1
|
Fu L, Yong JM, Yeh R, Bartlett F, Whitelock JM, Lord MS. Functionalized Cerium Oxide Nanoparticles Enhance Penetration into Melanoma Spheroids In Vivo through Angiogenesis. Adv Healthc Mater 2025; 14:e2405129. [PMID: 40109098 PMCID: PMC12057615 DOI: 10.1002/adhm.202405129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/27/2025] [Indexed: 03/22/2025]
Abstract
Angiogenesis is a crucial step in tumor progression, including melanoma, making anti-angiogenic strategies a widely explored treatment approach. However, both innate and acquired resistance to these therapies suggest that this approach may need re-evaluation. Nanoparticles have gained attention for their potential to enhance drug delivery and retention within tumors via the bloodstream. However, the in vitro screening of nanoparticles is limited by the inability of preclinical models to replicate the complex tumor microenvironment, especially the blood supply. Here, it is demonstrated that melanoma cells embedded in Matrigel spheroids can engraft in and be vascularized by the chorioallantoic membrane (CAM) of fertilized chicken eggs. This model allows for the assessment of nanoparticle toxicity and accumulation in tumor spheroids, as well as functional effects such as angiogenesis. Cerium oxide nanoparticles (nanoceria) and their surface functionalized derivatives are widely explored for biomedical applications due to their ability to modulate oxidative stress and angiogenesis. Here, it is observed that heparin functionalized nanoceria penetrate melanoma spheroids in the CAM and promote spheroid vascularization to a greater extent than nanoceria alone. This study aids in the development of preclinical cancer models for nanoparticle screening and provides new insight into the interplay between nanoparticle surface coatings and biological effects.
Collapse
Affiliation(s)
- Lu Fu
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Joel M. Yong
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Robyn Yeh
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Florence Bartlett
- Katherina Gaus Light Microscopy FacilityMark Wainwright Analytical CentreUniversity of New South WalesSydneyNSW2052Australia
| | - John M. Whitelock
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| | - Megan S. Lord
- Graduate School of Biomedical EngineeringUniversity of New South WalesSydneyNSW2052Australia
| |
Collapse
|
2
|
Masuda T, Watanabe T, Tatsumi Y, Lin J, Okumura K, Ozaki T, Sugiyama H, Kamikubo Y. Cancer Accumulation and Anticancer Activity of "CROX (Cluster Regulation of RUNX)" PIP in HER2-Positive Gastric Cancer Evaluated by Chicken Egg Cancer Model. Cancer Med 2025; 14:e70845. [PMID: 40171874 PMCID: PMC11962651 DOI: 10.1002/cam4.70845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 02/27/2025] [Accepted: 03/21/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND We have focused on pyrrole-imidazole (PI) polyamide compounds, which preferentially bind to their target DNA sequences. To validate our "CROX (Cluster Regulation of RUNX)" strategy, we have created a novel PI polyamide-based inhibitor against RUNX termed Chb-M'. Recently, we have confirmed its cancer-specific uptake in mouse xenograft derived from HER2-positive gastric cancer cells. The accumulation and efficacy of Chb-M' in cancer has not yet been investigated in vivo, which is a simpler and less expensive method other than mouse xenograft models. METHODS In the present study, we have employed the simple and versatile experimental system termed CAM (chorioallantoic membrane) model, and evaluated whether Chb-M' could have the cancer accumulation potential and anti-cancer activity. RESULTS Based on our present results, gastric cancer MKN45 cells transplanted onto CAM successfully developed cancers, and the intravenously injected FITC-labeled Chb-M' obviously accumulated in these CAM cancers. As expected, the treatment of the CAM cancers with Chb-M' significantly attenuated the growth of the CAM cancers. Our present results were basically identical to those obtained from mouse xenograft model. CONCLUSION Our present findings strongly suggest that Chb-M' preferentially accumulates in cancer to suppress its growth, and the CAM model might serve as a valuable and promising platform to rapidly assess the cancer uptake and anti-cancer efficacy of various PI polyamide-based drug candidates.
Collapse
Affiliation(s)
- Tatsuya Masuda
- Division of Molecular CarcinogenesisChiba Cancer Center Research InstituteChibaJapan
- Department of Human Health Sciences, Graduate School of MedicineKyoto UniversityKyotoJapan
| | - Takayoshi Watanabe
- Division of Molecular CarcinogenesisChiba Cancer Center Research InstituteChibaJapan
| | - Yasutoshi Tatsumi
- Division of Molecular CarcinogenesisChiba Cancer Center Research InstituteChibaJapan
| | - Jason Lin
- Division of Cancer GeneticsChiba Cancer Center Research InstituteChibaJapan
| | - Kazuhiro Okumura
- Division of Experimental Animal ResearchCancer Genome Center, Chiba Cancer Center Research InstituteChibaJapan
| | - Toshinori Ozaki
- Division of Molecular CarcinogenesisChiba Cancer Center Research InstituteChibaJapan
| | - Hiroshi Sugiyama
- Institute for Integrated Cell‐Material Sciences, Institute for Advanced StudyKyoto UniversityKyotoJapan
| | - Yasuhiko Kamikubo
- Division of Molecular CarcinogenesisChiba Cancer Center Research InstituteChibaJapan
| |
Collapse
|
3
|
Mosna MJ, Garde FJ, Stinson MG, Pastore CD, Carcagno AL. The chorioallantoic membrane (CAM) model: From its origins in developmental biology to its role in cancer research. Dev Biol 2025; 519:79-95. [PMID: 39694172 DOI: 10.1016/j.ydbio.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/24/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
Over the past century, the chick embryo model, historically employed for research in developmental biology, has become a valuable tool for cancer research. The characteristics of the chick chorioallantoic membrane (CAM) make it a convenient model for the study of cancer, leading to the establishment of the CAM assay as an alternative to traditional in vivo cancer models. In this review we will explore the characteristics of the CAM that make it suitable for cancer research, as well as its consolidation as a versatile platform in this field. We will put particular emphasis on describing the key features that make this model an important asset for studying the hallmarks of cancer and for testing a wide variety of therapeutic strategies for its treatment, and which make it a suitable host for patient-derived xenografts (PDX). Additionally, we will examine the wide spectrum of methodological approaches available to study these subjects, highlighting some innovative cases. Finally, we will discuss the advantages and disadvantages of the chick CAM as a model for cancer research and how we can improve this model to its full potential.
Collapse
Affiliation(s)
- María Jimena Mosna
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina
| | - Federico J Garde
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina
| | - Marcelo G Stinson
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina
| | - Candela D Pastore
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina
| | - Abel L Carcagno
- Laboratorio de Diferenciación Celular y Cáncer, Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; CONICET-Universidad de Buenos Aires, Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN), Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina; Departamento de Ecología, Genética y Evolución, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de, Buenos Aires, C1428EGA, Argentina.
| |
Collapse
|
4
|
Peixoto A, Ferreira D, Miranda A, Relvas-Santos M, Freitas R, Veth TS, Brandão A, Ferreira E, Paulo P, Cardoso M, Gaiteiro C, Cotton S, Soares J, Lima L, Teixeira F, Ferreira R, Palmeira C, Heck AJ, Oliveira MJ, Silva AM, Santos LL, Ferreira JA. Multilevel plasticity and altered glycosylation drive aggressiveness in hypoxic and glucose-deprived bladder cancer cells. iScience 2025; 28:111758. [PMID: 39906564 PMCID: PMC11791300 DOI: 10.1016/j.isci.2025.111758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 11/04/2024] [Accepted: 01/03/2025] [Indexed: 02/06/2025] Open
Abstract
Bladder tumors with aggressive characteristics often present microenvironmental niches marked by low oxygen levels (hypoxia) and limited glucose supply due to inadequate vascularization. The molecular mechanisms facilitating cellular adaptation to these stimuli remain largely elusive. Employing a multi-omics approach, we discovered that hypoxic and glucose-deprived cancer cells enter a quiescent state supported by mitophagy, fatty acid β-oxidation, and amino acid catabolism, concurrently enhancing their invasive capabilities. Reoxygenation and glucose restoration efficiently reversed cell quiescence without affecting cellular viability, highlighting significant molecular plasticity in adapting to microenvironmental challenges. Furthermore, cancer cells exhibited substantial perturbation of protein O-glycosylation, leading to simplified glycophenotypes with shorter glycosidic chains. Exploiting glycoengineered cell models, we established that immature glycosylation contributes to reduced cell proliferation and increased invasion. Our findings collectively indicate that hypoxia and glucose deprivation trigger cancer aggressiveness, reflecting an adaptive escape mechanism underpinned by altered metabolism and protein glycosylation, providing grounds for clinical intervention.
Collapse
Affiliation(s)
- Andreia Peixoto
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Dylan Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Andreia Miranda
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Marta Relvas-Santos
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rui Freitas
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Tim S. Veth
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
- Netherlands Proteomics Center, Padualaan, Utrecht, the Netherlands
| | - Andreia Brandão
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Eduardo Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Paula Paulo
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Marta Cardoso
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | - Cristiana Gaiteiro
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Sofia Cotton
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Janine Soares
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Luís Lima
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
| | | | - Rita Ferreira
- QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlos Palmeira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- Department of Immunology, Portuguese Oncology Institute of Porto, Porto, Portugal
- Health School of University Fernando Pessoa, Porto, Portugal
| | - Albert J.R. Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, Utrecht, the Netherlands
- Netherlands Proteomics Center, Padualaan, Utrecht, the Netherlands
| | - Maria José Oliveira
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - André M.N. Silva
- LAQV-REQUIMTE, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Lúcio Lara Santos
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- Health School of University Fernando Pessoa, Porto, Portugal
- Department of Surgical Oncology, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - José Alexandre Ferreira
- Research Center of IPO-Porto (CI-IPOP) / CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO-Porto) / Porto Comprehensive Cancer Center (P.ccc) Raquel Seruca, Porto, Portugal
- School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
5
|
Benčurová K, Balber T, Weissenböck V, Kogler L, Friske J, Pichler V, Mitterhauser M, Hacker M, Philippe C, Ozenil M. Preclinical evaluation of the potential PARP-imaging probe [carbonyl- 11C]DPQ. EJNMMI Radiopharm Chem 2025; 10:1. [PMID: 39792304 PMCID: PMC11723862 DOI: 10.1186/s41181-024-00323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Poly (ADP-ribose) polymerase (PARP) enzymes are crucial for the repair of DNA single-strand breaks and have become key therapeutic targets in homologous recombination-deficient cancers, including prostate cancer. To enable non-invasive monitoring of PARP-1 expression, several PARP-1-targeting positron emission tomography (PET) tracers have been developed. Here, we aimed to preclinically investigate [carbonyl-11C]DPQ as an alternative PARP-1 PET tracer as it features a strongly distinct chemotype compared to the frontrunners [18F]FluorThanatrace and [18F]PARPi. RESULTS [carbonyl-11C]DPQ was synthesised in a GE TracerLab FXC2 module, yielding sufficient activity (940 ± 410 MBq), molar activity (53 ± 16 GBq/µmol) and radiochemical purity (> 97%) for subsequent preclinical evaluation. [carbonyl-11C]DPQ showed high stability in formulation, in human plasma, and when incubated with human liver microsomes. In vitro, similar specific uptake was observed in both PC3 prostate cancer cells and CHO-K1 Chinese hamster ovary cells. However, in vivo studies using fertilised chicken eggs (in ovo model) revealed poor and non-displaceable tumour accumulation in PC3-derived xenografts, despite confirmed vascularisation and PARP-1 expression. Rapid uptake was observed in the liver (10 min), with less than 30% of the intact compound remaining in the liver 70 min post-injection. CONCLUSIONS Although [carbonyl-11C]DPQ demonstrated metabolic stability and specific binding in vitro, suboptimal tumour-targeting properties and pronounced liver metabolism were observed in ovo. Therefore, further animal experiments with mammalian models were not indicated.
Collapse
Affiliation(s)
- Katarína Benčurová
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Theresa Balber
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Medical University of Vienna, Vienna, Austria.
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Level 3L, Waehringer Guertel 18-20, 1090, Vienna, Austria.
| | - Victoria Weissenböck
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Lukas Kogler
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- CBmed GmbH-Center for Biomarker Research in Medicine, Graz, Austria
| | - Joachim Friske
- Division of Molecular and Structural Preclinical Imaging, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Verena Pichler
- Division of Pharmaceutical Chemistry, Department of Pharmaceutical Sciences, University of Vienna, Vienna, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
- Department for Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Joint Applied Medicinal Radiochemistry Facility, University of Vienna, Medical University of Vienna, Vienna, Austria
| | - Marius Ozenil
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
Mesas C, Chico MA, Doello K, Lara P, Moreno J, Melguizo C, Perazzoli G, Prados J. Experimental Tumor Induction and Evaluation of Its Treatment in the Chicken Embryo Chorioallantoic Membrane Model: A Systematic Review. Int J Mol Sci 2024; 25:837. [PMID: 38255911 PMCID: PMC10815318 DOI: 10.3390/ijms25020837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
The chorioallantoic membrane (CAM) model, generated during avian development, can be used in cancer research as an alternative in vivo model to perform tumorigenesis in ovo due to advantages such as simplicity, low cost, rapid growth, and being naturally immunodeficient. The aim of this systematic review has been to compile and analyze all studies that use the CAM assay as a tumor induction model. For that, a systematic search was carried out in four different databases: PubMed, Scopus, Cochrane, and WOS. After eliminating duplicates and following the established inclusion and exclusion criteria, a total of 74 articles were included. Of these, 62% use the in ovo technique, 13% use the ex ovo technique, 9% study the formation of metastasis, and 16% induce tumors from patient biopsies. Regarding the methodology followed, the main species used is chicken (95%), although some studies use quail eggs (4%), and one article uses ostrich eggs. Therefore, the CAM assay is a revolutionary technique that allows a simple and effective way to induce tumors, test the effectiveness of treatments, carry out metastasis studies, perform biopsy grafts of patients, and carry out personalized medicine. However, unification of the methodology used is necessary.
Collapse
Affiliation(s)
- Cristina Mesas
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
| | - Maria Angeles Chico
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Kevin Doello
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Service of Medical Oncology, Hospital Virgen de las Nieves, 18014 Granada, Spain
| | - Patricia Lara
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Javier Moreno
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Gloria Perazzoli
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIMER), Biomedical Research Center (CIBM), 18100 Granada, Spain; (C.M.); (P.L.); (J.M.); (J.P.)
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), 18012 Granada, Spain; (M.A.C.); (K.D.)
- Department of Anatomy and Embryology, University of Granada, 18071 Granada, Spain
| |
Collapse
|
7
|
Flora K, Ishihara M, Zhang Z, Bowen ES, Wu A, Ayoub T, Huang J, Cano-Ruiz C, Jackson M, Reghu K, Ayoub Y, Zhu Y, Tseng HR, Zhou ZH, Hu J, Wu L. Exosomes from Von Hippel-Lindau-Null Cancer Cells Promote Metastasis in Renal Cell Carcinoma. Int J Mol Sci 2023; 24:17307. [PMID: 38139136 PMCID: PMC10743428 DOI: 10.3390/ijms242417307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/18/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Exosomes are extracellular vesicles that modulate essential physiological and pathological signals. Communication between cancer cells that express the von Hippel-Lindau (VHL) tumor suppressor gene and those that do not is instrumental to distant metastasis in renal cell carcinoma (RCC). In a novel metastasis model, VHL(-) cancer cells are the metastatic driver, while VHL(+) cells receive metastatic signals from VHL(-) cells and undergo aggressive transformation. This study investigates whether exosomes could be mediating metastatic crosstalk. Exosomes isolated from paired VHL(+) and VHL(-) cancer cell lines were assessed for physical, biochemical, and biological characteristics. Compared to the VHL(+) cells, VHL(-) cells produce significantly more exosomes that augment epithelial-to-mesenchymal transition (EMT) and migration of VHL(+) cells. Using a Cre-loxP exosome reporter system, the fluorescent color conversion and migration were correlated with dose-dependent delivery of VHL(-) exosomes. VHL(-) exosomes even induced a complete cascade of distant metastasis when added to VHL(+) tumor xenografts in a duck chorioallantoic membrane (dCAM) model, while VHL(+) exosomes did not. Therefore, this study supports that exosomes from VHL(-) cells could mediate critical cell-to-cell crosstalk to promote metastasis in RCC.
Collapse
Affiliation(s)
- Kailey Flora
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA;
| | - Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
| | - Zhicheng Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
| | - Elizabeth S. Bowen
- Department of Computational and Systems Biology, University of California, Los Angeles, CA 90095, USA;
| | - Aimee Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; (A.W.); (J.H.); (M.J.); (K.R.)
| | - Tala Ayoub
- Department of Physiology, University of California, Los Angeles, CA 90095, USA;
| | - Julian Huang
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; (A.W.); (J.H.); (M.J.); (K.R.)
| | - Celine Cano-Ruiz
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
| | - Maia Jackson
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; (A.W.); (J.H.); (M.J.); (K.R.)
| | - Kaveeya Reghu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA 90095, USA; (A.W.); (J.H.); (M.J.); (K.R.)
| | - Yasmeen Ayoub
- School of Medicine, Saint Louis University, St. Louis, MO 63104, USA;
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (Y.Z.); (H.-R.T.); (Z.H.Z.)
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (Y.Z.); (H.-R.T.); (Z.H.Z.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Z. Hong Zhou
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA; (Y.Z.); (H.-R.T.); (Z.H.Z.)
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; (M.I.); (Z.Z.); (C.C.-R.)
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
8
|
Hu J, Smith DJ, Wu L. VHL L169P Variant Does Not Alter Cellular Hypoxia Tension in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2023; 24:14075. [PMID: 37762376 PMCID: PMC10530985 DOI: 10.3390/ijms241814075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 09/09/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
In the current era of tumor genome sequencing, single amino acid missense variants in the von Hippel-Lindau (VHL) tumor suppressor gene are frequently identified in clear cell renal carcinoma (ccRCC). Due to the incomplete knowledge of the structural architecture of VHL protein, the functional significance of many missense mutations cannot be assigned. L169P is one such missense mutation identified in the case of aggressive, metastatic ccRCC. Here, we characterized the biochemical activity, transcriptomic hypoxia signature and biological functions of the L169P variant. Lentiviral vector expressing either wildtype (WT) or L169P VHL were used to transduce two VHL-deficient human ccRCC cell lines, 786-O and RCC4. The stability of the VHL protein and the expression level of VHL, HIF1α and HIF2α were analyzed. The impact of restoring L169P or WT VHL on the hypoxia gene expression program in 786-O cells was assessed by mRNA sequencing (RNAseq) and computed hypoxic scores. The impact of restoring VHL expression on the growth of ccRCC models was assessed in cell cultures and in chorioallantoic membrane (CAM) xenografts. In the 786-O cells, the protein stability of L169P VHL was comparable to WT VHL. No obvious difference in the capability of degrading HIF1α and HIF2α was observed between WT and L169P VHL in the 786-O or RCC4 cells. The hypoxic scores were not significantly different in the 786-O cells expressing either wildtype or L169P VHL. From the cellular function perspective, both WT and L169P VHL slowed cell proliferation in vitro and in vivo. The L169P VHL variant is comparable to WT VHL in terms of protein stability, ability to degrade HIF1α factors and ability to regulate hypoxia gene expression, as well as in the suppression of ccRCC tumor cell growth. Taken together, our data indicate that the L169P VHL variant alone is unlikely to drive the oncogenesis of sporadic ccRCC.
Collapse
Affiliation(s)
- Junhui Hu
- Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
- Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Desmond J. Smith
- Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
- Brain Research Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lily Wu
- Molecular and Medical Pharmacology, University of California, Los Angeles, CA 90095, USA;
- Institute of Urologic Oncology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
9
|
Palumbo C, Sisi F, Checchi M. CAM Model: Intriguing Natural Bioreactor for Sustainable Research and Reliable/Versatile Testing. BIOLOGY 2023; 12:1219. [PMID: 37759618 PMCID: PMC10525291 DOI: 10.3390/biology12091219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/31/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
We are witnessing the revival of the CAM model, which has already used been in the past by several researchers studying angiogenesis and anti-cancer drugs and now offers a refined model to fill, in the translational meaning, the gap between in vitro and in vivo studies. It can be used for a wide range of purposes, from testing cytotoxicity, pharmacokinetics, tumorigenesis, and invasion to the action mechanisms of molecules and validation of new materials from tissue engineering research. The CAM model is easy to use, with a fast outcome, and makes experimental research more sustainable since it allows us to replace, reduce, and refine pre-clinical experimentation ("3Rs" rules). This review aims to highlight some unique potential that the CAM-assay presents; in particular, the authors intend to use the CAM model in the future to verify, in a microenvironment comparable to in vivo conditions, albeit simplified, the angiogenic ability of functionalized 3D constructs to be used in regenerative medicine strategies in the recovery of skeletal injuries of critical size (CSD) that do not repair spontaneously. For this purpose, organotypic cultures will be planned on several CAMs set up in temporal sequences, and a sort of organ model for assessing CSD will be utilized in the CAM bioreactor rather than in vivo.
Collapse
Affiliation(s)
| | | | - Marta Checchi
- Department of Biomedical, Metabolic and Neural Sciences, Section of Human Morphology, University of Modena and Reggio Emilia—Largo del Pozzo, 41124 Modena, Italy
| |
Collapse
|
10
|
Chen L, Wang Z, Fu X, Wang S, Feng Y, Coudyzer W, Wu S, Zhang H, Chai Z, Li Y, Ni Y. Dynamic 3D morphology of chick embryos and allantois depicted nondestructively by 3.0T clinical magnetic resonance imaging. Poult Sci 2023; 102:102902. [PMID: 37429051 PMCID: PMC10466300 DOI: 10.1016/j.psj.2023.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/19/2023] [Accepted: 06/24/2023] [Indexed: 07/12/2023] Open
Abstract
Driven by a global trend of applying replace-reduce-refine or 3Rs' guidance for experimental animals in life sciences, chick embryo and particularly allantois with its chorioallantoic membrane have been increasingly utilized to substitute laboratory animals, which call for more extensive and updated knowledge about this novel experimental setup. In this study, being noninvasive, nonionizing, and super-contrasting with high spatiotemporal resolutions, magnetic resonance imaging (MRI) was chosen as an imaging modality for in ovo monitoring morphologic evolution of the chick embryo, allantois, and chorioallantoic membrane longitudinally throughout embryonic day (ED) 1 until ED20. Cooled in 0°C ice bath for 60 min to reduce MRI motion artifacts, 3 chick embryos (n = 60 in total) on each ED were scanned by a clinical 3.0T MRI scanner to demonstrate 3D images of both T2- and T1-weighted imaging (T2WI, T1WI) sequences at axial, sagittal, and coronal slices. The volumes of both the entire chick embryo and allantois were semi-automatically segmented based on intensity-based thresholding and region-growing algorithms. The morphometries or quantified 3D structures were achieved by refined segmentation, and confirmed by histological analyses (one for each ED). After MRI, the rest of chick embryos (n = 40) continued for incubation. The images from ED2 to ED4 could demonstrate the structural changes of latebra, suggesting its transition into a nutrient supplying channel of yolk sac. The allantois could be recognized by MRI, and its relative volumes on each ED revealed an evolving profile peaked on ED12, with a statistically significant difference from those of earlier and later EDs (P < 0.01). The hypointensity of the yolk due to the susceptibility effect of its enriched iron content overshadowed the otherwise hyperintensity of its lipid components. The chick embryos survived prior cooling and MRI till hatching on ED21. The results could be further developed into a 3D MRI atlas of chick embryo. Clinical 3.0T MRI proved effective as a noninvasive approach to study in ovo 3D embryonic development across the full period (ED1-ED20), which can complement the present knowhow for poultry industry and biomedical science.
Collapse
Affiliation(s)
- Lei Chen
- KU Leuven, Campus Gasthuisberg, Leuven 3000, Belgium
| | | | - Xubin Fu
- Tianjin Ringpu Bio-Technology Co., Ltd., Tianjin, China
| | - Shuncong Wang
- KU Leuven, Campus Gasthuisberg, Leuven 3000, Belgium
| | - Yuanbo Feng
- KU Leuven, Campus Gasthuisberg, Leuven 3000, Belgium
| | | | - Shugeng Wu
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haijun Zhang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture & Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhihong Chai
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yicheng Ni
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
11
|
Hu J, Tan P, Ishihara M, Bayley NA, Schokrpur S, Reynoso JG, Zhang Y, Lim RJ, Dumitras C, Yang L, Dubinett SM, Jat PS, Van Snick J, Huang J, Chin AI, Prins RM, Graeber TG, Xu H, Wu L. Tumor heterogeneity in VHL drives metastasis in clear cell renal cell carcinoma. Signal Transduct Target Ther 2023; 8:155. [PMID: 37069149 PMCID: PMC10110583 DOI: 10.1038/s41392-023-01362-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 01/13/2023] [Accepted: 02/12/2023] [Indexed: 04/19/2023] Open
Abstract
Loss of function of the von Hippel-Lindau (VHL) tumor suppressor gene is a hallmark of clear cell renal cell carcinoma (ccRCC). The importance of heterogeneity in the loss of this tumor suppressor has been under reported. To study the impact of intratumoral VHL heterogeneity observed in human ccRCC, we engineered VHL gene deletion in four RCC models, including a new primary tumor cell line derived from an aggressive metastatic case. The VHL gene-deleted (VHL-KO) cells underwent epithelial-to-mesenchymal transition (EMT) and exhibited increased motility but diminished proliferation and tumorigenicity compared to the parental VHL-expressing (VHL+) cells. Renal tumors with either VHL+ or VHL-KO cells alone exhibit minimal metastatic potential. Combined tumors displayed rampant lung metastases, highlighting a novel cooperative metastatic mechanism. The poorly proliferative VHL-KO cells stimulated the proliferation, EMT, and motility of neighboring VHL+ cells. Periostin (POSTN), a soluble protein overexpressed and secreted by VHL non-expressing (VHL-) cells, promoted metastasis by enhancing the motility of VHL-WT cells and facilitating tumor cell vascular escape. Genetic deletion or antibody blockade of POSTN dramatically suppressed lung metastases in our preclinical models. This work supports a new strategy to halt the progression of ccRCC by disrupting the critical metastatic crosstalk between heterogeneous cell populations within a tumor.
Collapse
Affiliation(s)
- Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ping Tan
- Department of Urology, West China Hospital, Chengdu, China
| | - Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiruyeh Schokrpur
- Department of Hematology and Oncology, University of California San Diego, San Diego, CA, 92103, USA
| | - Jeremy G Reynoso
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yangjun Zhang
- Department of Biological Repositories, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Raymond J Lim
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Camelia Dumitras
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Lu Yang
- Department of Urology, West China Hospital, Chengdu, China
| | - Steven M Dubinett
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Parmjit S Jat
- MRC Prion Unit at UCL, Institute of Prion Diseases, 33 Cleveland Street, London, W1W 7FF, UK
| | | | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC, USA
| | - Arnold I Chin
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Robert M Prins
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Neurosurgery, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Thomas G Graeber
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hua Xu
- Department of Biological Repositories, Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Cancer Precision Diagnosis and Treatment and Translational Medicine Hubei Engineering Research Center, Wuhan, China.
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
12
|
The Chorioallantoic Membrane Xenograft Assay as a Reliable Model for Investigating the Biology of Breast Cancer. Cancers (Basel) 2023; 15:cancers15061704. [PMID: 36980588 PMCID: PMC10046776 DOI: 10.3390/cancers15061704] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/06/2023] [Accepted: 03/07/2023] [Indexed: 03/17/2023] Open
Abstract
The chorioallantoic membrane (CAM) assay is an alternative in vivo model that allows for minimally invasive research of cancer biology. Using the CAM assay, we investigated phenotypical and functional characteristics (tumor grade, mitosis rate, tumor budding, hormone receptor (HR) and HER2 status, Ki-67 proliferation index) of two breast cancer cell lines, MCF-7 and MDA-MB-231, which resemble the HR+ (luminal) and triple-negative breast cancer (TNBC) subgroups, respectively. Moreover, the CAM results were directly compared with murine MCF-7- and MDA-MB-231-derived xenografts and human patient TNBC tissue. Known phenotypical and biological features of the aggressive triple-negative breast cancer cell line (MDA-MB-231) were confirmed in the CAM assay, and mouse xenografts. Furthermore, the histomorphological and immunohistochemical variables assessed in the CAM model were similar to those in human patient tumor tissue. Given the confirmation of the classical biological and growth properties of breast cancer cell lines in the CAM model, we suggest this in vivo model to be a reliable alternative test system for breast cancer research to reduce murine animal experiments.
Collapse
|
13
|
Tsimpaki T, Bechrakis NE, Seitz B, Kraemer MM, Liu H, Dalbah S, Sokolenko E, Berchner-Pfannschmidt U, Fiorentzis M. Chick Chorioallantoic Membrane as a Patient-Derived Xenograft Model for Uveal Melanoma: Imaging Modalities for Growth and Vascular Evaluation. Cancers (Basel) 2023; 15:cancers15051436. [PMID: 36900228 PMCID: PMC10000919 DOI: 10.3390/cancers15051436] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023] Open
Abstract
BACKGROUND Patient-derived tumor xenografts (PDXs) have emerged as valuable preclinical in vivo models in oncology as they largely retain the polygenomic architecture of the human tumors from which they originate. Although animal models are accompanied by cost and time constraints and a low engraftment rate, PDXs have primarily been established in immunodeficient rodent models for the in vivo assessment of tumor characteristics and of novel therapeutic cancer targets. The chick chorioallantoic membrane (CAM) assay represents an attractive alternative in vivo model that has long been used in the research of tumor biology and angiogenesis, and can overcome some of these limitations. METHODS In this study, we reviewed different technical approaches for the establishment and monitoring of a CAM-based uveal melanoma PDX model. Forty-six fresh tumor grafts were acquired after enucleation from six uveal melanoma patients and were implanted onto the CAM on ED7 with Matrigel and a ring (group 1), with Matrigel (group 2), or natively without Matrigel or a ring (group 3). Real-time imaging techniques, such as various ultrasound modalities, optical coherence tomography, infrared imaging, and imaging analyses with Image J for tumor growth and extension, as well as color doppler, optical coherence angiography, and fluorescein angiography for angiogenesis, were performed on ED18 as alternative monitoring instruments. The tumor samples were excised on ED18 for histological assessment. RESULTS There were no significant differences between the three tested experimental groups regarding the length and width of the grafts during the development period. A statistically significant increase in volume (p = 0.0007) and weight (p = 0.0216) between ED7 and ED18 was only documented for tumor specimens of group 2. A significant correlation of the results for the cross-sectional area, largest basal diameter, and volume was documented between the different imaging and measurement techniques and the excised grafts. The formation of a vascular star around the tumor and of a vascular ring on the base of the tumor was observed for the majority of the viable developing grafts as a sign of successful engraftment. CONCLUSION The establishment of a CAM-PDX uveal melanoma model could elucidate the biological growth patterns and the efficacy of new therapeutic options in vivo. The methodological novelty of this study, investigating different implanting techniques and exploiting advances in real-time imaging with multiple modalities, allows precise, quantitative assessment in the field of tumor experimentation, underlying the feasibility of CAM as an in vivo PDX model.
Collapse
Affiliation(s)
- Theodora Tsimpaki
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany
| | - Nikolaos E. Bechrakis
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany
| | - Berthold Seitz
- Department of Ophthalmology, Saarland University Medical Center, Kirrberger Str. 100, 66421 Homburg, Germany
| | - Miriam M. Kraemer
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany
| | - Hongtao Liu
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany
| | - Sami Dalbah
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany
| | - Ekaterina Sokolenko
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany
| | - Utta Berchner-Pfannschmidt
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany
| | - Miltiadis Fiorentzis
- Department of Ophthalmology, University Hospital Essen, University of Duisburg-Essen, Hufeland Str. 55, 45147 Essen, Germany
- Correspondence: ; Tel.: +49-723-84378
| |
Collapse
|
14
|
Opposing MMP-9 Expression in Mesenchymal Stromal Cells and Head and Neck Tumor Cells after Direct 2D and 3D Co-Culture. Int J Mol Sci 2023; 24:ijms24021293. [PMID: 36674806 PMCID: PMC9861345 DOI: 10.3390/ijms24021293] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/23/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Bone marrow-derived mesenchymal stromal cells (BMSCs) respond to a variety of tumor cell-derived signals, such as inflammatory cytokines and growth factors. As a result, the inflammatory tumor microenvironment may lead to the recruitment of BMSCs. Whether BMSCs in the tumor environment are more likely to promote tumor growth or tumor suppression is still controversial. In our experiments, direct 3D co-culture of BMSCs with tumor cells from the head and neck region (HNSCC) results in strong expression and secretion of MMP-9. The observed MMP-9 secretion mainly originates from BMSCs, leading to increased invasiveness. In addition to our in vitro data, we show in vivo data based on the chorioallantoic membrane (CAM) model. Our results demonstrate that MMP-9 induces hemorrhage and increased perfusion in BMSC/HNSCC co-culture. While we had previously outlined that MMP-9 expression and secretion originate from BMSCs, our data showed a strong downregulation of MMP-9 promoter activity in HNSCC cells upon direct contact with BMSCs using the luciferase activity assay. Interestingly, the 2D and 3D models of direct co-culture suggest different drivers for the downregulation of MMP-9 promoter activity. Whereas the 3D model depicts a BMSC-dependent downregulation, the 2D model shows cell density-dependent downregulation. In summary, our data suggest that the direct interaction of HNSCC cells and BMSCs promotes tumor progression by significantly facilitating angiogenesis via MMP-9 expression. On the other hand, data from 3D and 2D co-culture models indicate opposing regulation of the MMP-9 promoter in tumor cells once stromal cells are involved.
Collapse
|
15
|
Chen L, Yuan M, Zhang X, Li Y, Feng Y, Yu J, Coudyzer W, Xie Y, Xu J, Li Y, Li Y, Ni Y. Exploration of Chick Embryo and Chorioallantoic Membrane on Imaging Navigated Platforms for Anticancer Pharmaceutical Evaluations. Technol Cancer Res Treat 2023; 22:15330338231206985. [PMID: 37844882 PMCID: PMC10585999 DOI: 10.1177/15330338231206985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/29/2023] [Accepted: 09/25/2023] [Indexed: 10/18/2023] Open
Abstract
Conforming to the current replace-reduce-refine 3Rs' guidelines in animal experiments, a series of explorative efforts have been made to set up operable biomedical imaging-guided platforms for qualitative and quantitative evaluations on pharmacological effects of tumor vascular-disrupting agents (VDAs), based on the chick embryos (CEs) with its chorioallantoic membrane (CAM), in this overview. The techniques and platforms have been hierarchically elaborated, from macroscopic to microscopic and from overall to specific aspects. A protocol of LED lamplight associated with a new deep-learning algorithm was consolidated to screen out weak CEs by using the CAM vasculature imaging. 3D magnetic resonance imaging (MRI) and laser speckle contrast imaging (LSCI) to monitor the evolution of CE and vascular changes in CAM are introduced. A LSCI-CAM platform for studying the effects of VDAs on normal and cancerous vasculature of CAM and possible molecular mechanisms has been demonstrated. Finally, practical challenges and future perspectives are highlighted. The aim of this article is to help peers in biomedical research to familiarize with the CAM platform and to optimize imaging protocols for the evaluation of vasoactive pharmaceuticals, especially anticancer vascular targeted therapy.
Collapse
Affiliation(s)
- Lei Chen
- KU Leuven, Biomedical Group, Leuven, Belgium
| | - Mingyuan Yuan
- Department of Radiology, Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xinqi Zhang
- Airport Division, Tianjin Cancer Hospital, Tianjin, China
| | - Yongsheng Li
- Airport Division, Tianjin Cancer Hospital, Tianjin, China
| | - Yuanbo Feng
- KU Leuven, Biomedical Group, Leuven, Belgium
| | - Jie Yu
- KU Leuven, Biomedical Group, Leuven, Belgium
| | - Walter Coudyzer
- Department of Radiology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Yiyang Xie
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiayue Xu
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yuzhen Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yue Li
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yicheng Ni
- KU Leuven, Biomedical Group, Leuven, Belgium
- Department of Radiology, Zhongda Hospital, Southeast University, Nanjing, China
| |
Collapse
|
16
|
Villanueva H, Wells GA, Miller MT, Villanueva M, Pathak R, Castro P, Ittmann MM, Sikora AG, Lerner SP. Characterizing treatment resistance in muscle invasive bladder cancer using the chicken egg chorioallantoic membrane patient-derived xenograft model. Heliyon 2022; 8:e12570. [PMID: 36643309 PMCID: PMC9834740 DOI: 10.1016/j.heliyon.2022.e12570] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/20/2022] [Accepted: 12/15/2022] [Indexed: 12/26/2022] Open
Abstract
Background Non-metastatic muscle invasive urothelial bladder cancer (MIBC) has a poor prognosis and standard of care (SOC) includes neoadjuvant cisplatin-based chemotherapy (NAC) combined with cystectomy. Patients receiving NAC have at best <10% improvement in five-year overall survival compared to cystectomy alone. This major clinical problem underscores gaps in our understanding of resistance mechanisms and a need for reliable pre-clinical models. The chicken embryo chorioallantoic membrane (CAM) represents a rapid, scalable, and cost-effective alternative to immunocompromised mice for establishing patient-derived xenografts (PDX) in vivo. CAM-PDX leverages an easily accessible engraftment scaffold and vascular-rich, immunosuppressed environment for the engraftment of PDX tumors and subsequent functional studies. Methods We optimized engraftment conditions for primary MIBC tumors using the CAM-PDX model and tested concordance between cisplatin-based chemotherapy response of patients to matching PDX tumors using tumor growth coupled with immunohistochemistry markers of proliferation and apoptosis. We also tested select kinase inhibitor response on chemotherapy-resistant bladder cancers on the CAM-PDX using tumor growth measurements and immuno-detection of proliferation marker, Ki-67. Results Our results show primary, NAC-resistant, MIBC tumors grown on the CAM share histological characteristics along with cisplatin-based chemotherapy resistance observed in the clinic for matched parent human tumor specimens. Patient tumor specimens acquired after chemotherapy treatment (post-NAC) and exhibiting NAC resistance were engrafted successfully on the CAM and displayed decreased tumor growth size and proliferation in response to treatment with a dual EGFR and HER2 inhibitor, but had no significant response to either CDK4/6 or FGFR inhibition. Conclusions Our data suggests concordance between cisplatin-based chemotherapy resistance phenotypes in primary patient tumors and CAM-PDX models. Further, proteogenomic informed kinase inhibitor use on MIBC CAM-PDX models suggests a benefit from integration of rapid in vivo testing of novel therapeutics to inform more complex, pre-clinical mouse PDX experiments for more effective clinical trial design aimed at achieving optimal precision medicine for patients with limited treatment options.
Collapse
Affiliation(s)
- Hugo Villanueva
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA,Advanced Technology Core Facilities, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Gabrielle A. Wells
- Advanced Technology Core Facilities, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Malachi T. Miller
- Advanced Technology Core Facilities, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Mariana Villanueva
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ravi Pathak
- Department of Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Patricia Castro
- Advanced Technology Core Facilities, Baylor College of Medicine, Houston, TX, 77030, USA,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael M. Ittmann
- Advanced Technology Core Facilities, Baylor College of Medicine, Houston, TX, 77030, USA,Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew G. Sikora
- Department of Head and Neck Surgery, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Seth P. Lerner
- Scott Department of Urology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA,Corresponding author.
| |
Collapse
|
17
|
Kolba N, Cheng J, Jackson CD, Tako E. Intra-Amniotic Administration-An Emerging Method to Investigate Necrotizing Enterocolitis, In Vivo ( Gallus gallus). Nutrients 2022; 14:nu14224795. [PMID: 36432481 PMCID: PMC9696943 DOI: 10.3390/nu14224795] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in premature infants and a leading cause of death in neonates (1-7% in the US). NEC is caused by opportunistic bacteria, which cause gut dysbiosis and inflammation and ultimately result in intestinal necrosis. Previous studies have utilized the rodent and pig models to mimic NEC, whereas the current study uses the in vivo (Gallus gallus) intra-amniotic administration approach to investigate NEC. On incubation day 17, broiler chicken (Gallus gallus) viable embryos were injected intra-amniotically with 1 mL dextran sodium sulfate (DSS) in H2O. Four treatment groups (0.1%, 0.25%, 0.5%, and 0.75% DSS) and two controls (H2O/non-injected controls) were administered. We observed a significant increase in intestinal permeability and negative intestinal morphological changes, specifically, decreased villus surface area and goblet cell diameter in the 0.50% and 0.75% DSS groups. Furthermore, there was a significant increase in pathogenic bacterial (E. coli spp. and Klebsiella spp.) abundances in the 0.75% DSS group compared to the control groups, demonstrating cecal microbiota dysbiosis. These results demonstrate significant physiopathology of NEC and negative bacterial-host interactions within a premature gastrointestinal system. Our present study demonstrates a novel model of NEC through intra-amniotic administration to study the effects of NEC on intestinal functionality, morphology, and gut microbiota in vivo.
Collapse
Affiliation(s)
| | | | | | - Elad Tako
- Correspondence: ; Tel.: +1-607-255-0884
| |
Collapse
|
18
|
Charbonneau M, Harper K, Brochu-Gaudreau K, Perreault A, McDonald PP, Ekindi-Ndongo N, Jeldres C, Dubois CM. Establishment of a ccRCC patient-derived chick chorioallantoic membrane model for drug testing. Front Med (Lausanne) 2022; 9:1003914. [PMID: 36275794 PMCID: PMC9582329 DOI: 10.3389/fmed.2022.1003914] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is an aggressive subtype of renal cell carcinoma accounting for the majority of deaths in kidney cancer patients. Advanced ccRCC has a high mortality rate as most patients progress and develop resistance to currently approved targeted therapies, highlighting the ongoing need for adequate drug testing models to develop novel therapies. Current animal models are expensive and time-consuming. In this study, we investigated the use of the chick chorioallantoic membrane (CAM), a rapid and cost-effective model, as a complementary drug testing model for ccRCC. Our results indicated that tumor samples from ccRCC patients can be successfully cultivated on the chick chorioallantoic membrane (CAM) within 7 days while retaining their histopathological characteristics. Furthermore, treatment of ccRCC xenografts with sunitinib, a tyrosine kinase inhibitor used for the treatment of metastatic RCC, allowed us to evaluate differential responses of individual patients. Our results indicate that the CAM model is a complementary in vivo model that allows for rapid and cost-effective evaluation of ccRCC patient response to drug therapy. Therefore, this model has the potential to become a useful platform for preclinical evaluation of new targeted therapies for the treatment of ccRCC.
Collapse
Affiliation(s)
- Martine Charbonneau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Kelly Harper
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Karine Brochu-Gaudreau
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Alexis Perreault
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Claudio Jeldres
- Division of Urology, Department of Surgery, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Claire M. Dubois
- Department of Immunology and Cell Biology, Université de Sherbrooke, Sherbrooke, QC, Canada,*Correspondence: Claire M. Dubois
| |
Collapse
|
19
|
Miebach L, Berner J, Bekeschus S. In ovo model in cancer research and tumor immunology. Front Immunol 2022; 13:1006064. [PMID: 36248802 PMCID: PMC9556724 DOI: 10.3389/fimmu.2022.1006064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/13/2022] [Indexed: 11/15/2022] Open
Abstract
Considering cancer not only as malignant cells on their own but as a complex disease in which tumor cells interact and communicate with their microenvironment has motivated the establishment of clinically relevant 3D models in past years. Technological advances gave rise to novel bioengineered models, improved organoid systems, and microfabrication approaches, increasing scientific importance in preclinical research. Notwithstanding, mammalian in vivo models remain closest to mimic the patient’s situation but are limited by cost, time, and ethical constraints. Herein, the in ovo model bridges the gap as an advanced model for basic and translational cancer research without the need for ethical approval. With the avian embryo being a naturally immunodeficient host, tumor cells and primary tissues can be engrafted on the vascularized chorioallantoic membrane (CAM) with high efficiencies regardless of species-specific restrictions. The extraembryonic membranes are connected to the embryo through a continuous circulatory system, readily accessible for manipulation or longitudinal monitoring of tumor growth, metastasis, angiogenesis, and matrix remodeling. However, its applicability in immunoncological research is largely underexplored. Dual engrafting of malignant and immune cells could provide a platform to study tumor-immune cell interactions in a complex, heterogenic and dynamic microenvironment with high reproducibility. With some caveats to keep in mind, versatile methods for in and ex ovo monitoring of cellular and molecular dynamics already established in ovo are applicable alike. In this view, the present review aims to emphasize and discuss opportunities and limitations of the chicken embryo model for pre-clinical research in cancer and cancer immunology.
Collapse
Affiliation(s)
- Lea Miebach
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Julia Berner
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
- Department of Oral and Maxillofacial Surgery, Plastic Surgery, Greifswald University Medical Center, Greifswald, Germany
| | - Sander Bekeschus
- ZIK plasmatis, Leibniz Institute for Plasma Science and Technology (INP), Greifswald, Germany
- Department of General, Thoracic, Vascular, and Visceral Surgery, Greifswald University Medical Center, Greifswald, Germany
- *Correspondence: Sander Bekeschus,
| |
Collapse
|
20
|
Souto EP, Dobrolecki LE, Villanueva H, Sikora AG, Lewis MT. In Vivo Modeling of Human Breast Cancer Using Cell Line and Patient-Derived Xenografts. J Mammary Gland Biol Neoplasia 2022; 27:211-230. [PMID: 35697909 PMCID: PMC9433358 DOI: 10.1007/s10911-022-09520-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 05/19/2022] [Indexed: 11/24/2022] Open
Abstract
Historically, human breast cancer has been modeled largely in vitro using long-established cell lines primarily in two-dimensional culture, but also in three-dimensional cultures of varying cellular and molecular complexities. A subset of cell line models has also been used in vivo as cell line-derived xenografts (CDX). While outstanding for conducting detailed molecular analysis of regulatory mechanisms that may function in vivo, results of drug response studies using long-established cell lines have largely failed to translate clinically. In an attempt to address this shortcoming, many laboratories have succeeded in developing clinically annotated patient-derived xenograft (PDX) models of human cancers, including breast, in a variety of host systems. While immunocompromised mice are the predominant host, the immunocompromised rat and pig, zebrafish, as well as the chicken egg chorioallantoic membrane (CAM) have also emerged as potential host platforms to help address perceived shortcomings of immunocompromised mice. With any modeling platform, the two main issues to be resolved are criteria for "credentialing" the models as valid models to represent human cancer, and utility with respect to the ability to generate clinically relevant translational research data. Such data are beginning to emerge, particularly with the activities of PDX consortia such as the NCI PDXNet Program, EuroPDX, and the International Breast Cancer Consortium, as well as a host of pharmaceutical companies and contract research organizations (CRO). This review focuses primarily on these important aspects of PDX-related research, with a focus on breast cancer.
Collapse
Affiliation(s)
- Eric P Souto
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lacey E Dobrolecki
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hugo Villanueva
- Otolaryngology-Head and Neck Surgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Andrew G Sikora
- Department of Head and Neck Surgery, Division of Surgery, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
- Baylor College of Medicine, One Baylor Plaza, BCM-600; Room N1210, Houston, TX, 77030, USA.
| |
Collapse
|
21
|
Perreault A, Harper K, Lebel M, Charbonneau M, Adam D, Brochiero E, Cantin AM, Leduc M, Gagnon L, Dubois CM. Human Lung Tissue Implanted on the Chick Chorioallantoic Membrane as a Novel In Vivo Model of IPF. Am J Respir Cell Mol Biol 2022; 67:164-172. [PMID: 35612953 DOI: 10.1165/rcmb.2022-0037ma] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal lung disease with no curative pharmacological treatment. Current preclinical models fail to accurately reproduce human pathophysiology and are therefore poor predictors of clinical outcomes. Here, we investigated whether the chick embryo chorioallantoic membrane (CAM) assay supports the implantation of xenografts derived from IPF lung tissue and primary IPF lung fibroblasts and can be used to evaluate the efficacy of antifibrotic drugs. We demonstrate that IPF xenografts maintain their integrity and are perfused with chick embryo blood. Size measurements indicate that the xenografts amplify on the CAM, and Ki67 and pro-collagen type I immunohistochemical staining highlight the presence of proliferative and functional cells in the xenografts. Moreover, the IPF phenotype and immune microenvironment of lung tissues are retained when cultivated on the CAM and the fibroblast xenografts mimic invasive IPF fibroblastic foci. Daily treatments of the xenografts with nintedanib and PBI-4050 significantly reduce their size, fibrosis-associated gene expression, and collagen deposition. Similar effects are found with GLPG1205 and fenofibric acid, two drugs that target the immune microenvironment. Our CAM-IPF model represents the first in vivo model of IPF that uses human lung tissue. This rapid and cost-effective assay could become a valuable tool for predicting the efficacy of antifibrotic drug candidates for IPF.
Collapse
Affiliation(s)
- Alexis Perreault
- Université de Sherbrooke, 7321, Department of Immunology and Cell Biology, Sherbrooke, Quebec, Canada
| | - Kelly Harper
- Université de Sherbrooke, 7321, Department of Immunology and Cell Biology, Sherbrooke, Quebec, Canada
| | - Mégane Lebel
- Université de Sherbrooke, 7321, Department of Medicine, Pulmonary Division, Sherbrooke, Quebec, Canada
| | - Martine Charbonneau
- Université de Sherbrooke, 7321, Department of Immunology and Cell Biology, Sherbrooke, Quebec, Canada
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Montreal, Quebec, Canada
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Department of Medicine, Montréal, Quebec, Canada
| | - André M Cantin
- University of Sherbrooke, Department of Medicine, Pulmonary Division, Sherbrooke, Quebec, Canada
| | - Martin Leduc
- Liminal BioSciences Inc, 262159, Laval, Quebec, Canada
| | - Lyne Gagnon
- Liminal BioSciences Inc, 262159, Laval, Quebec, Canada
| | - Claire M Dubois
- Université de Sherbrooke, 7321, Department of Immunology and Cell Biology, Sherbrooke, Quebec, Canada;
| |
Collapse
|
22
|
Zhang Z, Hu J, Ishihara M, Sharrow AC, Flora K, He Y, Wu L. The miRNA-21-5p Payload in Exosomes from M2 Macrophages Drives Tumor Cell Aggression via PTEN/Akt Signaling in Renal Cell Carcinoma. Int J Mol Sci 2022; 23:3005. [PMID: 35328425 PMCID: PMC8949275 DOI: 10.3390/ijms23063005] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 12/15/2022] Open
Abstract
M2 macrophages in the tumor microenvironment are important drivers of cancer metastasis. Exosomes play a critical role in the crosstalk between different cells by delivering microRNAs or other cargos. Whether exosomes derived from pro-tumorigenic M2 macrophages (M2-Exos) could modulate the metastatic behavior of renal cell carcinoma (RCC) is unclear. This study found that M2-Exos promotes migration and invasion in RCC cells. Inhibiting miR-21-5p in M2-Exos significantly reversed their pro-metastatic effects on RCC cells in vitro and in the avian embryo chorioallantoic membrane in vivo tumor model. We further found that the pro-metastatic mechanism of miR-21-5p in M2-Exos is by targeting PTEN-3'UTR to regulate PTEN/Akt signaling. Taken together, our results demonstrate that M2-Exos carries miR-21-5p promote metastatic features of RCC cells through PTEN/Akt signaling. Reversing this could serve as a novel approach to control RCC metastasis.
Collapse
Affiliation(s)
- Zhicheng Zhang
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; (Z.Z.); (J.H.); (M.I.); (A.C.S.); (K.F.)
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; (Z.Z.); (J.H.); (M.I.); (A.C.S.); (K.F.)
| | - Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; (Z.Z.); (J.H.); (M.I.); (A.C.S.); (K.F.)
| | - Allison C. Sharrow
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; (Z.Z.); (J.H.); (M.I.); (A.C.S.); (K.F.)
| | - Kailey Flora
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; (Z.Z.); (J.H.); (M.I.); (A.C.S.); (K.F.)
| | - Yao He
- Department of Microbiology, Immunology and Molecular Genetics, UCLA, Los Angeles, CA 90095, USA;
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA; (Z.Z.); (J.H.); (M.I.); (A.C.S.); (K.F.)
- Department of Urology, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
23
|
Higashi Y, Ikeda S, Matsumoto K, Satoh S, Komatsu A, Sugiyama H, Tamanoi F. Tumor Accumulation of PIP-Based KRAS Inhibitor KR12 Evaluated by the Use of a Simple, Versatile Chicken Egg Tumor Model. Cancers (Basel) 2022; 14:cancers14040951. [PMID: 35205697 PMCID: PMC8869854 DOI: 10.3390/cancers14040951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary One of the goals of nanoplatform-based cancer therapy is to achieve tumor accumulation of anticancer agents. We have focused on PIP-based KRAS inhibitor KR12 (pyrrole–imidazole polyamide indole-seco–CBI conjugate), which has been reported to exhibit tumor growth inhibition in a xenograft mouse model. To evaluate the tumor accumulation property of KR12, we have synthesized a fluorescently labeled KR12 derivative (KR12-TAMRA) and employed a chicken egg tumor assay, a simple and versatile assay to examine tumor accumulation. Our results show that KR12-TAMRA accumulates specifically in the tumor when injected into a fertilized chicken egg transplanted with human cancer cells. We also demonstrate nuclear accumulation of KR12-TAMRA. Finally, inhibition of tumor growth in the chorioallantoic membrane (CAM) assay is shown. These results uncover a number of attractive features of PIP-based KR12 for cancer therapy. Abstract Background: The KRAS inhibitor KR12, based on pyrrole-imidazole polyamide (PIP), has been developed and shown to exhibit efficacy in mouse experiments. Because some PIP species exhibit tumor accumulation capability, we decided to evaluate whether the PIP portion of KR12 exhibits tumor accumulation. We employed the CAM assay that provides a simple method for tumor accumulation evaluation. Methods: KR12 PIP was synthesized and conjugated to TAMRA to produce a fluorescently labeled reagent (KR12-TAMRA). This reagent was injected into a fertilized chicken egg that has been transplanted with human cancer cells. Distribution of the red fluorescence was examined by cutting out tumor as well as various organs from the embryo. Results: The red fluorescence of KR12-TAMRA was found to overlap with the green fluorescence of the tumor formed with GFP-expressing cancer cells. We also observed nuclear localization of KR12-TAMRA. Treatment of KR12 that contained the alkylating agent CBI in the tumor-bearing chicken egg resulted in tumor growth inhibition. Conclusions: KR12 contains a PIP that has two key features: tumor accumulation and nuclear localization. KR12 conjugated with CBI exhibits inhibition of tumor growth in the CAM model.
Collapse
Affiliation(s)
- Yuya Higashi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; (Y.H.); (K.M.); (A.K.)
| | - Shuji Ikeda
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; (S.I.); (S.S.); (H.S.)
| | - Kotaro Matsumoto
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; (Y.H.); (K.M.); (A.K.)
| | - Shinsuke Satoh
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; (S.I.); (S.S.); (H.S.)
| | - Aoi Komatsu
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; (Y.H.); (K.M.); (A.K.)
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan; (S.I.); (S.S.); (H.S.)
| | - Fuyuhiko Tamanoi
- Institute for Integrated Cell-Material Sciences, Institute for Advanced Study, Kyoto University, Kyoto 606-8501, Japan; (Y.H.); (K.M.); (A.K.)
- Correspondence: ; Tel.: +81-75-753-9856
| |
Collapse
|
24
|
The CAM Model for CIC-DUX4 Sarcoma and Its Potential Use for Precision Medicine. Cells 2021; 10:cells10102613. [PMID: 34685592 PMCID: PMC8533847 DOI: 10.3390/cells10102613] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/24/2021] [Accepted: 09/27/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: CIC-DUX4 sarcoma is a rare mesenchymal small round cell tumor which belongs to rare cancers that occupy a significant percentage of cancer cases as a whole, despite each being rare. Importantly, each rare cancer type has different features, and thus there is a need to develop a model that mimics the features of each of these cancers. We evaluated the idea that the chicken chorioallantoic membrane assay (CAM), a convenient and versatile animal model, can be established for the CIC-DUX4 sarcoma. (2) Methods: Patient-derived cell lines of CIC-DUX4 were applied. These cells were transplanted onto the CAM membrane and tumor formation was examined by H&E staining, immunohistochemistry and Western blotting. The CAM tumor was transferred onto a fresh CAM and was also used to form organoids. Retention of the fusion gene was examined. (3) Results: H&E staining as well as molecular characterization demonstrated the formation of the CIC-DUX4 tumor on the CAM membrane. Expression of cyclin D2 and ETV4 was identified. The CAM tumor was transferred to a fresh CAM to form the second-generation CAM tumor. In addition, we were successful in forming tumor organoids using the CAM tumor. Retention of the fusion gene CIC-DUX4 in the CAM, second-generation CAM, and in the CAM-derived organoids was confirmed by RT-PCR. (4) Conclusions: The CAM assay provides a promising model for CIC-DUX4 sarcoma.
Collapse
|
25
|
Kohl C, Aung T, Haerteis S, Papathemelis T. Assessment of breast cancer primary tumor material in a 3D in vivo model. Clin Hemorheol Microcirc 2021; 79:157-166. [PMID: 34487030 DOI: 10.3233/ch-219113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND Breast cancer is the most common malignant tumor in women and highly heterogeneous with a variety of different molecular subtypes. The analysis of the individual tumor biology is necessary to develop a specific and individualized treatment plan for every patient. The chick chorioallantoic membrane (CAM) model, a 3D-in-vivo-tumor-model, could potentially provide a methodology that facilitates the gain of additional information regarding the tumor biology as well as the testing of the tumor's individual sensitivity to different therapies. OBJECTIVE The objective was to establish the grafting of different breast cancer primaries onto the CAM for tumor profiling and the investigation of different parameters. METHODS Breast cancer primary tissue of different patients was grafted onto the CAM. Subsequently, 3D volume and perfusion measurements were performed during the engraftment period. Histological analyses of the tumors were carried out after the engraftment period. RESULTS The grafting of the breast cancer primaries onto the CAM was successful. The tumors remained partially vital and displayed angiogenic development on the CAM. CONCLUSIONS Breast cancer primary material can be grafted onto the CAM and we observed visible and measurable changes of perfusion over time.
Collapse
Affiliation(s)
- Cynthia Kohl
- Department of Gynecology and Obstetrics, St. Marien Hospital Amberg, Amberg, Germany
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany.,Center of Plastic, Aesthetic, Hand and Reconstructive Surgery, University of Regensburg, Regensburg, Germany
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, Regensburg, Germany
| | - Thomas Papathemelis
- Department of Gynecology and Obstetrics, St. Marien Hospital Amberg, Amberg, Germany
| |
Collapse
|
26
|
Giacobbe A, Abate-Shen C. Modeling metastasis in mice: a closer look. Trends Cancer 2021; 7:916-929. [PMID: 34303648 DOI: 10.1016/j.trecan.2021.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Unraveling the multifaceted cellular and physiological processes associated with metastasis is best achieved by using in vivo models that recapitulate the requisite tumor cell-intrinsic and -extrinsic mechanisms at the organismal level. We discuss the current status of mouse models of metastasis. We consider how mouse models can refine our understanding of the underlying biological and molecular processes that promote metastasis, and we envisage how the application of new technologies will further enhance investigations of metastasis at single-cell resolution in the context of the whole organism. Our view is that investigations based on state-of-the-art mouse models can propel a holistic understanding of the biology of metastasis, which will ultimately lead to the discovery of new therapeutic opportunities.
Collapse
Affiliation(s)
- Arianna Giacobbe
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Avenue, New York, NY10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 Saint Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
27
|
Preis E, Schulze J, Gutberlet B, Pinnapireddy SR, Jedelská J, Bakowsky U. The chorioallantoic membrane as a bio-barrier model for the evaluation of nanoscale drug delivery systems for tumour therapy. Adv Drug Deliv Rev 2021; 174:317-336. [PMID: 33905805 DOI: 10.1016/j.addr.2021.04.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/29/2021] [Accepted: 04/20/2021] [Indexed: 02/06/2023]
Abstract
In 2010, the European Parliament and the European Union adopted a directive on the protection of animals used for scientific purposes. The directive aims to protect animals in scientific research, with the final goal of complete replacement of procedures on live animals for scientific and educational purposes as soon as it is scientifically viable. Furthermore, the directive announces the implementation of the 3Rs principle: "When choosing methods, the principles of replacement, reduction and refinement should be implemented through a strict hierarchy of the requirement to use alternative methods." The visibility, accessibility, and the rapid growth of the chorioallantoic membrane (CAM) offers a clear advantage for various manipulations and for the simulation of different Bio-Barriers according to the 3R principle. The extensive vascularisation on the CAM provides an excellent substrate for the cultivation of tumour cells or tumour xenografts which could be used for the therapeutic evaluation of nanoscale drug delivery systems. The tumour can be targeted either by topical application, intratumoural injection or i.v. injection. Different application sites and biological barriers can be examined within a single model.
Collapse
Affiliation(s)
- Eduard Preis
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Jan Schulze
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Bernd Gutberlet
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany
| | - Shashank Reddy Pinnapireddy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; CSL Behring Innovation GmbH, Emil-von-Behring-Str. 76, 35041 Marburg, Germany
| | - Jarmila Jedelská
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany; Center for Tumor Biology and Immunology, Core Facility for Small Animal MRI, Hans-Meerwein Str. 3, 35043 Marburg, Germany
| | - Udo Bakowsky
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg, Robert-Koch-Str. 4, 35037 Marburg, Germany.
| |
Collapse
|
28
|
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021; 11:571. [PMID: 34207137 PMCID: PMC8234032 DOI: 10.3390/jpm11060571] [Citation(s) in RCA: 258] [Impact Index Per Article: 64.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer causes the second-highest rate of death world-wide. A major shortcoming inherent in most of anticancer drugs is their lack of tumor selectivity. Nanodrugs for cancer therapy administered intravenously escape renal clearance, are unable to penetrate through tight endothelial junctions of normal blood vessels and remain at a high level in plasma. Over time, the concentration of nanodrugs builds up in tumors due to the EPR effect, reaching several times higher than that of plasma due to the lack of lymphatic drainage. This review will address in detail the progress and prospects of tumor-targeting via EPR effect for cancer therapy.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Satya Siva Kishan Yalamarty
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
29
|
Improving germline transmission efficiency in chimeric chickens using a multi-stage injection approach. PLoS One 2021; 16:e0247471. [PMID: 34086696 PMCID: PMC8177527 DOI: 10.1371/journal.pone.0247471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
Abstract
Although different strategies have been developed to generate transgenic poultry, low efficiency of germline transgene transmission has remained a challenge in poultry transgenesis. Herein, we developed an efficient germline transgenesis method using a lentiviral vector system in chickens through multiple injections of transgenes into embryos at different stages of development. The embryo chorioallantoic membrane (CAM) vasculature was successfully used as a novel route of gene transfer into germline tissues. Compared to the other routes of viral vector administration, the embryo’s bloodstream at Hamburger-Hamilton (HH) stages 14–15 achieved the highest rate of germline transmission (GT), 7.7%. Single injection of viral vectors into the CAM vasculature resulted in a GT efficiency of 2.7%, which was significantly higher than the 0.4% obtained by injection into embryos at the blastoderm stage. Double injection of viral vectors into the bloodstream at HH stages 14–15 and through CAM was the most efficient method for producing germline chimeras, giving a GT rate of 13.6%. The authors suggest that the new method described in this study could be efficiently used to produce transgenic poultry in virus-mediated gene transfer systems.
Collapse
|
30
|
Utilisation of Chick Embryo Chorioallantoic Membrane as a Model Platform for Imaging-Navigated Biomedical Research. Cells 2021; 10:cells10020463. [PMID: 33671534 PMCID: PMC7926796 DOI: 10.3390/cells10020463] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 02/07/2023] Open
Abstract
The fertilised chick egg and particularly its chorioallantoic membrane (CAM) have drawn continuing interest in biomedicine and bioengineering fields, especially for research on vascular study, cancer, drug screening and development, cell factors, stem cells, etc. This literature review systemically introduces the CAM's structural evolution, functions, vascular features and the circulation system, and cell regulatory factors. It also presents the major and updated applications of the CAM in assays for pharmacokinetics and biodistribution, drug efficacy and toxicology testing/screening in preclinical pharmacological research. The time course of CAM applications for different assays and their advantages and limitations are summarised. Among these applications, two aspects are emphasised: (1) potential utility of the CAM for preclinical studies on vascular-disrupting agents (VDAs), promising for anti-cancer vascular-targeted therapy, and (2) modern imaging technologies, including modalities and their applications for real-time visualisation, monitoring and evaluation of the changes in CAM vasculature as well as the interactions occurring after introducing the tested medical, pharmaceutical and biological agents into the system. The aim of this article is to help those working in the biomedical field to familiarise themselves with the chick embryo CAM as an alternative platform and to utilise it to design and optimise experimental settings for their specific research topics.
Collapse
|
31
|
Corsini M, Ravelli C, Grillo E, Dell'Era P, Presta M, Mitola S. Simultaneously characterization of tumoral angiogenesis and vasculogenesis in stem cell-derived teratomas. Exp Cell Res 2021; 400:112490. [PMID: 33484747 DOI: 10.1016/j.yexcr.2021.112490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Tumor neovascularization may occur via both angiogenic and vasculogenic events. In order to investigate the vessel formation during tumor growth, we developed a novel experimental model that takes into account the differentiative and tumorigenic properties of Embryonic Stem cells (ESCs). Leukemia Inhibitory Factor-deprived murine ESCs were grafted on the top of the chick embryo chorionallantoic membrane (CAM) in ovo. Cell grafts progressively grew, forming a vascularized mass within 10 days. At this stage, the grafts are formed by cells with differentiative features representative of all three germ layers, thus originating teratomas, a germinal cell tumor. In addition, ESC supports neovascular events by recruiting host capillaries from surrounding tissue that infiltrates the tumor mass. Moreover, immunofluorescence studies demonstrate that perfused active blood vessels within the tumor are of both avian and murine origin because of the simultaneous occurrence of angiogenic and vasculogenic events. In conclusion, the chick embryo ESC/CAM-derived teratoma model may represent a useful approach to investigate both vasculogenic and angiogenic events during tumor growth and for the study of natural and synthetic modulators of the two processes.
Collapse
Affiliation(s)
- Michela Corsini
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy; Laboratory for Preventive and Personalized Medicine (MPP Lab), University of Brescia, Italy.
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy; Laboratory for Preventive and Personalized Medicine (MPP Lab), University of Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy
| | - Patrizia Dell'Era
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy; cFRU Lab, Università degli Studi di Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy
| | - Stefania Mitola
- Department of Molecular and Translational Medicine, Via Branze 39, 25123, Brescia, University of Brescia, Italy; Laboratory for Preventive and Personalized Medicine (MPP Lab), University of Brescia, Italy.
| |
Collapse
|
32
|
Kato M, Sasaki T, Inoue T. Current experimental human tissue-derived models for prostate cancer research. Int J Urol 2020; 28:150-162. [PMID: 33247498 DOI: 10.1111/iju.14441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/18/2020] [Indexed: 12/17/2022]
Abstract
Scientists engaged in prostate cancer research have been conducting experiments using two-dimensional cultures of prostate cancer cell lines for decades. However, these experiments fail to reproduce and reflect the clinical course of individual patients with prostate cancer, or the molecular and genetic characteristics of prostate cancer, the basic requirement for most of the preclinical studies on prostate cancer. The use of human prostate cancer tissues in experiments has enabled the collection and verification of clinically relevant data, including chemical reactions, changes in proteins, and specific gene expression. Tissue recombination models have been employed for studying prostate development, the initiation and progression of prostate cancer, and the tumor microenvironment. Notably, the epithelial-stromal interaction, which might play a critical role in prostate cancer pathogenesis, can be reproduced in this model. Patient-derived xenograft models have been developed as powerful avatars comprising patient-derived prostate cancer tissues implanted in immunocompromised mice and could serve as a precision medicine approach for each prostate cancer patient. Spheroid and organoid assays, representative of modern three-dimensional cultures, can replicate the conditions in human prostate tumors and the prostate organ itself as a miniature model. Although an intact immune system against the tumor is missing from the models aimed at investigating immuno-oncological reagents in various malignancies, all these experimental models can help researchers in developing new drugs and selecting appropriate treatment strategies for prostate cancer patients.
Collapse
Affiliation(s)
- Manabu Kato
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takeshi Sasaki
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| | - Takahiro Inoue
- Department of Nephro-Urologic Surgery and Andrology, Mie University Graduate School of Medicine, Tsu, Mie, Japan
| |
Collapse
|
33
|
Eckrich J, Kugler P, Buhr CR, Ernst BP, Mendler S, Baumgart J, Brieger J, Wiesmann N. Monitoring of tumor growth and vascularization with repetitive ultrasonography in the chicken chorioallantoic-membrane-assay. Sci Rep 2020; 10:18585. [PMID: 33122780 PMCID: PMC7596505 DOI: 10.1038/s41598-020-75660-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/20/2022] Open
Abstract
The chorioallantoic-membrane (CAM)-assay is an established model for in vivo tumor research. Contrary to rodent-xenograft-models, the CAM-assay does not require breeding of immunodeficient strains due to native immunodeficiency. This allows xenografts to grow on the non-innervated CAM without pain or impairment for the embryo. Considering multidirectional tumor growth, limited monitoring capability of tumor size is the main methodological limitation of the CAM-assay for tumor research. Enclosure of the tumor by the radiopaque eggshell and the small structural size only allows monitoring from above and challenges established imaging techniques. We report the eligibility of ultrasonography for repetitive visualization of tumor growth and vascularization in the CAM-assay. After tumor ingrowth, ultrasonography was repetitively performed in ovo using a commercial ultrasonographic scanner. Finally, the tumor was excised and histologically analyzed. Tumor growth and angiogenesis were successfully monitored and findings in ultrasonographic imaging significantly correlated with results obtained in histological analysis. Ultrasonography is cost efficient and widely available. Tumor imaging in ovo enables the longitudinal monitoring of tumoral development, yet allowing high quantitative output due to the CAM-assays simple and cheap methodology. Thus, this methodological novelty improves reproducibility in the field of in vivo tumor experimentation emphasizing the CAM-assay as an alternative to rodent-xenograft-models.
Collapse
Affiliation(s)
- Jonas Eckrich
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.
| | - Philipp Kugler
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Christoph Raphael Buhr
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Benjamin Philipp Ernst
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Simone Mendler
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Jan Baumgart
- Translational Animal Research Center, University Medical Center Mainz, Hanns-Dieter-Hüsch-Weg 19, 55128, Mainz, Germany
| | - Juergen Brieger
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Nadine Wiesmann
- Department of Otorhinolaryngology, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany.,Department of Oral and Maxillofacial Surgery - Plastic Surgery, University Medical Center Mainz, Langenbeckstrasse 1, 55131, Mainz, Germany
| |
Collapse
|
34
|
Exploitation of the chick embryo chorioallantoic membrane (CAM) as a platform for anti-metastatic drug testing. Sci Rep 2020; 10:16876. [PMID: 33037240 PMCID: PMC7547099 DOI: 10.1038/s41598-020-73632-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022] Open
Abstract
The establishment of clinically relevant models for tumor metastasis and drug testing is a major challenge in cancer research. Here we report a physiologically relevant assay enabling quantitative analysis of metastatic capacity of tumor cells following implantation into the chorioallantoic membrane (CAM). Engraftment of as few as 103 non-small cell lung cancer (NSCLC) and prostate cancer (PCa) cell lines was sufficient for both primary tumor and metastasis formation. Standard 2D-imaging as well as 3D optical tomography imaging were used for the detection of fluorescent metastatic foci in the chick embryo. H2228- and H1975-initiated metastases were confirmed by genomic analysis. We quantified the inhibitory effect of docetaxel on LNCaP, and that of cisplatin on A549- and H1299-initiated metastatic growths.
The CAM assay also mimicked the sensitivity of ALK-rearranged H2228 and EGFR-mutated H1975 NSCLC cells to tyrosine kinase inhibitors crizotinib and gefitinib respectively, as well as sensitivity of LNCaP cells to androgen-dependent enzalutamide therapy. The assay was suggested to reconstitute the bone metastatic tropism of PCa cells. We show that the CAM chick embryo model may be a powerful preclinical platform for testing and targeting of the metastatic capacity of cancer cells.
Collapse
|
35
|
Patient-derived xenografts in surgical oncology: A short research review. Surgery 2020; 168:1021-1025. [PMID: 33010939 DOI: 10.1016/j.surg.2020.07.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 07/30/2020] [Indexed: 12/23/2022]
|
36
|
Luque‐González MA, Reis RL, Kundu SC, Caballero D. Human Microcirculation‐on‐Chip Models in Cancer Research: Key Integration of Lymphatic and Blood Vasculatures. ACTA ACUST UNITED AC 2020; 4:e2000045. [DOI: 10.1002/adbi.202000045] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Maria Angélica Luque‐González
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| | - Rui Luis Reis
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| | - Subhas Chandra Kundu
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| | - David Caballero
- 3B’s Research Group, I3Bs—Research Institute on Biomaterials Biodegradables and BiomimeticsUniversity of MinhoHeadquarters of the European Institute of Excellence on Tissue Engineering and Regenerative MedicineICVS/3B’s—PT Government Associate Laboratory AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra 4805‐017 Barco Braga/Guimarães Portugal
| |
Collapse
|
37
|
Ishihara M, Hu J, Zhang X, Choi Y, Wong A, Cano-Ruiz C, Zhao R, Tan P, Tso JL, Wu L. Comparing Metastatic Clear Cell Renal Cell Carcinoma Model Established in Mouse Kidney and on Chicken Chorioallantoic Membrane. J Vis Exp 2020. [PMID: 32091005 DOI: 10.3791/60314] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metastatic clear cell renal cell carcinoma (ccRCC) is the most common subtype of kidney cancer. Localized ccRCC has a favorable surgical outcome. However, one third of ccRCC patients will develop metastases to the lung, which is related to a very poor outcome for patients. Unfortunately, no therapy is available for this deadly stage, because the molecular mechanism of metastasis remains unknown. It has been known for 25 years that the loss of function of the von Hippel-Lindau (VHL) tumor suppressor gene is pathognomonic of ccRCC. However, no clinically relevant transgenic mouse model of ccRCC has been generated. The purpose of this protocol is to introduce and compare two newly established animal models for metastatic ccRCC. The first is renal implantation in the mouse model. In our laboratory, the CRISPR gene editing system was utilized to knock out the VHL gene in several RCC cell lines. Orthotopic implantation of heterogeneous ccRCC populations to the renal capsule created novel ccRCC models that develop robust lung metastases in immunocompetent mice. The second model is the chicken chorioallantoic membrane (CAM) system. In comparison to the mouse model, this model is more time, labor, and cost-efficient. This model also supported robust tumor formation and intravasation. Due to the short 10 day period of tumor growth in CAM, no overt metastasis was observed by immunohistochemistry (IHC) in the collected embryo tissues. However, when tumor growth was extended by two weeks in the hatched chicken, micrometastatic ccRCC lesions were observed by IHC in the lungs. These two novel preclinical models will be useful to further study the molecular mechanism behind metastasis, as well as to establish new, patient-derived xenografts (PDXs) toward the development of novel treatments for metastatic ccRCC.
Collapse
Affiliation(s)
- Moe Ishihara
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles
| | - Junhui Hu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles
| | - Xiaoyu Zhang
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles
| | | | - Anthony Wong
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Celine Cano-Ruiz
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles
| | - Rongwei Zhao
- School of Life Sciences, Beijing Normal University
| | - Ping Tan
- Department of Urology, West China Hospital, Sichuan University
| | - Jonathan L Tso
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles
| | - Lily Wu
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles; Department of Urology, David Geffen School of Medicine, University of California, Los Angeles;
| |
Collapse
|