1
|
Günther J, Halitschke R, Gershenzon J, Burow M. Heterologous expression of PtAAS1 reveals the metabolic potential of the common plant metabolite phenylacetaldehyde for auxin synthesis in planta. PHYSIOLOGIA PLANTARUM 2023; 175:e14078. [PMID: 38148231 DOI: 10.1111/ppl.14078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/11/2023] [Accepted: 10/27/2023] [Indexed: 12/28/2023]
Abstract
Aromatic aldehydes and amines are common plant metabolites involved in several specialized metabolite biosynthesis pathways. Recently, we showed that the aromatic aldehyde synthase PtAAS1 and the aromatic amino acid decarboxylase PtAADC1 contribute to the herbivory-induced formation of volatile 2-phenylethanol and its glucoside 2-phenylethyl-β-D-glucopyranoside in Populus trichocarpa. To unravel alternative metabolic fates of phenylacetaldehyde and 2-phenylethylamine beyond alcohol and alcohol glucoside formation, we heterologously expressed PtAAS1 and PtAADC1 in Nicotiana benthamiana and analyzed plant extracts using untargeted LC-qTOF-MS and targeted LC-MS/MS analysis. While the metabolomes of PtAADC1-expressing plants did not significantly differ from those of control plants, expression of PtAAS1 resulted in the accumulation of phenylacetic acid (PAA) and PAA-amino acid conjugates, identified as PAA-aspartate and PAA-glutamate. Herbivory-damaged poplar leaves revealed significantly induced accumulation of PAA-Asp, while levels of PAA remained unaltered upon herbivory. Transcriptome analysis showed that members of auxin-amido synthetase GH3 genes involved in the conjugation of auxins with amino acids were significantly upregulated upon herbivory in P. trichocarpa leaves. Overall, our data indicates that phenylacetaldehyde generated by poplar PtAAS1 serves as a hub metabolite linking the biosynthesis of volatile, non-volatile herbivory-induced specialized metabolites, and phytohormones, suggesting that plant growth and defense can be balanced on a metabolic level.
Collapse
Affiliation(s)
- Jan Günther
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Rayko Halitschke
- Department of Mass Spectrometry and Metabolomics, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jonathan Gershenzon
- Department for Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Meike Burow
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark
| |
Collapse
|
2
|
Zhang Y, Zhang J, Li D, Sun H, Lu R, Yin S, Guo X, Gao S. Aldehyde oxidases mediate plant toxicant susceptibility and fecundity in the red flour beetle, Tribolium castaneum. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:656-666. [PMID: 35168693 DOI: 10.1017/s0007485322000049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aldehyde oxidases (AOXs) are a group of metabolic enzymes that play critical roles in the degradation of xenobiotics and chemicals. However, the physiological function of this enzyme in insects remains poorly understood. In this study, three TcAOX genes (TcAOX1, TcAOX2, TcAOX3) were identified and characterized from Tribolium castaneum genome. Spatiotemporal expression profiling showed that TcAOX1 expression was most highly expressed at the early pupal stage and was predominantly expressed in the antennae of adults, indicating that TcAOX1 was involved in the degradation of chemical signals; TcAOX2 expression was most highly expressed at the late pupal stage and was mainly expressed in the fat body, epidermis of larvae and adults, respectively; and TcAOX3 expression was in all stages and was primarily expressed in the head of adults. Moreover, the transcripts of TcAOX2 and TcAOX3 were significantly induced after exposure to plant oil, and RNA interference (RNAi) targeting of each of them enhanced the susceptibility of beetles to this plant toxicant, suggesting that these two genes are associated with plant toxicant detoxification. Intriguingly, knockdown of the TcAOX1 led to reductions in female egg-laying but unchanged the hatchability and the development of genital organs, suggesting that this gene may mediate fecundity by effecting the inactivation of chemical signals in T. castaneum. Overall, these results shed new light on the function of AOX genes in insects, and could facilitate the development of research on pest control management.
Collapse
Affiliation(s)
- Yonglei Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
- Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jiahao Zhang
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Dongyu Li
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Haidi Sun
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Ruixue Lu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Se Yin
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Xinlong Guo
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Shanshan Gao
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| |
Collapse
|
3
|
Morffy N, Strader LC. Old Town Roads: routes of auxin biosynthesis across kingdoms. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:21-27. [PMID: 32199307 PMCID: PMC7540728 DOI: 10.1016/j.pbi.2020.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/28/2020] [Accepted: 02/09/2020] [Indexed: 05/04/2023]
Abstract
Auxin is an important signaling molecule synthesized in organisms from multiple kingdoms of life, including land plants, green algae, and bacteria. In this review, we highlight the similarities and differences in auxin biosynthesis among these organisms. Tryptophan-dependent routes to IAA are found in land plants, green algae and bacteria. Recent sequencing efforts show that the indole-3-pyruvic acid pathway, one of the primary biosynthetic pathways in land plants, is also found in the green algae. These similarities raise questions about the origin of auxin biosynthesis. Future studies comparing auxin biosynthesis across kingdoms will shed light on its origin and role outside of the plant lineage.
Collapse
Affiliation(s)
- Nicholas Morffy
- Department of Biology, Washington University, St. Louis, MO 63130, United States; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, United States.
| | - Lucia C Strader
- Department of Biology, Washington University, St. Louis, MO 63130, United States; Center for Science and Engineering Living Systems (CSELS), Washington University, St. Louis, MO 63130, United States; Center for Engineering MechanoBiology, Washington University, St. Louis, MO 63130, United States.
| |
Collapse
|
4
|
Kalve S, Sizani BL, Markakis MN, Helsmoortel C, Vandeweyer G, Laukens K, Sommen M, Naulaerts S, Vissenberg K, Prinsen E, Beemster GTS. Osmotic stress inhibits leaf growth of Arabidopsis thaliana by enhancing ARF-mediated auxin responses. THE NEW PHYTOLOGIST 2020; 226:1766-1780. [PMID: 32077108 DOI: 10.1111/nph.16490] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/11/2020] [Indexed: 05/18/2023]
Abstract
We investigated the interaction between osmotic stress and auxin signaling in leaf growth regulation. Therefore, we grew Arabidopsis thaliana seedlings on agar media supplemented with mannitol to impose osmotic stress and 1-naphthaleneacetic acid (NAA), a synthetic auxin. We performed kinematic analysis and flow-cytometry to quantify the effects on cell division and expansion in the first leaf pair, determined the effects on auxin homeostasis and response (DR5::β-glucuronidase), performed a next-generation sequencing transcriptome analysis and investigated the response of auxin-related mutants. Mannitol inhibited cell division and expansion. NAA increased the effect of mannitol on cell division, but ameliorated its effect on expansion. In proliferating cells, NAA and mannitol increased free IAA concentrations at the cost of conjugated IAA and stimulated DR5 promotor activity. Transcriptome analysis shows a large overlap between NAA and osmotic stress-induced changes, including upregulation of auxin synthesis, conjugation, transport and TRANSPORT INHIBITOR RESPONSE1 (TIR1) and AUXIN RESPONSE FACTOR (ARF) response genes, but downregulation of Aux/IAA response inhibitors. Consistently, arf7/19 double mutant lack the growth response to auxin and show a significantly reduced sensitivity to osmotic stress. Our results show that osmotic stress inhibits cell division during leaf growth of A. thaliana at least partly by inducing the auxin transcriptional response.
Collapse
Affiliation(s)
- Shweta Kalve
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | | | | | | - Geert Vandeweyer
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kris Laukens
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Manou Sommen
- Department of Medical Genetics, University of Antwerp, Antwerp, Belgium
| | - Stefan Naulaerts
- Biomedical Informatics Research Center Antwerp (Biomina), Department of Mathematics and Computer Science, University of Antwerp, Antwerp, Belgium
| | - Kris Vissenberg
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Els Prinsen
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | | |
Collapse
|
5
|
Khan M, Imran QM, Shahid M, Mun BG, Lee SU, Khan MA, Hussain A, Lee IJ, Yun BW. Nitric oxide- induced AtAO3 differentially regulates plant defense and drought tolerance in Arabidopsis thaliana. BMC PLANT BIOLOGY 2019; 19:602. [PMID: 31888479 PMCID: PMC6937950 DOI: 10.1186/s12870-019-2210-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 12/18/2019] [Indexed: 05/29/2023]
Abstract
BACKGROUND Exposure of plants to different environmental insults instigates significant changes in the cellular redox tone driven in part by promoting the production of reactive nitrogen species. The key player, nitric oxide (NO) is a small gaseous diatomic molecule, well-known for its signaling role during stress. In this study, we focused on abscisic acid (ABA) metabolism-related genes that showed differential expression in response to the NO donor S-nitroso-L-cysteine (CySNO) by conducting RNA-seq-based transcriptomic analysis. RESULTS CySNO-induced ABA-related genes were identified and further characterized. Gene ontology terms for biological processes showed most of the genes were associated with protein phosphorylation. Promoter analysis suggested that several cis-regulatory elements were activated under biotic and/or abiotic stress conditions. The ABA biosynthetic gene AtAO3 was selected for validation using functional genomics. The loss of function mutant atao3 was found to differentially regulate oxidative and nitrosative stress. Further investigations for determining the role of AtAO3 in plant defense suggested a negative regulation of plant basal defense and R-gene-mediated resistance. The atao3 plants showed resistance to virulent Pseudomonas syringae pv. tomato strain DC3000 (Pst DC3000) with gradual increase in PR1 gene expression. Similarly, atao3 plants showed increased hypersensitive response (HR) when challenged with Pst DC3000 (avrB). The atgsnor1-3 and atsid2 mutants showed a susceptible phenotype with reduced PR1 transcript accumulation. Drought tolerance assay indicated that atao3 and atnced3 ABA-deficient mutants showed early wilting, followed by plant death. The study of stomatal structure showed that atao3 and atnced3 were unable to close stomata even at 7 days after drought stress. Further, they showed reduced ABA content and increased electrolyte leakage than the wild-type (WT) plants. The quantitative polymerase chain reaction analysis suggested that ABA biosynthesis genes were down-regulated, whereas expression of most of the drought-related genes were up-regulated in atao3 than in WT. CONCLUSIONS AtAO3 negatively regulates pathogen-induced salicylic acid pathway, although it is required for drought tolerance, despite the fact that ABA production is not totally dependent on AtAO3, and that drought-related genes like DREB2 and ABI2 show response to drought irrespective of ABA content.
Collapse
Affiliation(s)
| | | | | | - Bong-Gyu Mun
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Sang-Uk Lee
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Muhammad Aaqil Khan
- Laboratory of Plant Physiology, Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Adil Hussain
- Department of Agriculture, Abdul Wali Khan University, KPK, Mardan, Pakistan
| | - In-Jung Lee
- Laboratory of Plant Physiology, Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| | - Byung-Wook Yun
- Laboratory of Plant Functional Genomics Department of Plant Biosciences, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
6
|
Watanabe S, Sato M, Sawada Y, Tanaka M, Matsui A, Kanno Y, Hirai MY, Seki M, Sakamoto A, Seo M. Arabidopsis molybdenum cofactor sulfurase ABA3 contributes to anthocyanin accumulation and oxidative stress tolerance in ABA-dependent and independent ways. Sci Rep 2018; 8:16592. [PMID: 30413758 PMCID: PMC6226459 DOI: 10.1038/s41598-018-34862-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 10/18/2018] [Indexed: 01/05/2023] Open
Abstract
Arabidopsis ABA3 is an enzyme involved in the synthesis of the sulfurated form of the molybdenum (Mo) cofactor (MoCo), which is required for the enzymatic activity of so-called Mo enzymes such as aldehyde oxidase (AO) and xanthine dehydrogenase (XDH). It has been reported that AO and XDH are essential for the biosynthesis of the bioactive compounds, ABA and allantoin, respectively. However, aba3 mutants often exhibit pleiotropic phenotypes that are not explained by defects in ABA and/or allantoin biosynthesis, leading us to hypothesize that ABA3 regulates additional metabolic pathways. To reveal the currently unidentified functions of ABA3 we compared transcriptome and metabolome of the Arabidopsis aba3 mutant with those of wild type and a typical ABA-deficient mutant aba2. We found that endogenous levels of anthocyanins, members of the flavonoid group, were significantly lower in the aba3 mutant than in the wild type or the aba2 mutant under oxidative stress. In contrast, mutants defective in the AO and XDH holoenzymes accumulated significantly higher levels of anthocyanins when compared with aba3 mutant under the same conditions. Our findings shed light on a key role of ABA3 in the ABA- and allantoin-independent accumulation of anthocyanins during stress responses.
Collapse
Affiliation(s)
- Shunsuke Watanabe
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Muneo Sato
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yuji Sawada
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Akihiro Matsui
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Yuri Kanno
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Masami Yokota Hirai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Motoaki Seki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Atsushi Sakamoto
- Department of Mathematics and Life Sciences, Graduate School of Science, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Japan
| | - Mitsunori Seo
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
7
|
Batyrshina Z, Yergaliyev TM, Nurbekova Z, Moldakimova NA, Masalimov ZK, Sagi M, Omarov RT. Differential influence of molybdenum and tungsten on the growth of barley seedlings and the activity of aldehyde oxidase under salinity. JOURNAL OF PLANT PHYSIOLOGY 2018; 228:189-196. [PMID: 29960143 DOI: 10.1016/j.jplph.2018.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 06/08/2023]
Abstract
The influence of molybdenum, tungsten on germination and growth of barley Hordeum vulgare L. was studied. Results of this study revealed the differential effect of heavy metals on seedlings growth. Exogenous molybdenum treatment stimulated the growth of seedlings. The addition of the metal significantly stimulated root elongation. Contrastingly, the addition of tungsten resulted in increased seed germination and inhibits the growth of seedlings. The negative effect of tungsten on the growth of barley was more profound for roots of plants. In addition, the influence of metals on the growth of plants was also tested in saline conditions. It is shown that under salinity stress plant growth drastically decreased in presence of tungsten. Results of this study showed that activity of molybdenum-containing aldehyde oxidase (AO; EC 1.2.3.1) was also significantly affected by metals. The activity of AO in leaves and roots enhanced with increasing concentrations of molybdate, while tungstate treatment inhibited the enzyme activity. Perhaps, the differential influence of molybdenum and tungsten on the growth of barley is a direct effect of metals on aldehyde oxidase activity in plants. Moreover, the intense negative effect of tungsten treatment on barley growth under salinity conditions emphasizes an important role of aldehyde oxidase in plant resistance to stress factors.
Collapse
Affiliation(s)
- Zhaniya Batyrshina
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Timur M Yergaliyev
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan; Department of Biology and Chemistry, A. Baitursynov Kostanay State University, Kostanay, Kazakhstan
| | - Zhadyrassyn Nurbekova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan; Biostress Research Laboratory, J. Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Nazira A Moldakimova
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Zhaksylyk K Masalimov
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan
| | - Moshe Sagi
- Biostress Research Laboratory, J. Blaustein Institute for Desert Research, Ben-Gurion University of the Negev, Sede Boqer, Israel
| | - Rustem T Omarov
- Department of Biotechnology and Microbiology, L.N. Gumilyov Eurasian University, Astana, Kazakhstan.
| |
Collapse
|
8
|
Lim SD, Yim WC, Liu D, Hu R, Yang X, Cushman JC. A Vitis vinifera basic helix-loop-helix transcription factor enhances plant cell size, vegetative biomass and reproductive yield. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1595-1615. [PMID: 29520945 PMCID: PMC6096725 DOI: 10.1111/pbi.12898] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/22/2018] [Indexed: 05/03/2023]
Abstract
Strategies for improving plant size are critical targets for plant biotechnology to increase vegetative biomass or reproductive yield. To improve biomass production, a codon-optimized helix-loop-helix transcription factor (VvCEB1opt ) from wine grape was overexpressed in Arabidopsis thaliana resulting in significantly increased leaf number, leaf and rosette area, fresh weight and dry weight. Cell size, but typically not cell number, was increased in all tissues resulting in increased vegetative biomass and reproductive organ size, number and seed yield. Ionomic analysis of leaves revealed the VvCEB1opt -overexpressing plants had significantly elevated, K, S and Mo contents relative to control lines. Increased K content likely drives increased osmotic potential within cells leading to greater cellular growth and expansion. To understand the mechanistic basis of VvCEB1opt action, one transgenic line was genotyped using RNA-Seq mRNA expression profiling and revealed a novel transcriptional reprogramming network with significant changes in mRNA abundance for genes with functions in delayed flowering, pathogen-defence responses, iron homeostasis, vesicle-mediated cell wall formation and auxin-mediated signalling and responses. Direct testing of VvCEB1opt -overexpressing plants showed that they had significantly elevated auxin content and a significantly increased number of lateral leaf primordia within meristems relative to controls, confirming that cell expansion and organ number proliferation were likely an auxin-mediated process. VvCEB1opt overexpression in Nicotiana sylvestris also showed larger cells, organ size and biomass demonstrating the potential applicability of this innovative strategy for improving plant biomass and reproductive yield in crops.
Collapse
Affiliation(s)
- Sung Don Lim
- Department of Biochemistry and Molecular BiologyUniversity of Nevada, RenoRenoNVUSA
| | - Won Choel Yim
- Department of Biochemistry and Molecular BiologyUniversity of Nevada, RenoRenoNVUSA
| | - Degao Liu
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Rongbin Hu
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - Xiaohan Yang
- Biosciences DivisionOak Ridge National LaboratoryOak RidgeTNUSA
| | - John C. Cushman
- Department of Biochemistry and Molecular BiologyUniversity of Nevada, RenoRenoNVUSA
| |
Collapse
|
9
|
Genetic dissection of cyclic pyranopterin monophosphate biosynthesis in plant mitochondria. Biochem J 2018; 475:495-509. [PMID: 29247140 PMCID: PMC5791162 DOI: 10.1042/bcj20170559] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 12/07/2017] [Accepted: 12/14/2017] [Indexed: 01/04/2023]
Abstract
Mitochondria play a key role in the biosynthesis of two metal cofactors, iron–sulfur (FeS) clusters and molybdenum cofactor (Moco). The two pathways intersect at several points, but a scarcity of mutants has hindered studies to better understand these links. We screened a collection of sirtinol-resistant Arabidopsis thaliana mutants for lines with decreased activities of cytosolic FeS enzymes and Moco enzymes. We identified a new mutant allele of ATM3 (ABC transporter of the mitochondria 3), encoding the ATP-binding cassette transporter of the mitochondria 3 (systematic name ABCB25), confirming the previously reported role of ATM3 in both FeS cluster and Moco biosynthesis. We also identified a mutant allele in CNX2, cofactor of nitrate reductase and xanthine dehydrogenase 2, encoding GTP 3′,8-cyclase, the first step in Moco biosynthesis which is localized in the mitochondria. A single-nucleotide polymorphism in cnx2-2 leads to substitution of Arg88 with Gln in the N-terminal FeS cluster-binding motif. cnx2-2 plants are small and chlorotic, with severely decreased Moco enzyme activities, but they performed better than a cnx2-1 knockout mutant, which could only survive with ammonia as a nitrogen source. Measurement of cyclic pyranopterin monophosphate (cPMP) levels by LC–MS/MS showed that this Moco intermediate was below the limit of detection in both cnx2-1 and cnx2-2, and accumulated more than 10-fold in seedlings mutated in the downstream gene CNX5. Interestingly, atm3-1 mutants had less cPMP than wild type, correlating with previous reports of a similar decrease in nitrate reductase activity. Taken together, our data functionally characterize CNX2 and suggest that ATM3 is indirectly required for cPMP synthesis.
Collapse
|
10
|
Lai JL, Tao ZY, Fu Q, Han N, Wu G, Zhang H, Lu H, Luo XG. The chemical toxicity of cesium in Indian mustard (Brassica juncea L.) seedlings. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2016; 160:93-101. [PMID: 27156168 DOI: 10.1016/j.jenvrad.2016.04.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 04/06/2016] [Accepted: 04/18/2016] [Indexed: 06/05/2023]
Abstract
To distinguish between the radiological and chemical effects of radiocesium, we study the chemical toxicity of cesium in the seedlings of Indian mustard (Brassica juncea L.). In this study, the experiment was designed in two factors and five levels random block design to investigate the interaction effects of Cs and K. Results showed that excessive Cs was one of the main factors influence the growth of Brassica juncea seedlings. And the toxicity of Cs in Brassica juncea is likely to be caused by Cs interacts with K-binding sites in essential K-dependent protein, either competes with K for essential biochemical functions, causing intracellular metabolic disturbance. To test the hypothesis that the toxicity of Cs might cause intracellular metabolic disturbance, next-generation sequencing (NGS)-based Illumina paired-end Solexa sequencing platform was employed to analysis the changes in gene expression, and understand the key genes in B. juncea seedlings responding to the toxicity of Cs. Based on the assembled de novo transcriptome, 2032 DEGs that play significant roles in the response to the toxicity of Cs were identified. Further analysis showed that excessive Cs is disturbance the auxin signal transduction pathway, and inhibited the indoleacetic acid-induced protein (AUX/IAA) genes expression eventually lead the seedlings growth and development be inhibited. The results suggest that disturbances to tryptophan metabolism might be linked to changes in growth.
Collapse
Affiliation(s)
- Jin-Long Lai
- Life Science College, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Zong-Ya Tao
- Life Science College, Sichuan Normal University, Chengdu, Sichuan, 610101, China.
| | - Qian Fu
- Life Science College, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Na Han
- Life Science College, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Guo Wu
- Life Science College, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Hong Zhang
- Life Science College, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Hong Lu
- Life Science College, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Xue-Gang Luo
- Engineering Research Center of Biomass Materials (SWUST), Ministry of Education, Mianyang, 621010, China
| |
Collapse
|
11
|
Hamisch D, Kaufholdt D, Kuchernig JC, Bittner F, Mendel RR, Hänsch R, Popko J. Transgenic Poplar Plants for the Investigation of ABA-Dependent Salt and Drought Stress Adaptation in Trees. ACTA ACUST UNITED AC 2016. [DOI: 10.4236/ajps.2016.79128] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Jiang SC, Mei C, Liang S, Yu YT, Lu K, Wu Z, Wang XF, Zhang DP. Crucial roles of the pentatricopeptide repeat protein SOAR1 in Arabidopsis response to drought, salt and cold stresses. PLANT MOLECULAR BIOLOGY 2015; 88:369-85. [PMID: 26093896 PMCID: PMC4486114 DOI: 10.1007/s11103-015-0327-9] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 04/29/2015] [Indexed: 05/07/2023]
Abstract
Whereas several mitochondrial/chloroplast pentatricopeptide repeat (PPR) proteins have been reported to regulate plant responses to abiotic stresses, no nucleus-localized PPR protein has been found to play role in these processes. In the present experiment, we provide evidence that a cytosol-nucleus dual-localized PPR protein SOAR1, functioning to negatively regulate abscisic acid (ABA) signaling in seed germination and postgermination growth, is a crucial, positive regulator of plant response to abiotic stresses. Downregulation of SOAR1 expression reduces, but upregulation of SOAR1 expression enhances, ABA sensitivity in ABA-induced promotion of stomatal closure and inhibition of stomatal opening, and plant tolerance to multiple, major abiotic stresses including drought, high salinity and low temperature. Interestingly and importantly, the SOAR1-overexpression lines display strong abilities to tolerate drought, salt and cold stresses, with surprisingly high resistance to salt stress in germination and postgermination growth of seeds that are able to potentially germinate in seawater, while no negative effect on plant growth and development was observed. So, the SOAR1 gene is likely useful for improvement of crops by transgenic manipulation to enhance crop productivity in stressful conditions. Further experimental data suggest that SOAR1 likely regulates plant stress responses at least partly by integrating ABA-dependent and independent signaling pathways, which is different from the ABI2/ABI1 type 2C protein phosphatase-mediated ABA signaling. These findings help to understand highly complicated stress and ABA signalling network.
Collapse
Affiliation(s)
- Shang-Chuan Jiang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Chao Mei
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Shan Liang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Yong-Tao Yu
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Kai Lu
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Zhen Wu
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Xiao-Fang Wang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| | - Da-Peng Zhang
- MOE Systems Biology and Bioinformatics Laboratory, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
13
|
Torrens-Spence MP, von Guggenberg R, Lazear M, Ding H, Li J. Diverse functional evolution of serine decarboxylases: identification of two novel acetaldehyde synthases that uses hydrophobic amino acids as substrates. BMC PLANT BIOLOGY 2014; 14:247. [PMID: 25230835 PMCID: PMC4177580 DOI: 10.1186/s12870-014-0247-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 09/10/2014] [Indexed: 05/10/2023]
Abstract
BACKGROUND Type II pyridoxal 5'-phosphate decarboxylases are an important group of phylogenetically diverse enzymes involved in amino acid metabolism. Within plants, this group of enzymes is represented by aromatic amino acid decarboxylases, glutamate decarboxylases and serine decarboxylases. Additional evolutionary divergence of plant aromatic amino acid decarboxylases has resulted in further subcategories with distinct substrate specificities and enzymatic activities. Despite shared homology, no such evolutionary divergence has been characterized within glutamate decarboxylases or serine decarboxylases (SDC). RESULTS Comparative analysis of two previously characterized serine decarboxylase-like (SDC-like) enzymes demonstrates distinct substrate specificities despite their highly conserved primary sequence. The alternate substrate preference of these homologous SDC-like proteins indicated that functional divergence might have occurred with in SDC-like proteins. In an effort to identify additional SDC-like functional divergence, two uncharacterized SDC-like enzymes were recombinantly expressed and characterized. CONCLUSIONS An extensive biochemical analysis of two serine decarboxylases-like recombinant proteins led to an interesting discovery; both proteins catalyze the formation of acetaldehyde derivatives from select hydrophobic amino acids substrates. Specifically, Medicago truncatula [GenBank: XP_003592128] and Cicer arietinum [GenBank: XP_004496485] catalyze the decarboxylation and oxidative deamination of phenylalanine, methionine, leucine and tryptophan to generate their corresponding acetaldehydes. The promiscuous aldehyde synthase activity of these proteins yields novel products of 4-(methylthio) butanal, 3-methylbutanal (isovaleraldehyde) and indole-3-acetaldehyde from methionine, leucine and tryptophan respectively. A comparative biochemical analysis of the Medicago truncatula and Cicer arietinum enzymes against two previously characterized SDC-like enzymes further emphasizes the unusual substrate specificity and activity of these novel aldehyde synthases. Due to the strong substrate preference towards phenylalanine, it is likely that both enzymes function as phenylacetaldehyde synthesis in vivo. However, due to their significant sequence divergence and unusual substrate promiscuity these enzymes are functionally and evolutionary divergent from canonical phenylacetaldehyde synthesis enzymes. This work further elaborates on the functional complexity of plant type II PLP decarboxylases and their roles in secondary metabolite biosynthesis.
Collapse
Affiliation(s)
- Michael P Torrens-Spence
- />Department of Biochemistry, Virginia Tech, Blacksburg, Virginia USA
- />Present address: Whitehead Institute for Biomedical Research, Cambridge, Massachusetts USA
| | | | - Michael Lazear
- />Department of Biochemistry, Virginia Tech, Blacksburg, Virginia USA
| | - Haizhen Ding
- />Department of Biochemistry, Virginia Tech, Blacksburg, Virginia USA
| | - Jianyong Li
- />Department of Biochemistry, Virginia Tech, Blacksburg, Virginia USA
| |
Collapse
|
14
|
Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. BIOINFORMATICS (OXFORD, ENGLAND) 2014; 151:3-12. [PMID: 24695404 DOI: 10.1111/ppl.12098] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 07/30/2013] [Accepted: 08/15/2013] [Indexed: 05/09/2023]
Abstract
MOTIVATION Although many next-generation sequencing (NGS) read preprocessing tools already existed, we could not find any tool or combination of tools that met our requirements in terms of flexibility, correct handling of paired-end data and high performance. We have developed Trimmomatic as a more flexible and efficient preprocessing tool, which could correctly handle paired-end data. RESULTS The value of NGS read preprocessing is demonstrated for both reference-based and reference-free tasks. Trimmomatic is shown to produce output that is at least competitive with, and in many cases superior to, that produced by other tools, in all scenarios tested. AVAILABILITY AND IMPLEMENTATION Trimmomatic is licensed under GPL V3. It is cross-platform (Java 1.5+ required) and available at http://www.usadellab.org/cms/index.php?page=trimmomatic CONTACT usadel@bio1.rwth-aachen.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Anthony M Bolger
- Department Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm,Institut für Biologie I, RWTH Aachen, Worringer Weg 3, 52074 Aachen and Institute of Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, GermanyDepartment Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm,Institut für Biologie I, RWTH Aachen, Worringer Weg 3, 52074 Aachen and Institute of Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, Germany
| | - Marc Lohse
- Department Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm,Institut für Biologie I, RWTH Aachen, Worringer Weg 3, 52074 Aachen and Institute of Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, Germany
| | - Bjoern Usadel
- Department Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm,Institut für Biologie I, RWTH Aachen, Worringer Weg 3, 52074 Aachen and Institute of Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, GermanyDepartment Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm,Institut für Biologie I, RWTH Aachen, Worringer Weg 3, 52074 Aachen and Institute of Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Leo-Brandt-Straße, 52425 Jülich, Germany
| |
Collapse
|
15
|
Li Y, Liu L, Tian P. NAD(+)-independent aldehyde oxidase catalyzes cofactor balanced 3-hydroxypropionic acid production in Klebsiella pneumoniae. Biotechnol Lett 2014; 36:2215-21. [PMID: 24980850 DOI: 10.1007/s10529-014-1590-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/12/2014] [Indexed: 11/24/2022]
Abstract
The limiting step for biosynthesis of 3-hydroxypropionic acid (3-HP) in Klebsiella pneumoniae is the conversion of 3-hydroxypropionaldehyde (3-HPA) to 3-HP. This reaction is catalyzed by aldehyde dehydrogenase (ALDH) with NAD(+) as a cofactor. Although NAD(+)-dependent ALDH overexpression facilitates 3-HP biosynthesis, ALDH activity decreases and 3-HP stops accumulation when NAD(+) is exhausted. Here, we show that an NAD(+)-independent aldehyde oxidase (AOX) from Pseudomonas sp. AIU 362 holds promise for cofactor-balanced 3-HP production in K. pneumoniae. The AOX coding gene, alod, was heterologously expressed in E. coli and K. pneumoniae, and their respective crude cell extracts showed 38.1 U/mg and 16.6 U/mg activities toward propionaldehyde. The recombinant K. pneumoniae expressing alod showed 13.7 U/mg activity toward 3-HPA; K m and V max were 6.7 mM and 42 μM/min/mg, respectively. In shake-flask cultures, the recombinant K. pneumoniae strain produced 0.89 g 3-HP/l, twice that of the control. Moreover, it produced 3 g 3-HP/l during 24 h fed-batch cultivation in a 5 l bioreactor. The results indicate that AOX can efficiently convert 3-HPA into 3-HP.
Collapse
Affiliation(s)
- Ying Li
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | | | | |
Collapse
|
16
|
Yokawa K, Koshiba T, Baluška F. Light-dependent control of redox balance and auxin biosynthesis in plants. PLANT SIGNALING & BEHAVIOR 2014. [PMID: 24926992 PMCID: PMC4205145 DOI: 10.4161/psb.29522] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Auxin, indole-3-acetic acid (IAA), plays a crucial role for morphogenesis, development, growth, and tropisms in many plant species. Auxin biosynthesis is accomplished via specific pathways depending on several enzymes starting from amino acid, tryptophan. Auxin biosynthesis in maize is particularly active at the tip of coleoptile expressing abundant YUCCA (YUC) protein, which is essential for auxin biosynthesis. In vitro experiment demonstrated that precursor of auxin molecule; indole-3-acetaldehyde (IAAld) was generated by illumination of the mixture of tryptophan and flavin in non-enzymatic manner. In addition, we have detected immediate production of reactive oxygen species (ROS) in illuminated Arabidopsis root cells. In this perspective, we are proposing the non-enzymatic regulation of redox homeostasis and auxin biosynthesis throughout the plant body under variable environmental light conditions.
Collapse
Affiliation(s)
- Ken Yokawa
- Department of Biological Sciences; Tokyo Metropolitan University; Tokyo, Japan
- IZMB; University of Bonn; Bonn, Germany
- Correspondence to: Ken Yokawa,
| | - Tomokazu Koshiba
- Department of Biological Sciences; Tokyo Metropolitan University; Tokyo, Japan
| | | |
Collapse
|
17
|
Ishida Y, Hayashi KI, Soeno K, Asami T, Nakamura S, Suzuki M, Nakamura A, Shimada Y. Analysis of a putative auxin biosynthesis inhibitor, indole-3-oxoethylphosphonic acid, in Arabidopsis. Biosci Biotechnol Biochem 2014; 78:67-70. [DOI: 10.1080/09168451.2014.877183] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
Previously we identified indole-3-acetic acid (IAA) biosynthesis inhibitors that act on the conversion of l-tryptophan to indole-3-pyruvic acid in the IAA biosynthesis of Arabidopsis. In the present study, we synthesized a new compound, indole-3-oxoethylphosphonic acid (IOEP), and found that IOEP had an inhibitory effect on IAA biosynthesis in Arabidopsis. The results suggest that IOEP is a novel inhibitor of auxin biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Yosuke Ishida
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- RIKEN Plant Science Center, Yokohama, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - Kazuo Soeno
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization, Zentsuji, Japan
| | - Tadao Asami
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shouichi Nakamura
- Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | - Masashi Suzuki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- RIKEN Plant Science Center, Yokohama, Japan
| | - Ayako Nakamura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Yukihisa Shimada
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- RIKEN Plant Science Center, Yokohama, Japan
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
18
|
Zdunek-Zastocka E, Sobczak M. Expression of Pisum sativum PsAO3 gene, which encodes an aldehyde oxidase utilizing abscisic aldehyde, is induced under progressively but not rapidly imposed drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 71:57-66. [PMID: 23876699 DOI: 10.1016/j.plaphy.2013.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Accepted: 06/29/2013] [Indexed: 06/02/2023]
Abstract
Aldehyde oxidase (AO; EC 1.2.3.1) catalyzes the final step of abscisic acid (ABA) biosynthesis, which is the oxidation of abscisic aldehyde (ABAld) to ABA. Gene expression analyses indicate that the stress-induced Pisum sativum PsAOγ isoform, which effectively uses ABAld as a substrate, is encoded by the PsAO3 gene. PsAO3 was heterologously expressed in Pichia pastoris and the recombinant PsAO3 protein revealed substrate preferences highly similar to the native PsAOγ protein present in the pea leaves and roots. Both proteins prefer indole-3-aldehyde and naphthaldehyde as substrates, although high activities against abscisic aldehyde and citral were also observed. The Km values of PsAO3 for naphthaldehyde and abscisic aldehyde (4.6 and 5.1 μM, respectively) were the lowest among the substrates tested. PsAO3 activity was almost completely inhibited by potassium cyanide, diphenyleneiodonium, and methanol. Rapidly imposed drought stress did not increase the level of PsAO3 mRNA or activity of any AO isoform, although an enhanced ABA accumulation and induction of PsNCED2 and -3 (9-cis-epoxycarotenoid dioxygenase; EC 1.13.11.51) expression, both in the pea roots and leaves, was observed. During a progressively induced drought, the level of PsAO3 transcript and PsAOγ activity increased significantly in the roots and leaves, whereas ABA accumulation occurred only in the leaves where it was accompanied by induction of the PsNCED3 expression. Therefore, we suppose that next to NCED, also AO (mainly PsAOγ) might be involved in regulation of the drought-induced ABA synthesis. However, while the "constitutive activity" of PsAOγ is sufficient for the fast generation of ABA under rapid drought stress, the enhanced PsAOγ activity is required for the progressive and long-term ABA accumulation in the leaves under progressive drought stress.
Collapse
Affiliation(s)
- Edyta Zdunek-Zastocka
- Department of Biochemistry, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, 02-776 Warsaw, Poland.
| | | |
Collapse
|
19
|
Torrens-Spence MP, Liu P, Ding H, Harich K, Gillaspy G, Li J. Biochemical evaluation of the decarboxylation and decarboxylation-deamination activities of plant aromatic amino acid decarboxylases. J Biol Chem 2012. [PMID: 23204519 DOI: 10.1074/jbc.m112.401752] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant aromatic amino acid decarboxylase (AAAD) enzymes are capable of catalyzing either decarboxylation or decarboxylation-deamination on various combinations of aromatic amino acid substrates. These two different activities result in the production of arylalkylamines and the formation of aromatic acetaldehydes, respectively. Variations in product formation enable individual enzymes to play different physiological functions. Despite these catalytic variations, arylalkylamine and aldehyde synthesizing AAADs are indistinguishable without protein expression and characterization. In this study, extensive biochemical characterization of plant AAADs was performed to identify residues responsible for differentiating decarboxylation AAADs from aldehyde synthase AAADs. Results demonstrated that a tyrosine residue located on a catalytic loop proximal to the active site of plant AAADs is primarily responsible for dictating typical decarboxylase activity, whereas a phenylalanine at the same position is primarily liable for aldehyde synthase activity. Mutagenesis of the active site phenylalanine to tyrosine in Arabidopsis thaliana and Petroselinum crispum aromatic acetaldehyde synthases primarily converts the enzymes activity from decarboxylation-deamination to decarboxylation. The mutation of the active site tyrosine to phenylalanine in the Catharanthus roseus and Papaver somniferum aromatic amino acid decarboxylases changes the enzymes decarboxylation activity to a primarily decarboxylation-deamination activity. Generation of these mutant enzymes enables the production of unusual AAAD enzyme products including indole-3-acetaldehyde, 4-hydroxyphenylacetaldehyde, and phenylethylamine. Our data indicates that the tyrosine and phenylalanine in the catalytic loop region could serve as a signature residue to reliably distinguish plant arylalkylamine and aldehyde synthesizing AAADs. Additionally, the resulting data enables further insights into the mechanistic roles of active site residues.
Collapse
|
20
|
Patten CL, Blakney AJC, Coulson TJD. Activity, distribution and function of indole-3-acetic acid biosynthetic pathways in bacteria. Crit Rev Microbiol 2012; 39:395-415. [PMID: 22978761 DOI: 10.3109/1040841x.2012.716819] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The capacity to produce the phytohormone indole-3-acetic acid (IAA) is widespread among bacteria that inhabit diverse environments such as soils, fresh and marine waters, and plant and animal hosts. Three major pathways for bacterial IAA synthesis have been characterized that remove the amino and carboxyl groups from the α-carbon of tryptophan via the intermediates indolepyruvate, indoleacetamide, or indoleacetonitrile; the oxidized end product IAA is typically secreted. The enzymes in these pathways often catabolize a broad range of substrates including aromatic amino acids and in some cases the branched chain amino acids. Moreover, expression of some of the genes encoding key IAA biosynthetic enzymes is induced by all three aromatic amino acids. The broad distribution and substrate specificity of the enzymes suggests a role for these pathways beyond plant-microbe interactions in which bacterial IAA has been best studied.
Collapse
Affiliation(s)
- Cheryl L Patten
- Department of Biology, University of New Brunswick , Fredericton, New Brunswick , Canada
| | | | | |
Collapse
|
21
|
Mano Y, Nemoto K. The pathway of auxin biosynthesis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:2853-72. [PMID: 22447967 DOI: 10.1093/jxb/ers091] [Citation(s) in RCA: 333] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The plant hormone auxin, which is predominantly represented by indole-3-acetic acid (IAA), is involved in the regulation of plant growth and development. Although IAA was the first plant hormone identified, the biosynthetic pathway at the genetic level has remained unclear. Two major pathways for IAA biosynthesis have been proposed: the tryptophan (Trp)-independent and Trp-dependent pathways. In Trp-dependent IAA biosynthesis, four pathways have been postulated in plants: (i) the indole-3-acetamide (IAM) pathway; (ii) the indole-3-pyruvic acid (IPA) pathway; (iii) the tryptamine (TAM) pathway; and (iv) the indole-3-acetaldoxime (IAOX) pathway. Although different plant species may have unique strategies and modifications to optimize their metabolic pathways, plants would be expected to share evolutionarily conserved core mechanisms for auxin biosynthesis because IAA is a fundamental substance in the plant life cycle. In this review, the genes now known to be involved in auxin biosynthesis are summarized and the major IAA biosynthetic pathway distributed widely in the plant kingdom is discussed on the basis of biochemical and molecular biological findings and bioinformatics studies. Based on evolutionarily conserved core mechanisms, it is thought that the pathway via IAM or IPA is the major route(s) to IAA in plants.
Collapse
Affiliation(s)
- Yoshihiro Mano
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0321, Japan.
| | | |
Collapse
|
22
|
Abstract
The phytohormone auxin plays critical roles in the regulation of plant growth and development. Indole-3-acetic acid (IAA) has been recognized as the major auxin for more than 70 y. Although several pathways have been proposed, how auxin is synthesized in plants is still unclear. Previous genetic and enzymatic studies demonstrated that both TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS (TAA) and YUCCA (YUC) flavin monooxygenase-like proteins are required for biosynthesis of IAA during plant development, but these enzymes were placed in two independent pathways. In this article, we demonstrate that the TAA family produces indole-3-pyruvic acid (IPA) and the YUC family functions in the conversion of IPA to IAA in Arabidopsis (Arabidopsis thaliana) by a quantification method of IPA using liquid chromatography-electrospray ionization-tandem MS. We further show that YUC protein expressed in Escherichia coli directly converts IPA to IAA. Indole-3-acetaldehyde is probably not a precursor of IAA in the IPA pathway. Our results indicate that YUC proteins catalyze a rate-limiting step of the IPA pathway, which is the main IAA biosynthesis pathway in Arabidopsis.
Collapse
|
23
|
Phillips KA, Skirpan AL, Liu X, Christensen A, Slewinski TL, Hudson C, Barazesh S, Cohen JD, Malcomber S, McSteen P. vanishing tassel2 encodes a grass-specific tryptophan aminotransferase required for vegetative and reproductive development in maize. THE PLANT CELL 2011; 23:550-66. [PMID: 21335375 PMCID: PMC3077783 DOI: 10.1105/tpc.110.075267] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 01/04/2011] [Accepted: 01/27/2011] [Indexed: 05/18/2023]
Abstract
Auxin plays a fundamental role in organogenesis in plants. Multiple pathways for auxin biosynthesis have been proposed, but none of the predicted pathways are completely understood. Here, we report the positional cloning and characterization of the vanishing tassel2 (vt2) gene of maize (Zea mays). Phylogenetic analyses indicate that vt2 is a co-ortholog of TRYPTOPHAN AMINOTRANSFERASE OF ARABIDOPSIS1 (TAA1), which converts Trp to indole-3-pyruvic acid in one of four hypothesized Trp-dependent auxin biosynthesis pathways. Unlike single mutations in TAA1, which cause subtle morphological phenotypes in Arabidopsis thaliana, vt2 mutants have dramatic effects on vegetative and reproductive development. vt2 mutants share many similarities with sparse inflorescence1 (spi1) mutants in maize. spi1 is proposed to encode an enzyme in the tryptamine pathway for Trp-dependent auxin biosynthesis, although this biochemical activity has recently been questioned. Surprisingly, spi1 vt2 double mutants had only a slightly more severe phenotype than vt2 single mutants. Furthermore, both spi1 and vt2 single mutants exhibited a reduction in free auxin levels, but the spi1 vt2 double mutants did not have a further reduction compared with vt2 single mutants. Therefore, both spi1 and vt2 function in auxin biosynthesis in maize, possibly in the same pathway rather than independently as previously proposed.
Collapse
Affiliation(s)
- Kimberly A. Phillips
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802
| | - Andrea L. Skirpan
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802
| | - Xing Liu
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108
| | - Ashley Christensen
- Department of Biological Sciences, California State University, Long Beach, California 90840
| | - Thomas L. Slewinski
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802
| | - Christopher Hudson
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802
| | - Solmaz Barazesh
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802
| | - Jerry D. Cohen
- Department of Horticultural Science and the Microbial and Plant Genomics Institute, University of Minnesota, Saint Paul, Minnesota 55108
| | - Simon Malcomber
- Department of Biological Sciences, California State University, Long Beach, California 90840
| | - Paula McSteen
- Department of Biology, Pennsylvania State University, 208 Mueller Lab, University Park, Pennsylvania 16802
| |
Collapse
|
24
|
Setter TL, Yan J, Warburton M, Ribaut JM, Xu Y, Sawkins M, Buckler ES, Zhang Z, Gore MA. Genetic association mapping identifies single nucleotide polymorphisms in genes that affect abscisic acid levels in maize floral tissues during drought. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:701-16. [PMID: 21084430 PMCID: PMC3003815 DOI: 10.1093/jxb/erq308] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 05/19/2023]
Abstract
In maize, water stress at flowering causes loss of kernel set and productivity. While changes in the levels of sugars and abscisic acid (ABA) are thought to play a role in this stress response, the mechanistic basis and genes involved are not known. A candidate gene approach was used with association mapping to identify loci involved in accumulation of carbohydrates and ABA metabolites during stress. A panel of single nucleotide polymorphisms (SNPs) in genes from these metabolic pathways and in genes for reproductive development and stress response was used to genotype 350 tropical and subtropical maize inbred lines that were well watered or water stressed at flowering. Pre-pollination ears, silks, and leaves were analysed for sugars, starch, proline, ABA, ABA-glucose ester, and phaseic acid. ABA and sugar levels in silks and ears were negatively correlated with their growth. Association mapping with 1229 SNPs in 540 candidate genes identified an SNP in the maize homologue of the Arabidopsis MADS-box gene, PISTILLATA, which was significantly associated with phaseic acid in ears of well-watered plants, and an SNP in pyruvate dehydrogenase kinase, a key regulator of carbon flux into respiration, that was associated with silk sugar concentration. An SNP in an aldehyde oxidase gene was significantly associated with ABA levels in silks of water-stressed plants. Given the short range over which decay of linkage disequilibrium occurs in maize, the results indicate that allelic variation in these genes affects ABA and carbohydrate metabolism in floral tissues during drought.
Collapse
|
25
|
Nonhebel H, Yuan Y, Al-Amier H, Pieck M, Akor E, Ahamed A, Cohen JD, Celenza JL, Normanly J. Redirection of tryptophan metabolism in tobacco by ectopic expression of an Arabidopsis indolic glucosinolate biosynthetic gene. PHYTOCHEMISTRY 2011; 72:37-48. [PMID: 21111431 DOI: 10.1016/j.phytochem.2010.10.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 10/05/2010] [Accepted: 10/25/2010] [Indexed: 05/19/2023]
Abstract
Indole-3-acetaldoxime (IAOx) is a branch point compound of tryptophan (Trp) metabolism in glucosinolate-producing species such as Arabidopsis, serving as a precursor to indole-glucosinolates (IGs), the defense compound camalexin, indole-3-acetonitrile (IAN) and indole-3-acetic acid (IAA). We synthesized [(2)H(5)] and [(13)C(10)(15)N(2)]IAOx and [(13)C(6)], [(2)H(5)] and [2',2'-(2)H(2)]IAN in order to quantify endogenous IAOx and IAN in Arabidopsis and tobacco, a non-IG producing species. We found that side chain-labeled [2',2'-(2)H(2)]IAN overestimated the amount of IAN by 2-fold compared to when [(2)H(5)]IAN was used as internal standard, presumably due to protium-deuterium exchange within the internal standard during extraction of plant tissue. We also determined that [(13)C(1)]IAN underestimated the amount of IAN when the ratio of [(13)C(1)]IAN standard to endogenous IAN was greater than five to one, whereas either [(2)H(5)]IAN or [(13)C(6)]IAN showed a linear relationship with endogenous IAN over a broader range of concentrations. Transgenic tobacco vector control lines did not have detectable levels of IAOx or IAN (limit of detection∼100 pg/gfr.wt), while lines expressing either the IAOx-producing CYP79B2 or CYP79B3 genes from Arabidopsis under CaMV 35S promoter control accumulated IAOx in the range of 1-9 μg/gfr.wt. IAN levels in these lines ranged from 0.6 to 6.7 μg/gfr.wt, and IAA levels were ∼9-14-fold above levels in control lines. An Arabidopsis line expressing the same CYP79B2 overexpression construct accumulated IAOx in two of three lines measured (∼200 and 400 ng/gfr.wt) and accumulated IAN in all three lines. IAN is proposed to be a metabolite of IAOx or an enzymatic breakdown product of IGs induced upon tissue damage. Since tobacco does not produce detectable IGs, the tobacco data are consistent with IAN being a metabolite of IAOx. IAOx and IAN were also examined in the Arabidopsis activation tagged yucca mutant, and no accumulation of IAOx was found above the limits of detection but accumulation of IAN (3-fold above wt) occurred. The latter was surprising in light of recent reports that rule out IAOx and IAN as intermediates in YUCCA-mediated IAA synthesis.
Collapse
Affiliation(s)
- Heather Nonhebel
- Molecular and Cellular Biology Group, University of New England, Armidale, New South Wales, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Normanly J. Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2010; 2:a001594. [PMID: 20182605 DOI: 10.1101/cshperspect.a001594] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is abundant evidence of multiple biosynthesis pathways for the major naturally occurring auxin in plants, indole-3-acetic acid (IAA), and examples of differential use of two general routes of IAA synthesis, namely Trp-dependent and Trp-independent. Although none of these pathways has been completely defined, we now have examples of specific IAA biosynthetic pathways playing a role in developmental processes by way of localized IAA synthesis, causing us to rethink the interactions between IAA synthesis, transport, and signaling. Recent work also points to some IAA biosynthesis pathways being specific to families within the plant kingdom, whereas others appear to be more ubiquitous. An important advance within the past 5 years is our ability to monitor IAA biosynthesis and metabolism at increasingly higher resolution.
Collapse
Affiliation(s)
- Jennifer Normanly
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA.
| |
Collapse
|
27
|
Indole-3-acetamide-dependent auxin biosynthesis: a widely distributed way of indole-3-acetic acid production? Eur J Cell Biol 2010; 89:895-905. [PMID: 20701997 DOI: 10.1016/j.ejcb.2010.06.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
During the course of evolution plants have evolved a complex phytohormone-based network to regulate their growth and development. Herein auxins have a pivotal function, as they are involved in controlling virtually every aspect related to plant growth. Indole-3-acetic acid (IAA) is the major endogenous auxin of higher plants that is already known for more than 80 years. In spite of the long-standing interest in this topic, IAA biosynthesis is still only partially uncovered. Several pathways for the formation of IAA have been proposed over the past years, but none of these pathways are yet completely defined. The aim of this review is to summarize the current knowledge on the indole-3-acetamide (IAM)-dependent pathway of IAA production in plants and to discuss the properties of the involved proteins and genes, respectively. Their evolutionary relationship to known bacterial IAM hydrolases and other amidases from bacteria, algae, moss, and higher plants is discussed on the basis of phylogenetic analyses. Moreover, we report on the transcriptional regulation of the Arabidopsis AMI1 gene.
Collapse
|
28
|
Abstract
Monocots are known to respond differently to auxinic herbicides; hence, certain herbicides kill broadleaf (i.e., dicot) weeds while leaving lawns (i.e., monocot grasses) intact. In addition, the characters that distinguish monocots from dicots involve structures whose development is controlled by auxin. However, the molecular mechanisms controlling auxin biosynthesis, homeostasis, transport, and signal transduction appear, so far, to be conserved between monocots and dicots, although there are differences in gene copy number and expression leading to diversification in function. This article provides an update on the conservation and diversification of the roles of genes controlling auxin biosynthesis, transport, and signal transduction in root, shoot, and reproductive development in rice and maize.
Collapse
Affiliation(s)
- Paula McSteen
- Department of Biology, Penn State University, University Park, Pennsylvania 16802, USA.
| |
Collapse
|
29
|
Mano Y, Nemoto K, Suzuki M, Seki H, Fujii I, Muranaka T. The AMI1 gene family: indole-3-acetamide hydrolase functions in auxin biosynthesis in plants. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:25-32. [PMID: 19887500 DOI: 10.1093/jxb/erp292] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Novel genes that function in the conversion of indole-3-acetamide (IAM) into indole-3-acetic acid (IAA), which were previously thought to exist only in the bacterial genome, have been isolated from plants. The finding of the AtAMI1 gene in Arabidopsis thaliana and the NtAMI1 gene in Nicotiana tabacum, which encode indole-3-acetamide hydrolase, indicates the existence of a new pathway for auxin biosynthesis in plants. This review summarizes the characteristics of these genes involved in auxin biosynthesis and discusses the possibility of the AMI1 gene family being widely distributed in the plant kingdom. Its evolutionary relationship to bacterial indole-3-acetamide hydrolase, based on phylogenetic analyses, is also discussed.
Collapse
Affiliation(s)
- Yoshihiro Mano
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0321, Japan.
| | | | | | | | | | | |
Collapse
|
30
|
Nemoto K, Hara M, Suzuki M, Seki H, Muranaka T, Mano Y. The NtAMI1 gene functions in cell division of tobacco BY-2 cells in the presence of indole-3-acetamide. FEBS Lett 2009; 583:487-92. [PMID: 19121311 DOI: 10.1016/j.febslet.2008.12.049] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 12/19/2008] [Accepted: 12/23/2008] [Indexed: 10/21/2022]
Abstract
Tobacco (Nicotiana tabacum) Bright Yellow-2 (BY-2) cells can be grown in medium containing indole-3-acetamide (IAM). Based on this finding, the NtAMI1 gene, whose product is functionally equivalent to the AtAMI1 gene of Arabidopsis thaliana and the aux2 gene of Agrobacterium rhizogenes, was isolated from BY-2 cells. Overexpression of the NtAMI1 gene allowed BY-2 cells to proliferate at lower concentrations of IAM, whereas suppression of the NtAMI1 gene by RNA interference (RNAi) caused severe growth inhibition in the medium containing IAM. These results suggest that IAM is incorporated into plant cells and converted to the auxin, indole-3-acetic acid, by NtAMI1.
Collapse
Affiliation(s)
- Keiichirou Nemoto
- Graduate School of Bioscience, Tokai University, 317 Nishino, Numazu, Shizuoka 410-0321, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Sorouraddin MH, Fooladi E, Naseri A, Rashidi MR. A novel spectrophotometric method for determination of kinetic constants of aldehyde oxidase using multivariate calibration method. ACTA ACUST UNITED AC 2008; 70:999-1005. [DOI: 10.1016/j.jbbm.2007.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2007] [Revised: 09/11/2007] [Accepted: 09/11/2007] [Indexed: 10/22/2022]
|
32
|
Zdunek-Zastocka E. Molecular cloning, characterization and expression analysis of three aldehyde oxidase genes from Pisum sativum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2008; 46:19-28. [PMID: 18006324 DOI: 10.1016/j.plaphy.2007.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2007] [Indexed: 05/25/2023]
Abstract
Aldehyde oxidase (AO, EC 1.2.3.1) is a molybdenohydroxylase that is considered to catalyze the last step of abscisic acid (ABA) and indole-3-acetic acid (IAA) synthesis. Three cDNAs encoding aldehyde oxidase proteins in Pisum sativum (cv. Little Marvel) were obtained based on RT-PCR (reverse transcriptase-polymerase chain reaction) strategy. The cloned genes, designated as PsAO1, PsAO2 and PsAO3, are 4630, 4347, 4600 bp in length, respectively, and show high sequence identity to each other and to aldehyde oxidases from other plant species. The deduced PsAO1, PsAO2, and PsAO3 proteins are 1373, 1367, 1367 amino acids in length, respectively, and contain consensus sequences for two iron-sulfur centers, a FAD binding domain, and a molybdenum cofactor (Moco) binding domain. PsAO1 and PsAO2 were mainly expressed in leaves of seedlings and young leaves of adult plants, while the highest PsAO3 transcript level was observed in aging leaves and matured seeds. PsAO2 mRNA was not affected by salinity or ammonium treatment, whereas the transcript level of PsAO3 increased significantly under both stress conditions, with the most pronounced changes in aging leaves, fully expanded leaves and roots. The PsAO1 transcript level was enhanced only in the presence of ammonium in the nutrient medium, but not under salinity. Based on the molecular mass of the deduced proteins and on organ-specific gene expression, studied both under control and stress conditions, the contribution of each PsAO cDNA in the formation of the previously described three dimeric pea AO isoforms and the possible involvement of the PsAO3 in abscisic acid (ABA) synthesis is discussed.
Collapse
Affiliation(s)
- Edyta Zdunek-Zastocka
- Department of Biochemistry, Warsaw Agricultural University, Nowoursynowska 159, Warsaw, Poland.
| |
Collapse
|
33
|
Ando S, Tsushima S, Tagiri A, Kamachi S, Konagaya KI, Hagio T, Tabei Y. Increase in BrAO1 gene expression and aldehyde oxidase activity during clubroot development in Chinese cabbage (Brassica rapa L.). MOLECULAR PLANT PATHOLOGY 2006; 7:223-34. [PMID: 20507442 DOI: 10.1111/j.1364-3703.2006.00333.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
SUMMARY In clubroot disease, gall formation is induced by infection with the obligate biotroph Plasmodiophora brassicae due to increased levels of auxins and cytokinins. Because aldehyde oxidase (AO) may be involved in auxin biosynthesis in plants, we isolated two AO genes (BrAO1 and BrAO2) from Chinese cabbage (Brassica rapa ssp. pekinensis cv. Muso), which are the most similar to AAO1 among Arabidopsis AO genes, and examined their expressions during clubroot development. The expression of BrAO1 was enhanced in inoculated roots from 15 days post-inoculation (dpi) when visible clubroots were still undetectable. Thereafter, BrAO1 expression increased with clubroot development compared with uninoculated roots, although BrAO2 expression was repressed. In situ hybridization revealed that BrAO1 was strongly expressed in tissues that were invaded by immature plasmodia at 35 dpi, suggesting that BrAO1 expression was enhanced by the pathogen in order to establish its pathogenesis. In addition, we detected AO activity, as evidenced by the occurrence of at least six bands (BrAO-a to BrAO-f) in the roots of Chinese cabbage using an active staining method with benzaldehyde and indlole-3-aldehyde as the substrate. Coincidental with BrAO1 expression, the signals of BrAO-a and BrAO-d increased with inoculation by P. brassicae during clubroot development compared with healthy roots, resulting in an increase in total AO activity. By contrast, the band BrAO-b decreased post-inoculation, in parallel with the expression of BrAO2. The other bands of activity were not clearly influenced by the infection. Based on these results, we discuss the involvement of AO in auxin-overproduction during clubroot development in Chinese cabbage.
Collapse
Affiliation(s)
- Sugihiro Ando
- Plant Biotechnology Department, National Institute of Agrobiological Sciences, Ibaraki 305-8602, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Pollmann S, Müller A, Weiler EW. Many roads lead to "auxin": of nitrilases, synthases, and amidases. PLANT BIOLOGY (STUTTGART, GERMANY) 2006; 8:326-33. [PMID: 16807824 DOI: 10.1055/s-2006-924075] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Recent progress in understanding the biosynthesis of the auxin, indole-3-acetic acid (IAA) in Arabidopsis thaliana is reviewed. The current situation is characterized by considerable progress in identifying, at the molecular level and in functional terms, individual reactions of several possible pathways. It is still too early to piece together a complete picture, but it becomes obvious that A. thaliana has multiple pathways of IAA biosynthesis, not all of which may operate at the same time and some only in particular physiological situations. There is growing evidence for the presence of an indoleacetamide pathway to IAA in A. thaliana, hitherto known only from certain plant-associated bacteria, among them the phytopathogen Agrobacterium tumefaciens.
Collapse
Affiliation(s)
- S Pollmann
- Department of Plant Physiology, Ruhr-University Bochum, Universitätsstrasse 150, ND 3/55, 44801 Bochum, Germany.
| | | | | |
Collapse
|
35
|
Yasuhara A, Akiba-Goto M, Aisaka K. Cloning and sequencing of the aldehyde oxidase gene from Methylobacillus sp. KY4400. Biosci Biotechnol Biochem 2006; 69:2435-8. [PMID: 16377905 DOI: 10.1271/bbb.69.2435] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aldehyde oxidase genes (aods) from Methylobacillus sp. KY4400 were cloned, and sequenced. The sequences for small (aodS, 489 bp), medium (aodM, 993 bp), and large (aodL, 2,328 bp) subunit genes were determined. At least one additional ORF was indispensable for the expression of enzyme activity. The structural genes contained two [2Fe-2S] centers, an FAD binding site, and a molybdenum cofactor binding site.
Collapse
Affiliation(s)
- Akinori Yasuhara
- BioFrontier Laboratories, Kyowa Hakko Kogyo Co., Ltd., Tokyo, Japan
| | | | | |
Collapse
|
36
|
Abstract
The molybdenum cofactor (Moco) forms the active site of all eukaryotic molybdenum (Mo) enzymes. Moco consists of molybdenum covalently bound to two sulfur atoms of a unique tricyclic pterin moiety referred to as molybdopterin. Moco is synthesized from GTP by an ancient and conserved biosynthetic pathway that can be divided into four steps involving the biosynthetic intermediates cyclic pyranopterin monophosphate, molybdopterin, and adenylated molybdopterin. In a fifth step, sulfuration or bond formation between Mo and a protein cysteine result in two different catalytic Mo centers. There are four Mo enzymes in plants: (1) nitrate reductase catalyzes the first and rate-limiting step in nitrate assimilation and is structurally similar to the recently identified, (2) peroxisomal sulfite oxidase that detoxifies excessive sulfite. (3) Aldehyde oxidase catalyzes the last step of abscisic acid biosynthesis, and (4) xanthine dehydrogenase is essential for purine degradation and stress response.
Collapse
Affiliation(s)
- Günter Schwarz
- Institute of Plant Biology, Technical University Braunschweig, 38023 Braunschweig, Germany.
| | | |
Collapse
|
37
|
Yesbergenova Z, Yang G, Oron E, Soffer D, Fluhr R, Sagi M. The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2005; 42:862-76. [PMID: 15941399 DOI: 10.1111/j.1365-313x.2005.02422.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The plant molybdenum-cofactor (Moco) and flavin-containing enzymes, xanthine dehydrogenase (XDH; EC 1.2.1.37) and aldehyde oxidase (AO; EC 1.2.3.1) are thought to play important metabolic roles in purine metabolism and hormone biosynthesis, respectively. Their animal counterparts contribute to reactive oxygen species (ROS) production in numerous pathologies and here we examined these enzymes as potential sources of ROS in plants. Novel in-gel assay techniques and Moco sulfurase mutants, lacking a sulfur ligand in their Moco active center, were employed to demonstrate that the native tomato and Arabidopsis XDHs are capable of producing O, but not H2O2, while the animal counterpart was shown to produce both, O and H2O2. Superoxide production was dependent on Moco sulfuration when using hypoxanthine/xanthine but not NADH as substrates. The activity was inhibited by diphenylene iodonium (DPI), a suicide inhibitor of FAD containing enzymes. Analysis of XDH in an Arabidopsis Atxdh1 T-DNA insertion mutant and RNA interference lines revealed loss of O activity, providing direct molecular evidence that plant XDH generates superoxides. Contrary to XDH, AO activity produced only H2O2 dissimilar to native animal AO, that can produce O as well. Surprisingly, H2O2 accumulation was not sensitive to DPI. Plant ROS production and transcript levels of AO and XDH were rapidly upregulated by application of abscisic acid and in water-stressed leaves and roots. These results, supported by in vivo measurement of ROS accumulation, indicate that plant AO and XDH are possible novel sources for ROS increase during water stress.
Collapse
Affiliation(s)
- Zhazira Yesbergenova
- The Albert Katz Department of Dryland Biotechnologies, The Jacob Blaustein Institute for Desert Research, Ben-Gurion University, PO Box 653, Beer Sheva 84105, Israel
| | | | | | | | | | | |
Collapse
|
38
|
Fedorova E, Redondo FJ, Koshiba T, Pueyo JJ, de Felipe MR, Lucas MM. Aldehyde oxidase (AO) in the root nodules of Lupinus albus and Medicago truncatula: identification of AO in meristematic and infection zones. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2005; 18:405-13. [PMID: 15915639 DOI: 10.1094/mpmi-18-0405] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Phytohormones are involved in the organogenesis of legume root nodules. The source of the auxin indole-3-acetic acid (IAA) in nodules has not been clearly determined. We studied the enzyme aldehyde oxidase (AO; EC 1.2.3.1), that catalyzes the last step of IAA biosynthesis in plants, in the nodules of Lupinus albus and Medicago truncatula. Primordia and young lupin nodules and mature M. truncatula nodules showed AO activity bands after native polyacrylamide gel electrophoresis. Gel activity analyses using indole-3-aldehyde as substrate indicated that the nodules of white lupin and M. truncatula have the capability to synthesize IAA via the indole-3-pyruvic acid pathway. Immunolocalization and in situ hybridization experiments revealed that AO is preferentially expressed in the meristematic and the invasion zones in Medicago nodules and in the lateral meristematic zone of Lupinus nodules. High IAA immunolabeling was also detected in the meristematic and invasion zones. Low expression levels and no AO activity were detected in lupin Fix- nodules that displayed restricted growth and early senescence. We propose that local synthesis of IAA in the root nodule meristem and modulation of AO expression and activity are involved in regulation of nodule development.
Collapse
Affiliation(s)
- Elena Fedorova
- Departamento de Fisiología y Bioquímica Vegetal, Centro de Ciencias Medioambientales, CSIC, Serrano 115-bis, E-28006 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
39
|
Seo M, Aoki H, Koiwai H, Kamiya Y, Nambara E, Koshiba T. Comparative studies on the Arabidopsis aldehyde oxidase (AAO) gene family revealed a major role of AAO3 in ABA biosynthesis in seeds. PLANT & CELL PHYSIOLOGY 2004; 45:1694-703. [PMID: 15574845 DOI: 10.1093/pcp/pch198] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
The Arabidopsis aldehyde oxidase 3 (AAO3) gene encodes an enzyme that catalyzes the final step of ABA biosynthesis. AAO3 has been shown to be the major AAO involved in ABA biosynthesis in leaves under stress conditions. On the other hand, less severe phenotypes of the aao3 seeds suggested that other AAO(s) might also be involved in ABA biosynthesis in seeds. Among four AAOs (AAO1-AAO4), AAO1 and AAO4 were the AAO expressed most abundantly in dry seeds and developing siliques, respectively. Unlike aao3, single loss-of-function mutants for AAO1 and AAO4 (aao1 and aao4), failed to show significant changes in endogenous ABA levels in seeds when compared with wild type. While aao3 seed germination was resistant to the gibberellin biosynthesis inhibitor, uniconazole, aao1 and aao4 showed no resistance and were similar to wild type. These results indicate that AAO3, but not AAO1 or AAO4, plays an important role in ABA biosynthesis in seeds. Mutations of AAO1 or AAO4 in the aao3 mutant background enhanced ABA deficiency in seeds, demonstrating that both gene products contribute partially to ABA biosynthesis in the aao3 mutant background. However, considering the enzymatic characters of AAO1 and AAO4, their involvement in ABA biosynthesis in wild-type seeds may be negligible. We have concluded that AAO3 is the AAO that plays a major role in ABA biosynthesis in Arabidopsis seeds as well as in leaves.
Collapse
Affiliation(s)
- Mitsunori Seo
- Plant Science Center, RIKEN (Institute of Physical and Chemical Research), Suehiro-cho 1-7-22, Tsurumi-ku, Yokohama, Kanagawa, 230-0045 Japan.
| | | | | | | | | | | |
Collapse
|
40
|
Reumann S, Ma C, Lemke S, Babujee L. AraPerox. A database of putative Arabidopsis proteins from plant peroxisomes. PLANT PHYSIOLOGY 2004; 136:2587-608. [PMID: 15333753 PMCID: PMC523325 DOI: 10.1104/pp.104.043695] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2004] [Revised: 06/14/2004] [Accepted: 06/16/2004] [Indexed: 05/17/2023]
Abstract
To identify unknown proteins from plant peroxisomes, the Arabidopsis genome was screened for proteins with putative major or minor peroxisome targeting signals type 1 or 2 (PTS1 or PTS2), as defined previously (Reumann S [2004] Plant Physiol 135: 783-800). About 220 and 60 proteins were identified that carry a putative PTS1 or PTS2, respectively. To further support postulated targeting to peroxisomes, several prediction programs were applied and the putative targeting domains analyzed for properties conserved in peroxisomal proteins and for PTS conservation in homologous plant expressed sequence tags. The majority of proteins with a major PTS and medium to high overall probability of peroxisomal targeting represent novel nonhypothetical proteins and include several enzymes involved in beta-oxidation of unsaturated fatty acids and branched amino acids, and 2-hydroxy acid oxidases with a predicted function in fatty acid alpha-oxidation, as well as NADP-dependent dehydrogenases and reductases. In addition, large protein families with many putative peroxisomal isoforms were recognized, including acyl-activating enzymes, GDSL lipases, and small thioesterases. Several proteins are homologous to prokaryotic enzymes of a novel aerobic hybrid degradation pathway for aromatic compounds and proposed to be involved in peroxisomal biosynthesis of plant hormones like jasmonic acid, auxin, and salicylic acid. Putative regulatory proteins of plant peroxisomes include protein kinases, small heat shock proteins, and proteases. The information on subcellular targeting prediction, homology, and in silico expression analysis for these Arabidopsis proteins has been compiled in the public database AraPerox to accelerate discovery and experimental investigation of novel metabolic and regulatory pathways of plant peroxisomes.
Collapse
Affiliation(s)
- Sigrun Reumann
- Georg-August-University of Goettingen, Albrecht-von-Haller-Institute for Plant Sciences, Department for Plant Biochemistry, D-37077 Goettingen, Germany.
| | | | | | | |
Collapse
|
41
|
Zdunek-Zastocka E, Omarov RT, Koshiba T, Lips HS. Activity and protein level of AO isoforms in pea plants (Pisum sativum L.) during vegetative development and in response to stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2004; 55:1361-9. [PMID: 15073210 DOI: 10.1093/jxb/erh134] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Among three AO isoforms detected in pea plants, the activity of PAO-1 was dominant in leaves of seedlings and young leaves of mature plants, while PAO-3 revealed the highest band intensity in old leaves and roots. PAO-1 and PAO-3 are homodimers consisting of 145 kDa and 140 kDa subunits, respectively, while PAO-2 is a heterodimer of one 145 kDa and one 140 kDa subunit. In leaves, the activity of PAO-1 disappeared gradually with leaf ageing, while in roots it was present only in seedlings but not in mature pea plants. PAO-3 could oxidize abscisic aldehyde, a precursor of abscisic acid, indicating the possible involvement of this isoform in ABA synthesis in pea. The ability of PAO-3 to oxidize abscisic aldehyde was higher in old leaves than in young ones and increased significantly both in roots and leaves of plants exposed to salinity and ammonium treatments. A marked increase of the AO protein level was observed after ammonium application but not under salinity. Interestingly, the activity of PAO isoforms may be transcriptionally and post-transcriptionally regulated during vegetative growth and in response to stress conditions, and such a regulation might be particularly important to adjust ABA levels to the recent requirements of the plant. The observations suggest that the AO isoforms have different metabolic roles and that the activity and protein level of each isoform is regulated not only by environmental conditions but also through plant developmental stages.
Collapse
Affiliation(s)
- Edyta Zdunek-Zastocka
- Biostress Research Laboratory, J Blaustein Institute for Desert Research and Department of Life Sciences, Ben-Gurion University of the Negev, Sede-Boqer 84990, Israel.
| | | | | | | |
Collapse
|
42
|
González-Guzmán M, Abia D, Salinas J, Serrano R, Rodríguez PL. Two new alleles of the abscisic aldehyde oxidase 3 gene reveal its role in abscisic acid biosynthesis in seeds. PLANT PHYSIOLOGY 2004; 135:325-33. [PMID: 15122034 PMCID: PMC429386 DOI: 10.1104/pp.103.036590] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2003] [Revised: 02/18/2004] [Accepted: 02/26/2004] [Indexed: 05/17/2023]
Abstract
The abscisic aldehyde oxidase 3 (AAO3) gene product of Arabidopsis catalyzes the final step in abscisic acid (ABA) biosynthesis. An aao3-1 mutant in a Landsberg erecta genetic background exhibited a wilty phenotype in rosette leaves, whereas seed dormancy was not affected (Seo et al., 2000a). Therefore, it was speculated that a different aldehyde oxidase would be the major contributor to ABA biosynthesis in seeds (Seo et al., 2000a). Through a screening based on germination under high-salt concentration, we isolated two mutants in a Columbia genetic background, initially named sre2-1 and sre2-2 (for salt resistant). Complementation tests with different ABA-deficient mutants indicated that sre2-1 and sre2-2 mutants were allelic to aao3-1, and therefore they were renamed as aao3-2 and aao3-3, respectively. Indeed, molecular characterization of the aao3-2 mutant revealed a T-DNA insertional mutation that abolished the transcription of AAO3 gene, while sequence analysis of AAO3 in aao3-3 mutant revealed a deletion of three nucleotides and several missense mutations. Physiological characterization of aao3-2 and aao3-3 mutants revealed a wilty phenotype and osmotolerance in germination assays. In contrast to aao3-1, both aao3-2 and aao3-3 mutants showed a reduced dormancy. Accordingly, ABA levels were reduced in dry seeds and rosette leaves of both aao3-2 and aao3-3. Taken together, these results indicate that AAO3 gene product plays a major role in seed ABA biosynthesis.
Collapse
Affiliation(s)
- Miguel González-Guzmán
- Instituto de Biología Molecular y Celular de Plantas, Universidad Politécnica de Valencia-Consejo Superior de Investigaciones Científicas, Camino de Vera, E-46022 Valencia, Spain
| | | | | | | | | |
Collapse
|
43
|
Koiwai H, Nakaminami K, Seo M, Mitsuhashi W, Toyomasu T, Koshiba T. Tissue-specific localization of an abscisic acid biosynthetic enzyme, AAO3, in Arabidopsis. PLANT PHYSIOLOGY 2004; 134:1697-707. [PMID: 15064376 PMCID: PMC419843 DOI: 10.1104/pp.103.036970] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Revised: 01/29/2004] [Accepted: 01/30/2004] [Indexed: 05/17/2023]
Abstract
Arabidopsis aldehyde oxidase 3 (AAO3) is an enzyme involved in abscisic acid (ABA) biosynthesis in response to drought stress. Since the enzyme catalyzes the last step of the pathway, ABA production sites may be determined by the presence of AAO3. Here, AAO3 localization was investigated using AAO3 promoter:AAO3-GFP transgenic plants and by an immunohistochemical technique. AAO3-GFP protein exhibited an activity to produce ABA from abscisic aldehyde, and the transgene restored the wilty phenotype of the aao3 mutant. GFP-fluorescence was detected in the root tips, vascular bundles of roots, hypocotyls and inflorescence stems, and along the leaf veins. Intense immunofluorescence signals were localized in phloem companion cells and xylem parenchyma cells. Faint but significant GFP- and immuno-fluorescence signals were observed in the leaf guard cells. In situ hybridization with antisense AAO3 mRNA showed AAO3 mRNA expression in the guard cells of dehydrated leaves. These results indicate that the ABA synthesized in vascular systems is transported to various target tissues and cells, and also that the guard cells themselves are able to synthesize ABA.
Collapse
Affiliation(s)
- Hanae Koiwai
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji-shi, Tokyo 192-0397, Japan
| | | | | | | | | | | |
Collapse
|
44
|
Uchida H, Kondo D, Yamashita A, Nagaosa Y, Sakurai T, Fujii Y, Fujishiro K, Aisaka K, Uwajima T. Purification and characterization of an aldehyde oxidase fromPseudomonassp. KY 4690. FEMS Microbiol Lett 2003; 229:31-6. [PMID: 14659539 DOI: 10.1016/s0378-1097(03)00781-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
An aldehyde oxidase, which oxidizes various aliphatic and aromatic aldehydes using O(2) as an electron acceptor, was purified from the cell-free extracts of Pseudomonas sp. KY 4690, a soil isolate, to an electrophoretically homogeneous state. The purified enzyme had a molecular mass of 132 kDa and consisted of three non-identical subunits with molecular masses of 88, 39, and 18 kDa. The absorption spectrum of the purified enzyme showed characteristics of an enzyme belonging to the xanthine oxidase family. The enzyme contained 0.89 mol of flavin adenine dinucleotide, 1.0 mol of molybdenum, 3.6 mol of acid-labile sulfur, and 0.90 mol of 5'-CMP per mol of enzyme protein, on the basis of its molecular mass of 145 kDa. Molecular oxygen served as the sole electron acceptor. These results suggest that aldehyde oxidase from Pseudomonas sp. KY 4690 is a new member of the xanthine oxidase family and might contain 1 mol of molybdenum-molybdpterin-cytosine dinucleotide, 1 mol of flavin adenine dinucleotide, and 2 mol of [2Fe-2S] clusters per mol of enzyme protein. The enzyme showed high reaction rates toward various aliphatic and aromatic aldehydes and high thermostability.
Collapse
Affiliation(s)
- Hiroyuki Uchida
- Applied Chemistry and Biotechnology, Faculty of Engineering, Fukui University, 9-1, Bunkyo 3-Chome, Fukui-shi 910-8507, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Garattini E, Mendel R, Romão MJ, Wright R, Terao M. Mammalian molybdo-flavoenzymes, an expanding family of proteins: structure, genetics, regulation, function and pathophysiology. Biochem J 2003; 372:15-32. [PMID: 12578558 PMCID: PMC1223366 DOI: 10.1042/bj20030121] [Citation(s) in RCA: 174] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2003] [Revised: 02/04/2003] [Accepted: 02/10/2003] [Indexed: 12/11/2022]
Abstract
The molybdo-flavoenzymes are structurally related proteins that require a molybdopterin cofactor and FAD for their catalytic activity. In mammals, four enzymes are known: xanthine oxidoreductase, aldehyde oxidase and two recently described mouse proteins known as aldehyde oxidase homologue 1 and aldehyde oxidase homologue 2. The present review article summarizes current knowledge on the structure, enzymology, genetics, regulation and pathophysiology of mammalian molybdo-flavoenzymes. Molybdo-flavoenzymes are structurally complex oxidoreductases with an equally complex mechanism of catalysis. Our knowledge has greatly increased due to the recent crystallization of two xanthine oxidoreductases and the determination of the amino acid sequences of many members of the family. The evolution of molybdo-flavoenzymes can now be traced, given the availability of the structures of the corresponding genes in many organisms. The genes coding for molybdo-flavoenzymes are expressed in a cell-specific fashion and are controlled by endogenous and exogenous stimuli. The recent cloning of the genes involved in the biosynthesis of the molybdenum cofactor has increased our knowledge on the assembly of the apo-forms of molybdo-flavoproteins into the corresponding holo-forms. Xanthine oxidoreductase is the key enzyme in the catabolism of purines, although recent data suggest that the physiological function of this enzyme is more complex than previously assumed. The enzyme has been implicated in such diverse pathological situations as organ ischaemia, inflammation and infection. At present, very little is known about the pathophysiological relevance of aldehyde oxidase, aldehyde oxidase homologue 1 and aldehyde oxidase homologue 2, which do not as yet have an accepted endogenous substrate.
Collapse
Affiliation(s)
- Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, via Eritrea 62, 20157 Milan, Italy.
| | | | | | | | | |
Collapse
|
46
|
Schütz A, Sandalova T, Ricagno S, Hübner G, König S, Schneider G. Crystal structure of thiamindiphosphate-dependent indolepyruvate decarboxylase from Enterobacter cloacae, an enzyme involved in the biosynthesis of the plant hormone indole-3-acetic acid. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:2312-21. [PMID: 12752451 DOI: 10.1046/j.1432-1033.2003.03601.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The thiamin diphosphate-dependent enzyme indolepyruvate decarboxylase catalyses the formation of indoleacetaldehyde from indolepyruvate, one step in the indolepyruvate pathway of biosynthesis of the plant hormone indole-3-acetic acid. The crystal structure of this enzyme from Enterobacter cloacae has been determined at 2.65 A resolution and refined to a crystallographic R-factor of 20.5% (Rfree 23.6%). The subunit of indolepyruvate decarboxylase contains three domains of open alpha/beta topology, which are similar in structure to that of pyruvate decarboxylase. The tetramer has pseudo 222 symmetry and can be described as a dimer of dimers. It resembles the tetramer of pyruvate decarboxylase from Zymomonas mobilis, but with a relative difference of 20 degrees in the angle between the two dimers. Active site residues are highly conserved in indolepyruvate/pyruvate decarboxylase, suggesting that the interactions with the cofactor thiamin diphosphate and the catalytic mechanisms are very similar. The substrate binding site in indolepyruvate decarboxylase contains a large hydrophobic pocket which can accommodate the bulky indole moiety of the substrate. In pyruvate decarboxylases this pocket is smaller in size and allows discrimination of larger vs. smaller substrates. In most pyruvate decarboxylases, restriction of cavity size is due to replacement of residues at three positions by large, hydrophobic amino acids such as tyrosine or tryptophan.
Collapse
Affiliation(s)
- Anja Schütz
- Institute of Biochemistry, Department of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Germany
| | | | | | | | | | | |
Collapse
|
47
|
Zazimalova E, Napier RM. Points of regulation for auxin action. PLANT CELL REPORTS 2003; 21:625-634. [PMID: 12789411 DOI: 10.1007/s00299-002-0562-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2002] [Revised: 11/09/2002] [Accepted: 11/09/2002] [Indexed: 05/24/2023]
Abstract
There have been few examples of the application of our growing knowledge of hormone action to crop improvement. In this review we discuss what is known about the critical points regulating auxin action. We examine auxin metabolism, transport, perception and signalling and identify genes and proteins that might be keys to regulation, particularly the rate-limiting steps in various pathways. Certain mutants show that substrate flow in biosynthesis can be limiting. To date there is little information available on the genes and proteins of catabolism. There have been several auxin transport proteins and some elegant transport physiology described recently, and the potential for using transport proteins to manage free indole-3-acetic acid (IAA) concentrations is discussed. Free IAA is very mobile, and so while it may be more practical to control auxin action through managing the receptor and signalling pathways, the candidate genes and proteins through which this can be done remain largely unknown. From the available evidence, it is clear that the reason for so few commercial applications arising from the control of auxin action is that knowledge is still limited.
Collapse
Affiliation(s)
- E Zazimalova
- Institute of Experimental Botany, The Academy of Sciences of the Czech Republic, Rozvojová 135, 16502, Prague 6-Lysolaje, Czech Republic
| | | |
Collapse
|
48
|
Omarov R, Dräger D, Tischner R, Lips H. Aldehyde oxidase isoforms and subunit composition in roots of barley as affected by ammonium and nitrate. PHYSIOLOGIA PLANTARUM 2003; 117:337-342. [PMID: 12654033 DOI: 10.1034/j.1399-3054.2003.00043.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Aldehyde oxidase (AO; EC 1.2.3.1) isoforms in roots of barley plants grown on ammonium or nitrate as nitrogen sources were studied. Roots of ammonium-grown barley plants exhibited considerable levels of AO2, AO3, and AO4 activities after native PAGE. Significantly lower AO2 and AO3 activity bands were observed in roots of plants grown on nitrate. When abscisic aldehyde was used as a substrate a strong response of the AO2 band was observed as well as a faint reaction of the AO3 band, but no activity of AO4 was observed using this substrate. The 160 and 145 kDa polypeptides were detected in ammonium grown plants. Root extracts of nitrate-fed plants revealed only a minor 145 kDa protein band and none of the 160 kDa subunit was detected. The assembly of the AO3 heterodimer requires the simultaneous presence of 160 and 145 kDa subunits. Subunit analysis of AO2 and AO4 revealed homodimeric composition of 160 and 145 kDa, respectively. Western blot analysis revealed changing AO subunits levels during germination and plant development. Differential expression of AO subunits (160 and 145 kDa) and subsequent formation of isoforms, which differ in substrate specificity, distribution and fulfil different enzymatic reactions, may constitute an important regulatory mechanism in the plant.
Collapse
Affiliation(s)
- Rustem Omarov
- Biostress Research Laboratory (J. Blaustein Institute for Desert Researches) and Department of Life Sciences (Fac. of Natural Sciences), Ben-Gurion University of the Negev, Sede Boqer 84990, Israel University of Gottingen, Albrecht von Haller Institute Pflanzenwissensch, Untere Karspule 2, D-37073 Gottingen, Germany Department of Plant Pathology, Texas A & M University, 2132 TAMU, College Station, TX 77843, USA
| | | | | | | |
Collapse
|
49
|
Davidson SE, Elliott RC, Helliwell CA, Poole AT, Reid JB. The pea gene NA encodes ent-kaurenoic acid oxidase. PLANT PHYSIOLOGY 2003; 131:335-44. [PMID: 12529541 PMCID: PMC166813 DOI: 10.1104/pp.012963] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2002] [Revised: 09/10/2002] [Accepted: 10/14/2002] [Indexed: 05/08/2023]
Abstract
The gibberellin (GA)-deficient dwarf na mutant in pea (Pisum sativum) has severely reduced internode elongation, reduced root growth, and decreased leaflet size. However, the seeds develop normally. Two genes, PsKAO1 and PsKAO2, encoding cytochrome P450 monooxygenases of the subfamily CYP88A were isolated. Both PsKAO1 and PsKAO2 had ent-kaurenoic acid oxidase (KAO) activity, catalyzing the three steps of the GA biosynthetic pathway from ent-kaurenoic acid to GA(12) when expressed in yeast (Saccharomyces cerevisiae). In addition to the intermediates ent-7alpha-hydroxykaurenoic acid and GA(12)-aldehyde, some additional products of the pea KAO activity were detected, including ent-6alpha,7alpha-dihydroxykaurenoic acid and 7beta-hydroxykaurenolide. The NA gene encodes PsKAO1, because in two independent mutant alleles, na-1 and na-2, PsKAO1 had altered sequences and the five-base deletion in PsKAO1 associated with the na-1 allele cosegregated with the dwarf na phenotype. PsKAO1 was expressed in the stem, apical bud, leaf, pod, and root, organs in which GA levels have previously been shown to be reduced in na plants. PsKAO2 was expressed only in seeds and this may explain the normal seed development and normal GA biosynthesis in seeds of na plants.
Collapse
Affiliation(s)
- Sandra E Davidson
- School of Plant Science, University of Tasmania, GPO Box 252-55, Hobart, Tasmania, 7001, Australia
| | | | | | | | | |
Collapse
|
50
|
Finkelstein RR, Rock CD. Abscisic Acid biosynthesis and response. THE ARABIDOPSIS BOOK 2002; 1:e0058. [PMID: 22303212 PMCID: PMC3243367 DOI: 10.1199/tab.0058] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Affiliation(s)
- Ruth R. Finkelstein
- Department of Molecular, Cellular and Developmental Biology, University of California at Santa Barbara, Santa Barbara, CA 93106
- Corresponding author: Telephone: (805) 893-4800, Fax: (805) 893-4724,
| | - Christopher D. Rock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409-3131
| |
Collapse
|