1
|
Nabisubi P, Kanyerezi S, Kebirungi G, Sserwadda I, Nsubuga M, Kisitu G, Nahirya PN, Mulindwa B, Akabwai GP, Nantongo S, Kekitiinwa A, Kigozi E, Luutu NM, Katabazi FA, Kalema L, Katabalwa A, Jjingo D, Mboowa G. Beyond the fever: shotgun metagenomic sequencing of stool unveils pathogenic players in HIV-infected children with non-malarial febrile illness. BMC Infect Dis 2025; 25:96. [PMID: 39838275 PMCID: PMC11752807 DOI: 10.1186/s12879-025-10517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 01/16/2025] [Indexed: 01/23/2025] Open
Abstract
BACKGROUND Non-malarial febrile illnesses (NMFI) pose significant challenges in HIV-infected children, often leading to severe complications and increased morbidity. While traditional diagnostic approaches focus on specific pathogens, shotgun metagenomic sequencing offers a comprehensive tool to explore the microbial landscape underlying NMFI in this vulnerable population ensuring effective management. METHODS In this study, we employed shotgun metagenomics to analyse stool samples from HIV-infected children at the Baylor Children's Clinic Uganda presenting with non-malarial febrile illness. Samples were collected and subjected to DNA extraction at the Molecular and Genomics Laboratory, Makerere University followed by shotgun metagenomics sequencing at the Chan Zuckerberg Biohub San Francisco. Bioinformatics analysis was conducted to identify and characterise the microbial composition and potential pathogenic taxa associated with NMFI using the CZID pipeline. RESULTS Our findings reveal a diverse array of microbial taxa in the stool samples of HIV-infected children with NMFI. Importantly, shotgun metagenomics revealed potentially pathogenic players including Trichomonas vaginalis, Candida albicans, Giardia, and Bacteroides in stool from this patient population. This sheds light on the complexities of microbial interactions that potentially underpin non-malarial febrile illness in this group. Taxonomic profiling identified recognised pathogens and comorbidities and revealed possible new correlations with NMFI, shedding light on the pathophysiology of fever in HIV-infected children. CONCLUSION Shotgun metagenomics is a valuable method for understanding the gut microbial landscape of NMFI in HIV-infected children, providing a comprehensive approach to pathogen identification and characterisation. By revealing potential pathogenic actors beyond the fever, this work demonstrates how metagenomic sequencing may improve our knowledge of infectious illnesses in vulnerable groups and inspire targeted therapies for better clinical care and outcomes.
Collapse
Affiliation(s)
- Patricia Nabisubi
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
- The Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Stephen Kanyerezi
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
- The Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
- Africa Centres for Disease Control and Prevention, African Union Commission, Roosevelt Street, P.O. Box 3243, Addis Ababa, W21 K19, Ethiopia
- National Health Laboratories and Diagnostics Services, Central Public Health Laboratories, Ministry of Health, P.O Box 7272, Kampala, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Grace Kebirungi
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
- The Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
| | - Ivan Sserwadda
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
- The Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Mike Nsubuga
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
| | - Grace Kisitu
- Baylor College of Medicine Children's Foundation, Mulago Hospital, Kampala, Uganda
| | | | - Bonny Mulindwa
- Baylor College of Medicine Children's Foundation, Mulago Hospital, Kampala, Uganda
| | - George P Akabwai
- Baylor College of Medicine Children's Foundation, Mulago Hospital, Kampala, Uganda
| | - Sylvia Nantongo
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
| | - Adeodata Kekitiinwa
- Baylor College of Medicine Children's Foundation, Mulago Hospital, Kampala, Uganda
| | - Edgar Kigozi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Nsubuga Moses Luutu
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Fred Ashaba Katabazi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Leymon Kalema
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Andrew Katabalwa
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Daudi Jjingo
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda
- The Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda
| | - Gerald Mboowa
- The African Centre of Excellence in Bioinformatics and Data-Intensive Sciences, Kampala, Uganda.
- The Infectious Diseases Institute, College of Health Sciences, Makerere University, P.O Box 22418, Kampala, Uganda.
- National Health Laboratories and Diagnostics Services, Central Public Health Laboratories, Ministry of Health, P.O Box 7272, Kampala, Uganda.
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, P.O Box 7072, Kampala, Uganda.
| |
Collapse
|
2
|
Islam SMS, Singh S, Keshavarzian A, Abdel-Mohsen M. Intestinal Microbiota and Aging in People with HIV-What We Know and What We Don't. Curr HIV/AIDS Rep 2024; 22:9. [PMID: 39666149 PMCID: PMC11874070 DOI: 10.1007/s11904-024-00717-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2024] [Indexed: 12/13/2024]
Abstract
PURPOSE OF REVIEW People with HIV (PWH) experience premature aging and an elevated risk of age-related comorbidities, even with viral suppression through antiretroviral therapy (ART). We examine gastrointestinal disruptions, specifically impaired intestinal barrier integrity and microbial dysbiosis, as contributors to these comorbidities. RECENT FINDINGS HIV infection compromises the intestinal epithelial barrier, increasing permeability and microbial translocation, which trigger inflammation and cellular stress. ART does not fully restore gut barrier integrity, leading to persistent inflammation and cellular stress. Additionally, HIV-associated microbial dysbiosis favors pro-inflammatory bacteria, intensifying inflammation and tissue damage, which may contribute to premature aging in PWH. Understanding the interactions between intestinal microbiota, chronic inflammation, cellular stress, and aging is essential to developing therapies aimed at reducing inflammation and slowing age-related diseases in PWH. In this review, we discuss critical knowledge gaps and highlight the therapeutic potential of microbiota-targeted interventions to mitigate inflammation and delay age-associated pathologies in PWH.
Collapse
Affiliation(s)
| | - Shalini Singh
- Northwestern University, 300 E Superior St, Chicago, IL, 60611, USA
| | - Ali Keshavarzian
- Rush Center for Integrated Microbiome and Chronobiology Research, Rush University Medical Center, Chicago, IL, USA
- Departments of Internal Medicine, physiology Rush University Medical Center, Anatomy & Cell Biology, Chicago, IL, USA
| | | |
Collapse
|
3
|
Gáspár Z, Nagavci B, Szabó BG, Lakatos B. Gut Microbiome Alteration in HIV/AIDS and the Role of Antiretroviral Therapy-A Scoping Review. Microorganisms 2024; 12:2221. [PMID: 39597610 PMCID: PMC11596264 DOI: 10.3390/microorganisms12112221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024] Open
Abstract
(1) Background: The gut microbiota plays a crucial role in chronic immune activation associated with human immunodeficiency virus (HIV) infection, acquired immune deficiency syndrome (AIDS) pathogenesis, non-AIDS-related comorbidities, and mortality among people living with HIV (PLWH). The effects of antiretroviral therapy on the microbiome remain underexplored. This study aims to map the evidence of the impact of integrase strand transfer inhibitors (INSTI) and non-nucleoside reverse transcriptase inhibitors (NNRTI) on the gut microbiota of PLWH. (2) Methods: A scoping review was conducted using PubMed, Web of Science, and Embase, with reports collected following PRISMA for Scoping Reviews (PRISMA-ScR). (3) Results: Evidence suggests that INSTI-based regimes generally promote the restoration of alpha diversity, bringing it closer to that of seronegative controls, while beta diversity remains largely unchanged. INSTI-based therapies are suggested to be associated with improvements in microbiota composition and a tendency toward reduced inflammatory markers. In contrast, NNRTI-based treatments demonstrate limited recovery of alpha diversity and are linked to an increase in proinflammatory bacteria. (4) Conclusions: Based on the review of the current literature, it is indicated that INSTI-based antiretroviral therapy (ART) therapy facilitates better recovery of the gut microbiome.
Collapse
Affiliation(s)
- Zsófia Gáspár
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Blin Nagavci
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
| | - Bálint Gergely Szabó
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| | - Botond Lakatos
- National Institute of Hematology and Infectious Diseases, Central Hospital of Southern Pest, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, H-1097 Budapest, Hungary
- Departmental Group of Infectious Diseases, Department of Internal Medicine and Hematology, Semmelweis University, H-1097 Budapest, Hungary
| |
Collapse
|
4
|
Dolo O, Coulibaly F, Somboro AM, Fofana DB, Togo J, Balde A, Diallo D, Maiga A, Diarra B, Murphy RL, Balam S, Holl J, Sylla M, Maiga M, Maiga AI. The impact of HIV antiretroviral therapy on gut microbiota: the need for well-designed longitudinal studies. J Infect Dev Ctries 2024; 18:1461-1473. [PMID: 39616473 PMCID: PMC12022512 DOI: 10.3855/jidc.18878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/24/2024] [Indexed: 12/18/2024] Open
Abstract
INTRODUCTION Human immunodeficiency virus (HIV) infection remains a major public health concern despite a significant decline in HIV-related mortality and morbidity. These significant advances are linked mostly to effective antiretroviral therapy (ART). However, these treatments are not without consequences on other microorganisms in our body, especially when they must be used for life. Balanced gut microbiota is essential for maintaining human health through symbiotic relationship with the host cells. AIMS AND METHODOLOGY This review focuses on ART and its potential impact on the intestinal microbial population of HIV-infected individuals. Therefore, we retrieved studies focusing on the impact of HIV ART on the gut microbiota, that were published from 2010 to 2021. RESULTS It was observed that most studies on HIV ART and associated gut microbiota have been cross-sectional, and the findings, in general, showed significant damages caused by the ART to the gut microbial community (dysbiosis), with the impact varying in different studies. These changes also revealed dysfunction in microbial translocation and some immune markers, including T lymphocyte rates and the overall inflammation balance. CONCLUSIONS There are significant gaps in our understanding of the impact of HIV ART on gut microbiota. Thus, a longitudinal study is likely needed with a considerable sample size from different settings and classes of ART to better understand the impact of HIV ART on the gut microbiota, and develop remedial (restorative) and adjunctive host-directed strategies during HIV ART.
Collapse
Affiliation(s)
- Oumar Dolo
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Fousseini Coulibaly
- Medical Biology Laboratory of the Point G University Hospital Center, Bamako, Mali
| | - Anou M Somboro
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Djeneba B Fofana
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Josue Togo
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Aliou Balde
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Dramane Diallo
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Aminata Maiga
- Medical Biology Laboratory of the Point G University Hospital Center, Bamako, Mali
| | - Bassirou Diarra
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| | - Robert L Murphy
- Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Saidou Balam
- Department of Internal Medicine II - Nephrology, University Hospital Regensburg, 93053, Regensburg, Germany
| | - Jane Holl
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | | | - Mamoudou Maiga
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
- Institute for Global Health, Northwestern University, Chicago, IL, United States
| | - Almoustapha I Maiga
- University Clinical Research Center (UCRC), University of Sciences, Techniques and Technologies of Bamako (USTTB), Bamako, Mali
| |
Collapse
|
5
|
Lippincott RA, O’Connor J, Neff CP, Lozupone C, Palmer BE. Deciphering HIV-associated inflammation: microbiome's influence and experimental insights. Curr Opin HIV AIDS 2024; 19:228-233. [PMID: 38884255 PMCID: PMC11305906 DOI: 10.1097/coh.0000000000000866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
PURPOSE OF REVIEW To review novel experimental approaches for studying host:microbe interactions and their role in intestinal and systemic inflammation in people living with HIV (PLWH). RECENT FINDINGS Inflammation in PLWH is impacted by interactions between the microbiome, the intestinal epithelium, and immune cells. This complex interplay is not fully understood and requires a variety of analytical techniques to study. Using a multiomic systems biology approach provides hypothesis generating data on host:microbe interactions that can be used to guide further investigation. The direct interactions between host cells and microbes can be elucidated using peripheral blood mononuclear cells (PBMCs), lamina propria mononuclear cells (LPMC's) or human intestinal organoids (HIO). Additionally, the broader relationship between the host and the microbiome can be explored using animal models such as nonhuman primates and germ-free and double humanized mice. SUMMARY To explore complex host:microbe relationships, hypotheses are generated and investigations are guided by multiomic data, while causal components are identified using in-vitro and in-vivo assays.
Collapse
Affiliation(s)
| | - John O’Connor
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | | - Catherine Lozupone
- Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | | |
Collapse
|
6
|
Ortiz AM, Brenchley JM. Untangling the role of the microbiome across the stages of HIV disease. Curr Opin HIV AIDS 2024; 19:221-227. [PMID: 38935047 PMCID: PMC11305932 DOI: 10.1097/coh.0000000000000870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
PURPOSE OF REVIEW The primate microbiome consists of bacteria, eukaryotes, and viruses that dynamically shape and respond to host health and disease. Understanding how the symbiotic relationship between the host and microbiome responds to HIV has implications for therapeutic design. RECENT FINDINGS Advances in microbiome identification technologies have expanded our ability to identify constituents of the microbiome and to infer their functional capacity. The dual use of these technologies and animal models has allowed interrogation into the role of the microbiome in lentiviral acquisition, vaccine efficacy, and the response to antiretrovirals. Lessons learned from such studies are now being harnessed to design microbiome-based interventions. SUMMARY Previous studies considering the role of the microbiome in people living with HIV largely described viral acquisition as an intrusion on the host:microbiome interface. Re-framing this view to consider HIV as a novel, albeit unwelcome, component of the microbiome may better inform the research and development of pre and postexposure prophylaxes.
Collapse
Affiliation(s)
- Alexandra M Ortiz
- Barrier Immunity Section, Laboratory of Viral Diseases, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | | |
Collapse
|
7
|
Fu Y, Ke S, Tang G, Guo Q, Guo Q, Wang Z, Leng R, Fan Y. Characterization of the intestinal microbiota in MSM with HIV infection. BMC Microbiol 2024; 24:192. [PMID: 38831399 PMCID: PMC11145808 DOI: 10.1186/s12866-024-03351-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 05/26/2024] [Indexed: 06/05/2024] Open
Abstract
BACKGROUND HIV-infected persons demonstrate notable disturbances in their intestinal microbiota; however, the impact of intestinal microbiota on HIV susceptibility in men who have sex with men (MSM), as well as the effects of HIV and antiretroviral therapy (ART) on their gut microbiota, remains under active study. Thus, our research focuses on clarifying the distinctions in intestinal microbiota composition among uninfected MSM and non-MSM healthy controls, investigating the alterations in early-stage intestinal microbial communities following HIV infection, and assessing how ART affects the intestinal microbiota. METHODS This study enrolled four participant groups: uninfected MSM, Recent HIV-1 infection (RHI) MSM, MSM on ART, and non-MSM healthy controls, with 30 individuals in each group. We utilized 16S ribosomal DNA (16S rDNA) amplicon sequencing to analyze fecal microbiota and employed Luminex multiplex assays to measure plasma markers for microbial translocation (LBP, sCD14) and the inflammatory marker CRP. FINDINGS Comparing uninfected MSM to non-MSM healthy controls, no substantial variances were observed in α and β diversity. Uninfected MSM had higher average relative abundances of Bacteroidetes, Prevotella, and Alloprevotella, while Bacteroides, Firmicutes, and Faecalibacterium had lower average relative abundances. MSM on ART had lower intestinal microbiota diversity than RHI MSM and uninfected MSM. In MSM on ART, Megasphaera and Fusobacterium increased, while Faecalibacterium and Roseburia decreased at genus level. Additionally, treatment with a non-nucleoside reverse transcriptase inhibitor (NNRTI) led to significant alterations in intestinal microbiota diversity and composition compared to RHI MSM. The random forest model showed that HIV infection biomarkers effectively distinguished between newly diagnosed HIV-infected MSM and HIV-negative MSM, with an ROC AUC of 76.24% (95% CI: 61.17-91.31%). CONCLUSIONS MSM showed early intestinal microbiota imbalances after new HIV infection. MSM on ART experienced worsened dysbiosis, indicating a combined effect of HIV and ART. NNRTI-based treatment notably changed intestinal microbiota, suggesting a potential direct impact of NNRTI drugs on intestinal microbiota.
Collapse
Affiliation(s)
- Yuansheng Fu
- Anhui Provincial Center for Disease Control and Prevention, Hefei, Anhui, 230601, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
| | - Susu Ke
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Gan Tang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qisheng Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Qian Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ziwei Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Ruixue Leng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| | - Yinguang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
8
|
Salvador PBU, Altavas PJDR, del Rosario MAS, Ornos EDB, Dalmacio LMM. Alterations in the Gut Microbiome Composition of People Living with HIV in the Asia-Pacific Region: A Systematic Review. Clin Pract 2024; 14:846-861. [PMID: 38804398 PMCID: PMC11130874 DOI: 10.3390/clinpract14030066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/25/2024] [Accepted: 05/06/2024] [Indexed: 05/29/2024] Open
Abstract
Human immunodeficiency virus (HIV) infection continues to present a global health issue. Recent studies have explored the potential role of the gut microbiome in HIV infection for novel therapeutic approaches. We investigated the gut microbiome composition of people living with HIV (PLHIV) in the Asia-Pacific region. This review was conducted following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. An electronic search was conducted in the PubMed/MEDLINE, Scopus, and ScienceDirect databases using keywords such as "HIV", "PLHIV", "AIDS", "gut microbiome", "gut dysbiosis", and "metagenomics". Only peer-reviewed and full-text studies published in English were included. A total of 15 studies from the Asia-Pacific region were included for analysis. Compared to healthy controls, PLHIV showed an increased abundance of Proteobacteria and its genera, which may be considered pathobionts, and decreased abundances of Bacteroidetes and several genera under Firmicutes with known short-chain fatty acid and immunoregulatory activities. Predominant taxa such as Ruminococcaceae and Prevotellaceae were also associated with clinical factors such as CD4 count, the CD4/CD8 ratio, and inflammatory cytokines. This review highlights gut microbiome changes among PLHIV in the Asia-Pacific region, indicating potential bacterial signatures for prognostication. The partial restoration of the microbiome toward beneficial taxa may ensure the long-term success of treatment, promoting immune recovery while maintaining viral load suppression.
Collapse
Affiliation(s)
- Paul Benedic U. Salvador
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (P.J.d.R.A.); (L.M.M.D.)
| | - Patrick Josemaria d. R. Altavas
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (P.J.d.R.A.); (L.M.M.D.)
| | - Mark Angelo S. del Rosario
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (M.A.S.d.R.); (E.D.B.O.)
| | - Eric David B. Ornos
- Multi-Omics Research Program for Health, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (M.A.S.d.R.); (E.D.B.O.)
- Department of Medical Microbiology, College of Public Health, University of the Philippines Manila, Manila 1000, Philippines
| | - Leslie Michelle M. Dalmacio
- Department of Biochemistry and Molecular Biology, College of Medicine, University of the Philippines Manila, Manila 1000, Philippines; (P.J.d.R.A.); (L.M.M.D.)
| |
Collapse
|
9
|
Maghini DG, Oduaran OH, Wirbel J, Olubayo LAI, Smyth N, Mathema T, Belger CW, Agongo G, Boua PR, Choma SSR, Gómez-Olivé FX, Kisiangani I, Mashaba GR, Micklesfield L, Mohamed SF, Nonterah EA, Norris S, Sorgho H, Tollman S, Wafawanaka F, Tluway F, Ramsay M, Bhatt AS, Hazelhurst S. Expanding the human gut microbiome atlas of Africa. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584859. [PMID: 38559015 PMCID: PMC10980044 DOI: 10.1101/2024.03.13.584859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Population studies are crucial in understanding the complex interplay between the gut microbiome and geographical, lifestyle, genetic, and environmental factors. However, populations from low- and middle-income countries, which represent ~84% of the world population, have been excluded from large-scale gut microbiome research. Here, we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome study sampling 1,803 women from Burkina Faso, Ghana, Kenya, and South Africa. By intensively engaging with communities that range from rural and horticultural to urban informal settlements and post-industrial, we capture population diversity that represents a far greater breadth of the world's population. Using shotgun metagenomic sequencing, we find that study site explains substantially more microbial variation than disease status. We identify taxa with strong geographic and lifestyle associations, including loss of Treponema and Cryptobacteroides species and gain of Bifidobacterium species in urban populations. We uncover a wealth of prokaryotic and viral novelty, including 1,005 new bacterial metagenome-assembled genomes, and identify phylogeography signatures in Treponema succinifaciens. Finally, we find a microbiome signature of HIV infection that is defined by several taxa not previously associated with HIV, including Dysosmobacter welbionis and Enterocloster sp. This study represents the largest population-representative survey of gut metagenomes of African individuals to date, and paired with extensive clinical biomarkers, demographic data, and lifestyle information, provides extensive opportunity for microbiome-related discovery and research.
Collapse
Affiliation(s)
- Dylan G Maghini
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Ovokeraye H Oduaran
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Jakob Wirbel
- Department of Medicine (Hematology), Stanford University, Stanford, CA, USA
| | - Luicer A Ingasia Olubayo
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Natalie Smyth
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Theophilous Mathema
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Carl W Belger
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Godfred Agongo
- Department of Biochemistry and Forensic Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana
| | - Palwendé R Boua
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Burkina Faso
| | - Solomon SR Choma
- DIMAMO Population Health Research Centre, University of Limpopo, South Africa
| | - F Xavier Gómez-Olivé
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Given R Mashaba
- DIMAMO Population Health Research Centre, University of Limpopo, South Africa
| | - Lisa Micklesfield
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | - Shane Norris
- SAMRC/Wits Developmental Pathways for Health Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Development and Health, University of Southampton, Southampton, United Kingdom
| | - Hermann Sorgho
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Burkina Faso
| | - Stephen Tollman
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Floidy Wafawanaka
- MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), Faculty of Health Sciences, School of Public Health, University of the Witwatersrand, Johannesburg, South Africa
| | - Furahini Tluway
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Michèle Ramsay
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Ami S Bhatt
- Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Scott Hazelhurst
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
- School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
10
|
Li K, Zhang C, Deng J, Zeng H, Zhang Y, Lai G, Zhong X, Xie B. Causal effects of gut microbiome on HIV infection: a two-sample mendelian randomization analysis. BMC Infect Dis 2024; 24:280. [PMID: 38438963 PMCID: PMC10913272 DOI: 10.1186/s12879-024-09176-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/26/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND The causal association between gut microbiome and HIV infection remains to be elucidated. We conducted a two-sample mendelian randomization analysis to estimate the causality between gut microbiome and HIV infection. METHODS Publicly released genome-wide association studies summary data were collected to perform the mendelian analysis. The GWAS summary data of gut microbiome was retrieved from the MiBioGen consortium, which contains 18 340 samples from 24 cohorts. GWAS summary data of HIV infection was collected from the R5 release of FinnGen consortium, including 357 HIV infected cases and 218 435 controls. The SNPs were selected as instrumental variables according to our selection rules. And SNPs with a F-statistics less than ten were regarded as weak instrumental variables and excluded. Mendelian randomization analysis was conducted by five methods, including inverse variance weighted (IVW), MR-Egger, weighted median, weighted mode, and simple mode. The Cochran's Q test and MR-Egger intercept test were performed to identify heterogeneity and pleiotropy. Leave-one-out analysis were used to test the sensitivity of the results. RESULTS Fifteen gut microbiota taxa showed causal effects on HIV infection according to the MR methods. Four taxa were observed to increase the risk of HIV infection, including Ruminococcaceae (OR: 2.468[1.043, 5.842], P: 0.039), Ruminococcaceae UCG005 (OR: 2.051[1.048, 4.011], P: 0.036), Subdoligranulum (OR: 3.957[1.762, 8.887], P < 0.001) and Victivallis (OR: 1.605[1.012, 2.547], P=0.044). Erysipelotrichaceae was protective factor of HIV infection (OR: 0.278[0.106, 0.731], P < 0.001) and Methanobrevibacter was also found to be associated with reduced risk of HIV infection (OR: 0.509[0.265, 0.980], P=0.043). Horizontal pleiotropy was found for Fusicatenibacter (P<0.05) according to the MR-Egger regression intercept analysis. No heterogeneity was detected. CONCLUSION Our results demonstrate significant causal effects of gut microbiome on HIV infection. These findings facilitate future studies to develop better strategies for HIV prophylaxis through gut microbiome regulation. Further explorations are also warranted to dissect the mechanism of how gut microbiome affects HIV susceptibility.
Collapse
Affiliation(s)
- Kangjie Li
- College of Public Health, Chongqing Medical University, Chongqing, China
| | - Cong Zhang
- College of Public Health, Chongqing Medical University, Chongqing, China
| | - Jielian Deng
- College of Public Health, Chongqing Medical University, Chongqing, China
| | - Haijiao Zeng
- College of Public Health, Chongqing Medical University, Chongqing, China
| | - Yuan Zhang
- College of Public Health, Chongqing Medical University, Chongqing, China
| | - Guichuan Lai
- College of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiaoni Zhong
- College of Public Health, Chongqing Medical University, Chongqing, China.
| | - Biao Xie
- College of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
Ross EJ, Williams RS, Viamonte M, Reynolds JM, Duncan DT, Paul RH, Carrico AW. Overamped: Stimulant Use and HIV Pathogenesis. Curr HIV/AIDS Rep 2023; 20:321-332. [PMID: 37971597 DOI: 10.1007/s11904-023-00672-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE OF REVIEW In the era of HIV treatment as prevention (TasP), more clarity is needed regarding whether people with HIV who use stimulants (i.e., methamphetamine, powder cocaine, and crack cocaine) display elevated HIV viral load and greater immune dysregulation. RECENT FINDINGS Although rates of viral suppression have improved in the TasP era, stimulant use was independently associated with elevated viral load in 23 of 28 studies included in our review. In the 12 studies examining other HIV disease markers, there was preliminary evidence for stimulant-associated alterations in gut-immune dysfunction and cellular immunity despite effective HIV treatment. Studies generally focused on documenting the direct associations of stimulant use with biomarkers of HIV pathogenesis without placing these in the context of social determinants of health. Stimulant use is a key barrier to optimizing the effectiveness of TasP. Elucidating the microbiome-gut-brain axis pathways whereby stimulants alter neuroimmune functioning could identify viable targets for pharmacotherapies for stimulant use disorders. Examining interpersonal, neighborhood, and structural determinants that could modify the associations of stimulant use with biomarkers of HIV pathogenesis is critical to guiding the development of comprehensive, multi-level interventions.
Collapse
Affiliation(s)
- Emily J Ross
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Renessa S Williams
- University of Miami School of Nursing and Health Sciences, Coral Gables, FL, USA
| | | | - John M Reynolds
- Calder Memorial Library, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Dustin T Duncan
- Columbia University Mailman School of Public Health, New York City, NY, USA
| | - Robert H Paul
- Department of Psychological Sciences, University of Missouri-St. Louis, St. Louis, MO, USA
| | - Adam W Carrico
- Robert Stempel College of Public Health and Social Work, Florida International University, 11200 S.W. 8th Street, AHC5, #407, Miami, FL, 33199, USA.
| |
Collapse
|
12
|
Li K, Deng J, Zhang C, Lai G, Xie B, Zhong X. Gut microbiome dysbiosis in men who have sex with men increases HIV infection risk through immunity homeostasis alteration. Front Cell Infect Microbiol 2023; 13:1260068. [PMID: 38035339 PMCID: PMC10687210 DOI: 10.3389/fcimb.2023.1260068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/27/2023] [Indexed: 12/02/2023] Open
Abstract
Objectives Recent studies pointed out that gut microbiome dysbiosis in HIV infection was possibly confounded in men who have sex with men (MSM), but there is a lack of evidence. It also remained unclear how MSM-associated gut microbiome dysbiosis affected human health. This study aimed to compare the differences in gut microbiome changes between HIV and MSM and reveal the potential impacts of MSM-associated gut microbiome dysbiosis on the immune system. Methods We searched available studies based on the PubMed database, and all gut microbiome changes associated with HIV infection and MSM were extracted from the enrolled studies. The gutMgene database was used to identify the target genes and metabolites of the gut microbiome. Bioinformatic technology and single-cell RNA sequencing data analysis were utilized to explore the impacts of these gut microbiome changes on human immunity. Results The results showed significant overlaps between the gut microbiome associated with HIV and that of MSM. Moreover, bioinformatic analysis revealed that gut microbiome dysbiosis in MSM had an impact on several pathways related to immunity, including the IL-17 signaling pathway and Th17 cell differentiation. Additionally, target genes of MSM-associated gut microbiome were found to be highly expressed in monocytes and lymphocytes, suggesting their potential regulatory role in immune cells. Furthermore, we found that MSM-associated gut microbiome could produce acetate and butyrate which were reported to increase the level of inflammatory factors. Conclusion In conclusion, this study highlighted that MSM-associated gut microbiome dysbiosis might increase the risk of HIV acquisition by activating the immune system. Further studies are expected to elucidate the mechanism by which gut microbiome dysbiosis in MSM modulates HIV susceptibility.
Collapse
Affiliation(s)
| | | | | | | | - Biao Xie
- College of Public Health, Chongqing Medical University, Chongqing, China
| | - Xiaoni Zhong
- College of Public Health, Chongqing Medical University, Chongqing, China
| |
Collapse
|
13
|
Enriquez AB, Ten Caten F, Ghneim K, Sekaly RP, Sharma AA. Regulation of Immune Homeostasis, Inflammation, and HIV Persistence by the Microbiome, Short-Chain Fatty Acids, and Bile Acids. Annu Rev Virol 2023; 10:397-422. [PMID: 37774124 DOI: 10.1146/annurev-virology-040323-082822] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
Despite antiretroviral therapy (ART), people living with human immunodeficiency virus (HIV) (PLWH) continue to experience chronic inflammation and immune dysfunction, which drives the persistence of latent HIV and prevalence of clinical comorbidities. Elucidating the mechanisms that lead to suboptimal immunity is necessary for developing therapeutics that improve the quality of life of PLWH. Although previous studies have found associations between gut dysbiosis and immune dysfunction, the cellular/molecular cascades implicated in the manifestation of aberrant immune responses downstream of microbial perturbations in PLWH are incompletely understood. Recent literature has highlighted that two abundant metabolite families, short-chain fatty acids (SCFAs) and bile acids (BAs), play a crucial role in shaping immunity. These metabolites can be produced and/or modified by bacterial species that make up the gut microbiota and may serve as the causal link between changes to the gut microbiome, chronic inflammation, and immune dysfunction in PLWH. In this review, we discuss our current understanding of the role of the microbiome on HIV acquisition and latent HIV persistence despite ART. Further, we describe cellular/molecular cascades downstream of SCFAs and BAs that drive innate or adaptive immune responses responsible for promoting latent HIV persistence in PLWH. This knowledge can be used to advance HIV cure efforts.
Collapse
Affiliation(s)
- Ana Beatriz Enriquez
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Felipe Ten Caten
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Khader Ghneim
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Rafick-Pierre Sekaly
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| | - Ashish Arunkumar Sharma
- Pathology Advanced Translational Research Unit, Department of Pathology, Emory University School of Medicine, Atlanta, Georgia, USA;
| |
Collapse
|
14
|
Perkins MV, Joseph S, Dittmer DP, Mackman N. Cardiovascular Disease and Thrombosis in HIV Infection. Arterioscler Thromb Vasc Biol 2023; 43:175-191. [PMID: 36453273 PMCID: PMC10165851 DOI: 10.1161/atvbaha.122.318232] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
HIV infection has transitioned from an acute, fatal disease to a chronic one managed by antiretroviral therapy. Thus, the aging population of people living with HIV (PLWH) continues to expand. HIV infection results in a dysregulated immune system, wherein CD4+ T cells are depleted, particularly in the gastrointestinal tract, disrupting the gut epithelial barrier. Long-term HIV infection is associated with chronic inflammation through potentially direct mechanisms caused by viral replication or exposure to viral proteins and indirect mechanisms resulting from increased translocation of microbial products from the intestine or exposure to antiretroviral therapy. Chronic inflammation (as marked by IL [interleukin]-6 and CRP [C-reactive protein]) in PLWH promotes endothelial cell dysfunction and atherosclerosis. PLWH show significantly increased rates of cardiovascular disease, such as myocardial infarction (risk ratio, 1.79 [95% CI, 1.54-2.08]) and stroke (risk ratio, 2.56 [95% CI, 1.43-4.61]). In addition, PLWH have increased levels of the coagulation biomarker D-dimer and have a two to ten-fold increased risk of venous thromboembolism compared with the general population. Several small clinical trials analyzed the effect of different antithrombotic agents on platelet activation, coagulation, inflammation, and immune cell activation. Although some markers for coagulation were reduced, most agents failed to reduce inflammatory markers in PLWH. More studies are needed to understand the underlying mechanisms driving inflammation in PLWH to create better therapies for lowering chronic inflammation in PLWH. Such therapies can potentially reduce atherosclerosis, cardiovascular disease, and thrombosis rates in PLWH and thus overall mortality in this population.
Collapse
Affiliation(s)
- Megan V. Perkins
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Sarah Joseph
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Dirk P. Dittmer
- UNC Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Nigel Mackman
- UNC Blood Research Center, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
- Division of Hematology, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| |
Collapse
|
15
|
The Gut Microbiome, Microbial Metabolites, and Cardiovascular Disease in People Living with HIV. Curr HIV/AIDS Rep 2023; 20:86-99. [PMID: 36708497 DOI: 10.1007/s11904-023-00648-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 01/29/2023]
Abstract
PURPOSE OF REVIEW To synthesize recent evidence relating the gut microbiome and microbial metabolites to cardiovascular disease (CVD) in people living with HIV (PLWH). RECENT FINDINGS A few cross-sectional studies have reported on the gut microbiome and cardiovascular outcomes in the context of HIV, with no consistent patterns emerging. The largest such study found that gut Fusobacterium was associated with carotid artery plaque. More studies have evaluated microbial metabolite trimethylamine N-oxide with CVD risk in PLWH, but results were inconsistent, with recent prospective analyses showing null effects. Studies of other microbial metabolites are scarce. Microbial translocation biomarkers (e.g., lipopolysaccharide binding protein) have been related to incident CVD in PLWH. Microbial translocation may increase CVD risk in PLWH, but there is insufficient and/or inconsistent evidence regarding specific microbial species and microbial metabolites associated with cardiovascular outcomes in PLWH. Further research is needed in large prospective studies integrating the gut microbiome, microbial translocation, and microbial metabolites with cardiovascular outcomes in PLWH.
Collapse
|
16
|
Hernandez J, Tamargo JA, Sales Martinez S, Martin HR, Campa A, Sékaly RP, Bordi R, Sherman KE, Rouster SD, Meeds HL, Khalsa JH, Mandler RN, Lai S, Baum MK. Cocaine use associated gut permeability and microbial translocation in people living with HIV in the Miami Adult Study on HIV (MASH) cohort. PLoS One 2022; 17:e0275675. [PMID: 36215260 PMCID: PMC9550062 DOI: 10.1371/journal.pone.0275675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 09/21/2022] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVE Determine if cocaine use impacts gut permeability, promotes microbial translocation and immune activation in people living with HIV (PLWH) using effective antiretroviral therapy (ART). METHODS Cross-sectional analysis of 100 PLWH (ART ≥6 months, HIV-RNA <200 copies/mL) from the Miami Adult Studies on HIV (MASH) cohort. Cocaine use was assessed by self-report, urine screen, and blood benzoylecgonine (BE). Blood samples were collected to assess gut permeability (intestinal fatty acid-binding protein, I-FABP), microbial translocation (lipopolysaccharide, LPS), immune activation (sCD14, sCD27, and sCD163) and markers of inflammation (hs-CRP, TNF-α and IL-6). Multiple linear regression models were used to analyze the relationships of cocaine use. RESULTS A total of 37 cocaine users and 63 cocaine non-users were evaluated. Cocaine users had higher levels of I-FABP (7.92±0.35 vs. 7.69±0.56 pg/mL, P = 0.029) and LPS (0.76±0.24 vs. 0.54±0.27 EU/mL, P<0.001) than cocaine non-users. Cocaine use was also associated with the levels of LPS (P<0.001), I-FABP (P = 0.033), and sCD163 (P = 0.010) after adjusting for covariates. Cocaine users had 5.15 times higher odds to exhibit higher LPS levels than non-users (OR: 5.15 95% CI: 1.89-13.9; P<0.001). Blood levels of BE were directly correlated with LPS (rho = 0.276, P = 0.028), sCD14 (rho = 0.274, P = 0.031), and sCD163 (rho = 0.250, P = 0.049). CONCLUSIONS Cocaine use was associated with markers of gut permeability, microbial translocation, and immune activation in virally suppressed PLWH. Mitigation of cocaine use may prevent further gastrointestinal damage and immune activation in PLWH.
Collapse
Affiliation(s)
- Jacqueline Hernandez
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Javier A. Tamargo
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Sabrina Sales Martinez
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Haley R. Martin
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Adriana Campa
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| | - Rafick-Pierre Sékaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Rebeka Bordi
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kenneth E. Sherman
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Susan D. Rouster
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Heidi L. Meeds
- Division of Digestive Diseases, Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Jag H. Khalsa
- Department of Microbiology, Immunology and Tropical Diseases, George Washington University School of Medicine and Health Sciences, Washington, DC, United States of America
| | - Raul N. Mandler
- National Institute on Drug Abuse, Rockville, Maryland, United States of America
| | - Shenghan Lai
- Department of Epidemiology, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marianna K. Baum
- Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida, United States of America
| |
Collapse
|
17
|
Bragazzi NL, Khamisy-Farah R, Tsigalou C, Mahroum N. HIV Pre-exposure Prophylaxis and Its Impact on the Gut Microbiome in Men Having Sex With Men. Front Microbiol 2022; 13:922887. [PMID: 35814651 PMCID: PMC9260425 DOI: 10.3389/fmicb.2022.922887] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/09/2022] [Indexed: 01/18/2023] Open
Abstract
HIV/AIDS still imposes a high epidemiological and societal burden. Together with antiretroviral therapy, pre-exposure prophylaxis (PrEP) represents a fundamental tool in the fight against HIV/AIDS. PrEP is considered effective and safe, even though it may affect organs like the kidney, bone, and liver, as shown by randomized clinical trials (RCTs). These side effects may be mediated by alterations of the gut microbiome. Whilst the impact of the human rectal and vaginal microbiome on HIV prevention has been highly investigated among women, less is known about its effect among men having sex with men (MSM), a vulnerable population at high risk for HIV and disproportionately affected by HIV/AIDS. In the present paper, we will overview the effects of PrEP on the gut microbiota in MSM. Mining PubMed/MEDLINE, we identified three studies that have found significant changes affecting the gut microbiota. However, these shifts in the gut microbiome composition are variable, probably due to methodological differences, even though all studies reviewed in the present overview consistently report aberrations at the level of the gut microbiota. More data are needed, especially concerning the long-term side effects of PrEP: despite the studies included being a high-quality RCT, and two well-designed cross-sectional studies, evidence related to the impact of HIV PrEP on the gut microbiome in MSM is scarce and based on small populations. A better understanding of the interactions between the gut microbiota, sexual orientation/identity, and HIV prevention is expected to improve PrEP adherence and devise strategies to counteract PrEP-related side effects.
Collapse
Affiliation(s)
- Nicola Luigi Bragazzi
- Laboratory for Industrial and Applied Mathematics (LIAM), Department of Mathematics and Statistics, York University, Toronto, ON, Canada
- *Correspondence: Nicola Luigi Bragazzi,
| | - Rola Khamisy-Farah
- Clalit Health Services, Akko, Israel
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Christina Tsigalou
- Laboratory of Microbiology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Naim Mahroum
- International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
18
|
Butyrate administration is not sufficient to improve immune reconstitution in antiretroviral-treated SIV-infected macaques. Sci Rep 2022; 12:7491. [PMID: 35523797 PMCID: PMC9076870 DOI: 10.1038/s41598-022-11122-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/13/2022] [Indexed: 12/15/2022] Open
Abstract
Defective gastrointestinal barrier function and, in turn, microbial translocation have been identified as significant contributors to persistent inflammation in antiretroviral (ARV)-treated people living with HIV. Metabolic supplementation of short-chain fatty acids (SCFAs), generally produced by the commensal microbiome, may improve these outcomes. Butyrate is a SCFA that is essential for the development and maintenance of intestinal immunity and has a known role in supporting epithelial integrity. Herein we assessed whether supplementation with the dietary supplement sodium butyrate would improve immune reconstitution and reduce inflammation in ARV-treated, simian immunodeficiency virus (SIV)-infected rhesus macaques. We demonstrate that butyrate supplementation does not significantly improve immune reconstitution, with no differences observed in systemic CD4+ T-cell frequencies, T-cell functionality or immune activation, microbial translocation, or transcriptional regulation. Our findings demonstrate that oral administration of sodium butyrate is insufficient to reduce persistent inflammation and microbial translocation in ARV-treated, SIV-infected macaques, suggesting that this therapeutic may not reduce co-morbidities and co-mortalities in treated people living with HIV.
Collapse
|
19
|
Tanes C, Walker EM, Slisarenko N, Gerrets GL, Grasperge BF, Qin X, Jazwinski SM, Bushman FD, Bittinger K, Rout N. Gut Microbiome Changes Associated with Epithelial Barrier Damage and Systemic Inflammation during Antiretroviral Therapy of Chronic SIV Infection. Viruses 2021; 13:1567. [PMID: 34452432 PMCID: PMC8402875 DOI: 10.3390/v13081567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/01/2021] [Accepted: 08/05/2021] [Indexed: 12/26/2022] Open
Abstract
Gut dysbiosis is a common feature associated with the chronic inflammation of HIV infection. Toward understanding the interplay of chronic treated HIV infection, dysbiosis, and systemic inflammation, we investigated longitudinal fecal microbiome changes and plasma inflammatory markers in the nonhuman primate model. Following simian immunodeficiency virus (SIV) infection in rhesus macaques, significant changes were observed in several members of the phylum Firmicutes along with an increase in Bacteroidetes. Viral suppression with antiretroviral therapy (ART) resulted in an early but partial recovery of compositional changes and butyrate producing genes in the gut microbiome. Over the course of chronic SIV infection and long-term ART, however, the specific loss of Faecalibacterium prausnitzii and Treponema succinifaciens significantly correlated with an increase in plasma inflammatory cytokines including IL-6, G-CSF, I-TAC, and MIG. Further, the loss of T. succinifaciens correlated with an increase in circulating biomarkers of gut epithelial barrier damage (IFABP) and microbial translocation (LBP and sCD14). As F. prausnitzii and T. succinifaciens are major short-chain fatty acid producing bacteria, their sustained loss during chronic SV-ART may contribute to gut inflammation and metabolic alterations despite effective long-term control of viremia. A better understanding of the correlations between the anti-inflammatory bacterial community and healthy gut barrier functions in the setting of long-term ART may have a major impact on the clinical management of inflammatory comorbidities in HIV-infected individuals.
Collapse
Affiliation(s)
- Ceylan Tanes
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (C.T.); (K.B.)
| | - Edith M. Walker
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Nadia Slisarenko
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Giovanni L. Gerrets
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
| | - Brooke F. Grasperge
- Division of Veterinary Medicine, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - Xuebin Qin
- Division of Comparative Pathology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA;
| | - S. Michal Jazwinski
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| | - Frederic D. Bushman
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Kyle Bittinger
- Division of Gastroenterology, Hepatology and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (C.T.); (K.B.)
| | - Namita Rout
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Covington, LA 70433, USA; (E.M.W.); (N.S.); (G.L.G.)
- Tulane Center for Aging, Tulane University School of Medicine, New Orleans, LA 70112, USA;
| |
Collapse
|
20
|
Ray S, Narayanan A, Giske CG, Neogi U, Sönnerborg A, Nowak P. Altered Gut Microbiome under Antiretroviral Therapy: Impact of Efavirenz and Zidovudine. ACS Infect Dis 2021; 7:1104-1115. [PMID: 33346662 PMCID: PMC8154435 DOI: 10.1021/acsinfecdis.0c00536] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Millions
of individuals currently living with HIV globally are
receiving antiretroviral therapy (ART) that suppresses viral replication
and improves host immune responses. The involvement of gut microbiome
during HIV infection has been studied, exposing correlation with immune
status and inflammation. However, the direct effect of ART on gut
commensals of HIV-infected individuals has been mostly overlooked
in microbiome studies. We used 16S rRNA sequencing (Illumina MiSeq)
for determining the microbiota composition of stool samples from 16
viremic patients before and one year after ART. We also tested the
direct effect of 15 antiretrovirals against four gut microbes, namely, Escherichia coli, Enterococcus faecalis, Bacteroides, and Prevotella to assess their in vitro antibacterial effect. 16S rRNA analysis of fecal samples showed
that effective ART for one year does not restore the microbiome diversity
in HIV-infected patients. A significant reduction in α-diversity
was observed in patients under non-nucleoside reverse transcriptase
inhibitors; (NNRTI; 2 NRTI+NNRTI; NRTIs are nucleoside reverse transcriptase
inhibitors) as compared to ritonavir-boosted protease inhibitors (PI/r;
2 NRTI+PI/r). Prevotella (P = 0.00001) showed a significantly decreased abundance in patients
after ART (n = 16). We also found the direct effect
of antivirals on gut microbes, where zidovudine (ZDV) and efavirenz
(EFV) showed in vitro antimicrobial activity against Bacteroides fragilis and Prevotella. EFV also inhibited the growth of E. faecalis. Therefore, we observed that ART does not reverse the HIV-induced
gut microbiome dysbiosis and might aggravate those microbiota alterations
due to the antibacterial effect of certain antiretrovirals (like EFV,
ZDV). Our results imply that restructuring the microbiota could be
a potential therapeutic target in HIV-1 patients under ART.
Collapse
Affiliation(s)
- Shilpa Ray
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- The Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå 901 87, Sweden
| | - Aswathy Narayanan
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
| | - Christian G. Giske
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- Department of Clinical Microbiology, Karolinska University Hospital, Solna, Stockholm 171 76,Sweden
| | - Ujjwal Neogi
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
| | - Anders Sönnerborg
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden
| | - Piotr Nowak
- Department of Laboratory Medicine, Division of Clinical Microbiology, ANA Futura, Karolinska Institutet, Stockholm 141 52 Sweden
- The Laboratory for Molecular Infection Medicine Sweden MIMS, Umeå University, Umeå 901 87, Sweden
- Department of Medicine Huddinge, Division of Infectious Diseases, Karolinska University Hospital, Huddinge, Stockholm 141 86, Sweden
| |
Collapse
|
21
|
Salivary microbial diversity at different stages of human immunodeficiency virus infection. Microb Pathog 2021; 155:104913. [PMID: 33915204 DOI: 10.1016/j.micpath.2021.104913] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 04/18/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022]
Abstract
Human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) disrupts the host microbial balance. During disease progression, the oral microbial environment is altered in untreated people living with HIV/AIDS (PLWHA); however, no studies have reported changes in salivary microbial diversity during different stages of HIV infection. Therefore, in this study, we aimed to assess the relationships between immune dysfunction and changes in saliva microbiota. To this end, we collected saliva samples from 11 HIV-negative individuals and 44 PLWHA during different stages based on the Centers for Disease Control and Prevention criteria (stage 0, early stage during the first 6 months after infection; stages 1, 2, and 3 associated with CD4+ T-lymphocyte counts of ≥500, 200-499, and ≤200 or opportunistic infection, respectively). We analyzed salivary microbial community diversity using polymerase chain reaction amplification and Illumina MiSeq sequencing. We found that HIV-positive individuals had significantly greater alpha-diversity in the microbial community composition compared with HIV-negative controls (P < 0.05) except for AIDS (stage 3); however, the predominant salivary microbiota in the five groups remained similar. Porphyromonas in the four positive groups was the only genus that was significantly less abundant in the HIV-positive groups than in the control group (P < 0.05). There were some consistencies between the general abundance of salivary microbiota and AIDS disease progression. Lots of bacterial abundances in the saliva increased dramatically during the acute HIV infection (stage 0), and some of the negligible and abnormally proliferating bacteria in the asymptomatic stage showed a downward trend. Additionally, in the AIDS stage, partial inhibition was observed. Notably, Porphyromonas was closely related to the immune activation of HIV, showing a decline in abundance once infected with HIV. Solobacterium, which induces inflammation, was negatively correlated with CD4 counts. Overall, our findings provided important insights into changes in salivary microbial diversity in PLWHA.
Collapse
|
22
|
Piggott DA, Tuddenham S. The gut microbiome and frailty. Transl Res 2020; 221:23-43. [PMID: 32360945 PMCID: PMC8487348 DOI: 10.1016/j.trsl.2020.03.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 12/12/2022]
Abstract
The human microbiome is constituted by an extensive network of organisms that lie at the host/environment interface and transduce signals that play vital roles in human health and disease across the lifespan. Frailty is a critical aging-related syndrome marked by diminished physiological reserve and heightened vulnerability to stress, predictive of major adverse clinical outcomes including death. While recent studies suggest the microbiome may impact key pathways critical to frailty pathophysiology, direct evaluation of the microbiome-frailty relationship remains limited. In this article, we review the complex interplay of biological, behavioral, and environmental factors that may influence shifts in gut microbiome composition and function in aging populations and the putative implications of such shifts for progression to frailty. We discuss HIV infection as a key prototype for elucidating the complex pathways via which the microbiome may precipitate frailty. Finally, we review considerations for future research efforts.
Collapse
Affiliation(s)
- Damani A Piggott
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland.
| | - Susan Tuddenham
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|