1
|
Ibrahim A, Sasaki N, Schoelz JE, Nelson RS. Tobacco Mosaic Virus Movement: From Capsid Disassembly to Transport Through Plasmodesmata. Viruses 2025; 17:214. [PMID: 40006969 PMCID: PMC11861069 DOI: 10.3390/v17020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/22/2025] [Accepted: 01/28/2025] [Indexed: 02/27/2025] Open
Abstract
Determining mechanisms to establish an initial infection and form intracellular complexes for accumulation and movement of RNA plant viruses are important areas of study in plant virology. The impact of these findings on the basic understanding of plant molecular virology and its application in agriculture is significant. Studies with tobacco mosaic virus (TMV) and related tobamoviruses often provide important foundational knowledge for studies involving other viruses. Topics discussed here include capsid disassembly, establishment of a virus replication complex (VRC), and transport of the VRCs or virus components within the cell to locations at the plasmodesmata for intercellular virus RNA (vRNA) movement. Seminal findings with TMV and related tobamoviruses include detecting co-translational disassembly of the vRNA from the virus rod, full sequencing of genomic vRNA and production of infectious transcript for genetic studies determining virus components necessary for intercellular movement, and biochemical and cell biological studies determining the host factors, protein and membrane, needed for replication and movement. This review highlights many of the studies through the years on TMV and selected tobamoviruses that have impacted not only our understanding of tobamovirus accumulation and movement but also that of other plant viruses.
Collapse
Affiliation(s)
- Amr Ibrahim
- Department of Nucleic Acid and Protein Structure, Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Nobumitsu Sasaki
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology (TUAT), Fuchu 183-8509, Japan;
| | - James E. Schoelz
- Division of Plant Science and Technology, University of Missouri, Columbia, MO 65211, USA;
| | | |
Collapse
|
2
|
Palukaitis P, Akbarimotlagh M, Astaraki S, Shams-Bakhsh M, Yoon JY. The Forgotten Tobamovirus Genes Encoding the 54 kDa Protein and the 4-6 kDa Proteins. Viruses 2024; 16:1680. [PMID: 39599795 PMCID: PMC11599109 DOI: 10.3390/v16111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/14/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
This article reviews the literature concerning the largely forgotten tobamovirus gene products for which no functions have been ascribed. One of these gene products is the 54 kDa protein, representing the RNA-dependent RNA polymerase segment of the 183 kDa protein translated from the I1-subgenomic mRNA, but which has been found only by in vitro translation and not in plants. The other is a collection of small proteins, expressed from alternative reading frames (likely from internal ribosome entry sites) in either or both the movement protein gene or the capsid protein gene. Previously, two small proteins were referred to as the 4-6 kDa proteins, since only single proteins of such size had been characterized from tobacco mosaic virus and tomato mosaic virus genomes. Such putative proteins will be referred to here as P6 proteins, since many new proposed P6 open reading frames could be discerned, from an analysis of 45 of 47 tobamovirus genomes, with a coding capacity of >15 amino acids up to 94 amino acids, whereas other peptides with ≤15 amino acids were not considered here. The distribution of the putative P6 proteins among these tobamoviruses is described, as well as the various classes they fall into, based on their distribution with regard to the organization of other genes in the viral genomes. Models also are presented for possible functions of the 54 kDa protein and the P6 proteins, based on data in the literature.
Collapse
Affiliation(s)
- Peter Palukaitis
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Masoud Akbarimotlagh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Sajad Astaraki
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Masoud Shams-Bakhsh
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran 14115-111, Iran; (M.A.); (S.A.); (M.S.-B.)
| | - Ju-Yeon Yoon
- Graduate School of Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
3
|
Nishiguchi M, Ali EM, Chen H, Ishikawa M, Kobayashi K. Resistance Breeding Through RNA Silencing of Host Factors Involved in Virus Replication. Methods Mol Biol 2019; 2028:247-259. [PMID: 31228119 DOI: 10.1007/978-1-4939-9635-3_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
RNA silencing is a sequence-specific suppression of gene expression conserved in eukaryotes including fungi, plants, and animals. Based on this mechanism, crop improvements have been made to confer pathogen resistance and abiotic stress tolerance. Here we have applied this technique to produce virus resistant tomato plants using host genes involved in viral replication. Tomato homologs of Arabidopsis TOM1 involved in tobamovirus replication has been isolated and used to construct the plasmids that carried inverted repeats of the genes for induction of RNA silencing. Tomato plants were transformed by the plasmids via Agrobacterium, and tested for virus resistance. Actually, the T2 and T3 plants showed resistance to tomato mosaic virus. Here we describe the method to construct RNA silencing-inducing plasmids, to transform tomato plants and to check the introduction of transgenes and virus resistance.
Collapse
Affiliation(s)
| | - Emran Md Ali
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan.,Department of Plant Pathology, University of Georgia, Tifton, GA, USA
| | - Hui Chen
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan.,Department of Agronomy, Kansas State University, Manhattan, KS, USA
| | - Masayuki Ishikawa
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - Kappei Kobayashi
- Faculty of Agriculture, Ehime University, Matsuyama, Ehime, Japan
| |
Collapse
|
4
|
Ali ME, Ishii Y, Taniguchi JI, Waliullah S, Kobayashi K, Yaeno T, Yamaoka N, Nishiguchi M. Conferring virus resistance in tomato by independent RNA silencing of three tomato homologs of Arabidopsis TOM1. Arch Virol 2018; 163:1357-1362. [PMID: 29411138 DOI: 10.1007/s00705-018-3747-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 01/05/2018] [Indexed: 01/01/2023]
Abstract
The TOM1/TOM3 genes from Arabidopsis are involved in the replication of tobamoviruses. Tomato homologs of these genes, LeTH1, LeTH2 and LeTH3, are known. In this study, we examined transgenic tomato lines where inverted repeats of either LeTH1, LeTH2 or LeTH3 were introduced by Agrobacterium. Endogenous mRNA expression for each gene was detected in non-transgenic control plants, whereas a very low level of each of the three genes was found in the corresponding line. Small interfering RNA was detected in the transgenic lines. Each silenced line showed similar levels of tobamovirus resistance, indicating that each gene is similarly involved in virus replication.
Collapse
Affiliation(s)
- Md Emran Ali
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Yuko Ishii
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Jyun-Ichi Taniguchi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Sumyya Waliullah
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Kappei Kobayashi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Takashi Yaeno
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Naoto Yamaoka
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Masamichi Nishiguchi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan.
| |
Collapse
|
5
|
Sihelská N, Vozárová Z, Predajňa L, Šoltys K, Hudcovicová M, Mihálik D, Kraic J, Mrkvová M, Kúdela O, Glasa M. Experimental Infection of Different Tomato Genotypes with Tomato mosaic virus Led to a Low Viral Population Heterogeneity in the Capsid Protein Encoding Region. THE PLANT PATHOLOGY JOURNAL 2017; 33:508-513. [PMID: 29018314 PMCID: PMC5624493 DOI: 10.5423/ppj.nt.04.2017.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/12/2017] [Indexed: 06/07/2023]
Abstract
The complete genome sequence of a Slovak SL-1 isolate of Tomato mosaic virus (ToMV) was determined from the next generation sequencing (NGS) data, further confirming a limited sequence divergence in this tobamovirus species. Tomato genotypes Monalbo, Mobaci and Moperou, respectively carrying the susceptible tm-2 allele or the Tm-1 and Tm-2 resistant alleles, were tested for their susceptibility to ToMV SL-1. Although the three tomato genotypes accumulated ToMV SL-1 to similar amounts as judged by semi-quantitative DAS-ELISA, they showed variations in the rate of infection and symptomatology. Possible differences in the intra-isolate variability and polymorphism between viral populations propagating in these tomato genotypes were evaluated by analysis of the capsid protein (CP) encoding region. Irrespective of genotype infected, the intra-isolate haplotype structure showed the presence of the same highly dominant CP sequence and the low level of population diversity (0.08-0.19%). Our results suggest that ToMV CP encoding sequence is relatively stable in the viral population during its replication in vivo and provides further demonstration that RNA viruses may show high sequence stability, probably as a result of purifying selection.
Collapse
Affiliation(s)
- Nina Sihelská
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava,
Slovak Republic
| | - Zuzana Vozárová
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava,
Slovak Republic
| | - Lukáš Predajňa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava,
Slovak Republic
| | - Katarína Šoltys
- Comenius University Science Park, Comenius University in Bratislava, Ilkovičova 8, 841 04, Bratislava,
Slovak Republic
| | - Martina Hudcovicová
- National Agriculture and Food Centre-Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piešťany,
Slovak Republic
| | - Daniel Mihálik
- National Agriculture and Food Centre-Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piešťany,
Slovak Republic
- Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01 Trnava,
Slovak Republic
| | - Ján Kraic
- National Agriculture and Food Centre-Research Institute of Plant Production, Bratislavská cesta 122, 921 68 Piešťany,
Slovak Republic
- Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01 Trnava,
Slovak Republic
| | - Michaela Mrkvová
- Department of Biotechnologies, Faculty of Natural Sciences, University of SS. Cyril and Methodius, J. Herdu 2, 917 01 Trnava,
Slovak Republic
| | | | - Miroslav Glasa
- Institute of Virology, Biomedical Research Centre, Slovak Academy of Sciences, Dúbravská cesta 9, 84505 Bratislava,
Slovak Republic
| |
Collapse
|
6
|
Kaya H, Ishibashi K, Toki S. A Split Staphylococcus aureus Cas9 as a Compact Genome-Editing Tool in Plants. PLANT & CELL PHYSIOLOGY 2017; 58:643-649. [PMID: 28371831 PMCID: PMC5444561 DOI: 10.1093/pcp/pcx034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/02/2017] [Indexed: 05/20/2023]
Abstract
Split-protein methods-where a protein is split into two inactive fragments that must re-assemble to form an active protein-can be used to regulate the activity of a given protein and reduce the size of gene transcription units. Here, we show that a Staphylococcus aureus Cas9 (SaCas9) can be split, and that split-SaCas9 expressed from Agrobacterium can induce targeted mutagenesis in Nicotiana benthamiana. Since SaCas9 is smaller than the more commonly used Cas9 derived from Streptococcus pyogenes, the split-SaCas9 provides the smallest tool yet for clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) plant genome editing. Both sets of split-SaCas9 (_430N/431C and _739N/740C) exhibited genome-editing activity, and the activity of split-SaCas9_739N/740C was almost the same as that of full-length SaCas9. This result indicates that split-SaCas9_739N/740C is suitable for use in targeted mutagenesis. We also show that the split-SaCas9 fragment expressed from Tomato mosaic virus could induce targeted mutagenesis together with another fragment expressed from Agrobacterium, suggesting that a split-SaCas9 system using a plant virus vector is a promising tool for integration-free plant genome editing. Split-SaCas9 has the potential to regulate CRISPR/Cas9-mediated genome editing activity in plant cells both temporally and spatially.
Collapse
Affiliation(s)
- Hidetaka Kaya
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- These authors contributed equally to this work
| | - Kazuhiro Ishibashi
- Plant and Microbial Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- These authors contributed equally to this work
| | - Seiichi Toki
- Plant Genome Engineering Research Unit, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Yokohama, Kanagawa 236-0027, Japan
- Kihara Institute for Biological Research, Yokohama City University, 22-2 Seto, Yokohama, Kanagawa 236-0027, Japan
| |
Collapse
|
7
|
Ali ME, Waliullah S, Kobayashi K, Yaeno T, Yamaoka N, Nishiguchi M. Transmission of RNA silencing signal through grafting confers virus resistance from transgenically silenced tobacco rootstocks to non-transgenic tomato and tobacco scions. JOURNAL OF PLANT BIOCHEMISTRY AND BIOTECHNOLOGY 2016; 25:245-252. [DOI: 10.1007/s13562-015-0334-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
8
|
Chujo T, Ishibashi K, Miyashita S, Ishikawa M. Functions of the 5'- and 3'-untranslated regions of tobamovirus RNA. Virus Res 2015; 206:82-9. [PMID: 25683511 DOI: 10.1016/j.virusres.2015.01.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 01/23/2015] [Accepted: 01/30/2015] [Indexed: 12/17/2022]
Abstract
The tobamovirus genome is a 5'-m(7)G-capped RNA that carries a tRNA-like structure at its 3'-terminus. The genomic RNA serves as the template for both translation and negative-strand RNA synthesis. The 5'- and 3'-untranslated regions (UTRs) of the genomic RNA contain elements that enhance translation, and the 3'-UTR also contains the elements necessary for the initiation of negative-strand RNA synthesis. Recent studies using a cell-free viral RNA translation-replication system revealed that a 70-nucleotide region containing a part of the 5'-UTR is bound cotranslationally by tobacco mosaic virus (TMV) replication proteins translated from the genomic RNA and that the binding leads the genomic RNA to RNA replication pathway. This mechanism explains the cis-preferential replication of TMV by the replication proteins. The binding also inhibits further translation to avoid a fatal ribosome-RNA polymerase collision, which might arise if translation and negative-strand synthesis occur simultaneously on a single genomic RNA molecule. Therefore, the 5'- and 3'-UTRs play multiple important roles in the life cycle of tobamovirus.
Collapse
Affiliation(s)
- Tetsuya Chujo
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Kazuhiro Ishibashi
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Shuhei Miyashita
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Masayuki Ishikawa
- Plant-Microbe Interactions Research Unit, Division of Plant Sciences, National Institute of Agrobiological Sciences, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan.
| |
Collapse
|
9
|
Li W, Zhang Y, Zhang C, Pei X, Wang Z, Jia S. Presence of poly(A) and poly(A)-rich tails in a positive-strand RNA virus known to lack 3׳ poly(A) tails. Virology 2014; 454-455:1-10. [PMID: 24725926 DOI: 10.1016/j.virol.2014.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/08/2013] [Accepted: 02/01/2014] [Indexed: 01/08/2023]
Abstract
Here we show that Tobacco mosaic virus (TMV), a positive-strand RNA virus known to end with 3׳ tRNA-like structures, does possess a small fraction of gRNA bearing polyadenylate tails. Particularly, many tails are at sites corresponding to the 3׳ end of near full length gRNA, and are composed of poly(A)-rich sequences containing the other nucleotides in addition to adenosine, resembling the degradation-stimulating poly(A) tails observed in all biological kingdoms. Further investigations demonstrate that these polyadenylated RNA species are not enriched in chloroplasts. Silencing of cpPNPase, a chloroplast-localized polynucleotide polymerase known to not only polymerize the poly(A)-rich tails but act as a 3׳ to 5׳ exoribonuclease, does not change the profile of polyadenylate tails associated with TMV RNA. Nevertheless, because similar tails were also detected in other phylogenetically distinct positive-strand RNA viruses lacking poly(A) tails, such kind of polyadenylation may reflect a common but as-yet-unknown interface between hosts and viruses.
Collapse
Affiliation(s)
- Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yongqiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Jia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Md. Ali E, Kobayashi K, Yamaoka N, Ishikawa M, Nishiguchi M. Graft transmission of RNA silencing to non-transgenic scions for conferring virus resistance in tobacco. PLoS One 2013; 8:e63257. [PMID: 23717405 PMCID: PMC3661558 DOI: 10.1371/journal.pone.0063257] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 03/31/2013] [Indexed: 11/19/2022] Open
Abstract
RNA silencing is a mechanism of gene regulation by sequence specific RNA degradation and is involved in controlling endogenous gene expression and defense against invasive nucleic acids such as viruses. RNA silencing has been proven to be transmitted between scions and rootstocks through grafting, mostly using transgenic plants. It has been reported that RNA silencing of tobacco endogenous genes, NtTOM1 and NtTOM3, that are required for tobamovirus multiplication, resulted in high resistance against several tobamoviruses. In the present study, we examined the graft transmission of RNA silencing for conferring virus resistance to non-transgenic scions of the same and different Nicotiana species grafted onto rootstocks in which both NtTOM1 and NtTOM3 were silenced. Non-transgenic Nicotiana tabacum (cvs. Samsun and Xanthi nc) and N. benthamiana were used as scions for grafting onto the rootstocks silenced with both genes. Short interfering RNA (siRNA) of NtTOM1 and NtTOM3 was detected in both the scions and the rootstocks eight weeks after grafting. The leaves were detached from the scions and inoculated with several tobamoviruses. The virus accumulation was tested by ELISA and northern blot analysis. The viruses were detected in grafted scions at extremely low levels, showing that virus resistance was conferred. These results suggest that RNA silencing was induced in and virus resistance was conferred to the non-transgenic scions by grafting onto silenced rootstocks. The effect of low temperature on siRNA accumulation and virus resistance was not significantly observed in the scions.
Collapse
Affiliation(s)
- Emran Md. Ali
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Japan
| | - Kappei Kobayashi
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Japan
| | - Naoto Yamaoka
- Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, Japan
| | - Masayuki Ishikawa
- Plant-Microbe Interactions Research Unit, National Institute of Agrobiological Sciences, 2-1-2 Kan-nondai, Tsukuba, Ibaraki, Japan
| | | |
Collapse
|
11
|
Andika IB, Zheng S, Tan Z, Sun L, Kondo H, Zhou X, Chen J. Endoplasmic reticulum export and vesicle formation of the movement protein of Chinese wheat mosaic virus are regulated by two transmembrane domains and depend on the secretory pathway. Virology 2013; 435:493-503. [PMID: 23137810 DOI: 10.1016/j.virol.2012.10.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 09/10/2012] [Accepted: 10/15/2012] [Indexed: 12/15/2022]
Abstract
The 37K protein of Chinese wheat mosaic virus (CWMV) belongs to the 30K superfamily of plant virus movement proteins. CWMV 37K trans-complemented the cell-to-cell spread of a movement-defective Potato virus X. CWMV 37K fused to enhanced green fluorescent protein localized to plasmodesmata and formed endoplasmic reticulum (ER)-derived vesicular and large aggregate structures. CWMV 37K has two putative N-terminal transmembrane domains (TMDs). Mutations disrupting TMD1 or TMD2 impaired 37K movement function; those mutants were unable to form ER-derived structures but instead accumulated in the ER. Treatment with Brefeldin A or overexpression of the dominant negative mutant of Sar1 retained 37K in the ER, indicating that ER export of 37K is dependent on the secretory pathway. Moreover, CWMV 37K interacted with pectin methylesterases and mutations in TMD1 or TMD2 impaired this interaction in planta. The results suggest that the two TMDs regulate the movement function and intracellular transport of 37K.
Collapse
Affiliation(s)
- Ida Bagus Andika
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Ministry of Agriculture Key Laboratory of Biotechnology in Plant Protection, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | | | | | | | | | | | | |
Collapse
|
12
|
He M, He CQ, Ding NZ. Natural recombination between tobacco and tomato mosaic viruses. Virus Res 2012; 163:374-9. [PMID: 21925550 DOI: 10.1016/j.virusres.2011.09.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/04/2011] [Accepted: 09/05/2011] [Indexed: 10/17/2022]
Abstract
Tobacco mosaic virus (TMV) is a positive-sense plant RNA virus which has a wide host range and a worldwide distribution. Other than a troublesome pathogen, TMV is regarded as a model system pioneering biologic research for a century. The tomato strain of TMV has been recognized to be a distinct tobamovirus as the tomato mosaic virus (ToMV). Recombination has been increasingly recognized as an important factor generating genetic diversity in many RNA viruses. However, it is still unclear whether recombination can function in driving the evolution of tobamoviruses. Herein, based on sequence comparison, we found three recombinants involving each viral gene, all of which might be derived from homologous or aberrant homologous recombination between TMV and ToMV. The study provided evidence that recombination did contribute to the genetic diversity of tobamoviruses.
Collapse
Affiliation(s)
- Mei He
- College of Life Science, Shandong Normal University, Jinan 250014, China
| | | | | |
Collapse
|
13
|
Meshi T, Ishikawa M, Motoyoshi F, Semba K, Okada Y. In vitro transcription of infectious RNAs from full-length cDNAs of tobacco mosaic virus. Proc Natl Acad Sci U S A 2010; 83:5043-7. [PMID: 16593727 PMCID: PMC323886 DOI: 10.1073/pnas.83.14.5043] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We have cloned full-length double-stranded cDNAs of tobacco mosaic virus (TMV) (tomato strain L) RNA into a transcription vector, pPM1, which facilitates the correct transcription initiation from the first nucleotide of the inserted double-stranded cDNA, corresponding to the 5' end of TMV RNA. When plasmid DNA is linearized at a unique restriction site (Mlu I) introduced just downstream of the double-stranded cDNA insert and used as a template for in vitro transcription by Escherichia coli RNA polymerase in the presence of m(7)GpppG, the transcribed RNAs are infectious for tobacco plants. A simple reconstitution procedure increases the infectivity >100 times. Unexpectedly, both the uncapped transcript and the transcript from the uncut plasmid DNA are also infectious, although their infectivities are very low. The progeny viruses multiplying in tobacco plants accurately reflect the cloned sequence. By the same method, we succeeded in the in vitro transcription of infectious RNA of attenuated strain L(11)A, which is phenotypically distinguishable from wild-type TMV on both tobacco and tomato plants.
Collapse
Affiliation(s)
- T Meshi
- Department of Biophysics and Biochemistry, Faculty of Science, University of Tokyo, Tokyo 113, Japan
| | | | | | | | | |
Collapse
|
14
|
Complete nucleotide sequence and genome organization of tobacco mosaic virus isolated from Vicia faba. ACTA ACUST UNITED AC 2009; 43:200-8. [PMID: 18726373 DOI: 10.1007/bf02879129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/1999] [Indexed: 10/22/2022]
Abstract
Based on reported TMV-U1 sequence, primers were designed and fragments covering the entire genome of TMV broad bean strain (TMV-B) were obtained with RT-PCR. These fragments were cloned and sequenced and the 5' and 3' end sequences of genome were confirmed with RACE. The complete sequence of TMV-B comprises 6 395 nucleotides (nt) and four open reading frames, which correspond to 126 ku (1 116 amino acids), 183 ku (1 616 amino acids), 30 ku (268 amino acids) and 17.5 ku proteins (159 amino acids). The complete nucleotide sequence of TMV-B is 99.4% identical to that of TMV-U1. The two virus isolates share the same sequence of 5', 3' non-coding region and 17.5 K ORF, and 6, 1 and 3 amino acid changes are found in 126 K protein, 54 K protein and 30 K protein, respectively. The possible mechanism on the infection of TMV-B in Vicia faba is discussed.
Collapse
|
15
|
An inhibitory interaction between viral and cellular proteins underlies the resistance of tomato to nonadapted tobamoviruses. Proc Natl Acad Sci U S A 2009; 106:8778-83. [PMID: 19423673 DOI: 10.1073/pnas.0809105106] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Any individual virus can infect only a limited range of hosts, and most plant species are "nonhosts" to a given virus; i.e., all members of the species are insusceptible to the virus. In nonhost plants, the factors that control virus resistance are not genetically tractable, and how the host range of a virus is determined remains poorly understood. Tomato (Solanum lycopersicum) is a nonhost species for Tobacco mild green mosaic virus (TMGMV) and Pepper mild mottle virus (PMMoV), members of the genus Tobamovirus. Previously, we identified Tm-1, a resistance gene of tomato to another tobamovirus, Tomato mosaic virus (ToMV), and found that Tm-1 binds to ToMV replication proteins to inhibit RNA replication. Tm-1 is derived from a wild tomato species, S. habrochaites, and ToMV-susceptible tomato cultivars have the allelic gene tm-1. The tm-1 protein can neither bind to ToMV replication proteins nor inhibit ToMV multiplication. Here, we show that transgenic tobacco plants expressing tm-1 exhibit resistance to TMGMV and PMMoV. The tm-1 protein bound to the replication proteins of TMGMV and PMMoV and inhibited their RNA replication in vitro. In one of the tm-1-expressing tobacco plants, a tm-1-insensitive TMGMV mutant emerged. In tomato protoplasts, this mutant TMGMV multiplied as efficiently as ToMV. However, in tomato plants, the mutant TMGMV multiplied with lower efficiency compared to ToMV and caused systemic necrosis. These results suggest that an inhibitory interaction between the replication proteins and tm-1 underlies a multilayered resistance mechanism to TMGMV in tomato.
Collapse
|
16
|
Immunocytochemical localization of the 130K and 180K proteins (putative replicase components) of tobacco mosaic virus. Virology 2008; 160:477-81. [PMID: 18644575 DOI: 10.1016/0042-6822(87)90020-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/1987] [Accepted: 06/26/1987] [Indexed: 10/26/2022]
Abstract
We have revealed the cellular localization of the putative replicase components of tobacco mosaic virus (TMV), 130K and 180K proteins, in TMV-infected tobacco leaves by the immunogold technique with antisera which specifically react with these two proteins. When sections of TMV-infected tobacco leaves were treated with anti-130K protein antiserum and then with protein A-gold complex, most of the gold label was strongly localized on granular inclusion bodies which were found specifically in the cytoplasm of TMV-infected cells. Very small amounts of label present in other regions, including the nuclei, chloroplasts, and mitochondria, seemed to be nonspecific. Gold-labeled 180K protein was also dispersed over the granular inclusion bodies. The granular inclusion bodies appeared to be oval-shaped structures with various diameters ranging from 0.2 to 2.8 microm. TMV particles were usually observed near the granular inclusion bodies as aggregates but not inside them. Considering the involvement of the 130K and 180K proteins in replication, the granular inclusion bodies may be the site for replication of TMV RNA.
Collapse
|
17
|
In vitro viral RNA synthesis by a subcellular fraction of TMV-inoculated tobacco protoplasts. Virology 2008; 149:64-73. [PMID: 18640592 DOI: 10.1016/0042-6822(86)90087-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/1985] [Accepted: 10/23/1985] [Indexed: 11/21/2022]
Abstract
A subcellular fraction which can synthesize viral RNA and subgenomic RNA in vitro was prepared from tobacco mosaic virus (TMV)-inoculated tobacco protoplasts. S(1)-Resistant fragment analysis with strand specific TMV cDNA showed that a large amount of plus-stranded and a small amount of minus-stranded, genome-size RNA was synthesized by this subcellular fraction. Plus-stranded subgenomic RNA of coat protein mRNA size was also synthesized. The time course of the appearance of viral RNA synthetic activity was consistent with that of the appearance of TMV infectivity in vivo.
Collapse
|
18
|
The coat protein gene of tobamovirus P0 pathotype is a determinant for activation of temperature-insensitive L 1a -gene-mediated resistance in Capsicum plants. Arch Virol 2008; 153:645-50. [DOI: 10.1007/s00705-008-0032-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Accepted: 12/21/2007] [Indexed: 10/22/2022]
|
19
|
Moreno C, Lazar J, Jacob HJ, Kwitek AE. Comparative genomics for detecting human disease genes. ADVANCES IN GENETICS 2008; 60:655-97. [PMID: 18358336 DOI: 10.1016/s0065-2660(07)00423-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Originally, comparative genomics was geared toward defining the synteny of genes between species. As the human genome project accelerated, there was an increase in the number of tools and means to make comparisons culminating in having the genomic sequence for a large number of organisms spanning the evolutionary tree. With this level of resolution and a long history of comparative biology and comparative genetics, it is now possible to use comparative genomics to build or select better animal models and to facilitate gene discovery. Comparative genomics takes advantage of the functional genetic information from other organisms, (vertebrates and invertebrates), to apply it to the study of human physiology and disease. It allows for the identification of genes and regulatory regions, and for acquiring knowledge about gene function. In this chapter, the current state of comparative genomics and the available tools are discussed in the context of developing animal model systems that reflect the clinical picture.
Collapse
Affiliation(s)
- Carol Moreno
- Human and Molecular Genetics Center, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | | | | | | |
Collapse
|
20
|
Ishibashi K, Masuda K, Naito S, Meshi T, Ishikawa M. An inhibitor of viral RNA replication is encoded by a plant resistance gene. Proc Natl Acad Sci U S A 2007; 104:13833-8. [PMID: 17699618 PMCID: PMC1949341 DOI: 10.1073/pnas.0703203104] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Indexed: 12/22/2022] Open
Abstract
The tomato Tm-1 gene confers resistance to tomato mosaic virus (ToMV). Here, we report that the extracts of Tm-1 tomato cells (GCR237) have properties that inhibit the in vitro RNA replication of WT ToMV more strongly than that of the Tm-1-resistance-breaking mutant of ToMV, LT1. We purified this inhibitory activity and identified a polypeptide of approximately 80 kDa (p80(GCR237)) using LC-tandem MS. The amino acid sequence of p80(GCR237) had no similarity to any characterized proteins. The p80(GCR237) gene cosegregated with Tm-1; transgenic expression of p80(GCR237) conferred resistance to ToMV within tomato plants; and the knockdown of p80(GCR237) sensitized Tm-1 tomato plants to ToMV, indicating that Tm-1 encodes p80(GCR237) itself. We further show that in vitro-synthesized Tm-1 (p80(GCR237)) protein binds to the replication proteins of WT ToMV and inhibits their function at a step before, but not after, the viral replication complex is formed on the membrane surfaces. Such binding was not observed for the replication proteins of LT1. These results suggest that Tm-1 (p80(GCR237)) inhibits the replication of WT ToMV RNA through binding to the replication proteins.
Collapse
Affiliation(s)
- Kazuhiro Ishibashi
- Division of Plant Sciences, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan.
| | | | | | | | | |
Collapse
|
21
|
Komoda K, Mawatari N, Hagiwara-Komoda Y, Naito S, Ishikawa M. Identification of a ribonucleoprotein intermediate of tomato mosaic virus RNA replication complex formation. J Virol 2007; 81:2584-91. [PMID: 17108048 PMCID: PMC1865976 DOI: 10.1128/jvi.01921-06] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2006] [Accepted: 11/05/2006] [Indexed: 01/10/2023] Open
Abstract
The replication of eukaryotic positive-strand RNA virus genomes occurs in the membrane-bound RNA replication complexes. Previously, we found that the extract of evacuolated tobacco BY-2 protoplasts (BYL) is capable of supporting the translation and subsequent replication of the genomic RNAs of plant positive-strand RNA viruses, including Tomato mosaic virus (ToMV). Here, to dissect the process that precedes the formation of ToMV RNA replication complexes, we prepared membrane-depleted BYL (mdBYL), in which the membranes were removed by centrifugation. In mdBYL, ToMV RNA was translated to produce the 130-kDa and 180-kDa replication proteins, but the synthesis of any ToMV-related RNAs did not occur. When BYL membranes were added back to the ToMV RNA-translated mdBYL after the termination of translation with puromycin, ToMV RNA was replicated. Using a replication-competent ToMV derivative that encodes the FLAG-tagged 180-kDa replication protein, it was shown by affinity purification that a complex that contained the 130-kDa and 180-kDa proteins and ToMV genomic RNA was formed after translation in mdBYL. When the complex was mixed with BYL membranes, ToMV RNA was replicated, which suggests that this ribonucleoprotein complex is an intermediate of ToMV RNA replication complex formation. We have named this ribonucleoprotein complex the "pre-membrane-targeting complex." Our data suggest that the formation of the pre-membrane-targeting complex is coupled with the translation of ToMV RNA, while posttranslationally added exogenous 180-kDa protein and replication templates can contribute to replication and can be replicated, respectively. Based on these results, we discuss the mechanisms of ToMV RNA replication complex formation.
Collapse
Affiliation(s)
- Keisuke Komoda
- Plant-Microbe Interactions Research Unit, National Institute of Agrobiological Sciences, Tsukuba 305-8602, Japan
| | | | | | | | | |
Collapse
|
22
|
Dohi K, Nishikiori M, Tamai A, Ishikawa M, Meshi T, Mori M. Inducible virus-mediated expression of a foreign protein in suspension-cultured plant cells. Arch Virol 2006; 151:1075-84. [PMID: 16421635 DOI: 10.1007/s00705-005-0705-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2005] [Accepted: 12/05/2005] [Indexed: 12/20/2022]
Abstract
Although suspension-cultured plant cells have many potential merits as sources of useful proteins, the lack of an efficient expression system has prevented using this approach. In this study, we established an inducible tomato mosaic virus (ToMV) infection system in tobacco BY-2 suspension-cultured cells to inducibly and efficiently produce a foreign protein. In this system, a modified ToMV encoding a foreign protein as replacement of the coat protein is expressed from stably transformed cDNA under the control of an estrogen-inducible promoter in transgenic BY-2 cells. Estrogen added to the culture activates an estrogen-inducible transactivator expressed constitutively from the transgene and induces transcription and replication of viral RNA. In our experiments, accumulation of viral RNA and expression of green fluorescent protein (GFP) encoded in the virus were observed within 24 h after induction. The amount of GFP reached approximately 10% of total soluble protein 4 d after induction. In contrast, neither viral RNA nor GFP were detected in uninduced cells. The inducible virus infection system established here should be utilized not only for the expression of foreign proteins, but also for investigations into the viral replication process in cultured plant cells.
Collapse
Affiliation(s)
- K Dohi
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Asano M, Satoh R, Mochizuki A, Tsuda S, Yamanaka T, Nishiguchi M, Hirai K, Meshi T, Naito S, Ishikawa M. Tobamovirus-resistant tobacco generated by RNA interference directed against host genes. FEBS Lett 2005; 579:4479-84. [PMID: 16081069 DOI: 10.1016/j.febslet.2005.07.021] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 07/05/2005] [Accepted: 07/14/2005] [Indexed: 11/23/2022]
Abstract
Two homologous Nicotiana tabacum genes NtTOM1 and NtTOM3 have been identified. These genes encode polypeptides with amino acid sequence similarity to Arabidopsis thaliana TOM1 and TOM3, which function in parallel to support tobamovirus multiplication. Simultaneous RNA interference against NtTOM1 and NtTOM3 in N. tabacum resulted in nearly complete inhibition of the multiplication of Tomato mosaic virus and other tobamoviruses, but did not affect plant growth or the ability of Cucumber mosaic virus to multiply. As TOM1 and TOM3 homologues are present in a variety of plant species, their inhibition via RNA interference should constitute a useful method for generating tobamovirus-resistant plants.
Collapse
Affiliation(s)
- Momoko Asano
- Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Snegireva PB, Istomina EA, Shiyan AN. A single reverse mutation in the 126/183-kDa replicase gene of the attenuated tomato strain V-69 of tobacco mosaic virus increases the virus pathogenicity. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0059-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
25
|
A single reverse mutation in the 126/183-kda replicase gene of the attenuated tomato strain v-69 of tobacco mosaic virus increases the virus pathogenicity. RUSS J GENET+ 2005. [DOI: 10.1007/s11177-005-0005-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
26
|
|
27
|
Wang HH, Yu HH, Wong SM. Mutation of Phe50 to Ser50 in the 126/183-kDa proteins of Odontoglossum ringspot virus abolishes virus replication but can be complemented and restored by exact reversion. J Gen Virol 2004; 85:2447-2457. [PMID: 15269387 DOI: 10.1099/vir.0.80070-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sequence comparison of a non-biologically active full-length cDNA clone of Odontoglossum ringspot virus (ORSV) pOT1 with a biologically active ORSV cDNA clone pOT2 revealed a single nucleotide change of T-->C at position 211. This resulted in the change of Phe50 in OT2 to Ser50 in OT1. It was not the nucleotide but the amino acid change of Phe50 that was responsible for the inability of OT1 to replicate. Time-course experiments showed that no minus-strand RNA synthesis was detected in mutants with a Phe50 substitution. Corresponding mutants in Tobacco mosaic virus (TMV) showed identical results, suggesting that Phe50 may play an important role in replication in all tobamoviruses. Complementation of a full-length mutant OT1 was demonstrated in a co-infected local-lesion host, a systemic host and protoplasts by replication-competent mutants tORSV.GFP or tORSV.GFPm, and further confirmed by co-inoculation using tOT1.GFP+tORSV (TTC), suggesting that ORSV contains no RNA sequence inhibitory to replication in trans. Surprisingly, a small number of exact revertants were detected in plants inoculated with tOT1+tORSV.GFPm or tOT1.GFP+tORSV (TTC). No recombination was detected after screening of silent markers in virus progeny extracted from total RNA or viral RNA from inoculated and upper non-inoculated leaves as well as from transfected protoplasts. Exact reversion from TCT (OT1) to TTT (OT2), rather than recombination, restored its replication function in co-inoculated leaves of Nicotiana benthamiana.
Collapse
Affiliation(s)
- Hai-He Wang
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Kent Ridge, Singapore 117543
| | - Hai-Hui Yu
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Kent Ridge, Singapore 117543
| | - Sek-Man Wong
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Kent Ridge, Singapore 117543
| |
Collapse
|
28
|
Komoda K, Naito S, Ishikawa M. Replication of plant RNA virus genomes in a cell-free extract of evacuolated plant protoplasts. Proc Natl Acad Sci U S A 2004; 101:1863-7. [PMID: 14769932 PMCID: PMC357018 DOI: 10.1073/pnas.0307131101] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The replication of eukaryotic positive-strand RNA virus genomes occurs through a complex process involving multiple viral and host proteins and intracellular membranes. Here we report a cell-free system that reproduces this process in vitro. This system uses a membrane-containing extract of uninfected plant protoplasts from which the vacuoles had been removed by Percoll gradient centrifugation. We demonstrate that the system supported translation, negative-strand RNA synthesis, genomic RNA replication, and subgenomic RNA transcription of tomato mosaic virus and two other plant positive-strand RNA viruses. The RNA synthesis, which depended on translation of the genomic RNA, produced virus-related RNA species similar to those that are generated in vivo. This system will aid in the elucidation of the mechanisms of genome replication in these viruses.
Collapse
Affiliation(s)
- Keisuke Komoda
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | |
Collapse
|
29
|
Moreira SR, Eiras M, Chaves AL, Galleti SR, Colariccio A. Caracterização de uma nova estirpe do Tomato mosaic virus isolada de tomateiro no Estado de São Paulo. ACTA ACUST UNITED AC 2003. [DOI: 10.1590/s0100-41582003000600004] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Um vírus isolado em Guaratinguetá, SP, de tomateiro (Lycoporsicon esculentum) 'Santa Clara' com sintomas característicos de virose, foi estudado por meio de plantas indicadoras e de hospedeiras diferenciais pertencentes a linhagens homozigotas de tomateiro, ensaios de estabilidade in vitro, purificação, contrastação negativa, testes sorológicos de ELISA-PTA e imunomicroscopia eletrônica, utilizando-se anti-soros contra diferentes vírus do gênero Tobamovirus. O isolado infetou plantas de espécies de amarantáceas, quenopodiáceas e solanáceas. Plantas de Chenopodium amaranticolor reagiram com sintomas locais e sistêmicos; Nicotiana sylvestris e N. rustica reagiram com lesões locais e a linhagem homozigota de tomateiro Tm-2 mostrou-se imune ao vírus. Nas preparações purificadas de contrastação negativa, foram observadas partículas rígidas e alongadas com cerca de 300 nm. O isolado foi identificado como um tobamovírus, com anti-soros contra o Tomato mosaic virus (ToMV) e Tobacco mosaic virus (TMV). As hospedeiras diferenciais indicaram se tratar de ToMV. Por meio de RT-PCR, com oligonucleotídeos para o gene da capa protéica de espécies do gênero Tobamovirus do subgrupo 1, amplificaram-se fragmentos com 850 pb que foram clonados e seqüenciados. A similaridade de nucleotídeos e aminoácidos deduzidos variou entre 85 e 91% quando a seqüência do ToMV-SP foi comparada com outras sequências de ToMV, 75 e 83% quando comparada com as do TMV e 67 e 72% quando comparada com a do Odontoglossum ringspot virus (ORSV). As comparações com outras espécies de tobamovírus apresentaram valores de similaridade inferiores a 65%. Confirmou-se a identidade dos vírus como sendo uma nova estirpe do ToMV.
Collapse
Affiliation(s)
| | - Marcelo Eiras
- Centro de Pesquisa e Desenvolvimento de Sanidade Vegetal
| | | | | | | |
Collapse
|
30
|
Hirashima K, Watanabe Y. RNA helicase domain of tobamovirus replicase executes cell-to-cell movement possibly through collaboration with its nonconserved region. J Virol 2003; 77:12357-62. [PMID: 14581573 PMCID: PMC254270 DOI: 10.1128/jvi.77.22.12357-12362.2003] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UR-hel, a chimeric virus obtained by replacement of the RNA helicase domain of tobacco mosaic virus (TMV)-U1 replicase with that from the TMV-R strain, could replicate similarly to TMV-U1 in protoplasts but could not move from cell to cell (K. Hirashima and Y. Watanabe, J. Virol. 75:8831-8836, 2001). It was suggested that TMV recruited both the movement protein (MP) and replicase for cell-to-cell movement by unknown mechanisms. Here, we found that a recombinant, UR-hel/V, in which the nonconserved region was derived from TMV-R in addition to the RNA helicase domain of replicase, could move from cell to cell. We also analyzed revertants isolated from UR-hel, which recovered cell-to-cell movement by their own abilities. We found amino acid substitutions responsible for phenotypic reversion only in the nonconserved region and/or RNA helicase domain but never in MP. Together, these data show that both the nonconserved region and the RNA helicase domain of replicase are involved in cell-to-cell movement. The RNA helicase domain of tobamovirus replicase possibly does not interact directly with MP but interacts with its nonconserved region to execute cell-to-cell movement.
Collapse
Affiliation(s)
- Kyotaro Hirashima
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan
| | | |
Collapse
|
31
|
Kubota K, Tsuda S, Tamai A, Meshi T. Tomato mosaic virus replication protein suppresses virus-targeted posttranscriptional gene silencing. J Virol 2003; 77:11016-26. [PMID: 14512550 PMCID: PMC224966 DOI: 10.1128/jvi.77.20.11016-11026.2003] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Posttranscriptional gene silencing (PTGS), a homology-dependent RNA degradation system, has a role in defending against virus infection in plants, but plant viruses encode a suppressor to combat PTGS. Using transgenic tobacco in which the expression of green fluorescent protein (GFP) is posttranscriptionally silenced, we investigated a tomato mosaic virus (ToMV)-encoded PTGS suppressor. Infection with wild-type ToMV (L strain) interrupted GFP silencing in tobacco, coincident with visible symptoms, whereas some attenuated strains of ToMV (L(11) and L(11)A strains) failed to suppress GFP silencing. Analyses of recombinant viruses containing the L and L(11)A strains revealed that a single base change in the replicase gene, which causes an amino acid substitution, is responsible for the symptomless and suppressor-defective phenotypes of the attenuated strains. An agroinfiltration assay indicated that the 130K replication protein acts as a PTGS suppressor. Small interfering RNAs (siRNAs) of 21 to 25 nucleotides accumulated during ToMV infection, suggesting that the major target of the ToMV-encoded suppressor is downstream from the production of siRNAs in the PTGS pathway. Analysis with GFP-tagged recombinant viruses revealed that the suppressor inhibits the establishment of the ToMV-targeted PTGS system in the inoculated leaves but does not detectably suppress the activity of the preexisting, sequence-specific PTGS machinery there. Taken together, these results indicate that it is likely that the ToMV-encoded suppressor, the 130K replication protein, blocks the utilization of silencing-associated small RNAs, so that a homology-dependent RNA degradation machinery is not newly formed.
Collapse
Affiliation(s)
- Kenji Kubota
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | | | | | | |
Collapse
|
32
|
Rafikova ER, Kurganov BI, Arutyunyan AM, Kust SV, Drachev VA, Dobrov EN. A mechanism of macroscopic (amorphous) aggregation of the tobacco mosaic virus coat protein. Int J Biochem Cell Biol 2003; 35:1452-60. [PMID: 12818240 DOI: 10.1016/s1357-2725(03)00106-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
To gain more insight into the mechanisms of heating-induced irreversible macroscopic aggregation of the tobacco mosaic virus (TMV) coat protein (CP), the effects of pH and ionic strength on this process were studied using turbidimetry, CD spectroscopy, and fluorescence spectroscopy. At 42 degrees C, the TMV CP passed very rapidly (in less than 15s) into a slightly unfolded conformation, presumably because heating disordered a segment of the subunit where the so-called hydrophobic girdle of the molecule resides. We suppose that the amino acid residues of this girdle are responsible for the aberrant hydrophobic interactions between subunits that initiate macroscopic protein aggregation. Its rate increased by several thousands of times as the phosphate buffer molarity was varied from 20 to 70 mM, suggesting that neutralization of strong repulsive electrostatic interactions of TMV CP molecules at high ionic strengths is a prerequisite for amorphous aggregation of this protein.
Collapse
Affiliation(s)
- Elvira R Rafikova
- A.N. Belozersky Institute of Physico-Chemical Biology, Moscow State University, 11999 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
33
|
Tsujimoto Y, Numaga T, Ohshima K, Yano MA, Ohsawa R, Goto DB, Naito S, Ishikawa M. Arabidopsis TOBAMOVIRUS MULTIPLICATION (TOM) 2 locus encodes a transmembrane protein that interacts with TOM1. EMBO J 2003; 22:335-43. [PMID: 12514139 PMCID: PMC140109 DOI: 10.1093/emboj/cdg034] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The tom2-1 mutation of Arabidopsis thaliana reduces the efficiency of intracellular multiplication of tobamoviruses. The tom2-1 mutant was derived from fast-neutron-irradiated seeds, and the original mutant line also carries ttm1, a dominant modifier that increases tobamovirus multiplication efficiency in a tobamovirus-strain-specific manner in the tom2-1 genetic background. Here, we show that the tom2-1 mutation involved a deletion of approximately 20 kb in the nuclear genome. The deleted region included two genes named TOM2A and TOM2B that were both associated with the tom2-1 phenotype, whereas ttm1 corresponded to the translocation of part of the deleted region that included intact TOM2B but not TOM2A. TOM2A encodes a 280 amino acid putative four-pass transmembrane protein with a C-terminal farnesylation signal, while TOM2B encodes a 122 amino acid basic protein. The split-ubiquitin assay demonstrated an interaction of TOM2A both with itself and with TOM1, an integral membrane protein of A.thaliana presumed to be an essential constituent of tobamovirus replication complex. The data presented here suggest that TOM2A is also an integral part of the tobamovirus replication complex.
Collapse
Affiliation(s)
- Yayoi Tsujimoto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589 and CREST, Japan Science and Technology Corporation, Japan Corresponding author e-mail: Y.Tsujimoto and T.Numaga contributed equally to this work
| | - Takuro Numaga
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589 and CREST, Japan Science and Technology Corporation, Japan Corresponding author e-mail: Y.Tsujimoto and T.Numaga contributed equally to this work
| | - Kiyoshi Ohshima
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589 and CREST, Japan Science and Technology Corporation, Japan Corresponding author e-mail: Y.Tsujimoto and T.Numaga contributed equally to this work
| | - Masa-aki Yano
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589 and CREST, Japan Science and Technology Corporation, Japan Corresponding author e-mail: Y.Tsujimoto and T.Numaga contributed equally to this work
| | - Ryuji Ohsawa
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589 and CREST, Japan Science and Technology Corporation, Japan Corresponding author e-mail: Y.Tsujimoto and T.Numaga contributed equally to this work
| | - Derek B. Goto
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589 and CREST, Japan Science and Technology Corporation, Japan Corresponding author e-mail: Y.Tsujimoto and T.Numaga contributed equally to this work
| | - Satoshi Naito
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589 and CREST, Japan Science and Technology Corporation, Japan Corresponding author e-mail: Y.Tsujimoto and T.Numaga contributed equally to this work
| | - Masayuki Ishikawa
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589 and CREST, Japan Science and Technology Corporation, Japan Corresponding author e-mail: Y.Tsujimoto and T.Numaga contributed equally to this work
| |
Collapse
|
34
|
Kawakami S, Hori K, Hosokawa D, Okada Y, Watanabe Y. Defective tobamovirus movement protein lacking wild-type phosphorylation sites can be complemented by substitutions found in revertants. J Virol 2003; 77:1452-61. [PMID: 12502860 PMCID: PMC140773 DOI: 10.1128/jvi.77.2.1452-1461.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We reported previously that the movement protein (MP) of tomato mosaic tobamovirus is phosphorylated, and we proposed that MP phosphorylation is important for viral pathogenesis. Experimental data indicated that phosphorylation enhances the stability of MP in vivo and enables the protein to assume the correct intracellular location to perform its function. A mutant virus designated 37A238A was constructed; this virus lacked two serine residues within the MP, which prevented its phosphorylation. In the present study, we inoculated plants with the 37A238A mutant, and as expected, it was unable to produce local lesions on the leaves. However, after an extended period, we found that lesions did occur, which were due to revertant viruses. Several revertants were isolated, and the genetic changes in their MPs were examined together with any changes in their in vivo characteristics. We found that reversion to virulence was associated first with increased MP stability in infected cells and second with a shift in MP intracellular localization over time. In one case, the revertant MP was not phosphorylated in vivo, but it was functional.
Collapse
Affiliation(s)
- Shigeki Kawakami
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Japan
| | | | | | | | | |
Collapse
|
35
|
Yang G, Qiu BS, Liu XG, Li Y, Wang XF. Nonsense mutations of replicase and movement protein genes contribute to the attenuation of an avirulent tomato mosaic virus. Virus Res 2002; 87:119-28. [PMID: 12191775 DOI: 10.1016/s0168-1702(02)00025-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Three recovery mutants of an avirulent Tomato mosaic virus genus: (Tobamovirus) (ToMV-K) with back mutations of the replicase and/or movement protein (MP) genes, have been constructed by site-directed mutagenesis, and infectious plasmids (pToMV-K) were obtained. The rescued phenotypes of the progeny viruses showed that the replicase and MP recovery mutant (ToMV-K(rase-mp)) induced severe symptoms on both systemic and necrotic plants similar to those induced by the virulent strain. The replicase back mutant (ToMV-K(rase)) produced chlorosis and mosaic symptoms on N. tabacum cv. Huangmiaoyu (systemic host), while the MP recovery mutant (ToMV-K(mp)) produced no systemic symptoms on Huangmiaoyu tobacco. Sequencing of the cDNA of progeny viruses revealed that the "back mutants" maintained these mutation sites during infection. Protein immunoblots indicated that the 98 and 126 kDa proteins were expressed in the plants systemically infected by ToMV-K and pToMV-K, whereas no 98 kDa protein was detected in the plants infected by ToMV. The MPs (27 kDa) of ToMV-K and pToMV-K in the plants were smaller in size than those (30 kDa) of ToMV and pToMVK(rase-mp). These data suggest that ToMV-K replicates and spreads by expressing the truncated 98 and 126 kDa replicases and 27 kDa MP in plants. The opal mutation at nucleotides (nt) 2670-2672 of the replicase gene mainly contributes to the attenuation of ToMV-K, whereas the mutations at nt 5632-5664 of the MP gene attenuate the induced symptoms.
Collapse
Affiliation(s)
- Gong Yang
- Department of Molecular Virology and Biotechnology, Institute of Microbiology, Chinese Academy of Sciences, PO Box 2714, Beijing 100080, People's Republic of China
| | | | | | | | | |
Collapse
|
36
|
Wu J, Zhou X. Effects of replacing the movement protein gene of Tobacco mosaic virus by that of Tomato mosaic virus. Virus Res 2002; 87:61-7. [PMID: 12135790 DOI: 10.1016/s0168-1702(02)00083-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The broad bean strain of Tobacco mosaic virus (TMV-B) infects Nicotiana tabacum White Burley systemically whereas the tomato strain of T. mosaic virus (ToMV-S1) induces necrotic local lesions and is restricted to inoculated leaves. To examine the possible role of the viral movement protein (MP) in these symptom differences, a chimaeric virus (T/OMP) was produced in which the TMV-B MP gene was replaced by the ToMV-S1 MP gene. T/OMP induced the same symptoms as TMV-B in N. tabacum White Burley. However, in N. tabacum Samsun NN and other plants containing the N resistance gene, T/OMP caused necrotic lesions that were smaller than those produced by TMV-B but similar in size to those of ToMV-S1. We conclude that ToMV MP gene can substitute functionally for the TMV-B MP gene, and that the MP gene influences the size of necrotic local lesions on N-containing hosts.
Collapse
Affiliation(s)
- Junjie Wu
- Institute of Biotechnology, Zhejiang University, Hangzhou, People's Republic of China
| | | |
Collapse
|
37
|
Yamanaka T, Imai T, Satoh R, Kawashima A, Takahashi M, Tomita K, Kubota K, Meshi T, Naito S, Ishikawa M. Complete inhibition of tobamovirus multiplication by simultaneous mutations in two homologous host genes. J Virol 2002; 76:2491-7. [PMID: 11836427 PMCID: PMC135938 DOI: 10.1128/jvi.76.5.2491-2497.2002] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TOM1 gene of Arabidopsis thaliana encodes a putative multipass transmembrane protein which is necessary for the efficient multiplication of tobamoviruses. We have previously shown that mutations severely destructive to the TOM1 gene reduce tobamovirus multiplication to low levels but do not impair it completely. In this report, we subjected one of the tom1 mutants (tom1-1) to another round of mutagenesis and isolated a new mutant which did not permit a detectable level of tobamovirus multiplication. In addition to tom1-1, this mutant carried a mutation referred to as tom3-1. Positional cloning showed that TOM3 was one of two TOM1-like genes in Arabidopsis. Based on the similarity between the amino acid sequences of TOM1 and TOM3, together with the results of a Sos recruitment assay suggesting that both TOM1 and TOM3 bind tobamovirus-encoded replication proteins, we propose that TOM1 and TOM3 play parallel and essential roles in the replication of tobamoviruses.
Collapse
Affiliation(s)
- Takuya Yamanaka
- Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Sapporo 060-8589, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Jung HW, Yun WS, Hahm YI, Kim KH. Characterization of Tobacco mosaic virus Isolated from Potato Showing Yellow Leaf Mosaic and Stunting Symptoms in Korea. PLANT DISEASE 2002; 86:112-117. [PMID: 30823306 DOI: 10.1094/pdis.2002.86.2.112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Four isolates of Tobacco mosaic virus (TMV-potato 1 to 4) were obtained from potato plants (Solanum tuberosum) in cultivated potato plantings in Korea. These isolates were differentiated based on biological properties, symptomatology, and nucleotide sequence analysis of the coat protein (CP) gene. TMV potato isolates caused typical symptoms on 20 inoculated plant species as compared to the type (U1) TMV strain. The four isolates each produced distinctly different symptoms on Gomphrena globosa. In contrast to the type strain of TMV, infections with two of the isolates reported here were not restricted to inoculated leaves of G. globosa but moved systemically through the plants. In addition, three additional systemic hosts (Chenopodium amaranticolor, C. quinoa, and C. murale) for TMV were revealed. Sequence analysis of the CP gene differentiated TMV-potato isolates. The CP gene sequence exhibited significant identity (83.1 to 99.2%) among TMV-potato isolates while showing 88.1 to 99.4% identities on predicted amino acid sequences. Based on a comparison of the CP gene nucleotide and deduced amino acid sequences between TMV-potato isolates and other TMV strains, TMV-potato 1, 3, and 4 were closely related to TMV strains U1, U2, V-FAVA, and NC82 with 98.8 to 100% identity. In contrast, TMV-potato 2 was closely related to TMV strains L, KP, KO-TOB, K1, and K2 with 93.8 to 98.8% identity.
Collapse
Affiliation(s)
- H W Jung
- School of Agricultural Biotechnology and Research Center for New Biomaterials in Agriculture, Seoul National University, Suwon 441-744, Korea
| | - W S Yun
- School of Agricultural Biotechnology and Research Center for New Biomaterials in Agriculture, Seoul National University, Suwon 441-744, Korea
| | - Y I Hahm
- Alpine Agriculture Experiment Station, Pyungchang, Kangwon 232-955, Korea
| | - K-H Kim
- School of Agricultural Biotechnology and Research Center for New Biomaterials in Agriculture, Seoul National University, Suwon 441-744, Korea
| |
Collapse
|
39
|
Yoon JY, Min BE, Choi JK, Ryu KH. Genome Structure and Production of Biologically Active In Vitro Transcripts of Cucurbit-Infecting Zucchini green mottle mosaic virus. PHYTOPATHOLOGY 2002; 92:156-163. [PMID: 18943088 DOI: 10.1094/phyto.2002.92.2.156] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
ABSTRACT The complete nucleotide sequence of the Zucchini green mottle mosaic virus (ZGMMV), a new member of the genus Tobamovirus, has been determined. The genome of ZGMMV is 6,513 nucleotides long and contains four open reading frames coding for proteins of 131, 189, 28, and 17 kDa from the 5' to 3' end, respectively. The 5'- and 3'-non-translated regions consist of 59 and 163 residues, respectively. The sequences of the viral proteins exhibit high identity to the proteins of the members of the genus Tobamovirus and are distinct from other viruses within the subgroup of cucurbit-infecting tobamoviruses. Results from phylogenetic trees of the coding regions demonstrated that ZGMMV is a very close relative of Kyuri green mottle mosaic virus and Cucumber fruit mottle mosaic virus and is less similar to Cucumber green mottle mosaic virus. Full-length cDNA of ZGMMV was directly amplified by reverse-transcription polymerase chain reaction (RT-PCR) using the 5'-end primer containing a T7 RNA promoter sequence and 3'-end primer. Capped in vitro transcript from the RT-PCR products was infectious on zucchini squash, cucumber, and Nicotiana benthamiana plants. This cell-free system to produce infectious transcripts from uncloned cDNA copies is useful for quick assessment of infectivity of transcripts from plant RNA viruses prior to cloning. Synthesized capped transcript from a full-length cDNA clone of the virus was highly infectious. Progeny virus derived from infectious transcripts had the same biological and biochemical properties as wild-type virus. To our knowledge, this is the first report of a biologically active transcript from a cucurbit-infecting tobamovirus.
Collapse
|
40
|
Grdzelishvili VZ, Chapman SN, Dawson WO, Lewandowski DJ. Mapping of the Tobacco mosaic virus movement protein and coat protein subgenomic RNA promoters in vivo. Virology 2000; 275:177-92. [PMID: 11017798 DOI: 10.1006/viro.2000.0511] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The Tobacco mosaic virus movement protein (MP) and coat protein (CP) are expressed from 3'-coterminal subgenomic RNAs (sgRNAs). The transcription start site of the MP sgRNA, previously mapped to positions 4838 (Y. Watanabe, T. Meshi, and Y. Okada (1984), FEBS Lett. 173, 247-250) and 4828 (K. Lehto, G. L. Grantham, and W. O. Dawson (1990), Virology 174, 145-157) for the TMV OM and U1 strains, respectively, has been reexamined and mapped to position 4838 for strain U1. Sequences of the MP and CP sgRNA promoters were delineated by deletion analysis. The boundaries for minimal and full MP sgRNA promoter activity were localized between -35 and +10 and -95 and +40, respectively, relative to the transcription start site. The minimal CP sgRNA promoter was mapped between -69 and +12, whereas the boundaries of the fully active promoter were between -157 and +54. Computer analysis predicted two stem-loop structures (SL1 and SL2) upstream of the MP sgRNA transcription start site. Deletion analysis and site-directed mutagenesis suggested that SL1 secondary structure, but not its sequence, was required for MP sgRNA promoter activity, whereas a 39-nt deletion removing most of the SL2 region increased MP sgRNA accumulation fourfold. Computer-predicted folding of the fully active CP sgRNA promoter revealed one long stem-loop structure. Deletion analysis suggested that the upper part of this stem-loop, located upstream of the transcription start site, was essential for transcription and that the lower part of the stem had an enhancing role.
Collapse
MESH Headings
- Base Sequence
- Capsid/genetics
- Gene Expression Regulation, Viral
- Genome, Viral
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Physical Chromosome Mapping
- Plant Viral Movement Proteins
- Plants, Toxic
- Promoter Regions, Genetic/genetics
- RNA, Spliced Leader/chemistry
- RNA, Spliced Leader/genetics
- RNA, Viral/analysis
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Sequence Alignment
- Nicotiana/cytology
- Nicotiana/virology
- Tobacco Mosaic Virus/genetics
- Transcription, Genetic/genetics
- Viral Proteins/genetics
Collapse
Affiliation(s)
- V Z Grdzelishvili
- Department of Plant Pathology, CREC, University of Florida, Lake Alfred, Florida 33850, USA
| | | | | | | |
Collapse
|
41
|
Wetzel T, Moerbel J, Krczal G. A ligation-anchored PCR method for the cloning of the 3’end of a tobamovirus infecting Impatiens New Guinea hybrids. ACTA ACUST UNITED AC 2000. [DOI: 10.1111/j.1365-2338.2000.tb00927.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Matsushita Y, Hanazawa K, Yoshioka K, Oguchi T, Kawakami S, Watanabe Y, Nishiguchi M, Nyunoya H. In vitro phosphorylation of the movement protein of tomato mosaic tobamovirus by a cellular kinase. J Gen Virol 2000; 81:2095-2102. [PMID: 10900049 DOI: 10.1099/0022-1317-81-8-2095] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The movement protein (MP) of tomato mosaic virus (ToMV) was produced in E. coli as a soluble fusion protein with glutathione S-transferase. When immobilized on glutathione affinity beads, the recombinant protein was phosphorylated in vitro by incubating with cell extracts of Nicotiana tabacum and tobacco suspension culture cells (BY-2) in the presence of [gamma-(32)P]ATP. Phosphorylation occurred even after washing the beads with a detergent-containing buffer, indicating that the recombinant MP formed a stable complex with some protein kinase(s) during incubation with the cell extract. Phosphoamino acid analysis revealed that the MP was phosphorylated on serine and threonine residues. Phosphorylation of the MP was decreased by addition of kinase inhibitors such as heparin, suramin and quercetin, which are known to be effective for casein kinase II (CK II). The phosphorylation level was not changed by other types of inhibitor. In addition, as shown for animal and plant CK II, [gamma-(32)P]GTP was efficiently used as a phosphoryl donor. Phosphorylation was not affected by amino acid replacements at serine-37 and serine-238, but was completely inhibited by deletion of the carboxy-terminal 9 amino acids, including threonine-256, serine-257, serine-261 and serine-263. These results suggest that the MP of ToMV could be phosphorylated in plant cells by a host protein kinase that is closely related to CK II.
Collapse
Affiliation(s)
- Yasuhiko Matsushita
- Gene Research Center, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan1
| | - Kohtaro Hanazawa
- Gene Research Center, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan1
| | - Kuniaki Yoshioka
- Gene Research Center, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan1
| | - Taichi Oguchi
- Gene Research Center, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan1
| | - Shigeki Kawakami
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan2
| | - Yuichiro Watanabe
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan2
| | - Masamichi Nishiguchi
- National Institute of Agrobiological Resources, 2-1-2 Kan-nondai, Tsukuba, Ibaraki 305-8602, Japan3
| | - Hiroshi Nyunoya
- Gene Research Center, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8509, Japan1
| |
Collapse
|
43
|
Taylor DN, Carr JP. The GCD10 subunit of yeast eIF-3 binds the methyltransferase-like domain of the 126 and 183 kDa replicase proteins of tobacco mosaic virus in the yeast two-hybrid system. J Gen Virol 2000; 81:1587-91. [PMID: 10811942 DOI: 10.1099/0022-1317-81-6-1587] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The tobacco mosaic virus (TMV) replicase complex contains virus- and host-encoded proteins. In tomato, one of these host proteins was reported previously to be related serologically to the GCD10 subunit of yeast eIF-3. The yeast two-hybrid system has now been used to show that yeast GCD10 interacts selectively with the methyltransferase domain shared by the 126 and 183 kDa TMV replicase proteins. These findings are consistent with a role for a GCD10-like protein in the TMV replicase complex and suggest that, in TMV-infected cells, the machinery of virus replication and protein synthesis may be closely connected.
Collapse
Affiliation(s)
- D N Taylor
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | | |
Collapse
|
44
|
Guan H, Carpenter CD, Simon AE. Analysis of cis-acting sequences involved in plus-strand synthesis of a turnip crinkle virus-associated satellite RNA identifies a new carmovirus replication element. Virology 2000; 268:345-54. [PMID: 10704342 DOI: 10.1006/viro.1999.0153] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Satellite RNA C (satC) is a 356-base subviral RNA associated with turnip crinkle virus (TCV). A 3'-proximal element (3'-UCCCAAAGUAU) located 11 bases from the 3' terminus of satC minus strands can function as an independent promoter in an in vitro RNA-dependent RNA polymerase (RdRp) transcription system. Furthermore, in the absence of a 5'-proximal element, the 3'-proximal element is required for complementary strand synthesis in vitro. Site-directed mutagenesis was conducted to investigate the functional significance of this element and the 3' minus-strand terminal sequence "3'-OH-CCCUAU," which contains the minus-strand 3'-end sequence "3'-OH-CC(1-2)(A/U)(A/U)(A/U)" found in all carmovirus RNAs. Single mutations in the 3'-terminal sequence, which we have named the carmovirus consensus sequence (CCS), suppressed satC plus-strand synthesis to undetectable levels in protoplasts while still permitting some minus-strand synthesis. However, single and multiple mutations introduced into the 3'-proximal element had little or no effect on satC accumulation in protoplasts. In vivo genetic selection (SELEX) of the minus-strand 3'-terminal 21 bases revealed that all satC species accumulating in plants contained the 3' CCS. In addition, the 3'-proximal element preferentially contained a sequence similar to the CCS and/or polypurines, suggesting that this element may also contribute to accumulation of satC in vivo.
Collapse
MESH Headings
- Brassica/virology
- Carmovirus/genetics
- Chimera/genetics
- Gene Expression Regulation, Viral
- Genes, Regulator/genetics
- Genes, Viral
- Mutagenesis, Site-Directed
- Mutation/genetics
- Plant Viruses/genetics
- RNA, Satellite/biosynthesis
- RNA, Satellite/genetics
- RNA, Viral/biosynthesis
- RNA, Viral/genetics
- Regulatory Sequences, Nucleic Acid/genetics
- Transcription, Genetic/genetics
- Virus Replication/genetics
Collapse
Affiliation(s)
- H Guan
- Department of Biochemistry, Program in Molecular and Cellular Biology, University of Massachusetts, Amherst, Massachusetts, 01003, USA
| | | | | |
Collapse
|
45
|
Kawakami S, Padgett HS, Hosokawa D, Okada Y, Beachy RN, Watanabe Y. Phosphorylation and/or presence of serine 37 in the movement protein of tomato mosaic tobamovirus is essential for intracellular localization and stability in vivo. J Virol 1999; 73:6831-40. [PMID: 10400781 PMCID: PMC112768 DOI: 10.1128/jvi.73.8.6831-6840.1999] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/1997] [Accepted: 04/20/1999] [Indexed: 11/20/2022] Open
Abstract
The P30 movement protein (MP) of tomato mosaic tobamovirus (ToMV) is synthesized in the early stages of infection and is phosphorylated in vivo. Here, we determined that serine 37 and serine 238 in the ToMV MP are sites of phosphorylation. MP mutants in which serine was replaced by alanine at positions 37 and 238 (LQ37A238A) or at position 37 only (LQ37A) were not phosphorylated, and mutant viruses did not infect tobacco or tomato plants. By contrast, mutation of serine 238 to alanine did not affect the infectivity of the virus (LQ238A). To investigate the subcellular localization of mutant MPs, we constructed viruses that expressed each mutant MP fused with the green fluorescent protein (GFP) of Aequorea victoria. Wild-type and mutant LQ238A MP fusion proteins showed distinct temporally regulated patterns of MP-GFP localization in protoplasts and formation of fluorescent ring-shaped infection sites on Nicotiana benthamiana. However mutant virus LQ37A MP-GFP did not show a distinct pattern of localization or formation of fluorescent rings. Pulse-chase experiments revealed that MP produced by mutant virus LQ37A was less stable than wild-type and LQ238A MPs. MP which contained threonine at position 37 was phosphorylated, but the stability of the MP in vivo was very low. These studies suggest that the presence of serine at position 37 or phosphorylation of serine 37 is essential for intracellular localization and stability of the MP, which is necessary for the protein to function.
Collapse
Affiliation(s)
- S Kawakami
- Department of Life Sciences, Graduate School of Arts and Sciences, Meguro-ku, Tokyo 153-8902, Japan
| | | | | | | | | | | |
Collapse
|
46
|
Okada Y. Historical overview of research on the tobacco mosaic virus genome: genome organization, infectivity and gene manipulation. Philos Trans R Soc Lond B Biol Sci 1999; 354:569-82. [PMID: 10212936 PMCID: PMC1692538 DOI: 10.1098/rstb.1999.0408] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Early in the development of molecular biology, TMV RNA was widely used as a mRNA [corrected] that could be purified easily, and it contributed much to research on protein synthesis. Also, in the early stages of elucidation of the genetic code, artificially produced TMV mutants were widely used and provided the first proof that the genetic code was non-overlapping. In 1982, Goelet et al. determined the complete TMV RNA base sequence of 6395 nucleotides. The four genes (130K, 180K, 30K and coat protein) could then be mapped at precise locations in the TMV genome. Furthermore it had become clear, a little earlier, that genes located internally in the genome were expressed via subgenomic mRNAs. The initiation site for assembly of TMV particles was also determined. However, although TMV contributed so much at the beginning of the development of molecular biology, its influence was replaced by that of Escherichia coli and its phages in the next phase. As recombinant DNA technology developed in the 1980s, RNA virus research became more detached from the frontier of molecular biology. To recover from this setback, a gene-manipulation system was needed for RNA viruses. In 1986, two such systems were developed for TMV, using full-length cDNA clones, by Dawson's group and by Okada's group. Thus, reverse genetics could be used to elucidate the basic functions of all proteins encoded by the TMV genome. Identification of the function of the 30K protein was especially important because it was the first evidence that a plant virus possesses a cell-to-cell movement function. Many other plant viruses have since been found to encode comparable 'movement proteins'. TMV thus became the first plant virus for which structures and functions were known for all its genes. At the birth of molecular plant pathology, TMV became a leader again. TMV has also played pioneering roles in many other fields. TMV was the first virus for which the amino acid sequence of the coat protein was determined and first virus for which cotranslational disassembly was demonstrated both in vivo and in vitro. It was the first virus for which activation of a resistance gene in a host plant was related to the molecular specificity of a product of a viral gene. Also, in the field of plant biotechnology, TMV vectors are among the most promising. Thus, for the 100 years since Beijerinck's work, TMV research has consistently played a leading role in opening up new areas of study, not only in plant pathology, but also in virology, biochemistry, molecular biology, RNA genetics and biotechnology.
Collapse
Affiliation(s)
- Y Okada
- Department of Bioscience, Teikyo University, Utsunomiya, Japan
| |
Collapse
|
47
|
Jacobi V, Bachand GD, Hamelin RC, Castello JD. Development of a multiplex immunocapture RT-PCR assay for detection and differentiation of tomato and tobacco mosaic tobamoviruses. J Virol Methods 1998; 74:167-78. [PMID: 9779616 DOI: 10.1016/s0166-0934(98)00086-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Immunocapture (IC) RT-PCR assays were developed for detection of tomato (ToMV) and tobacco mosaic (TMV) tobamoviruses in spruce and pine extracts. When purified viruses were diluted in root or needle extracts of virus-free conifer seedlings, both IC-RT-PCR assays detected their respective target viruses at concentrations of 10-100 fg ml(-1). This compared to ELISA detection sensitivities of 1 ng ml(-1). Primers were designed from regions of high sequence diversity. Specificity of all primer pairs was confirmed by sequencing of PCR products. PCR distinguished more reliably between the two viruses than ELISA. Moreover, a multiplex IC-RT-PCR assay for the simultaneous detection and differentiation of TMV and ToMV was developed. When root extracts were seeded with both viruses simultaneously, the multiplex assay detected each virus at concentrations of 1-10 pg ml(-1). Six TMV and 18 ToMV isolates from various hosts, water samples and a soil sample were amplified and differentiated by multiplex IC-RT-PCR. No amplifications were observed against pepper mild mottle and ribgrass mosaic tobamoviruses and against six viruses belonging to other taxonomic groups.
Collapse
Affiliation(s)
- V Jacobi
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Sainte-Foy, Québec
| | | | | | | |
Collapse
|
48
|
Yamanaka T, Komatani H, Meshi T, Naito S, Ishikawa M, Ohno T. Complete nucleotide sequence of the genomic RNA of tobacco mosaic virus strain Cg. Virus Genes 1998; 16:173-6. [PMID: 9608662 DOI: 10.1023/a:1007945723588] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Tobacco mosaic virus (TMV)-Cg is a crucifer-infecting tobamovirus that was isolated from field-grown garlic. We determined the complete nucleotide sequence of the genomic RNA of TMV-Cg. The genomic RNA of TMV-Cg consists of 6303 nucleotides and encodes four large open reading frames, organized basically in the same way as that of other tobamoviruses. The nucleotide and deduced amino acid sequences are very similar to those of the other crucifer-infecting tobamoviruses that have been sequenced so far.
Collapse
Affiliation(s)
- T Yamanaka
- Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
49
|
Ohshima K, Taniyama T, Yamanaka T, Ishikawa M, Naito S. Isolation of a mutant of Arabidopsis thaliana carrying two simultaneous mutations affecting tobacco mosaic virus multiplication within a single cell. Virology 1998; 243:472-81. [PMID: 9568044 DOI: 10.1006/viro.1998.9078] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tobacco mosaic virus strain Cg (TMV-Cg) infects A. thaliana systemically. In order to identify host factors involved in the multiplication of TMV-Cg, we isolated mutant of A. thaliana from an M2 population mutagenized by fast neutron irradiation, in which the accumulation of the coat protein in upper systemic leaves was reduced to low levels. The phenotype of the mutant, YS241, was controlled primarily by a single nuclear recessive mutation named tom2-1, which was distinct from tom1, a separate mutation which also affects TMV-Cg multiplication. The tom2-1 mutation affected the accumulation of TMV-related RNAs in protoplasts in a tobamovirus-specific manner, suggesting that the wild-type TOM2 gene product is necessary for efficient amplification of TMV-related RNAs within a single cell, through specific interaction with virus-coded factors. Furthermore, we found that YS241 contained a single dominant modifier named ttm1, which increased the efficiency of multiplication of TMV-Cg and a tomato strain of TMV in a tom2-1 genetic background, both in plants and in protoplasts. We propose that the ttm1 element might be a translocated form of the TOM2 gene.
Collapse
Affiliation(s)
- K Ohshima
- Department of Applied Bioscience, Faculty of Agriculture, Hokkaido University, Sapporo, Japan
| | | | | | | | | |
Collapse
|
50
|
Osman TA, Buck KW. The tobacco mosaic virus RNA polymerase complex contains a plant protein related to the RNA-binding subunit of yeast eIF-3. J Virol 1997; 71:6075-82. [PMID: 9223501 PMCID: PMC191867 DOI: 10.1128/jvi.71.8.6075-6082.1997] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A sucrose density gradient-purified, membrane-bound tobacco mosaic virus (tomato strain L) (TMV-L) RNA polymerase containing endogenous RNA template was efficiently solubilized with sodium taurodeoxycholate. Solubilization resulted in an increase in the synthesis of positive-strand, 6.4-kb genome-length single-stranded RNA (ssRNA) and a decrease in the production of 6.4-kbp double-stranded RNA (dsRNA) to levels close to the limits of detection. The solubilized TMV-L RNA polymerase was purified by chromatography on columns of DEAE-Bio-Gel and High Q. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and silver staining showed that purified RNA polymerase preparations consistently contained proteins with molecular masses of 183, 126, 56, 54, and 50 kDa, which were not found in equivalent material from healthy plants. Western blotting showed that the two largest of these proteins are the TMV-L-encoded 183- and 126-kDa replication proteins and that the 56-kDa protein is related to the 54.6-kDa GCD10 protein, the RNA-binding subunit of yeast eIF-3. The 126-, 183-, and 56-kDa proteins were coimmunoaffinity selected by antibodies against the TMV-L 126-kDa protein and by antibodies against the GCD10 protein. Antibody-linked polymerase assays showed that active TMV-L RNA polymerase bound to antibodies against the TMV-L 126-kDa protein and to antibodies against the GCD10 protein. Synthesis of genome-length ssRNA and dsRNA by a template-dependent, membrane-bound RNA polymerase was inhibited by antibodies against the GCD10 protein, and this inhibition was reversed by prior addition of GCD10 protein.
Collapse
Affiliation(s)
- T A Osman
- Department of Biology, Imperial College of Science, Technology and Medicine, London, United Kingdom
| | | |
Collapse
|