1
|
Wallis M. Do some viruses use growth hormone, prolactin and their receptors to facilitate entry into cells?: Episodic evolution of hormones and receptors suggests host-virus arms races; related placental lactogens may provide protective viral decoys. Bioessays 2021; 43:e2000268. [PMID: 33521987 DOI: 10.1002/bies.202000268] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/30/2020] [Accepted: 12/30/2020] [Indexed: 12/14/2022]
Abstract
The molecular evolution of pituitary growth hormone and prolactin in mammals shows two unusual features: episodes of markedly accelerated evolution and, in some species, complex families of related proteins expressed in placenta and resulting from multiple gene duplications. Explanations of these phenomena in terms of physiological adaptations seem unconvincing. Here, I propose an alternative explanation, namely that these evolutionary features reflect the use of the hormones (and their receptors) as viral receptors. Episodes of rapid evolution can then be explained as due to "arms races" in which changes in the hormone lead to reduced interaction with the virus, and subsequent changes in the virus counteract this. Placental paralogues of the hormones could provide decoys that bind viruses, and protect the foetus against infection. The hypothesis implies that the extensive changes introduced into growth hormone, prolactin and their receptors during the course of mammalian evolution reflect viral interactions, not endocrine adaptations.
Collapse
Affiliation(s)
- Michael Wallis
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
2
|
Dhandare BC, Rather MA, Bhosale BP, Pawar R, Guttula PK, Pagarkar AU. Molecular modeling, docking and dynamic simulations of growth hormone receptor (GHR) of Labeo rohita. J Biomol Struct Dyn 2020; 40:3024-3037. [PMID: 33179589 DOI: 10.1080/07391102.2020.1844063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Growth hormones (GH) have diverse functions like growth promotion, metabolism, appetite, reproduction and social behavior in vertebrates, which is mediated through the growth hormone receptor (GHR). This work was aimed to analyze structural features, homology modeling and molecular docking of Labeo rohita GHR protein. A physicochemical characteristic, like molecular weight was 67.2 kDa and hydropathicity was 0.336. Protein modeling and structure confirmation of L. rohita GHR protein showed 92.7% residues are in the favored region. Selection of ligands and molecular docking shown Melengestrol and Riboflavin ligand showed uppermost binding energy values -7.8 and -7.3 kcal/mol. Molecular interactions describe conventional hydrogen bonding of Melengestrol was observed with VAL94, GLU97, GLU95, TRP57, PHE33, THR34, PRO35, ASP36, PRO37, ARG49, GLY292, LYS291, ILE290, ALA287, LYS289 residues. Riboflavin hydrogen bonds interaction was at PRO37, ASP36, PRO35, THR34, ARG49, SER144, VAL443, GLN442, PRO284, ASP294, ILE285, PRO286, SER408, ALA287, GLY292, LYS291, ILE290, PRO288, LYS287. Molecular dynamics simulation outcomes revealed that complex 2 (Riboflavin and GHR protein) is better than complex1 (Melengestrol and GHR protein). Overall, the results of the present work lead identification of novel molecules that may be agonistic of growth hormone receptor protein and can be used to surge growth in fish. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Bhushan C Dhandare
- Department of Fisheries Biology, College of Fisheries, Fish Biotechnology Laboratory, Ratnagiri, Maharashtra, India
| | - Mohd Ashraf Rather
- Division of Fish Genetics and Biotechnology, Faculty of Fisheries, Rangil-Gandarbal, Sher-e-Kashmir University of Agricultural Sciences and Technology-Kashmir (SKAUST-K), India
| | - B P Bhosale
- Department of Fisheries Biology, College of Fisheries, Fish Biotechnology Laboratory, Ratnagiri, Maharashtra, India
| | - Ravindra Pawar
- Department of Fisheries Biology, College of Fisheries, Fish Biotechnology Laboratory, Ratnagiri, Maharashtra, India
| | | | - A U Pagarkar
- Marine Biological Research Station (MBRS), Ratnagiri, Maharashtra, India
| |
Collapse
|
3
|
Cattini PA, Bock ME, Jin Y, Zanghi JA, Vakili H. A useful model to compare human and mouse growth hormone gene chromosomal structure, expression and regulation, and immune tolerance of human growth hormone analogues. Growth Horm IGF Res 2018; 42-43:58-65. [PMID: 30227383 DOI: 10.1016/j.ghir.2018.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 11/25/2022]
Abstract
Human (h) pituitary growth hormone (GH) is both physiologically and clinically important. GH reaches its highest circulatory levels in puberty, where it contributes to energy homeostasis and somatogenic growth. GH also helps to maintain tissues and organs and, thus, health and homeostasis. A reduction in the rate of hGH production begins in middle age but if GH insufficiency occurs this may result in tissue degenerative and metabolic diseases. As a consequence, hGH is prescribed under conditions of GH deficiency and, because of its lipolytic activity, stimulation of hGH release has also been used to treat obesity. However, studies of normal GH production and particularly synthesis versus secretion are not feasible in humans as they require sampling normal pituitaries from living subjects. Furthermore, human (or primate) GH structure and, as such, regulation and potential function, is distinct from non-primate rodent GH. As a result, most information about hGH regulation comes from measurements of secreted levels of GH in humans. Thus, partially humanized hGH transgenic mice, generated containing fragments of human chromosome 17 that include the intact hGH gene locus and many thousands of flanking base pairs as well as the endogenous mouse (m) GH gene provide a potentially useful model. Here we review this mouse model in terms of its ability to allow comparison of hGH versus mGH gene expression, and specifically: (i) GH locus structure as well as regulated and rhythmic expression; (ii) their ability to model a clinical assessment of hGH production in response to overeating and hyperinsulinemia as well as a possible effect of exercise, and (iii) their hGH-related immune tolerance and thus potential for testing hGH-related analogue immunogenicity.
Collapse
Affiliation(s)
- Peter A Cattini
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada.
| | - Margaret E Bock
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada
| | - Yan Jin
- Department of Physiology & Pathophysiology, University of Manitoba, Manitoba, Canada
| | | | - Hana Vakili
- Department of Pathology, University of Texas Southwestern Medical Center, TX, USA
| |
Collapse
|
4
|
Vakili H, Jin Y, Cattini PA. Evidence for a Circadian Effect on the Reduction of Human Growth Hormone Gene Expression in Response to Excess Caloric Intake. J Biol Chem 2016; 291:13823-33. [PMID: 27151213 PMCID: PMC4919464 DOI: 10.1074/jbc.m116.722744] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 05/02/2016] [Indexed: 11/06/2022] Open
Abstract
Rhythmicity of biological functions is fundamental for optimal adaptations to environmental cues. Growth hormone (GH) is a major metabolic homeostatic factor that is secreted with a circadian pattern, but whether it is synthesized rhythmically is unknown. We used transgenic mice containing the human (h) GH gene (hGH1) locus to investigate the rhythmicity of hGH synthesis and secretion and to show that RNA and secreted protein levels oscillate over a 24-h cycle. Analysis of hGH1 promoter sequences revealed an enhancer motif (E-box) element that binds the circadian transcriptional machinery (Bmal1 and Clock). Furthermore, Bmal1/Clock were able to transactivate the hGH1 promoter, and mutation of this E-box element adversely affected basal activity after gene transfer. The ability of Bmal1 to bind the hGH1 promoter region containing the E-box element was confirmed in the hGH1 transgenic mouse pituitary in situ Occupancy was reduced in mice fed a high fat diet during the light (inactive) stage of the daily cycle in mice and corresponded to a decrease in hGH1 RNA levels. The decreases in occupancy and RNA levels were not seen, however, during the dark (active) stage. A chromatin loop required for efficient postnatal hGH1 expression was negatively affected by the high fat diet in the light but not dark stage similar to the pattern observed with Bmal1 association with the promoter region. This is the first evidence that hGH synthesis follows a diurnal rhythm and of dynamic associations of the circadian machinery with a component of a chromosomal structure of the hGH1 locus that is essential for efficient expression.
Collapse
Affiliation(s)
- Hana Vakili
- From the Departments of Internal Medicine and
| | - Yan Jin
- Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| | - Peter A Cattini
- Physiology & Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba R3E 0J9, Canada
| |
Collapse
|
5
|
Vakili H, Jin Y, Cattini PA. Energy homeostasis targets chromosomal reconfiguration of the human GH1 locus. J Clin Invest 2014; 124:5002-12. [PMID: 25295535 DOI: 10.1172/jci77126] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 08/29/2014] [Indexed: 11/17/2022] Open
Abstract
Levels of pituitary growth hormone (GH), a metabolic homeostatic factor with strong lipolytic activity, are decreased in obese individuals. GH declines prior to the onset of weight gain in response to excess caloric intake and hyperinsulinemia; however, the mechanism by which GH is reduced is not clear. We used transgenic mice expressing the human GH (hGH) gene, GH1, to assess the effect of high caloric intake on expression as well as the local chromosome structure of the intact GH1 locus. Animals exposed to 3 days of high caloric intake exhibited hyperinsulinemia without hyperglycemia and a decrease in both hGH synthesis and secretion, but no difference in endogenous production of murine GH. Efficient GH1 expression requires a long-range intrachromosomal interaction between remote enhancer sequences and the proximal promoter region through "looping" of intervening chromatin. High caloric intake disrupted this interaction and decreased both histone H3/H4 hyperacetylation and RNA polymerase II occupancy at the GH1 promoter. Incorporation of physical activity muted the effects of excess caloric intake on insulin levels, GH1 promoter hyperacetylation, chromosomal architecture, and expression. These results indicate that energy homeostasis alters postnatal hGH synthesis through dynamic changes in the 3-dimensional chromatin structure of the GH1 locus, including structures required for cell type specificity during development.
Collapse
|
6
|
Vakili H, Jin Y, Cattini PA. Negative regulation of human growth hormone gene expression by insulin is dependent on hypoxia-inducible factor binding in primary non-tumor pituitary cells. J Biol Chem 2012; 287:33282-92. [PMID: 22833680 DOI: 10.1074/jbc.m112.380949] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Insulin controls growth hormone (GH) production at multiple levels, including via a direct effect on pituitary somatotrophs. There are no data, however, on the regulation of the intact human (h) GH gene (hGH1) by insulin in non-tumor pituitary cells, but the proximal promoter region (nucleotides -496/+1) responds negatively to insulin in transfected pituitary tumor cells. A DNA-protein interaction was also induced by insulin at nucleotides -308/-235. Here, we confirmed the presence of a hypoxia-inducible factor 1 (HIF-1) binding site within these sequences (-264/-259) and investigated whether HIF-1 is associated with insulin regulation of "endogenous" hGH1. In the absence of primary human pituitary cells, transgenic mice expressing the intact hGH locus in a somatotroph-specific manner were generated. A significant and dose-dependent decrease in hGH and mouse GH RNA levels was detected in primary pituitary cell cultures from these mice with insulin treatment. Increasing HIF-1α availability with a hypoxia mimetic significantly decreased hGH RNA levels and was accompanied by recruitment of HIF-1α to the hGH1 promoter in situ as seen with insulin. Both inhibition of HIF-1 DNA binding by echinomycin and RNA interference of HIF-1α synthesis blunted the negative effect of insulin on hGH1 but not mGH. The insulin response is also sensitive to histone deacetylase inhibition/trichostatin A and associated with a decrease in H3/H4 hyperacetylation in the proximal hGH1 promoter region. These data are consistent with HIF-1-dependent down-regulation of hGH1 by insulin via chromatin remodeling specifically in the proximal promoter region.
Collapse
Affiliation(s)
- Hana Vakili
- Department of Physiology, Division of Endocrine and Metabolic diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | |
Collapse
|
7
|
Vakili H, Jin Y, Nagy JI, Cattini PA. Transgenic mice expressing the human growth hormone gene provide a model system to study human growth hormone synthesis and secretion in non-tumor-derived pituitary cells: differential effects of dexamethasone and thyroid hormone. Mol Cell Endocrinol 2011; 345:48-57. [PMID: 21777655 DOI: 10.1016/j.mce.2011.07.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Revised: 06/14/2011] [Accepted: 07/05/2011] [Indexed: 11/17/2022]
Abstract
Growth hormone (GH) is regulated by pituitary and hypothalamic factors as well as peripheral endocrine factors including glucocorticoids and thyroid hormone. Studies on human GH are limited largely to the assessment of plasma levels in endocrine disorders. Thus, insight into the regulation of synthesis versus secretion has come mainly from studies done on non-human GH and/or pituitary tumor cells. However, primate and non-primate GH gene loci have differences in their structure and, by extension, regulation. We generated transgenic (171hGH/CS-TG) mice containing the intact hGH1 gene and locus control region, including sequences required for integration-independent and preferential pituitary expression. Here, we show hGH co-localizes with mouse (m) GH in somatotrophs in situ and in primary pituitary cells. Dexamethasone treatment increased hGH and mGH, as well as GH releasing hormone (GHRH) receptor RNA levels, and hGH release was stimulated by GHRH treatment. By contrast, triiodothyronine decreased or had no effect on hGH and mGH production, respectively, and the negative effect on hGH was also seen in the presence of dexamethasone. Thus, 171hGH/CS-TG mouse pituitary cultures represent a model system to investigate hormonal control of hGH synthesis and secretion.
Collapse
MESH Headings
- Animals
- Cells, Cultured
- Dexamethasone/pharmacology
- Female
- Ghrelin/pharmacology
- Growth Hormone-Releasing Hormone/pharmacology
- Human Growth Hormone/genetics
- Human Growth Hormone/metabolism
- Humans
- Immunohistochemistry
- Male
- Mice
- Mice, Transgenic
- Models, Biological
- Pituitary Gland/cytology
- Pituitary Gland/drug effects
- Pituitary Gland/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Ghrelin/genetics
- Receptors, Ghrelin/metabolism
- Receptors, Neuropeptide/genetics
- Receptors, Neuropeptide/metabolism
- Receptors, Pituitary Hormone-Regulating Hormone/genetics
- Receptors, Pituitary Hormone-Regulating Hormone/metabolism
- Thyroid Hormones/pharmacology
- Triiodothyronine/pharmacology
Collapse
Affiliation(s)
- Hana Vakili
- Department of Physiology, University of Manitoba, Canada
| | | | | | | |
Collapse
|
8
|
Xu K, Bezakova I, Bunimovich L, Yi SV. Path lengths in protein-protein interaction networks and biological complexity. Proteomics 2011; 11:1857-67. [DOI: 10.1002/pmic.201000684] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Revised: 01/16/2011] [Accepted: 01/24/2011] [Indexed: 01/15/2023]
|
9
|
Rodríguez-Sánchez IP, Tejero ME, Cole SA, Comuzzie AG, Nathanielsz PW, Wallis M, Barrera-Saldaña HA. Growth hormone-related genes from baboon (Papio hamadryas): Characterization, placental expression and evolutionary aspects. Gene 2010; 450:1-7. [PMID: 19651193 PMCID: PMC3088510 DOI: 10.1016/j.gene.2009.07.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/22/2009] [Accepted: 07/21/2009] [Indexed: 11/25/2022]
Abstract
Pregnancy is a complex physiological condition, and the growth hormone (GH)-related hormones produced in the placenta, which emerged during the evolution of primates, are thought to play an important metabolic role in pregnancy that is not yet fully understood. The aim of this study was to identify the genes and transcription products of the GH family in baboon (Papio hamadryas) and to assess these in relation to the evolution of this gene family. GH-related transcripts were amplified using total RNA from placental tissue, by reverse transcription coupled to polymerase chain reaction (RT-PCR). Three different GH-related transcripts were identified in baboon placental tissue, with two encoding chorionic somatomammotropins (CSH) and one the placental variant of GH (GH-2). The CSH transcripts showed some minor allelic variation, and a splice variant of CSH-C that retains its in-frame third intron. Gene sequences for GH-1 (probably representing the GH gene expressed primarily in the pituitary gland), GH-2 and the two CSHs were identified in the baboon genomic database, together with a CSH-related pseudogene. Phylogenetic analysis of the baboon GH-related sequences, together with those of a related Old World monkey, macaque, and ape outgroup (human), showed the equivalence of the genes in baboon and macaque, and revealed evidence for several episodes of rapid adaptive evolution. Many of the substitutions seen during the evolution of these placental proteins have occurred in the receptor-binding sites, especially site 2, contrasting with the strong conservation of the hydrophobic core.
Collapse
Affiliation(s)
- Irám Pablo Rodríguez-Sánchez
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| | - Maria Elizabeth Tejero
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, USA
| | - Shelley A. Cole
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, USA
| | - Anthony G. Comuzzie
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX, USA
- Southwest National Primate Research Center, San Antonio, TX, USA
| | - Peter W. Nathanielsz
- Center for Pregnancy and Newborn Research, University of Texas Health Science Center Medical School, Department of Obstetrics and Gynecology, San Antonio, TX, USA
| | - Michael Wallis
- Biochemistry Department, School of Life Sciences, University of Sussex, Brighton BN1 9QG.U.K
| | - Hugo A. Barrera-Saldaña
- Departamento de Bioquímica y Medicina Molecular, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| |
Collapse
|
10
|
Abstract
Non-independent evolution of amino acid sites has become a noticeable limitation of most methods aimed at identifying selective constraints at functionally important amino acid sites or protein regions. The need for a generalised framework to account for non-independence of amino acid sites has fuelled the design and development of new mathematical models and computational tools centred on resolving this problem. Molecular coevolution is one of the most active areas of research, with an increasing rate of new models and methods being developed everyday. Both parametric and non-parametric methods have been developed to account for correlated variability of amino acid sites. These methods have been utilised for detecting phylogenetic, functional and structural coevolution as well as to identify surfaces of amino acid sites involved in protein-protein interactions. Here we discuss and briefly describe these methods, and identify their advantages and limitations.
Collapse
Affiliation(s)
- Francisco M. Codoñer
- Evolutionary Genetics and Bioinformatics Laboratory, Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College
- Institute of Immunology, Biology Department, National University of Ireland Maynooth
| | - Mario A. Fares
- Evolutionary Genetics and Bioinformatics Laboratory, Department of Genetics, Smurfit Institute of Genetics, University of Dublin, Trinity College
| |
Collapse
|
11
|
Kurbel S, Gulam D, Kovacić D, Mihaljević I, Faj D. Mutations that modulate receptor-hormone congruency as a cause of the primate GH receptor species specificity. Theory Biosci 2008; 123:435-40. [PMID: 18202875 DOI: 10.1016/j.thbio.2004.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2004] [Accepted: 10/29/2004] [Indexed: 11/26/2022]
Abstract
Peptide hormones depend on reliable recognition by their receptors. Any mutation that compromises recognition of hormone and receptor molecules is dangerous, the carrier animal would not procreate and the mutation would be lost. Although, most of the hormones from one mammalian species are active when injected into another, the incompatibility of human GH receptor toward nonprimate GHs is a notable exception. It is reported that the coevolution of GH and GHR in primates includes two crucial steps (Mol. Biol. Evol. 18 (2001) 945). The first was mutation of GH His-->Asp at position 171 that happened before the split of Old world and New world monkeys. The second event was Leu-->Arg change at position 43 in the GH receptor molecule that happened in the ancestor of Old world monkeys. The proposed model is based on the possibility that certain mutations can modify the surface of one of interacting molecules to form a confined empty space, a niche in the otherwise congruent hormone/receptor interface. Altoough affinity between molecules is probably slightly reduced, recognition and function are not compromised in this special case. Further mutations of hormone and receptor molecules are allowed under the condition that they remain confined to the niche space. Mutations that do not compromise hormone function can be passed to offsprings. If the consequent mutation of one molecule change its shape to fill the niche space, further mutations without function loss will become less probable. Without the niche space, the phase of fast evolution is closed and both genes become conserved. In this setting, accumulated mutations before the niche closing mutation are the cause of species specificity. To become a dominant variety, carrier animals must possess survival advantage in comparison to the carriers of other less advantageous mutations.
Collapse
Affiliation(s)
- Sven Kurbel
- Department of Physiology, Osijek Medical Faculty, Osijek Clinical Hospital, Huttlera 4, 31000, Osijek, Croatia,
| | | | | | | | | |
Collapse
|
12
|
Wallis M. Mammalian genome projects reveal new growth hormone (GH) sequences. Characterization of the GH-encoding genes of armadillo (Dasypus novemcinctus), hedgehog (Erinaceus europaeus), bat (Myotis lucifugus), hyrax (Procavia capensis), shrew (Sorex araneus), ground squirrel (Spermophilus tridecemlineatus), elephant (Loxodonta africana), cat (Felis catus) and opossum (Monodelphis domestica). Gen Comp Endocrinol 2008; 155:271-9. [PMID: 17574247 DOI: 10.1016/j.ygcen.2007.05.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2007] [Revised: 04/20/2007] [Accepted: 05/07/2007] [Indexed: 11/29/2022]
Abstract
Mammalian growth hormone (GH) sequences have been shown previously to display episodic evolution: the sequence is generally strongly conserved but on at least two occasions during mammalian evolution (on lineages leading to higher primates and ruminants) bursts of rapid evolution occurred. However, the number of mammalian orders studied previously has been relatively limited, and the availability of sequence data via mammalian genome projects provides the potential for extending the range of GH gene sequences examined. Complete or nearly complete GH gene sequences for six mammalian species for which no data were previously available have been extracted from the genome databases-Dasypus novemcinctus (nine-banded armadillo), Erinaceus europaeus (western European hedgehog), Myotis lucifugus (little brown bat), Procavia capensis (cape rock hyrax), Sorex araneus (European shrew), Spermophilus tridecemlineatus (13-lined ground squirrel). In addition incomplete data for several other species have been extended. Examination of the data in detail and comparison with previously available sequences has allowed assessment of the reliability of deduced sequences. Several of the new sequences differ substantially from the consensus sequence previously determined for eutherian GHs, indicating greater variability than previously recognised, and confirming the episodic pattern of evolution. The episodic pattern is not seen for signal sequences, 5' upstream sequence or synonymous substitutions-it is specific to the mature protein sequence, suggesting that it relates to the hormonal function. The substitutions accumulated during the course of GH evolution have occurred mainly on the side of the hormone facing away from the receptor, in a non-random fashion, and it is suggested that this may reflect interaction of the receptor-bound hormone with other proteins or small ligands.
Collapse
Affiliation(s)
- Michael Wallis
- Biochemistry Department, School of Life Sciences, University of Sussex, Falmer, Brighton, Sussex BN1 9QG, UK.
| |
Collapse
|
13
|
Fukamachi S, Meyer A. Evolution of receptors for growth hormone and somatolactin in fish and land vertebrates: lessons from the lungfish and sturgeon orthologues. J Mol Evol 2007; 65:359-72. [PMID: 17917757 DOI: 10.1007/s00239-007-9035-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 07/22/2007] [Accepted: 08/23/2007] [Indexed: 01/07/2023]
Abstract
Two cognate hormones, growth hormone (GH) and somatolactin (SL), control several important physiological processes in vertebrates. Knowledge about GH and its receptor (GHR) has accumulated over the last decades. However, much less is known about SL and its receptor (SLR). SL is found only in fish (including lungfish), suggesting that it was present in the common ancestor of vertebrates, but was lost secondarily in the lineage leading to land vertebrates after the lungfish branched off. SLR was suggested to be a duplicated copy of GHR acquired only in teleosts via the fish-specific genome duplication (FSGD). This scenario (i.e., the existence of SL but not SLR in the vertebrate ancestors) is intriguing but contested. In this study, we first evaluated the plausibility of this scenario through synteny analyses and found that the loci for GHR and SLR are located in syntenic genomic positions, whereas the loci for GH and SL are not. Next, we cloned GHRs of lungfish and sturgeon, which possess SL but did not undergo the FSGD (i.e., they should not possess SLR). Their phylogenetic positions in the GHR/SLR gene tree further support the fish-specific scenario for the GHR-SLR duplication. Interestingly, their sequences share greater similarity with teleost SLRs and reptilian/amphibian GHRs than with the GHRs of mammals, birds, and teleosts. On the basis of these results, we discuss the validity of the nomenclature of the teleost-specific copy of GHR as SLR and an ancestral receptor(s) for SL before the evolution of SLR during the FSGD.
Collapse
Affiliation(s)
- Shoji Fukamachi
- Lehrstuhl für Zoologie und Evolutionsbiologie, Department of Biology, University of Konstanz, Konstanz, Germany.
| | | |
Collapse
|
14
|
Wallis OC, Wallis M. Evolution of growth hormone in primates: the GH gene clusters of the New World monkeys marmoset (Callithrix jacchus) and white-fronted capuchin (Cebus albifrons). J Mol Evol 2006; 63:591-601. [PMID: 17009125 DOI: 10.1007/s00239-006-0039-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
The GH gene cluster in marmoset, Callithrix jacchus, comprises eight GH-like genes and pseudogenes and appears to have arisen as a consequence of gene duplications occurring independently of those leading to the human GH gene cluster. We report here the complete sequence of the marmoset GH gene locus, including the intergenic regions and 5' and 3' flanking sequence, and a study of the multiple GH-like genes of an additional New World monkey (NWM), the white-fronted capuchin, Cebus albifrons. The marmoset sequence includes 945 nucleotides (nt) of 5' flanking sequence and 1596 nt of 3' flanking sequence that are "unique"; between these are eight repeat units, including the eight GH genes/pseudogenes. The breakpoints between these repeats are very similar, indicating a regular pattern of gene duplication. These breakpoints do not correspond to those found in the much less regular human GH gene cluster. This and phylogenetic analysis of the repeat units within the marmoset gene cluster strongly support the independent origin of these gene clusters, and the idea that the episode of rapid evolution that occurred during GH evolution in primates preceded the gene duplications. The marmoset GH gene cluster also differs from that of human in having fewer and more evenly distributed Alu sequences (a single pair in each repeat unit) and a "P-element" upstream of every gene/pseudogene. In human there is no P-element upstream of the gene encoding pituitary GH, and these elements have been implicated in placental expression of the other genes of the cluster. The GH gene clusters in marmoset and capuchin appear to have arisen as the consequence of a single-gene duplication event, but in capuchin there was then a remarkable expansion of the GH locus, giving at least 40 GH-like genes and pseudogenes. Thus even among NWMs the GH gene cluster is very variable.
Collapse
Affiliation(s)
- O Caryl Wallis
- Biochemistry Department, School of Life Sciences, University of Sussex, Brighton BN1 9QG, UK
| | | |
Collapse
|
15
|
Pál G, Kouadio JLK, Artis DR, Kossiakoff AA, Sidhu SS. Comprehensive and quantitative mapping of energy landscapes for protein-protein interactions by rapid combinatorial scanning. J Biol Chem 2006; 281:22378-22385. [PMID: 16762925 DOI: 10.1074/jbc.m603826200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A novel, quantitative saturation (QS) scanning strategy was developed to obtain a comprehensive data base of the structural and functional effects of all possible mutations across a large protein-protein interface. The QS scan approach was applied to the high affinity site of human growth hormone (hGH) for binding to its receptor (hGHR). Although the published structure-function data base describing this system is probably the most extensive for any large protein-protein interface, it is nonetheless too sparse to accurately describe the nature of the energetics governing the interaction. Our comprehensive data base affords a complete view of the binding site and provides important new insights into the general principles underlying protein-protein interactions. The hGH binding interface is highly adaptable to mutations, but the nature of the tolerated mutations challenges generally accepted views about the evolutionary and biophysical pressures governing protein-protein interactions. Many substitutions that would be considered chemically conservative are not tolerated, while conversely, many non-conservative substitutions can be accommodated. Furthermore, conservation across species is a poor predictor of the chemical character of tolerated substitutions across the interface. Numerous deviations from generally accepted expectations indicate that mutational tolerance is highly context dependent and, furthermore, cannot be predicted by our current knowledge base. The type of data produced by the comprehensive QS scan can fill the gaps in the structure-function matrix. The compilation of analogous data bases from studies of other protein-protein interactions should greatly aid the development of computational methods for explaining and designing molecular recognition.
Collapse
Affiliation(s)
- Gábor Pál
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, Cummings Life Sciences Center, University of Chicago, Chicago, Illinois 60637
| | - Jean-Louis K Kouadio
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, Cummings Life Sciences Center, University of Chicago, Chicago, Illinois 60637
| | - Dean R Artis
- Department of Protein Engineering, Genentech Inc., South San Francisco, California 94080
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, Cummings Life Sciences Center, University of Chicago, Chicago, Illinois 60637.
| | - Sachdev S Sidhu
- Department of Protein Engineering, Genentech Inc., South San Francisco, California 94080.
| |
Collapse
|
16
|
Kouadio JLK, Horn JR, Pal G, Kossiakoff AA. Shotgun alanine scanning shows that growth hormone can bind productively to its receptor through a drastically minimized interface. J Biol Chem 2005; 280:25524-32. [PMID: 15857837 DOI: 10.1074/jbc.m502167200] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The high affinity binding site (Site1) of the human growth hormone (hGH) binds to its cognate receptor (hGHR) via a concave surface patch containing about 35 residues. Using 167 sequences from a shotgun alanine scanning analysis of Site1, we have determined that over half of these residues can be simultaneously changed to an alanine or a non-isosteric amino acid while still retaining a high affinity interaction. Among these hGH variants the distribution of the mutation is highly variable throughout the interface, although helix 4 is more conserved than the other binding elements. Kinetic and thermodynamic analyses were performed on 11 representative hGH Site1 variants that contained 14-20 mutations. Generally, the tightest binding variants showed similar associated rate constants (k(on)) as the wild-type (wt) hormone, indicating that their binding proceeds through a similar transition state intermediate. However, calorimetric analyses indicate very different thermodynamic partitioning: wt-hGH binding exhibits favorable enthalpy and entropy contributions, whereas the variants display highly favorable enthalpy and highly unfavorable entropy contributions. The heat capacities (DeltaCp) on binding measured for wt-hGH and its variants are significantly larger than normally seen for typical protein-protein interactions, suggesting large conformational or solvation effects. The multiple Site1 mutations are shown to indirectly affect binding of the second receptor at Site2 through an allosteric mechanism. We show that the stability of the ternary hormone-receptor complex reflects the affinity of the Site2 binding and is surprisingly exempt from changes in Site1 affinity, directly demonstrating that dissociation of the active signaling complex is a stepwise process.
Collapse
Affiliation(s)
- Jean-Louis K Kouadio
- Department of Biochemistry and Molecular Biology the University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
17
|
Rich RL, Myszka DG. A survey of the year 2002 commercial optical biosensor literature. J Mol Recognit 2004; 16:351-82. [PMID: 14732928 DOI: 10.1002/jmr.649] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have compiled 819 articles published in the year 2002 that involved commercial optical biosensor technology. The literature demonstrates that the technology's application continues to increase as biosensors are contributing to diverse scientific fields and are used to examine interactions ranging in size from small molecules to whole cells. Also, the variety of available commercial biosensor platforms is increasing and the expertise of users is improving. In this review, we use the literature to focus on the basic types of biosensor experiments, including kinetics, equilibrium analysis, solution competition, active concentration determination and screening. In addition, using examples of particularly well-performed analyses, we illustrate the high information content available in the primary response data and emphasize the impact of including figures in publications to support the results of biosensor analyses.
Collapse
Affiliation(s)
- Rebecca L Rich
- Center for Biomolecular Interaction Analysis, University of Utah, Salt Lake City, UT 84132, USA
| | | |
Collapse
|
18
|
Pal G, Kossiakoff AA, Sidhu SS. The functional binding epitope of a high affinity variant of human growth hormone mapped by shotgun alanine-scanning mutagenesis: insights into the mechanisms responsible for improved affinity. J Mol Biol 2003; 332:195-204. [PMID: 12946357 DOI: 10.1016/s0022-2836(03)00898-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A high-affinity variant of human growth hormone (hGH(v)) contains 15 mutations within site 1 and binds to the hGH receptor (hGHR) approximately 400-fold tighter than does wild-type (wt) hGH (hGH(wt)). We used shotgun scanning combinatorial mutagenesis to dissect the energetic contributions of individual residues within the hGH(v) binding epitope and placed them in context with previously determined structural information. In all, the effects of alanine substitutions were determined for 35 hGH(v) residues that are directly contained in or closely border the binding interface. We found that the distribution of binding energy in the functional epitope of hGH(v) differs significantly from that of hGH(wt). The residues that contributed the majority of the binding energy in the wt interaction (the so-called binding "hot spot") remain important, but their contributions are attenuated in the hGH(v) interaction, and additional binding energy is acquired from residues on the periphery of the original hotspot. Many interactions that inhibited the binding of hGH(wt) are replaced by interactions that make positive contributions to the binding of hGH(v). These changes produce an expanded and diffused hot spot in which improved affinity results from numerous small contributions distributed broadly over the interface. The mutagenesis results are consistent with previous structural studies, which revealed widespread structural differences between the wt and variant hormone-receptor interfaces. Thus, it appears that the improved binding affinity of hGH(v) site 1 was not achieved through minor adjustments to the wt interface, but rather, results from a wholesale reconfiguration of many of the original binding elements.
Collapse
Affiliation(s)
- Gabor Pal
- Department of Biochemistry and Molecular Biology, University of Chicago, Cummings Life Sciences Center, Chicago, IL 60637, USA
| | | | | |
Collapse
|
19
|
Bernat B, Pal G, Sun M, Kossiakoff AA. Determination of the energetics governing the regulatory step in growth hormone-induced receptor homodimerization. Proc Natl Acad Sci U S A 2003; 100:952-7. [PMID: 12552121 PMCID: PMC298707 DOI: 10.1073/pnas.0235023100] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Signaling in the human growth hormone (hGH)-human GH receptor system is initiated by a controlled sequential two-step hormone-induced dimerization of two hGH receptors via their extracellular domains (ECDs). Little is currently known about the energetics governing the important regulatory step in receptor signaling (step 2) because of previously existing experimental barriers in characterizing the binding of the second receptor (ECD2). A further complication is that ECD2 binds through contacts from two spatially distinct sites: through its N-terminal domain to hGH, and to ECD1 through its C-terminal domain, which forms a pseudo-2-fold symmetrical interaction between the stems of the two receptors. We report here a detailed evaluation of the energetics of step 2 binding using a modified surface plasmon resonance method that is able to measure accurately the kinetics of the trimolecular binding process and separate the effects of the two binding sites. The binding kinetics of 23 single and 126 ECD1-ECD2 pair-wise alanine mutations was measured. Although both of the ECD2 binding interfaces were found to be important, the ECD1-ECD2 stem-stem contact is the stronger of the two. It was determined that most residues in the binding interfaces act in additive fashion, and that the six residues common in both ECDs contribute very differently to homodimerization depending on which ECD they reside in. This interface is characterized by a binding "hot-spot" consisting of a core of three residues in ECD1 and two in ECD2. There is no similar hot-spot in the N-terminal domain of ECD2 binding to Site2 of hGH. This study suggests ways to engineer ECD molecules that will bind specifically to either Site1 or Site2 of hGH, providing novel reagents for biophysical and biological studies.
Collapse
Affiliation(s)
- Bryan Bernat
- Department of Biochemistry and Molecular Biology and Institute for Biophysical Dynamics, Cummings Life Sciences Center, University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | | | | | | |
Collapse
|