1
|
Los DA, Leusenko AV. 50 years since the concept of homeoviscous adaptation. Biochimie 2025; 231:98-103. [PMID: 39706250 DOI: 10.1016/j.biochi.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
This mini review focuses on the phenomenon of homeoviscous adaptation (HVA). The concept, which dominated for decades, had a significant impact on membrane and lipid research. It includes the functional characterization of biological membranes and their domains, the role of lipids and fatty acids in cell metabolic control, and the characterization of fatty acid desaturases and their roles in membrane properties modulation. This hypothesis led to the discovery of a feed-back manner of desaturase expression and membrane-associated temperature sensors in bacteria.
Collapse
Affiliation(s)
- Dmitry A Los
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia.
| | - Anna V Leusenko
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya street 35, 127276, Moscow, Russia
| |
Collapse
|
2
|
Zhu T, Cheng X, Li C, Li Y, Pan C, Lu G. Decoding plant thermosensors: mechanism of temperature perception and stress adaption. FRONTIERS IN PLANT SCIENCE 2025; 16:1560204. [PMID: 40201778 PMCID: PMC11975936 DOI: 10.3389/fpls.2025.1560204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/03/2025] [Indexed: 04/10/2025]
Abstract
Global climate change, characterized by increased frequency and intensity of extreme temperature events, poses significant challenges to plant survival and crop productivity. While considerable research has elucidated plant responses to temperature stress, the molecular mechanisms, particularly those involved in temperature sensing, remain incompletely understood. Thermosensors in plants play a crucial role in translating temperature signals into cellular responses, initiating the downstream signaling cascades that govern adaptive processes. This review highlights recent advances in the identification and classification of plant thermosensors, exploring their physiological roles and the biochemical mechanisms by which they sense temperature changes. We also address the challenges in thermosensor discovery and discuss emerging strategies to uncover novel thermosensory mechanisms, with implications for improving plant resilience to temperature stress in the face of a rapidly changing climate.
Collapse
Affiliation(s)
- Tongdan Zhu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Bio-breeding Center, Zhejiang Seed Inductry Group Xinchuang Bio-breeding Co., Ltd., Hangzhou, China
| | - Xi Cheng
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Chengwen Li
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Ye Li
- Department of Agronomy, Heilongjiang Agricultural Engineering Vocational College, Harbin, China
| | - Changtian Pan
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou, China
| | - Gang Lu
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agricultural, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Li J, Wu M, Chen H, Liao W, Yao S, Wei Y, Wang H, Long Q, Hu X, Wang W, Wang G, Qiu L, Wang X. An integrated physiological indicator and transcriptomic analysis reveals the response of soybean buds to high-temperature stress. BMC PLANT BIOLOGY 2024; 24:1102. [PMID: 39563228 DOI: 10.1186/s12870-024-05798-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 11/07/2024] [Indexed: 11/21/2024]
Abstract
BACKGROUND Under global warming, high temperature (HT) has become a major meteorological factor affecting soybean production. To explore the candidate genes and regulatory mechanism of the soybean bud response to HT stress, previously identified as HT-tolerant ('Handou14'; HD14) and HT-sensitive ('Jiadou36'; JD36) were treated for 5 days in an artificial climate incubator either with HT (43 °C (day)/ 33 °C (night), 16 h light/8 h darkness) or the non-stress growth condition (25 °C, 16 h light/8 h darkness) as the control at the bud stage were used as experimental materials in this study. After HT treatment, changes in physiological indicators including hypocotyl length, enzyme activity and hormone content were detected; at the same time, the cotyledons, hypocotyls, and main roots were collected for transcriptome sequencing analysis. Analyzing the mechanisms of HT stress response in the bud stage of HD14 and JD36 at physiological and transcription levels. RESULTS Analysis of physiological indicator showed that the activities of superoxide dismutase (SOD) were significantly increased 47.4% and 41.2% in the cotyledon of HD14 and the main root of JD36, and the contents of peroxidase (POD) were significantly increased 61.5% and 125% in the hypocotyl of HD14 and JD36; the contents of malonaldehyde (MDA) were significantly increased 44.8% and 22.2% in the main root of HD14 and JD36 after HT treatment. The content of abscisic acid (ABA) were significantly increased 1.9 fold and 1.2 fold in the root of HD14 and JD36 in response to HT treatment, whereas the content of gibberellin (GA) were decreased 2.2 fold and 1.3 fold in the cotyledon and root, and increased 1.6 fold in the hypocotyl in HD14 (P < 0.05). Thus, higher SOD and POD activities, higher ABA content, and a smaller increase in MDA content may improve tolerance to HT stress. The HT-tolerant cultivar may have stronger GA signal transduction in the hypocotyl to combat the negative effects of HT. RNA-sequencing was performed to analyze the differential expression of genes in buds of the two cultivars under the HT treatment and control condition. In total, 3,633, 1,964, 9,934, and 3,036 differentially expressed genes (DEGs) were identified in the CH (control group of HD14) vs. TH (HT-treatment group of HD14), CJ (control group of JD36) vs. TJ (HT-treatment group of JD36), TJ vs. TH, and CJ vs. CH comparison groups, respectively. Bioinformatic analysis revealed that most DEGs were mainly involved in metabolic processes, catalytic activity, carbohydrate, energy transduction, and signaling pathways. The results of qRT-PCR validation (86.67%) and changes in physiological indicators were consistent with the RNA-sequencing data. Five DEGs were selected as candidate genes in the response to HT stress at the bud stage. CONCLUSION In summary, soybean cells are protected from oxidative damage by an increase in antioxidant enzyme activities and accumulation of hormone content under HT stress. Concomitantly, changes in the expression of crucial genes and signal transmission processes are induced, thus initiating adaptive and protective mechanisms. This study provides a theoretical basis for clarification of the physiological and molecular mechanisms in the response to HT stress of soybean bud.
Collapse
Affiliation(s)
- Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Meiyan Wu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Haoran Chen
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Liao
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Shu Yao
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Ying Wei
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Heng Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Qun Long
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoyu Hu
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Guoji Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China
| | - Lijuan Qiu
- Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Sciences, The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
4
|
Hu D, Yao Y, Lv Y, You J, Zhang Y, Lv Q, Li J, Hutin S, Xiong H, Zubieta C, Lai X, Xiong L. The OsSRO1c-OsDREB2B complex undergoes protein phase transition to enhance cold tolerance in rice. MOLECULAR PLANT 2024; 17:1520-1538. [PMID: 39169629 DOI: 10.1016/j.molp.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Cold stress is one of the major abiotic stress factors affecting rice growth and development, leading to significant yield loss in the context of global climate change. Exploring natural variants that confer cold resistance and the underlying molecular mechanism responsible for this is the major strategy to breed cold-tolerant rice varieties. Here, we show that natural variations of a SIMILAR to RCD ONE (SRO) gene, OsSRO1c, confer cold tolerance in rice at both seedling and booting stages. Our in vivo and in vitro experiments demonstrated that OsSRO1c possesses intrinsic liquid-liquid phase-separation ability and recruits OsDREB2B, an AP2/ERF transcription factor that functions as a positive regulator of cold stress, into its biomolecular condensates in the nucleus, resulting in elevated transcriptional activity of OsDREB2B. We found that the OsSRO1c-OsDREB2B complex directly responds to low temperature through dynamic phase transitions and regulates key cold-response genes, including COLD1. Furthermore, we showed that introgression of an elite haplotype of OsSRO1c into a cold-susceptible indica rice could significantly increase its cold resistance. Collectively, our work reveals a novel cold-tolerance regulatory module in rice and provides promising genetic targets for molecular breeding of cold-tolerant rice varieties.
Collapse
Affiliation(s)
- Dan Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yan Lv
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jun You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yu Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Qingya Lv
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Jiawei Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Stephanie Hutin
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 38000 Grenoble, France
| | - Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chloe Zubieta
- Laboratoire de Physiologie Cellulaire et Végétale, Université Grenoble-Alpes, CNRS, CEA, INRAE, IRIG-DBSCI, 38000 Grenoble, France
| | - Xuelei Lai
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
5
|
Zimmermann MJ, Jathar VD, Baskin TI. Thermomorphogenesis of the Arabidopsis thaliana Root: Flexible Cell Division, Constrained Elongation and the Role of Cryptochrome. PLANT & CELL PHYSIOLOGY 2024; 65:1434-1449. [PMID: 39030707 DOI: 10.1093/pcp/pcae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Understanding how plants respond to temperature is relevant for agriculture in a warming world. Responses to temperature in the shoot have been characterized more fully than those in the root. Previous work on thermomorphogenesis in roots established that for Arabidopsis thaliana (Columbia) seedlings grown continuously at a given temperature, the root meristem produces cells at the same rate at 15°C as at 25°C and the root's growth zone is the same length. To uncover the pathway(s) underlying this constancy, we screened 34 A. thaliana genotypes for parameters related to growth and division. No line failed to respond to temperature. Behavior was little affected by mutations in phytochrome or other genes that underly thermomorphogenesis in shoots. However, a mutant in cryptochrome 2 was disrupted substantially in both cell division and elongation, specifically at 15°C. Among the 34 lines, cell production rate varied extensively and was associated only weakly with root growth rate; in contrast, parameters relating to elongation were stable. Our data are consistent with models of root growth that invoke cell non-autonomous regulation for establishing boundaries between meristem, elongation zone and mature zone.
Collapse
Affiliation(s)
- Maura J Zimmermann
- Plant Biology Program, University of Massachusetts, Amherst, MA 01003, USA
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Vikram D Jathar
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| | - Tobias I Baskin
- Department of Biology, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
6
|
Zheng S, Zhao W, Liu Z, Geng Z, Li Q, Liu B, Li B, Bai J. Establishment and Maintenance of Heat-Stress Memory in Plants. Int J Mol Sci 2024; 25:8976. [PMID: 39201662 PMCID: PMC11354667 DOI: 10.3390/ijms25168976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/02/2024] Open
Abstract
Among the rich repertoire of strategies that allow plants to adapt to high-temperature stress is heat-stress memory. The mechanisms underlying the establishment and maintenance of heat-stress memory are poorly understood, although the chromatin opening state appears to be an important structural basis for maintaining heat-stress memory. The chromatin opening state is influenced by epigenetic modifications, making DNA and histone modifications important entry points for understanding heat-shock memory. Current research suggests that traditional heat-stress signaling pathway components might be involved in chromatin opening, thereby promoting the establishment of heat-stress memory in plants. In this review, we discuss the relationship between chromatin structure-based maintenance and the establishment of heat-stress memory. We also discuss the association between traditional heat-stress signals and epigenetic modifications. Finally, we discuss potential research ideas for exploring plant adaptation to high-temperature stress in the future.
Collapse
Affiliation(s)
- Shuzhi Zheng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Weishuang Zhao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Zimeng Liu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Ziyue Geng
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Qiang Li
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Binhui Liu
- Dryland Farming Institute of Hebei Academy of Agricultural and Forestry Science, Key Laboratory of Crop Drought Tolerance Research of Hebei Province, Hengshui 053000, China
| | - Bing Li
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Jiaoteng Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Basic Research Center of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
7
|
Volná A, Červeň J, Nezval J, Pech R, Špunda V. Bridging the Gap: From Photoperception to the Transcription Control of Genes Related to the Production of Phenolic Compounds. Int J Mol Sci 2024; 25:7066. [PMID: 39000174 PMCID: PMC11241081 DOI: 10.3390/ijms25137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant. Two environmental factors mainly affect the accumulation of phenolic compounds-light and temperature. Because it is known that light perception occurs via the specialized sensors (photoreceptors) we decided to combine the biophysical knowledge about light perception in plants with the molecular biology-based knowledge about the transcription control of specific genes to bridge the gap between them. Our review offers insights into the regulation of genes related to phenolic compound production, strengthens understanding of plant responses to environmental cues, and opens avenues for manipulation of the total content and profile of phenolic compounds with potential applications in horticulture and food production.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Jakub Nezval
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Radomír Pech
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Vladimír Špunda
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| |
Collapse
|
8
|
Li J, Song Y. Plant thermosensors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112025. [PMID: 38354752 DOI: 10.1016/j.plantsci.2024.112025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 01/02/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
Plants dynamically regulate their genes expression and physiological outputs to adapt to changing temperatures. The underlying molecular mechanisms have been extensively studied in diverse plants and in multiple dimensions. However, the question of exactly how temperature is detected at molecular level to transform the physical information into recognizable intracellular signals remains continues to be one of the undetermined occurrences in plant science. Recent studies have provided the physical and biochemical mechanistic breakthrough of how temperature changes can influence molecular thermodynamically stability, thus changing molecular structures, activities, interaction and signaling transduction. In this review, we focus on the thermosensing mechanisms of recognized and potential plant thermosensors, to describe the multi-level thermal input system in plants. We also consider the attributes of a thermosensor on the basis of thermal-triggered changes in function, structure, and physical parameters. This study thus provides a reference for discovering more plant thermosensors and elucidating plant thermal adaptive mechanisms.
Collapse
Affiliation(s)
- Jihong Li
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Yuan Song
- Key Laboratory of Cell Activities and Stress Adaptations, Ministry of Education, School of Life Sciences, Lanzhou University, Lanzhou, China; Gansu Province Key Laboratory of Gene Editing for Breeding, Lanzhou, China.
| |
Collapse
|
9
|
Kim JS, Kidokoro S, Yamaguchi-Shinozaki K, Shinozaki K. Regulatory networks in plant responses to drought and cold stress. PLANT PHYSIOLOGY 2024; 195:170-189. [PMID: 38514098 PMCID: PMC11060690 DOI: 10.1093/plphys/kiae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
Drought and cold represent distinct types of abiotic stress, each initiating unique primary signaling pathways in response to dehydration and temperature changes, respectively. However, a convergence at the gene regulatory level is observed where a common set of stress-responsive genes is activated to mitigate the impacts of both stresses. In this review, we explore these intricate regulatory networks, illustrating how plants coordinate distinct stress signals into a collective transcriptional strategy. We delve into the molecular mechanisms of stress perception, stress signaling, and the activation of gene regulatory pathways, with a focus on insights gained from model species. By elucidating both the shared and distinct aspects of plant responses to drought and cold, we provide insight into the adaptive strategies of plants, paving the way for the engineering of stress-resilient crop varieties that can withstand a changing climate.
Collapse
Affiliation(s)
- June-Sik Kim
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045Japan
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046Japan
| | - Satoshi Kidokoro
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, 226-8502Japan
| | - Kazuko Yamaguchi-Shinozaki
- Research Institute for Agriculture and Life Sciences, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku, Tokyo, 156-8502Japan
- Graduate School of Agriculture and Life Science, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032Japan
| | - Kazuo Shinozaki
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601Japan
| |
Collapse
|
10
|
Komatsu S, Uemura M. Special Issue "State-of-the-Art Molecular Plant Sciences in Japan". Int J Mol Sci 2024; 25:2365. [PMID: 38397042 PMCID: PMC10888678 DOI: 10.3390/ijms25042365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Food shortages are one of the most serious problems caused by global warming and population growth in this century [...].
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Environmental and Information Sciences, Fukui University of Technology, Fukui 910-0028, Japan
| | - Matsuo Uemura
- Faculty of Agriculture, Iwate University, Morioka 020-8550, Japan
| |
Collapse
|
11
|
Seth P, Sebastian J. Plants and global warming: challenges and strategies for a warming world. PLANT CELL REPORTS 2024; 43:27. [PMID: 38163826 DOI: 10.1007/s00299-023-03083-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 10/15/2023] [Indexed: 01/03/2024]
Abstract
KEY MESSAGE In this review, we made an attempt to create a holistic picture of plant response to a rising temperature environment and its impact by covering all aspects from temperature perception to thermotolerance. This comprehensive account describing the molecular mechanisms orchestrating these responses and potential mitigation strategies will be helpful for understanding the impact of global warming on plant life. Organisms need to constantly recalibrate development and physiology in response to changes in their environment. Climate change-associated global warming is amplifying the intensity and periodicity of these changes. Being sessile, plants are particularly vulnerable to variations happening around them. These changes can cause structural, metabolomic, and physiological perturbations, leading to alterations in the growth program and in extreme cases, plant death. In general, plants have a remarkable ability to respond to these challenges, supported by an elaborate mechanism to sense and respond to external changes. Once perceived, plants integrate these signals into the growth program so that their development and physiology can be modulated befittingly. This multifaceted signaling network, which helps plants to establish acclimation and survival responses enabled their extensive geographical distribution. Temperature is one of the key environmental variables that affect all aspects of plant life. Over the years, our knowledge of how plants perceive temperature and how they respond to heat stress has improved significantly. However, a comprehensive mechanistic understanding of the process still largely elusive. This review explores how an increase in the global surface temperature detrimentally affects plant survival and productivity and discusses current understanding of plant responses to high temperature (HT) and underlying mechanisms. We also highlighted potential resilience attributes that can be utilized to mitigate the impact of global warming.
Collapse
Affiliation(s)
- Pratyay Seth
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India
| | - Jose Sebastian
- Indian Institute of Science Education and Research, Berhampur (IISER Berhampur), Engineering School Road, Berhampur, 760010, Odisha, India.
| |
Collapse
|
12
|
Inada N. A Guide to Plant Intracellular Temperature Imaging using Fluorescent Thermometers. PLANT & CELL PHYSIOLOGY 2023; 64:7-18. [PMID: 36039974 DOI: 10.1093/pcp/pcac123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 07/06/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
All aspects of plant physiology are influenced by temperature. Changes in environmental temperature alter the temperatures of plant tissues and cells, which then affect various cellular activities, such as gene expression, protein stability and enzyme activities. In turn, changes in cellular activities, which are associated with either exothermic or endothermic reactions, can change the local temperature in cells and tissues. In the past 10 years, a number of fluorescent probes that detect temperature and enable intracellular temperature imaging have been reported. Intracellular temperature imaging has revealed that there is a temperature difference >1°C inside cells and that the treatment of cells with mitochondrial uncoupler or ionomycin can cause more than a 1°C intracellular temperature increase in mammalian cultured cells. Thermogenesis mechanisms in brown adipocytes have been revealed with the aid of intracellular temperature imaging. While there have been no reports on plant intracellular temperature imaging thus far, intracellular temperature imaging is expected to provide a new way to analyze the mechanisms underlying the various activities of plant cells. In this review, I will first summarize the recent progress in the development of fluorescent thermometers and their biological applications. I will then discuss the selection of fluorescent thermometers and experimental setup for the adaptation of intracellular temperature imaging to plant cells. Finally, possible applications of intracellular temperature imaging to investigate plant cell functions will be discussed.
Collapse
Affiliation(s)
- Noriko Inada
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599-8531 Japan
- School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai-shi, Osaka, 599-8531 Japan
| |
Collapse
|
13
|
Hirano S, Sasaki K, Osaki Y, Tahara K, Takahashi H, Takemiya A, Kodama Y. The localization of phototropin to the plasma membrane defines a cold-sensing compartment in Marchantia polymorpha. PNAS NEXUS 2022; 1:pgac030. [PMID: 36713324 PMCID: PMC9802274 DOI: 10.1093/pnasnexus/pgac030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/13/2022] [Accepted: 03/29/2022] [Indexed: 02/01/2023]
Abstract
Plant cells perceive cold temperatures and initiate cellular responses to protect themselves against cold stress, but which cellular compartment mediates cold sensing has been unknown. Chloroplasts change their position in response to cold to optimize photosynthesis in plants in a process triggered by the blue-light photoreceptor phototropin (phot), which thus acts as a cold-sensing molecule. However, phot in plant cells is present in multiple cellular compartments, including the plasma membrane (PM), cytosol, Golgi apparatus, and chloroplast periphery, making it unclear where phot perceives cold and activates this cold-avoidance response. Here, we produced genetically encoded and modified variants of phot that localize only to the cytosol or the PM and determined that only PM-associated phot-induced cold avoidance in the liverwort Marchantia polymorpha. These results indicate that the phot localized to the PM constitutes a cellular compartment for cold sensing in plants.
Collapse
Affiliation(s)
| | | | | | - Kyoka Tahara
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 753-8512 Yamaguchi, Japan
| | - Hitomi Takahashi
- Center for Bioscience Research and Education, Utsunomiya University, Tochigi 321-8505, Japan
| | - Atsushi Takemiya
- Department of Biology, Graduate School of Sciences and Technology for Innovation, Yamaguchi University, 753-8512 Yamaguchi, Japan
| | | |
Collapse
|