié Salpêtrière University Hospital, 75013, Paris, France
| | - Karine Clément
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France
- Sorbonne Université, Department of Nutrition, Assistance Publique- Hôpitaux de Paris, AP-HP, Pitié Salpêtrière University Hospital, 75013, Paris, France
| | - Christine Poitou
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France
- Sorbonne Université, Department of Nutrition, Assistance Publique- Hôpitaux de Paris, AP-HP, Pitié Salpêtrière University Hospital, 75013, Paris, France
| | - Laurent Genser
- Sorbonne Université, INSERM, Nutrition and Obesities: Systemic Approaches, NutriOmics, research unit, 91 boulevard de l'hôpital, Paris, France.
- Sorbonne Université, Department of Hepato-Biliary and Pancreatic Surgery, Assistance Publique- Hôpitaux de Paris, AP-HP, Pitié-Salpêtrière University Hospital, 47-83 boulevard de l'Hôpital, 75013, Paris, France.
| |
Collapse
|
8
|
Fan H, Wu J, Yang K, Xiong C, Xiong S, Wu X, Fang Z, Zhu J, Huang J. Dietary regulation of intestinal stem cells in health and disease. Int J Food Sci Nutr 2023; 74:730-745. [PMID: 37758199 DOI: 10.1080/09637486.2023.2262780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Diet is a critical regulator for physiological metabolism and tissue homeostasis, with a close relation to health and disease. As an important organ for digestion and absorption, the intestine comes into direct contact with many dietary components. The rapid renewal of its mucosal epithelium depends on the continuous proliferation and differentiation of intestinal stem cells (ISCs). The function and metabolism of ISCs can be controlled by a variety of dietary patterns including calorie restriction, fasting, high-fat, ketogenic, and high-sugar diets, as well as different nutrients including vitamins, amino acids, dietary fibre, and probiotics. Therefore, dietary interventions targeting ISCs may make it possible to prevent and treat intestinal disorders such as colon cancer, inflammatory bowel disease, and radiation enteritis. This review summarised recent research on the role and mechanism of diet in regulating ISCs, and discussed the potential of dietary modulation for intestinal diseases.
Collapse
Affiliation(s)
- Hancheng Fan
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
- Department of Histology and Embryology, School of Basic Medicine, Nanchang University, Nanchang, China
| | - Jiaqiang Wu
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kangping Yang
- The Second Clinical Medical College of Nanchang University, the Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chaoyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Siyi Xiong
- Department of Pathology, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| | - Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Jing Zhu
- Center for Reproductive Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Key Laboratory of Women's Reproductive Health, Jiangxi Maternal and Child Health Hospital, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Nanchang Medical College, Nanchang, China
| |
Collapse
|
9
|
Norsa L, Goulet O, Alberti D, DeKooning B, Domellöf M, Haiden N, Hill S, Indrio F, Kӧglmeier J, Lapillonne A, Luque V, Moltu SJ, Saenz De Pipaon M, Savino F, Verduci E, Bronsky J. Nutrition and Intestinal Rehabilitation of Children With Short Bowel Syndrome: A Position Paper of the ESPGHAN Committee on Nutrition. Part 1: From Intestinal Resection to Home Discharge. J Pediatr Gastroenterol Nutr 2023; 77:281-297. [PMID: 37256827 DOI: 10.1097/mpg.0000000000003849] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Short bowel syndrome (SBS) is the leading cause of intestinal failure (IF) in children. The mainstay of treatment for IF is parenteral nutrition (PN). The aim of this position paper is to review the available evidence on managing SBS and to provide practical guidance to clinicians dealing with this condition. All members of the Nutrition Committee of the European Society for Paediatric Gastroenterology Hepatology and Nutrition (ESPGHAN) contributed to this position paper. Some renowned experts in the field joined the team to guide with their experience. A systematic literature search was performed from 2005 to May 2021 using PubMed, MEDLINE, and Cochrane Database of Systematic Reviews. In the absence of evidence, recommendations reflect the expert opinion of the authors. Literature on SBS mainly consists of retrospective single-center experience, thus most of the current papers and recommendations are based on expert opinion. All recommendations were voted on by the expert panel and reached >90% agreement. The first part of this position paper focuses on the physiological mechanism of intestinal adaptation after surgical resection. It subsequently provides some clinical practice recommendations for the primary management of children with SBS from surgical resection until discharged home on PN.
Collapse
Affiliation(s)
- Lorenzo Norsa
- From the Department of Paediatric Hepatology, Gastroenterology and Transplantation, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Olivier Goulet
- the Department of Pediatric Gastroenterology-Hepatology-Nutrition, Necker-Enfants Malades Hospital, Université Paris Descartes, Paris, France
| | - Daniele Alberti
- the Department of Pediatric Surgery, ASST Spedali Civili, Brescia, Italy
- the Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara DeKooning
- the Paediatric Gastroenterology, Erasmus MC, Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Magnus Domellöf
- the Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
| | - Nadja Haiden
- the Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Susan Hill
- the Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Flavia Indrio
- the Department of Medical and Surgical Science, University of Foggia, Foggia, Italy
| | - Jutta Kӧglmeier
- the Department of Paediatric Gastroenterology, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
| | - Alexandre Lapillonne
- the Neonatal Intensive Care Unit, Necker-Enfants Malades Hospital, Paris University, Paris, France
- the CNRC, Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Veronica Luque
- Serra Hunter, Universitat Rovira I Virgili, IISPV, Tarragona, Spain
| | - Sissel J Moltu
- the Department of Neonatology, Oslo University Hospital, Oslo, Norway
| | - Miguel Saenz De Pipaon
- the Department of Neonatology, Instituto de Investigación Sanitaria del Hospital Universitario La Paz - IdiPAZ, Hospital Universitario La Paz - Universidad Autónoma de Madrid, Madrid, Spain
| | - Francesco Savino
- the Dipartimento di Patologia e cura del bambino "Regina Margherita", A.U.O. Città delle Salute e della Scienza di Torino, Torino, Italy
| | - Elvira Verduci
- the Department of Pediatrics, Ospedale dei Bambini Vittore Buzzi University of Milan, Milan, Italy
| | - Jiri Bronsky
- the Department of Paediatrics, University Hospital Motol, Prague, Czech Republic
| |
Collapse
|
10
|
Van Ouytsel P, Piessevaux H, Szalai A, Loi P, Louis H. Irritable bowel syndrome-like symptoms before and after bariatric surgery and association with short-chain fermentable carbohydrates consumption: an observational prospective study. Acta Gastroenterol Belg 2023; 86:288-297. [PMID: 37428161 DOI: 10.51821/86.2.11530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Background and aims Irritable Bowel Syndrome (IBS)-like symptoms are frequent following bariatric surgery. This study aims to evaluate the frequency of IBS symptoms severity before and after bariatric surgery and their association with short-chain fermentable carbohydrates (FODMAPs) consumption. Patients and methods IBS symptoms severity in a cohort of obese patients was evaluated prospectively before, 6 and 12 months after bariatric surgery by validated questionnaires and tools (Irritable Bowel Syndrome Severity Scoring System (IBS SSS), Bristol Stool Scale (BSS), Quality of Life Short- Form-12 (SF-12), Hospital Anxiety and Depression scale (HAD)). FODMAPs consumption and its association with IBS symptom severity was evaluated by using a food frequency questionnaire focused on high-FODMAPs food consumption. Results Fifty-one patients were included (41 female; mean age 41 years (SD: 12)), 84% received a sleeve gastrectomy, and 16% a Roux-en-Y gastric bypass. Symptoms compatible with IBS were observed in 43% of patients before surgery, in 58% of patients at 6 months and 33% at 12 months (NS, p-value=0,197 and 0,414). In a multivariate model, a significant association was found between the IBS SSS score and lactose consumption at 6 months (β = + 58, 1; p = 0.03), and with polyols consumption at 12 months (β = + 112,6; p = 0.01). Conclusions Mild to moderate IBS symptoms are frequent in obese patients before bariatric surgery. A significant association between lactose and polyols consumption and IBS SSS score was observed after bariatric surgery, suggesting a potential link between the severity of IBS symptoms and some specific FODMAPs consumption.
Collapse
Affiliation(s)
- Pauline Van Ouytsel
- Department of Dietetics, HUB - CUB Hôpital Erasme (ULB), Brussels, Belgium
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, HUB - CUB Hôpital Erasme (ULB), Brussels, Belgium
| | - H Piessevaux
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc (UCLouvain), Brussels, Belgium
| | - A Szalai
- Department of Dietetics, HUB - CUB Hôpital Erasme (ULB), Brussels, Belgium
| | - P Loi
- Department of Digestive Surgery, HUB - CUB Hôpital Erasme (ULB), Brussels, Belgium
| | - H Louis
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, HUB - CUB Hôpital Erasme (ULB), Brussels, Belgium
| |
Collapse
|
11
|
Stojanović O, Miguel-Aliaga I, Trajkovski M. Intestinal plasticity and metabolism as regulators of organismal energy homeostasis. Nat Metab 2022; 4:1444-1458. [PMID: 36396854 DOI: 10.1038/s42255-022-00679-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022]
Abstract
The small intestine displays marked anatomical and functional plasticity that includes adaptive alterations in adult gut morphology, enteroendocrine cell profile and their hormone secretion, as well as nutrient utilization and storage. In this Perspective, we examine how shifts in dietary and environmental conditions bring about changes in gut size, and describe how the intestine adapts to changes in internal state, bowel resection and gastric bypass surgery. We highlight the critical importance of these intestinal remodelling processes in maintaining energy balance of the organism, and in protecting the metabolism of other organs. The intestinal resizing is supported by changes in the microbiota composition, and by activation of carbohydrate and fatty acid metabolism, which govern the intestinal stem cell proliferation, intestinal cell fate, as well as survivability of differentiated epithelial cells. The discovery that intestinal remodelling is part of the normal physiological adaptation to various triggers, and the potential for harnessing the reversible gut plasticity, in our view, holds extraordinary promise for developing therapeutic approaches against metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Ozren Stojanović
- Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Irene Miguel-Aliaga
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, London, UK.
| | - Mirko Trajkovski
- Department of Cell Physiology and Metabolism, Centre Medical Universitaire (CMU), Faculty of Medicine, University of Geneva, Geneva, Switzerland.
- Diabetes Centre, Faculty of Medicine, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
12
|
Whittamore JM, Hatch M. Oxalate Flux Across the Intestine: Contributions from Membrane Transporters. Compr Physiol 2021; 12:2835-2875. [PMID: 34964122 DOI: 10.1002/cphy.c210013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial oxalate transport is fundamental to the role occupied by the gastrointestinal (GI) tract in oxalate homeostasis. The absorption of dietary oxalate, together with its secretion into the intestine, and degradation by the gut microbiota, can all influence the excretion of this nonfunctional terminal metabolite in the urine. Knowledge of the transport mechanisms is relevant to understanding the pathophysiology of hyperoxaluria, a risk factor in kidney stone formation, for which the intestine also offers a potential means of treatment. The following discussion presents an expansive review of intestinal oxalate transport. We begin with an overview of the fate of oxalate, focusing on the sources, rates, and locations of absorption and secretion along the GI tract. We then consider the mechanisms and pathways of transport across the epithelial barrier, discussing the transcellular, and paracellular components. There is an emphasis on the membrane-bound anion transporters, in particular, those belonging to the large multifunctional Slc26 gene family, many of which are expressed throughout the GI tract, and we summarize what is currently known about their participation in oxalate transport. In the final section, we examine the physiological stimuli proposed to be involved in regulating some of these pathways, encompassing intestinal adaptations in response to chronic kidney disease, metabolic acid-base disorders, obesity, and following gastric bypass surgery. There is also an update on research into the probiotic, Oxalobacter formigenes, and the basis of its unique interaction with the gut epithelium. © 2021 American Physiological Society. Compr Physiol 11:1-41, 2021.
Collapse
Affiliation(s)
- Jonathan M Whittamore
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Marguerite Hatch
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
13
|
Chen R, Kang Z, Wang Y, Zhao J, Li S. The Anti-inflammatory Effect of Dexmedetomidine Administration on Patients Undergoing Intestinal Surgery: A Randomized Study. Drugs R D 2021; 21:445-453. [PMID: 34750767 PMCID: PMC8602546 DOI: 10.1007/s40268-021-00368-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Dexmedetomidine is a highly selective α2-adrenergic receptor agonist with sedative, analgesic, anti-sympathetic and stress-reducing effects. It has been widely used as an adjunct for general anesthesia of multiple surgeries. However, the relationship between the utilization of dexmedetomidine in intestinal surgery and the postoperative inflammatory response of patients remains unclear. METHODS A randomized, controlled, single-blinded clinical trial was performed. Eighty-six patients assigned for intestinal surgery were recruited and were randomly divided into two groups (dexmedetomidine group, n = 40; control group, n = 40) [six participants were excluded due to multiple reasons, such as allergy and drug use history]. The clinical characteristics and physiological outcomes of participants who received different treatments (dexmedetomidine and 0.9% sodium chloride) were collected and analyzed. Blood samples of the two groups were collected before administration (T0), 10 min after pumping dexmedetomidine/saline solution (T1), immediately after the operation started (T2), 30 min after the operation started (T3), and immediately after the operation ended (T4). Enzyme-linked immunosorbent assay (ELISA) was performed to evaluate the proinflammatory factors. RESULTS Intravenous injection of dexmedetomidine before intestinal surgery decreased a variety of circulating proinflammatory factors. Dexmedetomidine alleviated the stress response and promoted the recovery of cognitive ability among patients undergoing intestinal surgery. CONCLUSION Dexmedetomidine administration in patients undergoing intestinal surgery inhibited the surgery-induced inflammatory reactions.
Collapse
Affiliation(s)
- Rushuang Chen
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Zhenming Kang
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| | - Yaduan Wang
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Jie Zhao
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China
| | - Shunyuan Li
- Department of Anesthesiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, 362000, Fujian, China.
| |
Collapse
|
14
|
Aliluev A, Tritschler S, Sterr M, Oppenländer L, Hinterdobler J, Greisle T, Irmler M, Beckers J, Sun N, Walch A, Stemmer K, Kindt A, Krumsiek J, Tschöp MH, Luecken MD, Theis FJ, Lickert H, Böttcher A. Diet-induced alteration of intestinal stem cell function underlies obesity and prediabetes in mice. Nat Metab 2021; 3:1202-1216. [PMID: 34552271 PMCID: PMC8458097 DOI: 10.1038/s42255-021-00458-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 08/13/2021] [Indexed: 12/11/2022]
Abstract
Excess nutrient uptake and altered hormone secretion in the gut contribute to a systemic energy imbalance, which causes obesity and an increased risk of type 2 diabetes and colorectal cancer. This functional maladaptation is thought to emerge at the level of the intestinal stem cells (ISCs). However, it is not clear how an obesogenic diet affects ISC identity and fate. Here we show that an obesogenic diet induces ISC and progenitor hyperproliferation, enhances ISC differentiation and cell turnover and changes the regional identities of ISCs and enterocytes in mice. Single-cell resolution of the enteroendocrine lineage reveals an increase in progenitors and peptidergic enteroendocrine cell types and a decrease in serotonergic enteroendocrine cell types. Mechanistically, we link increased fatty acid synthesis, Ppar signaling and the Insr-Igf1r-Akt pathway to mucosal changes. This study describes molecular mechanisms of diet-induced intestinal maladaptation that promote obesity and therefore underlie the pathogenesis of the metabolic syndrome and associated complications.
Collapse
Affiliation(s)
- Alexandra Aliluev
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Sophie Tritschler
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Michael Sterr
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Lena Oppenländer
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Julia Hinterdobler
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
| | - Tobias Greisle
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Johannes Beckers
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Experimental Genetics, Helmholtz Center Munich, Neuherberg, Germany
- Technical University of Munich, Freising, Germany
| | - Na Sun
- Research Unit of Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Axel Walch
- Research Unit of Analytical Pathology, Helmholtz Center Munich, Neuherberg, Germany
| | - Kerstin Stemmer
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Rudolf-Buchheim-Institute of Pharmacology, Justus Liebig University, Giessen, Germany
| | - Alida Kindt
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Jan Krumsiek
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Matthias H Tschöp
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Institute of Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany
- Division of Metabolic Diseases, Department of Medicine, Technical University of Munich, Munich, Germany
| | - Malte D Luecken
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| | - Fabian J Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany.
- Technical University of Munich, Munich, Germany.
| | - Heiko Lickert
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
- Technical University of Munich, Munich, Germany.
| | - Anika Böttcher
- Institute of Diabetes and Regeneration Research, Helmholtz Diabetes Center, Helmholtz Center Munich, Neuherberg, Germany.
- German Center for Diabetes Research (DZD), Neuherberg, Germany.
| |
Collapse
|
15
|
Thorsen Y, Stimec BV, Lindstrom JC, Oresland T, Ignjatovic D. Stool dynamics after extrinsic nerve injury during right colectomy with extended D3-mesenterectomy. Scand J Gastroenterol 2021; 56:770-776. [PMID: 33961527 DOI: 10.1080/00365521.2021.1918757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
INTRODUCTION To improve oncological outcome in right colon cancer surgery, an extended mesenterectomy (D3) is under evaluation. In this procedure, all tissue anterior and posterior to the superior mesenteric vessels from the middle colic to ileocolic artery origin is removed, causing injury to the superior mesenteric nerve plexus. The aim was to study the effects of this injury on bowel dynamics and quality of life (QoL). METHODS Patients undergoing right colectomy with conventional D2- and extended D3-mesenterectomy were asked to record stool number and consistency for 60 d after surgery and complete questionnaires regarding QoL and bowel function (BF) before and after recovery from surgery. We compared early postoperative stool dynamics and long-term QoL in the groups and presented graphs depicting the temporal profile of stool numbers and consistency. RESULTS Thirty-three patients operated with a D3-resection and 12 patients with a D2-resection participated. The results revealed significantly higher stool numbers in the D3-group until day 26, with significantly more loose-watery stools until day 40. The most pronounced difference was found on day 9 (Mean difference in the total number of stools: 2.25 stools/day, p=.004. Mean difference in loose-watery stools/day: 2.81 p<.001). About 25% in the D2- and 69.7% in the D3-group reported having more than three stools/day in the early postoperative phase. There were no differences in long-term QoL and BF between the groups except in stool consistency (p=.039). DISCUSSION/CONCLUSIONS Denervation following extended D3-mesenterectomy leads to transitory reduced consistency and increased frequency. It does not affect long-term QoL or BF.
Collapse
Affiliation(s)
- Yngve Thorsen
- Department of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Gastroenterological Surgery, Akershus University Hospital, Lorenskog, Norway
| | - Bojan V Stimec
- Faculty of Medicine, Anatomy Sector, Teaching Unit, University of Geneva, Geneva, Switzerland
| | - Jonas Christoffer Lindstrom
- Department of Clinical Medicine, University of Oslo, Oslo, Norway.,Health Services Research Unit, Akershus University Hospital, Lorenskog, Norway
| | - Tom Oresland
- Department of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Gastroenterological Surgery, Akershus University Hospital, Lorenskog, Norway
| | - Dejan Ignjatovic
- Department of Clinical Medicine, University of Oslo, Oslo, Norway.,Department of Gastroenterological Surgery, Akershus University Hospital, Lorenskog, Norway
| |
Collapse
|
16
|
Steenackers N, Vanuytsel T, Augustijns P, Tack J, Mertens A, Lannoo M, Van der Schueren B, Matthys C. Adaptations in gastrointestinal physiology after sleeve gastrectomy and Roux-en-Y gastric bypass. Lancet Gastroenterol Hepatol 2021; 6:225-237. [PMID: 33581761 DOI: 10.1016/s2468-1253(20)30302-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 01/19/2023]
Abstract
Linked to the growing obesity epidemic, demand for bariatric and metabolic surgery has increased, the most common procedures being sleeve gastrectomy and Roux-en-Y gastric bypass. Originally, bariatric procedures were described as purely restrictive, malabsorptive, or combined restrictive-malabsorptive procedures limiting food intake, nutrient absorption, or both. Nowadays, anatomical alterations are known to affect gastrointestinal physiology, which in turn affects the digestion and absorption of nutrients and drugs. Therefore, understanding gastrointestinal physiology is crucial to prevent postoperative nutritional deficiencies and to optimise postoperative drug therapy. Preclinical and clinical research indicates that sleeve gastrectomy accelerates liquid and solid gastric emptying and small intestinal transit, and increases bile acid serum levels, whereas its effects on gastrointestinal acidity, gastric and pancreatic secretions, surface area, and colonic transit remain largely unknown. Roux-en-Y gastric bypass diminishes gastric acid secretion, accelerates liquid gastric emptying, and increases bile acid serum levels, but its effects on intestinal pH, solid gastric emptying, intestinal transit time, gastric enzyme secretions, and surface area remain largely unknown. In this Review, we summarise current knowledge of the effects of these two procedures on gastrointestinal physiology and assess the knowledge gaps.
Collapse
Affiliation(s)
- Nele Steenackers
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Tim Vanuytsel
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Patrick Augustijns
- Department of Chronic Diseases and Metabolism, and Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, Leuven, Belgium
| | - Jan Tack
- Translational Research Center for Gastrointestinal Disorders, KU Leuven, Leuven, Belgium
| | - Ann Mertens
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | - Matthias Lannoo
- Clinical and Experimental Endocrinology, KU Leuven, Leuven, Belgium
| | | | | |
Collapse
|
17
|
Postal BG, Aguanno D, Thenet S, Carrière V. Rapid Evaluation of Intestinal Paracellular Permeability Using the Human Enterocytic-Like Caco-2/TC7 Cell Line. Methods Mol Biol 2021; 2367:13-26. [PMID: 33730353 DOI: 10.1007/7651_2021_366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Paracellular permeability of the intestinal epithelium is a feature of the intestinal barrier, which plays an important role in the physiology of gut and the whole organism. Intestinal paracellular permeability is controlled by complex processes and is involved in the passage of ions and fluids (called pore pathway) and macromolecules (called leak pathway) through tight junctions, which seal the intercellular space. Impairment of intestinal paracellular permeability is associated with several diseases. The identification of a defect in intestinal paracellular permeability may help to understand the implication of gut barrier as a cause or a consequence in human pathology. Here we describe two complementary methods to evaluate alteration of paracellular permeability in cell culture, using the human intestinal cell line Caco-2 and its clone Caco-2/TC7.
Collapse
Affiliation(s)
- Bárbara Graziela Postal
- Centre de Recherche sur l'Inflammation, INSERM UMR1149, Université de Paris, Paris, France
- Biology and Genetics of Bacterial Cell Wall Unit, Pasteur Institute, Paris, France
| | - Doriane Aguanno
- Centre de Recherche Saint-Antoine, INSERM UMRS 938, Sorbonne Université, INSERM, Paris, France
| | - Sophie Thenet
- Centre de Recherche Saint-Antoine, INSERM UMRS 938, Sorbonne Université, INSERM, Paris, France
- EPHE, PSL University, Paris, France
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France
| | - Véronique Carrière
- Centre de Recherche Saint-Antoine, INSERM UMRS 938, Sorbonne Université, INSERM, Paris, France.
- Center for Microbiome Medicine (PaCeMM) FHU, AP-HP, Paris, Ile-de-France, France.
| |
Collapse
|
18
|
Ciudin A, Sánchez M, Hernandez I, Cordero E, Fidilio E, Comas M, Gonzalez C, Lopez N, Vilallonga R, Giralt M, Ferrer R, Hernández C, Simó R. Canagliflozin: A New Therapeutic Option in Patients That Present Postprandial Hyperinsulinemic Hypoglycemia after Roux-en-Y Gastric Bypass: A Pilot Study. Obes Facts 2021; 14:291-297. [PMID: 33965935 PMCID: PMC8255644 DOI: 10.1159/000515598] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 12/14/2022] Open
Abstract
INTRODUCTION Roux-en-Y gastric bypass (RYGB) is the most common surgical procedure for morbid obesity. However, it can present serious late complications, like postprandial hyperinsulinemic hypoglycemia (PHH). Recent data suggested an increase in intestinal SGLT-1 after RYGB. However, there is no data on the inhibition of SGLT-1 to prevent PHH in patients with prior RYBG. On this basis, we aimed to evaluate (a) the effect of canagliflozin 300 mg on the response to 100 g glucose overload (oral glucose tolerance test [OGTT]); (b) the pancreatic response after intra-arterial calcium stimulation in the context of PHH after RYGB. MATERIALS AND METHODS This is a prospective pilot study including patients (n = 21) with PHH after RYGB, matched by age and gender with healthy controls (n = 5). Basal OGTT and after 2 weeks of daily 300 mg of canagliflozin was performed in all cases. In addition, venous sampling after intra-arterial calcium stimulation of the pancreas was performed in 10 cases. RESULTS OGTT after canagliflozin showed a significant reduction of plasma glucose levels (minute 30: 161.5 ± 36.22 vs. 215.9 ± 58.11 mg/dL; minute 60: 187.46 ± 65.88 vs. 225.9 ± 85.60 mg/dL, p < 0.01) and insulinemia (minute 30: 95.6 ± 27.31 vs. 216.35 ± 94.86 mg/dL, p = 0.03; minute 60: 120.85 ± 94.86 vs. 342.64 ± 113.32 mIU/L, p < 0.001). At minute 180, a significant reduction (85.7%) of the rate of hypoglycemia was observed after treatment with canagliflozin (p < 0.00001). All cases presented normal pancreatic response after intra-arterial calcium administration. CONCLUSION Canagliflozin (300 mg) significantly decreased glucose absorption and prevented PHH after 100 g OGTT in patients with RYGB. Our results suggest that canagliflozin could be a new therapeutic option for patients that present PHH after RYGB.
Collapse
Affiliation(s)
- Andreea Ciudin
- Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, Barcelona, Spain
- *Andreea Ciudin,
| | - Marta Sánchez
- Endocrinology and Nutrition Department, Hospital Universitario Gran Canaria Doctor Negrín, Las Palmas, Spain
| | - Irene Hernandez
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, Barcelona, Spain
| | - Efrain Cordero
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, Barcelona, Spain
| | - Enzamaria Fidilio
- Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
| | - Marta Comas
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, Barcelona, Spain
| | - Carla Gonzalez
- Angioradiology Department, Hospital Universitari Vall Hebron, Barcelona, Spain
| | - Natividad Lopez
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, Barcelona, Spain
| | - Ramon Vilallonga
- Bariatric and Metabolic Surgery Department, Hospital Universitari Vall Hebron, Barcelona, Spain
| | - Marina Giralt
- Clinical Biochemistry Department, Hospital Universitari Vall Hebron, Barcelona, Spain
| | - Roser Ferrer
- Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
- Clinical Biochemistry Department, Hospital Universitari Vall Hebron, Barcelona, Spain
| | - Cristina Hernández
- Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, Barcelona, Spain
| | - Rafael Simó
- Institut de Recerca Vall d'Hebron, Universitat Autònoma de Barcelona (VHIR-UAB), Barcelona, Spain
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Barcelona, Spain
- Endocrinology and Nutrition Department, Hospital Universitari Vall Hebron, Barcelona, Spain
| |
Collapse
|
19
|
Le Beyec J, Billiauws L, Bado A, Joly F, Le Gall M. Short Bowel Syndrome: A Paradigm for Intestinal Adaptation to Nutrition? Annu Rev Nutr 2020; 40:299-321. [PMID: 32631145 DOI: 10.1146/annurev-nutr-011720-122203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Short bowel syndrome (SBS) is a rare disease that results from extensive resection of the intestine. When the remaining absorption surface of the intestine cannot absorb enough macronutrients, micronutrients, and water, SBS results in intestinal failure (IF). Patients with SBS who suffer from IF require parenteral nutrition for survival, but long-term parenteral nutrition may lead to complications such as catheter sepsis and metabolic diseases. Spontaneous intestinal adaptation occurs weeks to months after resection, resulting in hyperplasia of the remnant gut, modification of gut hormone levels, dysbiosis, and hyperphagia. Oral nutrition and presence of the colon are two major positive drivers for this adaptation. This review aims to summarize the current knowledge of the mechanisms underlying spontaneous intestinal adaptation, particularly in response to modifications of luminal content, including nutrients. In the future, dietary manipulations could be used to treat SBS.
Collapse
Affiliation(s)
- Johanne Le Beyec
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Biochimie Endocrinienne et Oncologique, Hôpital Pitié-Salpêtrière-Charles Foix, Assistance Publique-Hôpitaux de Paris, Sorbonne Université, 75013 Paris, France
| | - Lore Billiauws
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Gastroentérologie, MICI et Assistance Nutritive, Groupe Hospitalier Universitaire Paris Nord Val de Seine (GHUPNVS), Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Université de Paris, 92110 Clichy, France
| | - André Bado
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France;
| | - Francisca Joly
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France; .,Service de Gastroentérologie, MICI et Assistance Nutritive, Groupe Hospitalier Universitaire Paris Nord Val de Seine (GHUPNVS), Hôpital Beaujon, Assistance Publique-Hôpitaux de Paris, Université de Paris, 92110 Clichy, France
| | - Maude Le Gall
- Centre de Recherche sur l'Inflammation, INSERM UMRS-1149, Assistance Publique-Hôpitaux de Paris, Université de Paris, 75018 Paris, France;
| |
Collapse
|