1
|
Wang F, Li Y, Pang Y, Hu J, Kang X, Qian C. Thidiazuron Enhances Strawberry Shoot Multiplication by Regulating Hormone Signal Transduction Pathways. Int J Mol Sci 2025; 26:4060. [PMID: 40362299 PMCID: PMC12071388 DOI: 10.3390/ijms26094060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/12/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Tissue culture-based rapid propagation is critical for genetic improvement and virus-free production of strawberries (Fragaria × ananassa). This study evaluated the optimal concentration of thidiazuron (TDZ) for shoot multiplication and explored the underlying molecular mechanisms. Strawberry explants were treated with TDZ at concentrations of 0, 0.025, 0.05, 0.1, and 0.4 mg·L-1 in vitro, and growth, physiological changes, and transcriptomic profiles were analyzed after four weeks. The results identified 0.05 mg·L-1 TDZ as the most effective concentration for shoot proliferation, yielding a significant increase in leaf number. However, TDZ application inhibited plant height and reduced chlorophyll, carotenoid, and soluble sugar contents. Physiological analyses revealed that TDZ decreased endogenous cytokinin levels while elevating auxin concentrations. Transcriptomic analysis showed that TDZ suppressed cytokinin biosynthesis and up-regulated cytokinin oxidase expression, thereby modulating hormone homeostasis. Additionally, TDZ enhanced the cytokinin signaling pathway, which is crucial for cell division and shoot initiation, and influenced auxin, gibberellin, and brassinosteroid pathways to regulate differentiation. These findings suggest that TDZ promotes strawberry shoot multiplication primarily through hormone signal transduction, providing insights for optimizing tissue culture protocols.
Collapse
Affiliation(s)
- Fang Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (F.W.); (Y.P.); (J.H.)
| | - Yali Li
- Institute of Remote Sensing and Digital Agriculture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Yadan Pang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (F.W.); (Y.P.); (J.H.)
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400712, China;
| | - Jiangtao Hu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China; (F.W.); (Y.P.); (J.H.)
| | - Xinna Kang
- Shijiazhuang Academy of Agriculture and Forestry Sciences, Shijiazhuang 050080, China;
| | - Chun Qian
- College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400712, China;
| |
Collapse
|
2
|
Tran LH, Ruszkowski M. ARR1 and AHP interactions in the multi-step phosphorelay system. FRONTIERS IN PLANT SCIENCE 2025; 16:1537021. [PMID: 40084109 PMCID: PMC11903765 DOI: 10.3389/fpls.2025.1537021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/07/2025] [Indexed: 03/16/2025]
Abstract
Plants use multi-step phosphorelay (MSP) systems in response to exogenous and endogenous stimuli. Cytokinin and ethylene are among the factors that engage MSP signaling cascades but examples independent of phytohormones also exist. The MSP signaling involves four consecutive phosphorylation events at: (i) the kinase domain of the sensory histidine kinase, (ii) the receiver domain of the latter protein, (iii) the histidine-containing phosphotransfer protein, and (iv) the response regulator. In Arabidopsis thaliana, there are eight canonical histidine kinases, five histidine-containing phosphotransfer proteins (AHPs), one pseudo AHP, and 23 response regulators (ARRs). This redundancy suggests complex interactions between signaling pathways, including those involved in phytohormone cross-talk. To bring new insights at the molecular level, we investigated the structural and biophysical characteristics of the AHP1/ARR1 complex. ARR1, a type-B ARR, contains the GARP domain for DNA binding, in addition to the canonical receiver domain that mediates AHP1 interaction. We compared the ARR1 affinities across all five active AHPs and found a modest, two-fold higher affinity for AHP1. This result suggests that while ARR1 shows a slight preference for AHP1, it can also interact with AHP2-5, which potentially makes ARR1 a central node in signaling and a cross-talk modulator. In addition, we discuss the oligomerization state of AHP and related proteins utilizing all available experimental data to conclude that free AHPs are most likely monomeric.
Collapse
Affiliation(s)
| | - Milosz Ruszkowski
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| |
Collapse
|
3
|
Jardim-Messeder D, de Souza-Vieira Y, Sachetto-Martins G. Dressed Up to the Nines: The Interplay of Phytohormones Signaling and Redox Metabolism During Plant Response to Drought. PLANTS (BASEL, SWITZERLAND) 2025; 14:208. [PMID: 39861561 PMCID: PMC11768152 DOI: 10.3390/plants14020208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/07/2025] [Accepted: 01/08/2025] [Indexed: 01/27/2025]
Abstract
Plants must effectively respond to various environmental stimuli to achieve optimal growth. This is especially relevant in the context of climate change, where drought emerges as a major factor globally impacting crops and limiting overall yield potential. Throughout evolution, plants have developed adaptative strategies for environmental stimuli, with plant hormones and reactive oxygen species (ROS) playing essential roles in their development. Hormonal signaling and the maintenance of ROS homeostasis are interconnected, playing indispensable roles in growth, development, and stress responses and orchestrating diverse molecular responses during environmental adversities. Nine principal classes of phytohormones have been categorized: auxins, brassinosteroids, cytokinins, and gibberellins primarily oversee developmental growth regulation, while abscisic acid, ethylene, jasmonic acid, salicylic acid, and strigolactones are the main orchestrators of environmental stress responses. Coordination between phytohormones and transcriptional regulation is crucial for effective plant responses, especially in drought stress. Understanding the interplay of ROS and phytohormones is pivotal for elucidating the molecular mechanisms involved in plant stress responses. This review provides an overview of the intricate relationship between ROS, redox metabolism, and the nine different phytohormones signaling in plants, shedding light on potential strategies for enhancing drought tolerance for sustainable crop production.
Collapse
Affiliation(s)
- Douglas Jardim-Messeder
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
- Programa de Biologia Molecular e Biotecnologia, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Ygor de Souza-Vieira
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| | - Gilberto Sachetto-Martins
- Departamento de Genética, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-902, Brazil;
| |
Collapse
|
4
|
Kang NY, Kim MJ, Jeong S, Moon SY, Kim JS, Jeon J, Lee B, Lee MR, Kim J. HIGH PLOIDY2-mediated SUMOylation of transcription factor ARR1 controls two-component signaling in Arabidopsis. THE PLANT CELL 2024; 36:3521-3542. [PMID: 38819329 PMCID: PMC11371144 DOI: 10.1093/plcell/koae164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/23/2024] [Accepted: 04/28/2024] [Indexed: 06/01/2024]
Abstract
Cytokinins regulate plant growth, development, and responses to environmental stresses such as cold via phosphorelay from cytokinin receptors to the ARABIDOPSIS RESPONSE REGULATORs (ARRs). However, the molecular mechanisms underlying the activation of type-B ARR transcriptional activity in Arabidopsis (Arabidopsis thaliana) remain unclear. Here, we show that the E3 SUMO ligase HIGH PLOIDY2 SUMOylates ARR1, a type-B ARR, at K236, triggering its activation. Cold- or cytokinin-induced phosphorylation of ARR1 at D89 is crucial for its interaction with HPY2. Lysine 236 is critical for ARR1's transactivation without compromising its DNA-binding ability, while D89 is crucial for ARR1's binding to target gene promoters. Cytokinin enhances ARR1's chromatin binding, but cold does not. ARR1 K236 plays a critical role in promoting histone H3 acetylation in response to both cytokinin and cold without affecting chromatin binding. The K236R mutation in ARR1 reduces target gene expression and alters cytokinin and cold response phenotypes. This study unveils a mechanism of ARR1 activation wherein phosphorylated ARR1 interacts with HPY2 and binds to chromatin in response to cytokinin. Cold triggers a phosphorelay targeting chromatin-bound ARR1. HPY2 then catalyzes ARR1 SUMOylation at K236, enhancing histone H3 acetylation and leading to transcriptional activation of ARR1 in response to both cold and cytokinin.
Collapse
Affiliation(s)
- Na Young Kang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Min-Jung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Seon Jeong
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Sun Young Moon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Jin Sun Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Jin Jeon
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Boyoung Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Mi Rha Lee
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Korea
- Kumho Life Science Laboratory, Chonnam National University, Buk-Gu, Gwangju 61186, Korea
| |
Collapse
|
5
|
Zhao J, Wang J, Liu J, Zhang P, Kudoyarova G, Liu CJ, Zhang K. Spatially distributed cytokinins: Metabolism, signaling, and transport. PLANT COMMUNICATIONS 2024; 5:100936. [PMID: 38689499 PMCID: PMC11287186 DOI: 10.1016/j.xplc.2024.100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/25/2024] [Accepted: 04/28/2024] [Indexed: 05/02/2024]
Abstract
Cytokinins are mobile phytohormones that regulate plant growth, development, and environmental adaptability. The major cytokinin species include isopentenyl adenine (iP), trans-zeatin (tZ), cis-zeatin (cZ), and dihydrozeatin (DZ). The spatial distributions of different cytokinin species in different organelles, cells, tissues, and organs are primarily shaped by biosynthesis via isopentenyltransferases (IPT), cytochrome P450 monooxygenase, and 5'-ribonucleotide phosphohydrolase and by conjugation or catabolism via glycosyltransferase or cytokinin oxidase/dehydrogenase. Cytokinins bind to histidine receptor kinases in the endoplasmic reticulum or plasma membrane and relay signals to response regulators in the nucleus via shuttle proteins known as histidine phosphotransfer proteins. The movements of cytokinins from sites of biosynthesis to sites of signal perception usually require long-distance, intercellular, and intracellular transport. In the past decade, ATP-binding cassette (ABC) transporters, purine permeases (PUP), AZA-GUANINE RESISTANT (AZG) transporters, equilibrative nucleoside transporters (ENT), and Sugars Will Eventually Be Exported transporters (SWEET) have been characterized as involved in cytokinin transport processes. This review begins by introducing the spatial distributions of various cytokinins and the subcellular localizations of the proteins involved in their metabolism and signaling. Highlights focus on an inventory of the characterized transporters involved in cytokinin compartmentalization, including long-distance, intercellular, and intracellular transport, and the regulation of the spatial distributions of cytokinins by environmental cues. Future directions for cytokinin research are also discussed.
Collapse
Affiliation(s)
- Jiangzhe Zhao
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jingqi Wang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Jie Liu
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Penghong Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China
| | - Guzel Kudoyarova
- Ufa Institute of Biology, Ufa Federal Research Center, RAS, Prospekt Oktyabrya 69, Ufa 450054, Russia
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY 11973, USA
| | - Kewei Zhang
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, College of Life Sciences, Zhejiang Normal University, Jinhua, Zhejiang 321004, P.R. China.
| |
Collapse
|
6
|
Fu Y, Ma L, Li J, Hou D, Zeng B, Zhang L, Liu C, Bi Q, Tan J, Yu X, Bi J, Luo L. Factors Influencing Seed Dormancy and Germination and Advances in Seed Priming Technology. PLANTS (BASEL, SWITZERLAND) 2024; 13:1319. [PMID: 38794390 PMCID: PMC11125191 DOI: 10.3390/plants13101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Seed dormancy and germination play pivotal roles in the agronomic traits of plants, and the degree of dormancy intuitively affects the yield and quality of crops in agricultural production. Seed priming is a pre-sowing seed treatment that enhances and accelerates germination, leading to improved seedling establishment. Seed priming technologies, which are designed to partially activate germination, while preventing full seed germination, have exerted a profound impact on agricultural production. Conventional seed priming relies on external priming agents, which often yield unstable results. What works for one variety might not be effective for another. Therefore, it is necessary to explore the internal factors within the metabolic pathways that influence seed physiology and germination. This review unveils the underlying mechanisms of seed metabolism and germination, the factors affecting seed dormancy and germination, as well as the current seed priming technologies that can result in stable and better germination.
Collapse
Affiliation(s)
- Yanfeng Fu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Ma
- Institute for Sustainable Horticulture, Kwantlen Polytechnic University, 20901 Langley Bypass, Langley, BC V3A 8G9, Canada;
| | - Juncai Li
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Danping Hou
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zeng
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Like Zhang
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Chunqing Liu
- National Agricultural Technology Extension Service Center, Room 622, Building 20, Maizidian Street, Chaoyang District, Beijing 100125, China; (B.Z.); (L.Z.); (C.L.)
| | - Qingyu Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinsong Tan
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xinqiao Yu
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Junguo Bi
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Luo
- Shanghai Agrobiological Gene Center, Shanghai 201106, China; (Y.F.); (X.Y.); (L.L.)
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Shanghai 201106, China; (J.L.); (D.H.); (Q.B.); (J.T.)
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
7
|
Argueso CT, Kieber JJ. Cytokinin: From autoclaved DNA to two-component signaling. THE PLANT CELL 2024; 36:1429-1450. [PMID: 38163638 PMCID: PMC11062471 DOI: 10.1093/plcell/koad327] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/25/2023] [Accepted: 11/03/2023] [Indexed: 01/03/2024]
Abstract
Since its first identification in the 1950s as a regulator of cell division, cytokinin has been linked to many physiological processes in plants, spanning growth and development and various responses to the environment. Studies from the last two and one-half decades have revealed the pathways underlying the biosynthesis and metabolism of cytokinin and have elucidated the mechanisms of its perception and signaling, which reflects an ancient signaling system evolved from two-component elements in bacteria. Mutants in the genes encoding elements involved in these processes have helped refine our understanding of cytokinin functions in plants. Further, recent advances have provided insight into the mechanisms of intracellular and long-distance cytokinin transport and the identification of several proteins that operate downstream of cytokinin signaling. Here, we review these processes through a historical lens, providing an overview of cytokinin metabolism, transport, signaling, and functions in higher plants.
Collapse
Affiliation(s)
- Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Zhou CM, Li JX, Zhang TQ, Xu ZG, Ma ML, Zhang P, Wang JW. The structure of B-ARR reveals the molecular basis of transcriptional activation by cytokinin. Proc Natl Acad Sci U S A 2024; 121:e2319335121. [PMID: 38198526 PMCID: PMC10801921 DOI: 10.1073/pnas.2319335121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 12/11/2023] [Indexed: 01/12/2024] Open
Abstract
The phytohormone cytokinin has various roles in plant development, including meristem maintenance, vascular differentiation, leaf senescence, and regeneration. Prior investigations have revealed that cytokinin acts via a phosphorelay similar to the two-component system by which bacteria sense and respond to external stimuli. The eventual targets of this phosphorelay are type-B ARABIDOPSIS RESPONSE REGULATORS (B-ARRs), containing the conserved N-terminal receiver domain (RD), middle DNA binding domain (DBD), and C-terminal transactivation domain. While it has been established for two decades that the phosphoryl transfer from a specific histidyl residue in ARABIDOPSIS HIS PHOSPHOTRANSFER PROTEINS (AHPs) to an aspartyl residue in the RD of B-ARRs results in a rapid transcriptional response to cytokinin, the underlying molecular basis remains unclear. In this work, we determine the crystal structures of the RD-DBD of ARR1 (ARR1RD-DBD) as well as the ARR1DBD-DNA complex from Arabidopsis. Analyses of the ARR1DBD-DNA complex have revealed the structural basis for sequence-specific recognition of the GAT trinucleotide by ARR1. In particular, comparing the ARR1RD-DBD and ARR1DBD-DNA structures reveals that unphosphorylated ARR1RD-DBD exists in a closed conformation with extensive contacts between the RD and DBD. In vitro and vivo functional assays have further suggested that phosphorylation of the RD weakens its interaction with DBD, subsequently permits the DNA binding capacity of DBD, and promotes the transcriptional activity of ARR1. Our findings thus provide mechanistic insights into phosphorelay activation of gene transcription in response to cytokinin.
Collapse
Affiliation(s)
- Chuan-Miao Zhou
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Jian-Xu Li
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences, Shanghai201602, China
| | - Tian-Qi Zhang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Zhou-Geng Xu
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Miao-Lian Ma
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| | - Jia-Wei Wang
- National Key Laboratory of Plant Molecular Genetics, Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
- New Cornerstone Science Laboratory, Shanghai200032, China
| |
Collapse
|
9
|
Chun Y, Fang J, Savelieva EM, Lomin SN, Shang J, Sun Y, Zhao J, Kumar A, Yuan S, Yao X, Liu CM, Arkhipov DV, Romanov GA, Li X. The cytokinin receptor OHK4/OsHK4 regulates inflorescence architecture in rice via an IDEAL PLANT ARCHITECTURE1/WEALTHY FARMER'S PANICLE-mediated positive feedback circuit. THE PLANT CELL 2023; 36:40-64. [PMID: 37811656 PMCID: PMC10734611 DOI: 10.1093/plcell/koad257] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/07/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023]
Abstract
Inflorescence architecture is important for rice (Oryza sativa) grain yield. The phytohormone cytokinin (CK) has been shown to regulate rice inflorescence development; however, the underlying mechanism mediated by CK perception is still unclear. Employing a forward genetic approach, we isolated an inactive variant of the CK receptor OHK4/OsHK4 gene named panicle length1, which shows decreased panicle size due to reduced inflorescence meristem (IM) activity. A 2-amino acid deletion in the long α-helix stalk of the sensory module of OHK4 impairs the homodimerization and ligand-binding capacity of the receptor, even though the residues do not touch the ligand-binding domain or the dimerization interface. This deletion impairs CK signaling that occurs through the type-B response regulator OsRR21, which acts downstream of OHK4 in controlling inflorescence size. Meanwhile, we found that IDEAL PLANT ARCHITECTURE1(IPA1)/WEALTHY FARMER'S PANICLE (WFP), encoding a positive regulator of IM development, acts downstream of CK signaling and is directly activated by OsRR21. Additionally, we revealed that IPA1/WFP directly binds to the OHK4 promoter and upregulates its expression through interactions with 2 TCP transcription factors, forming a positive feedback circuit. Altogether, we identified the OHK4-OsRR21-IPA1 regulatory module, providing important insights into the role of CK signaling in regulating rice inflorescence architecture.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Xueyong Li
- Author for correspondence: (X.L.), (G.A.R.)
| |
Collapse
|
10
|
Yao Y, Xiang D, Wu N, Wang Y, Chen Y, Yuan Y, Ye Y, Hu D, Zheng C, Yan Y, Lv Q, Li X, Chen G, Hu H, Xiong H, Peng S, Xiong L. Control of rice ratooning ability by a nucleoredoxin that inhibits histidine kinase dimerization to attenuate cytokinin signaling in axillary buds. MOLECULAR PLANT 2023; 16:1911-1926. [PMID: 37853691 DOI: 10.1016/j.molp.2023.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 09/24/2023] [Accepted: 10/15/2023] [Indexed: 10/20/2023]
Abstract
Rice ratooning, the fast outgrowth of dormant buds on stubble, is an important cropping practice in rice production. However, the low ratooning ability (RA) of most rice varieties restricts the application of this cost-efficient system, and the genetic basis of RA remains unknown. In this study, we dissected the genetic architecture of RA by a genome-wide association study in a natural rice population. Rice ratooning ability 3 (RRA3), encoding a hitherto not characterized nucleoredoxin involved in reduction of disulfide bonds, was identified as the causal gene of a major locus controlling RA. Overexpression of RRA3 in rice significantly accelerated leaf senescence and reduced RA, whereas knockout of RRA3 significantly delayed leaf senescence and increased RA and ratoon yield. We demonstrated that RRA3 interacts with Oryza sativa histidine kinase 4 (OHK4), a cytokinin receptor, and inhibits the dimerization of OHK4 through disulfide bond reduction. This inhibition ultimately led to decreased cytokinin signaling and reduced RA. In addition, variations in the RRA3 promoter were identified to be associated with RA. Introgression of a superior haplotype with weak expression of RRA3 into the elite rice variety Guichao 2 significantly increased RA and ratoon yield by 23.8%. Collectively, this study not only uncovers an undocumented regulatory mechanism of cytokinin signaling through de-dimerization of a histidine kinase receptor-but also provides an eximious gene with promising value for ratoon rice breeding.
Collapse
Affiliation(s)
- Yilong Yao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Denghao Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Nai Wu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yao Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ying Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chang Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Yan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Qingya Lv
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaokai Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Guoxing Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Haiyan Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Hu Y, Shani E. Cytokinin activity - transport and homeostasis at the whole plant, cell, and subcellular levels. THE NEW PHYTOLOGIST 2023. [PMID: 37243527 DOI: 10.1111/nph.19001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/25/2023] [Indexed: 05/29/2023]
Abstract
Cytokinins (CKs) are important plant hormones that regulate a variety of biological processes implicated in plant development and stress responses. Here, we summarize the most recent advances in discovering and characterizing the membrane transporters involved in long- and short-distance translocation of CKs and their significance in CK signal activity. We highlight the discovery of PUP7 and PUP21 tonoplast-localized transporters and propose potential mechanisms for CK subcellular homeostasis. Finally, we discuss the importance of subcellular hormone transport in light of the localization of histidine kinase receptors of CKs at the endoplasmic reticulum and plasma membrane.
Collapse
Affiliation(s)
- Yangjie Hu
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
12
|
Jameson PE. Zeatin: The 60th anniversary of its identification. PLANT PHYSIOLOGY 2023; 192:34-55. [PMID: 36789623 PMCID: PMC10152681 DOI: 10.1093/plphys/kiad094] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/06/2023] [Accepted: 02/08/2023] [Indexed: 05/03/2023]
Abstract
While various labs had shown cell division-inducing activity in a variety of plant extracts for over a decade, the identification of zeatin (Z) in 1964, the first known naturally occurring cytokinin, belongs to Letham and co-workers. Using extracts from maize (Zea mays), they were the first to obtain crystals of pure Z and in sufficient quantity for structural determination by MS, NMR, chromatography, and mixed melting-point analysis. This group also crystallized Z-9-riboside (ZR) from coconut (Cocos nucifera) milk. However, their chemical contributions go well beyond the identification of Z and ZR and include two unambiguous syntheses of trans-Z (to establish stereochemistry), the synthesis of 3H-cytokinins that facilitated metabolic studies, and the synthesis of deuterated internal standards for accurate mass spectral quantification. Letham and associates also unequivocally identified Z nucleotide, the 7-and 9-glucoside conjugates of Z, and the O-glucosides of Z, ZR, dihydro Z (DHZ) and DHZR as endogenous compounds and as metabolites of exogenous Z. Their contributions to the role of cytokinins in plant physiology and development were also substantial, especially the role of cytokinins moving in the xylem. These biological advances are described and briefly related to the genetic/molecular biological contributions of others that established that plants have an absolute requirement for cytokinin.
Collapse
Affiliation(s)
- Paula Elizabeth Jameson
- School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand
| |
Collapse
|
13
|
Wang R, Yu M, Xia J, Ren Z, Xing J, Li C, Xu Q, Cang J, Zhang D. Cold stress triggers freezing tolerance in wheat (Triticum aestivum L.) via hormone regulation and transcription of related genes. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:308-321. [PMID: 36385725 DOI: 10.1111/plb.13489] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Low temperatures limit the geographic distribution and yield of plants. Hormones play an important role in coordinating the growth and development of plants and their tolerance to low temperatures. However, the mechanisms by which hormones affect plant resistance to extreme cold stress in the natural environment are still unclear. In this study, two winter wheat varieties with different cold resistances, Dn1 and J22, were used to conduct targeted plant hormone metabolome analysis on the tillering nodes of winter wheat at 5 °C, -10 °C and -25 °C using an LC-ESI-MS/MS system. We screened 39 hormones from 88 plant hormone metabolites and constructed a partial regulatory network of auxin, jasmonic acid and cytokinin. GO analysis and enrichment of KEGG pathways in different metabolites showed that the 'plant hormone signal transduction' pathway was the most common. Our study showed that extreme low temperature increased the most levels of auxin, cytokinin and salicylic acid, and decreased levels of jasmonic acid and abscisic acid, and that levels of auxin, jasmonic acid and cytokinin in Dn1 were higher than those in J22. These changes in hormone levels were associated with changes in gene expression in synthesis, catabolism, transport and signal transduction pathways. These results differ from the previous hormone regulation mechanisms, which were mostly obtained at 4 °C. Our results provide a basis for further understanding the molecular mechanisms by which plant endogenous hormones regulate plant freezing stress tolerance.
Collapse
Affiliation(s)
- R Wang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - M Yu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Xia
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Z Ren
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Xing
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - C Li
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - Q Xu
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - J Cang
- College of Life Science, Northeast Agricultural University, Harbin, China
| | - D Zhang
- College of Life Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
14
|
Bíbová J, Kábrtová V, Večeřová V, Kučerová Z, Hudeček M, Plačková L, Novák O, Strnad M, Plíhal O. The Role of a Cytokinin Antagonist in the Progression of Clubroot Disease. Biomolecules 2023; 13:biom13020299. [PMID: 36830668 PMCID: PMC9953476 DOI: 10.3390/biom13020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Plasmodiophora brassicae is an obligate biotrophic pathogen causing clubroot disease in cruciferous plants. Infected plant organs are subject to profound morphological changes, the roots form characteristic galls, and the leaves are chlorotic and abscise. The process of gall formation is governed by timely changes in the levels of endogenous plant hormones that occur throughout the entire life cycle of the clubroot pathogen. The homeostasis of two plant hormones, cytokinin and auxin, appears to be crucial for club development. To investigate the role of cytokinin and auxin in gall formation, we used metabolomic and transcriptomic profiling of Arabidopsis thaliana infected with clubroot, focusing on the late stages of the disease, where symptoms were more pronounced. Loss-of-function mutants of three cytokinin receptors, AHK2, AHK3, and CRE1/AHK4, were employed to further study the homeostasis of cytokinin in response to disease progression; ahk double mutants developed characteristic symptoms of the disease, albeit with varying intensity. The most susceptible to clubroot disease was the ahk3 ahk4 double mutant, as revealed by measuring its photosynthetic performance. Quantification of phytohormone levels and pharmacological treatment with the cytokinin antagonist PI-55 showed significant changes in the levels of endogenous cytokinin and auxin, which was manifested by both enhanced and reduced development of disease symptoms in different genotypes.
Collapse
Affiliation(s)
- Jana Bíbová
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Veronika Kábrtová
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Veronika Večeřová
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Zuzana Kučerová
- Department of Biophysics, Faculty of Science, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Martin Hudeček
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
| | - Miroslav Strnad
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
- Correspondence: (M.S.); (O.P.)
| | - Ondřej Plíhal
- Laboratory of Growth Regulators, Faculty of Science, Institute of Experimental Botany of the Czech Academy of Sciences, Palacký University, Šlechtitelů 27, CZ-78371 Olomouc, Czech Republic
- Correspondence: (M.S.); (O.P.)
| |
Collapse
|
15
|
Wang J, Su H, Wu Z, Wang W, Zhou Y, Li M. Integrated Metabolites and Transcriptomics at Different Growth Stages Reveal Polysaccharide and Flavonoid Biosynthesis in Cynomorium songaricum. Int J Mol Sci 2022; 23:ijms231810675. [PMID: 36142587 PMCID: PMC9501575 DOI: 10.3390/ijms231810675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 11/24/2022] Open
Abstract
Cynomorium songaricum is a perennial parasitic herb, and its stem is widely used as a traditional Chinese medicine, which largely relies on bioactive compounds (e.g., polysaccharides, flavonoids, and triterpenes). To date, although the optimum harvest time of stems has been demonstrated at the unearthed stage (namely the early flowering stage, EFS), the accumulation mechanism of polysaccharides and flavonoids during growth stages is still limited. In this study, the physiological characteristics (stem fresh weight, contents of soluble sugar and flavonoids, and antioxidant capacity) at four different growth stages (germination stage (GS), vegetative growth stage (VGS), EFS, and flowering stage (FS)) were determined, transcriptomics were analyzed by illumina sequencing, and expression levels of key genes were validated by qRT-PCR at the GS, VGS, and EFS. The results show that the stem biomass, soluble sugar and total flavonoids contents, and antioxidant capacity peaked at EFS compared with GS, VGS, and FS. A total of 6098 and 13,023 differentially expressed genes (DEGs) were observed at VGS and EFS vs. GS, respectively, with 367 genes co-expressed. Based on their biological functions, 109 genes were directly involved in polysaccharide and flavonoid biosynthesis as well as growth and development. The expression levels of key genes involved in polysaccharides (e.g., GLCs, XTHs and PMEs), flavonoids (e.g., 4CLLs, CYPs and UGTs), growth and development (e.g., AC58, TCPs and AP1), hormones biosynthesis and signaling (e.g., YUC8, AIPT and ACO1), and transcription factors (e.g., MYBs, bHLHs and WRKYs) were in accordance with changes of physiological characteristics. The combinational analysis of metabolites with transcriptomics provides insight into the mechanism of polysaccharide and flavonoid biosynthesis in C. songaricum during growth stages.
Collapse
Affiliation(s)
- Jie Wang
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resource, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Hongyan Su
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhibo Wu
- Station of Alxa League Aviation Forest Guard, Alxa 750306, China
| | - Wenshu Wang
- Alxa Forestry and Grassland Research Institute, Alxa 750306, China
| | - Yubi Zhou
- Qinghai Key Laboratory of Qinghai-Tibet Plateau Biological Resource, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
- Correspondence: (Y.Z.); (M.L.)
| | - Mengfei Li
- State Key Laboratory of Aridland Crop Science, College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- Correspondence: (Y.Z.); (M.L.)
| |
Collapse
|
16
|
Partap M, Warghat AR, Kumar S. Cambial meristematic cell culture: a sustainable technology toward in vitro specialized metabolites production. Crit Rev Biotechnol 2022:1-19. [PMID: 35658789 DOI: 10.1080/07388551.2022.2055995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cambial meristematic cells (CMCs) culture has received a fair share of scientific and industrial attention among the trending topics of plant cell culture, especially their potential toward secondary metabolites production. However, the conventional plant cell culture is often not commercially feasible because of difficulties associated with culture dedifferentiated cells. Several reports have been published to culture CMCs and bypass the dedifferentiation process in plant cell culture. Numerous mitochondria, multiple vacuoles, genetic stability, self-renewal, higher biomass, and stable metabolites accumulation are the characteristics features of CMCs compared with dedifferentiated cells (DDCs) culture. The CMCs culture has a broader application to produce large-scale natural compounds for: pharmaceuticals, food, and cosmetic industries. Cutting-edge progress in plant cellular and molecular biology has allowed unprecedented insights into cambial stem cell culture and its fundamental processes. Therefore, regarding sustainability and natural compound production, cambial cell culture ranks among the most vital biotechnological interventions for industrial and economic perspectives. This review highlights the recent advances in plant stem cell culture and understands the cambial cells induction and culture mechanisms that affect the growth and natural compounds production.
Collapse
Affiliation(s)
- Mahinder Partap
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Ashish R Warghat
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sanjay Kumar
- Biotechnology Division, CSIR - Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
17
|
Li K, Tian H, Tahir MM, Li S, Chen S, Fan L, Liu Z, Mao J, Zhang D. Transcriptome analysis reveals that cytokinins inhibit adventitious root formation through the MdRR12-MdCRF8 module in apple rootstock. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111220. [PMID: 35351311 DOI: 10.1016/j.plantsci.2022.111220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 01/05/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Adventitious root (AR) formation is great significance for apple rootstock breeding. Transcriptome analyses were performed with cytokinins (CTKs) signal treatments to analyze the mechanism of AR formation. The results showed that 6-benzyadenine (6-BA) treatment inhibited AR formation. Histological analysis also observed that AR primordium cell formation was significantly suppressed by 6-BA treatment; the ratio of auxin/cytokinins exhibited the lowest values at 1 and 3 day (d) in the 6-BA treatment group. Furthermore, the differentially expressed genes were divided into five categories, including auxin, cytokinins, other hormones, cell cycle, and carbohydrate metabolism pathways. Due to the study of cytokinins signal treatment, it is important to understand the particular module mediated by the cytokinins pathway. The expression level of MdRR12 (a family member of B-type cytokinins-responsive factors) was significantly upregulated at 3 d by 6-BA treatment. Compared to the wild type, the 35S::MdRR12 transgenic tobaccos suppressed AR formation. The promoter sequence of MdCRF8 contains AGATT motif elements that respond to MdRR12. RNA-seq and RT-qPCR assays predicted cytokinins response factor (MdCRF8) to be a downstream gene regulated by MdRR12. The activity of the pro-MdCRF8-GUS promoter was obviously induced by 6-BA treatment and inhibited by lovastatin (Lov) treatment. Yeast one-hybrid, dual-luciferase reporter, and GUS coexpression assays revealed that MdRR12 could directly bind to the MdCRF8 promoter. Additionally, 35S::MdCRF8 transgenic tobaccos also blocked AR growth. Compared to the wild type, 35S::MdRR12 and 35S::MdCRF8 transgenic tobaccos enhanced sensitivity to cytokinins. Thus, we describe that MdRR12 and MdCRF8 function as integrators of cytokinins signals that affect cell cycle- and carbohydrate metabolism-related genes to regulate cell fate transition during AR formation. On the basis of these results, we concluded that the MdRR12-MdCRF8 module is involved in the negative regulation of AR formation in apple rootstock and can potentially be applied in agriculture using genetic approaches.
Collapse
Affiliation(s)
- Ke Li
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Huiyue Tian
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Muhammad Mobeen Tahir
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Shaohuan Li
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Shiyue Chen
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Li Fan
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Zhimin Liu
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Jiangping Mao
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| | - Dong Zhang
- College of Horticulture, Yangling Sub-Center of National Center for Apple Improvement, Northwest A&F University, Yangling 712100, Shannxi, P.R. China.
| |
Collapse
|
18
|
Cytokinin Perception in Ancient Plants beyond Angiospermae. Int J Mol Sci 2021; 22:ijms222313077. [PMID: 34884882 PMCID: PMC8657898 DOI: 10.3390/ijms222313077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Cytokinins (CKs) control many plant developmental processes and responses to environmental cues. Although the CK signaling is well understood, we are only beginning to decipher its evolution. Here, we investigated the CK perception apparatus in early-divergent plant species such as bryophyte Physcomitrium patens, lycophyte Selaginella moellendorffii, and gymnosperm Picea abies. Of the eight CHASE-domain containing histidine kinases (CHKs) examined, two CHKs, PpCHK3 and PpCHK4, did not bind CKs. All other CHK receptors showed high-affinity CK binding (KD of nM range), with a strong preference for isopentenyladenine over other CK nucleobases in the moss and for trans-zeatin over cis-zeatin in the gymnosperm. The pH dependences of CK binding for these six CHKs showed a wide range, which may indicate different subcellular localization of these receptors at either the plasma- or endoplasmic reticulum membrane. Thus, the properties of the whole CK perception apparatuses in early-divergent lineages were demonstrated. Data show that during land plant evolution there was a diversification of the ligand specificity of various CHKs, in particular, the rise in preference for trans-zeatin over cis-zeatin, which indicates a steadily increasing specialization of receptors to various CKs. Finally, this distinct preference of individual receptors to different CK versions culminated in vascular plants, especially angiosperms.
Collapse
|
19
|
Hormonal Regulation and Crosstalk of Auxin/Cytokinin Signaling Pathways in Potatoes In Vitro and in Relation to Vegetation or Tuberization Stages. Int J Mol Sci 2021; 22:ijms22158207. [PMID: 34360972 PMCID: PMC8347663 DOI: 10.3390/ijms22158207] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 12/11/2022] Open
Abstract
Auxins and cytokinins create versatile regulatory network controlling virtually all aspects of plant growth and development. These hormonal systems act in close contact, synergistically or antagonistically, determining plant phenotype, resistance and productivity. However, the current knowledge about molecular interactions of these systems is still scarce. Our study with potato plants aimed at deciphering potential interactions between auxin and cytokinin signaling pathways at the level of respective gene expression. Potato plants grown on sterile medium with 1.5% (vegetation) or 5% (tuberization) sucrose were treated for 1 h with auxin or cytokinin. Effects of these two hormones on expression profiles of genes belonging to main signaling pathways of auxin and cytokinin were quantified by RT-qPCR. As a result, several signaling genes were found to respond to auxin and/or cytokinin by up- or down-regulation. The observed effects were largely organ-specific and depended on sucrose content. Auxin strongly reduced cytokinin perception apparatus while reciprocal cytokinin effect was ambiguous and sucrose-dependent. In many cases, functional clustering of genes of the same family was observed. Promoters in some clusters are enriched with canonic hormone-response cis-elements supporting their direct sensitivity to hormones. Collectively, our data shed new light on the crosstalk between auxin- and cytokinin signaling pathways.
Collapse
|
20
|
Cytokinin-Controlled Gradient Distribution of Auxin in Arabidopsis Root Tip. Int J Mol Sci 2021; 22:ijms22083874. [PMID: 33918090 PMCID: PMC8069370 DOI: 10.3390/ijms22083874] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/04/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
The plant root is a dynamic system, which is able to respond promptly to external environmental stimuli by constantly adjusting its growth and development. A key component regulating this growth and development is the finely tuned cross-talk between the auxin and cytokinin phytohormones. The gradient distribution of auxin is not only important for the growth and development of roots, but also for root growth in various response. Recent studies have shed light on the molecular mechanisms of cytokinin-mediated regulation of local auxin biosynthesis/metabolism and redistribution in establishing active auxin gradients, resulting in cell division and differentiation in primary root tips. In this review, we focus our attention on the molecular mechanisms underlying the cytokinin-controlled auxin gradient in root tips.
Collapse
|
21
|
Ikeda Y, Zalabák D, Kubalová I, Králová M, Brenner WG, Aida M. Interpreting Cytokinin Action as Anterograde Signaling and Beyond. FRONTIERS IN PLANT SCIENCE 2021; 12:641257. [PMID: 33854521 PMCID: PMC8039514 DOI: 10.3389/fpls.2021.641257] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 03/08/2021] [Indexed: 05/22/2023]
Abstract
Among the major phytohormones, the cytokinin exhibits unique features for its ability to positively affect the developmental status of plastids. Even early on in its research, cytokinins were known to promote plastid differentiation and to reduce the loss of chlorophyll in detached leaves. Since the discovery of the components of cytokinin perception and primary signaling, the genes involved in photosynthesis and plastid differentiation have been identified as those directly targeted by type-B response regulators. Furthermore, cytokinins are known to modulate versatile cellular processes such as promoting the division and differentiation of cells and, in concert with auxin, initiating the de novo formation of shoot apical meristem (SAM) in tissue cultures. Yet how cytokinins precisely participate in such diverse cellular phenomena, and how the associated cellular processes are coordinated as a whole, remains unclear. A plausible presumption that would account for the coordinated gene expression is the tight and reciprocal communication between the nucleus and plastid. The fact that cytokinins affect plastid developmental status via gene expression in both the nucleus and plastid is interpreted here to suggest that cytokinin functions as an initiator of anterograde (nucleus-to-plastid) signaling. Based on this viewpoint, we first summarize the physiological relevance of cytokinins to the coordination of plastid differentiation with de novo shoot organogenesis in tissue culture systems. Next, the role of endogenous cytokinins in influencing plastid differentiation within the SAM of intact plants is discussed. Finally, a presumed plastid-derived signal in response to cytokinins for coupled nuclear gene expression is proposed.
Collapse
Affiliation(s)
- Yoshihisa Ikeda
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - David Zalabák
- Laboratory of Growth Regulators, Palacky University and Institute of Experimental Botany AS CR, Olomouc, Czechia
| | - Ivona Kubalová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Michaela Králová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Wolfram G. Brenner
- General and Applied Botany, Institute of Biology, Universität Leipzig, Leipzig, Germany
| | - Mitsuhiro Aida
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, Kumamoto, Japan
| |
Collapse
|
22
|
Qiao H, Zhang H, Wang Z, Shen Y. Fig fruit ripening is regulated by the interaction between ethylene and abscisic acid. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:553-569. [PMID: 33421307 DOI: 10.1111/jipb.13065] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Fleshy fruit ripening is typically regulated by ethylene in climacteric fruits and abscisic acid (ABA) in non-climacteric fruits. Common fig (Ficus carica) shows a dual-ripening mechanism, which is not fully understood. Here, we detected separate peaks of ethylene and ABA in fig fruits at the onset- and on-ripening stages, in conjunction with a sharp rise in glucose and fructose contents. In a newly-designed split-fruit system, exogenous ethylene failed to rescue fluridone-inhibited fruit ripening, whereas exogenous ABA rescued 2-amino-ethoxy-vinyl glycine (AVG)-inhibited fruit ripening. Transcriptome analysis revealed changes in the expression of genes key to both ABA and ethylene biosynthesis and perception during fig fruit ripening. At the de-greening stage, downregulation of FcACO2 or FcPYL8 retarded ripening, but downregulation of FcETR1/2 did not; unexpectedly, downregulation of FcAAO3 promoted ripening, but it inhibited ripening only before the de-greening stage. Furthermore, we detected an increase in ethylene emissions in the FcAAO3-RNAi ripening fruit and a decrease in ABA levels in the FcACO2-RNAi unripening fruit. Importantly, FcPYL8 can bind to ABA, suggesting that it functions as an ABA receptor. Our findings support the hypothesis that ethylene regulates the fig fruit ripening in an ABA-dependent manner. We propose a model for the role of the ABA-ethylene interaction in climacteric/non-climacteric processes.
Collapse
Affiliation(s)
- Han Qiao
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Han Zhang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhun Wang
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuanyue Shen
- Beijing Key Laboratory for Agricultural Application and New Technique, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
23
|
Frank M, Cortleven A, Novák O, Schmülling T. Root-derived trans-zeatin cytokinin protects Arabidopsis plants against photoperiod stress. PLANT, CELL & ENVIRONMENT 2020; 43:2637-2649. [PMID: 32716064 DOI: 10.1111/pce.13860] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/15/2020] [Indexed: 05/20/2023]
Abstract
Recently, a novel type of abiotic stress caused by a prolongation of the light period-coined photoperiod stress-has been described in Arabidopsis. During the night after the prolongation of the light period, stress and cell death marker genes are induced. The next day, strongly stressed plants display a reduced photosynthetic efficiency and leaf cells eventually enter programmed cell death. The phytohormone cytokinin (CK) acts as a negative regulator of this photoperiod stress syndrome. In this study, we show that Arabidopsis wild-type plants increase the CK concentration in response to photoperiod stress. Analysis of cytokinin synthesis and transport mutants revealed that root-derived trans-zeatin (tZ)-type CKs protect against photoperiod stress. The CK signalling proteins ARABIDOPSIS HISTIDINE PHOSPHOTRANSFER PROTEIN 2 (AHP2), AHP3 and AHP5 and transcription factors ARABIDOPSIS RESPONSE REGULATOR 2 (ARR2), ARR10 and ARR12 are required for the protective activity of CK. Analysis of higher order B-type arr mutants suggested that a complex regulatory circuit exists in which the loss of ARR10 or ARR12 can rescue the arr2 phenotype. Together the results revealed the role of root-derived CK acting in the shoot through the two-component signalling system to protect from the negative consequences of strong photoperiod stress.
Collapse
Affiliation(s)
- Manuel Frank
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Anne Cortleven
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| | - Ondřej Novák
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences (DCPS), Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
24
|
Burr CA, Sun J, Yamburenko MV, Willoughby A, Hodgens C, Boeshore SL, Elmore A, Atkinson J, Nimchuk ZL, Bishopp A, Schaller GE, Kieber JJ. The HK5 and HK6 cytokinin receptors mediate diverse developmental pathways in rice. Development 2020; 147:dev191734. [PMID: 33028608 PMCID: PMC7648598 DOI: 10.1242/dev.191734] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022]
Abstract
The phytohormone cytokinin regulates diverse aspects of plant growth and development. Our understanding of the metabolism and perception of cytokinin has made great strides in recent years, mostly from studies of the model dicot Arabidopsis Here, we employed a CRISPR/Cas9-based approach to disrupt a subset of cytokinin histidine kinase (HK) receptors in rice (Oryza sativa) in order to explore the role of cytokinin in a monocot species. In hk5 and hk6 single mutants, the root growth, leaf width, inflorescence architecture and/or floral development were affected. The double hk5 hk6 mutant showed more substantial defects, including severely reduced root and shoot growth, a smaller shoot apical meristem, and an enlarged root cap. Flowering was delayed in the hk5 hk6 mutant and the panicle was significantly reduced in size and infertile due to multiple defects in floral development. The hk5 hk6 mutant also exhibited a severely reduced cytokinin response, consistent with the developmental phenotypes arising from a defect in cytokinin signaling. These results indicate that HK5 and HK6 act as cytokinin receptors, with overlapping functions to regulate diverse aspects of rice growth and development.
Collapse
Affiliation(s)
- Christian A Burr
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jinjing Sun
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Andrew Willoughby
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Charles Hodgens
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | - Agustus Elmore
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Jonathan Atkinson
- School of Bioscience, University of Nottingham, Nottingham LE12 5RD, UK
| | - Zachary L Nimchuk
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Anthony Bishopp
- School of Bioscience, University of Nottingham, Nottingham LE12 5RD, UK
| | - G Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755
| | - Joseph J Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
25
|
Genome-Wide Characterization and Expression of Two-Component System Genes in Cytokinin-Regulated Gall Formation in Zizania latifolia. PLANTS 2020; 9:plants9111409. [PMID: 33105697 PMCID: PMC7690396 DOI: 10.3390/plants9111409] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 11/16/2022]
Abstract
The thickening of Zizania latifolia shoots, referred to as gall formation, depends on infection with the fungal endophyte Ustilago esculenta. The swollen and juicy shoots are a popular vegetable in Asia. A key role for cytokinin action in this process was postulated. Here, trans-zeatin stimulated swelling in fungi-infected Z. latifolia. A two-component system (TCS) linked cytokinin binding to receptors with transcriptional regulation in the nucleus and played important roles in diverse biological processes. We characterized 69 TCS genes encoding for 25 histidine kinase/histidine-kinase-like (HK(L)) (21 HKs and 4 HKLs), 8 histidine phosphotransfer proteins (HP) (5 authentic and 3 pseudo), and 36 response regulators (RR; 14 type A, 14 type B, 2 type C, and 6 pseudo) in the genome of Z. latifolia. These TCS genes have a close phylogenetic relationship with their rice counterparts. Nineteen duplicated TCS gene pairs were found and the ratio of nonsynonymous to synonymous mutations indicated that a strong purifying selection acted on these duplicated genes, leading to few mutations during evolution. Finally, ZlCHK1, ZlRRA5, ZIRRA9, ZlRRA10, ZlPRR1, and ZlPHYA expression was associated with gall formation. Among them, ARR5, ARR9, and ZlPHYA are quickly induced by trans-zeatin, suggesting a role for cytokinin signaling in shoot swelling of Z. latifolia.
Collapse
|
26
|
Bagdassarian KS, Brown CM, Jones ET, Etchells P. Connections in the cambium, receptors in the ring. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:96-103. [PMID: 32866742 DOI: 10.1016/j.pbi.2020.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 07/05/2020] [Accepted: 07/22/2020] [Indexed: 05/04/2023]
Abstract
In plants, pluripotent cells in meristems divide to provide cells for the formation of postembryonic tissues. The cambium is the meristem from which the vascular tissue is derived and is the main driver for secondary (radial) growth in dicots. Xylem and phloem are specified on opposing sides of the cambium, and tightly regulated cell divisions ensure their spatial separation. Peptide ligands, phytohormones, and their receptors are central to maintaining this patterning and regulating proliferation. Here, we describe recent advances in our understanding of how these signals are integrated to control vascular development and secondary growth.
Collapse
Affiliation(s)
| | - Catherine M Brown
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Ewan T Jones
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom
| | - Peter Etchells
- Department of Biosciences, Durham University, Durham, DH1 3LE, United Kingdom.
| |
Collapse
|
27
|
Lin J, Frank M, Reid D. No Home without Hormones: How Plant Hormones Control Legume Nodule Organogenesis. PLANT COMMUNICATIONS 2020; 1:100104. [PMID: 33367261 PMCID: PMC7747975 DOI: 10.1016/j.xplc.2020.100104] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 05/08/2023]
Abstract
The establishment of symbiotic nitrogen fixation requires the coordination of both nodule development and infection events. Despite the evolution of a variety of anatomical structures, nodule organs serve a common purpose in establishing a localized area that facilitates efficient nitrogen fixation. As in all plant developmental processes, the establishment of a new nodule organ is regulated by plant hormones. During nodule initiation, regulation of plant hormone signaling is one of the major targets of symbiotic signaling. We review the role of major developmental hormones in the initiation of the nodule organ and argue that the manipulation of plant hormones is a key requirement for engineering nitrogen fixation in non-legumes as the basis for improved food security and sustainability.
Collapse
Affiliation(s)
- Jieshun Lin
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Manuel Frank
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dugald Reid
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
- Corresponding author
| |
Collapse
|
28
|
Antoniadi I, Novák O, Gelová Z, Johnson A, Plíhal O, Simerský R, Mik V, Vain T, Mateo-Bonmatí E, Karady M, Pernisová M, Plačková L, Opassathian K, Hejátko J, Robert S, Friml J, Doležal K, Ljung K, Turnbull C. Cell-surface receptors enable perception of extracellular cytokinins. Nat Commun 2020; 11:4284. [PMID: 32855409 PMCID: PMC7453015 DOI: 10.1038/s41467-020-17700-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 07/14/2020] [Indexed: 11/22/2022] Open
Abstract
Cytokinins are mobile multifunctional plant hormones with roles in development and stress resilience. Although their Histidine Kinase receptors are substantially localised to the endoplasmic reticulum, cellular sites of cytokinin perception and importance of spatially heterogeneous cytokinin distribution continue to be debated. Here we show that cytokinin perception by plasma membrane receptors is an effective additional path for cytokinin response. Readout from a Two Component Signalling cytokinin-specific reporter (TCSn::GFP) closely matches intracellular cytokinin content in roots, yet we also find cytokinins in extracellular fluid, potentially enabling action at the cell surface. Cytokinins covalently linked to beads that could not pass the plasma membrane increased expression of both TCSn::GFP and Cytokinin Response Factors. Super-resolution microscopy of GFP-labelled receptors and diminished TCSn::GFP response to immobilised cytokinins in cytokinin receptor mutants, further indicate that receptors can function at the cell surface. We argue that dual intracellular and surface locations may augment flexibility of cytokinin responses.
Collapse
Affiliation(s)
- Ioanna Antoniadi
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Ondřej Novák
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Zuzana Gelová
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
- CEITEC-Central European Institute of Technology and NCBR, Faculty of Science, Masaryk University, CZ-62500, Brno, Czech Republic
| | - Alexander Johnson
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Ondřej Plíhal
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Radim Simerský
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Václav Mik
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Thomas Vain
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
- Chr. Hansen, 2630, Taastrup, Denmark
- Department of Plant and Environmental Sciences, Copenhagen University, 2630, Taastrup, Denmark
| | - Eduardo Mateo-Bonmatí
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Markéta Pernisová
- CEITEC-Central European Institute of Technology and NCBR, Faculty of Science, Masaryk University, CZ-62500, Brno, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | | | - Jan Hejátko
- CEITEC-Central European Institute of Technology and NCBR, Faculty of Science, Masaryk University, CZ-62500, Brno, Czech Republic
| | - Stéphanie Robert
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400, Klosterneuburg, Austria
| | - Karel Doležal
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science of Palacký University, CZ-78371, Olomouc, Czech Republic
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden.
| | - Colin Turnbull
- Department of Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
29
|
Wheeldon CD, Bennett T. There and back again: An evolutionary perspective on long-distance coordination of plant growth and development. Semin Cell Dev Biol 2020; 109:55-67. [PMID: 32576500 DOI: 10.1016/j.semcdb.2020.06.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/16/2020] [Indexed: 12/17/2022]
Abstract
Vascular plants, unlike bryophytes, have a strong root-shoot dichotomy in which the tissue systems are mutually interdependent; roots are completely dependent on shoots for photosynthetic sugars, and shoots are completely dependent on roots for water and mineral nutrients. Long-distance communication between shoot and root is therefore critical for the growth, development and survival of vascular plants, especially with regard to variable environmental conditions. However, this long-distance signalling does not appear an ancestral feature of land plants, and has likely arisen in vascular plants to service the radical alterations in body-plan seen in this taxon. In this review, we examine the defined hormonal root-to-shoot and shoot-to-root signalling pathways that coordinate the growth of vascular plants, with a particular view to understanding how these pathways may have evolved. We highlight the completely divergent roles of isopentenyl-adenine and trans-zeatin cytokinin species in long-distance signalling, and ask whether cytokinin can really be considered as a single class of hormones in the light of recent research. We also discuss the puzzlingly sparse evidence for auxin as a shoot-to-root signal, the evolutionary re-purposing of strigolactones and gibberellins as hormonal signals, and speculate on the possible role of sugars as long-distance signals. We conclude by discussing the 'design principles' of long-distance signalling in vascular plants.
Collapse
Affiliation(s)
- Cara D Wheeldon
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
30
|
Lomin SN, Savelieva EM, Arkhipov DV, Romanov GA. Evidences for Preferential Localization of Cytokinin Receptors of Potato in the Endoplasmic Reticulum. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2020. [DOI: 10.1134/s1990747820010079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
31
|
Hofmann A, Müller S, Drechsler T, Berleth M, Caesar K, Rohr L, Harter K, Groth G. High-Level Expression, Purification and Initial Characterization of Recombinant Arabidopsis Histidine Kinase AHK1. PLANTS 2020; 9:plants9030304. [PMID: 32121559 PMCID: PMC7154865 DOI: 10.3390/plants9030304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 01/16/2023]
Abstract
Plants employ a number of phosphorylation cascades in response to a wide range of environmental stimuli. Previous studies in Arabidopsis and yeast indicate that histidine kinase AHK1 is a positive regulator of drought and osmotic stress responses. Based on these studies AHK1 was proposed a plant osmosensor, although the molecular basis of plant osmosensing still remains unknown. To understand the molecular role and signaling mechanism of AHK1 in osmotic stress, we have expressed and purified full-length AHK1 from Arabidopsis in a bacterial host to allow for studies on the isolated transmembrane receptor. Purification of the recombinant protein solubilized from the host membranes was achieved in a single step by metal-affinity chromatography. Analysis of the purified AHK1 by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblotting show a single band indicating that the preparation is highly pure and devoid of contaminants or degradation products. In addition, gel filtration experiments indicate that the preparation is homogenous and monodisperse. Finally, CD-spectroscopy, phosphorylation activity, dimerization studies, and protein–protein interaction with plant phosphorylation targeting AHP2 demonstrate that the purified protein is functionally folded and acts as phospho-His or phospho-Asp phosphatase. Hence, the expression and purification of recombinant AHK1 reported here provide a basis for further detailed functional and structural studies of the receptor, which might help to understand plant osmosensing and osmosignaling on the molecular level.
Collapse
Affiliation(s)
- Alexander Hofmann
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf 40225, Germany; (A.H.); (S.M.); (M.B.)
| | - Sophia Müller
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf 40225, Germany; (A.H.); (S.M.); (M.B.)
| | - Thomas Drechsler
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen 72076, Germany; (T.D.); (K.C.); (L.R.); (K.H.)
| | - Mareike Berleth
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf 40225, Germany; (A.H.); (S.M.); (M.B.)
| | - Katharina Caesar
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen 72076, Germany; (T.D.); (K.C.); (L.R.); (K.H.)
| | - Leander Rohr
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen 72076, Germany; (T.D.); (K.C.); (L.R.); (K.H.)
| | - Klaus Harter
- Center for Plant Molecular Biology (ZMBP), Eberhard Karls Universität Tübingen, Tübingen 72076, Germany; (T.D.); (K.C.); (L.R.); (K.H.)
| | - Georg Groth
- Institute of Biochemical Plant Physiology, Heinrich Heine University, Düsseldorf 40225, Germany; (A.H.); (S.M.); (M.B.)
- Correspondence: ; Tel.: +49-211-811-2822
| |
Collapse
|
32
|
Cerbantez-Bueno VE, Zúñiga-Mayo VM, Reyes-Olalde JI, Lozano-Sotomayor P, Herrera-Ubaldo H, Marsch-Martinez N, de Folter S. Redundant and Non-redundant Functions of the AHK Cytokinin Receptors During Gynoecium Development. FRONTIERS IN PLANT SCIENCE 2020; 11:568277. [PMID: 33117412 PMCID: PMC7575793 DOI: 10.3389/fpls.2020.568277] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 09/17/2020] [Indexed: 05/17/2023]
Abstract
The phytohormone cytokinin is crucial for plant growth and development. The site of action of cytokinin in the plant is dependent on the expression of the cytokinin receptors. In Arabidopsis, there are three cytokinin receptors that present some overlap in expression pattern. Functional studies demonstrated that the receptors play highly redundant roles but also have specialized functions. Here, we focus on gynoecium development, which is the female reproductive part of the plant. Cytokinin signaling has been demonstrated to be important for reproductive development, positively affecting seed yield and fruit production. Most of these developmental processes are regulated by cytokinin during early gynoecium development. While some information is available, there is a gap in knowledge on cytokinin function and especially on the cytokinin receptors during early gynoecium development. Therefore, we studied the expression patterns and the role of the cytokinin receptors during gynoecium development. We found that the three receptors are expressed in the gynoecium and that they have redundant and specialized functions.
Collapse
Affiliation(s)
- Vincent E. Cerbantez-Bueno
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Victor M. Zúñiga-Mayo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - J. Irepan Reyes-Olalde
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Paulina Lozano-Sotomayor
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | - Humberto Herrera-Ubaldo
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
| | | | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-LANGEBIO), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Mexico
- *Correspondence: Stefan de Folter,
| |
Collapse
|
33
|
Shin J, Bae S, Seo PJ. De novo shoot organogenesis during plant regeneration. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:63-72. [PMID: 31504722 DOI: 10.1093/jxb/erz395] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 08/22/2019] [Indexed: 05/08/2023]
Abstract
Plants exhibit remarkable regeneration capacity, ensuring developmental plasticity. In vitro tissue culture techniques are based on plant regeneration ability and facilitate production of new organs and even the whole plant from explants. Plant somatic cells can be reprogrammed to form a pluripotent cell mass called the callus. A portion of pluripotent callus cells gives rise to a fertile shoot via de novo shoot organogenesis (DNSO). Here, we reconstitute the shoot regeneration process with four phases, namely pluripotency acquisition, shoot promeristem formation, establishment of the confined shoot progenitor, and shoot outgrowth. Additionally, other biological processes, including cell cycle progression and reactive oxygen species metabolism, which further contribute to successful completion of DNSO, are also summarized. Overall, this study highlights recent advances in the molecular and cellular events involved in DNSO, as well as the regulatory mechanisms behind key steps of DNSO.
Collapse
Affiliation(s)
- Jinwoo Shin
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Soonhyung Bae
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Pil Joon Seo
- Department of Chemistry, Seoul National University, Seoul, Republic of Korea
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
34
|
Jue D, Sang X, Liu L, Shu B, Wang Y, Liu C, Wang Y, Xie J, Shi S. Comprehensive analysis of the longan transcriptome reveals distinct regulatory programs during the floral transition. BMC Genomics 2019; 20:126. [PMID: 30744552 PMCID: PMC6371577 DOI: 10.1186/s12864-019-5461-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 01/17/2019] [Indexed: 12/18/2022] Open
Abstract
Background Longan (Dimocarpus longan Lour.) is an important fruit tree in the subtropical regions of Southeast Asia and Australia. Among the factors affecting D. longan fruit yield, the difficulty and instability of blossoming is one of the most challenging issues. Perpetual flowering (PF) is a crucial trait for fruit trees and is directly linked to production potential. Therefore, studying the molecular regulatory mechanism of longan PF traits is crucial for understanding and solving problems related to flowering. In this study, comparative transcriptome analysis was performed using two longan cultivars that display opposite flowering phenotypes during floral induction. Results We obtained 853.72 M clean reads comprising 125.08 Gb. After comparing these data with the longan genome, 27,266 known genes and 1913 new genes were detected. Significant differences in gene expression were observed between the two genotypes, with 6150 and 6202 differentially expressed genes (DEGs) for ‘SJ’ and ‘SX’, respectively. The transcriptional landscape of floral transition at the early stage was very different in these two longan genotypes with respect to key hormones, circadian rhythm, sugar metabolism, and transcription factors. Almost all flowering-related DEGs identified are involved in photoperiod and circadian clock pathways, such as CONSTANS-like (COL), two-component response regulator-like (APRRs), gigantea (GI), and early flowering (EFL). In addition, the leafy (LFY) gene, which is the central floral meristem identity gene, may inhibit PF formation in ‘SJ’. Conclusion This study provides a platform for understanding the molecular mechanisms responsible for changes between PF and seasonal flowering (SF) longan genotypes and may benefit studies on PF trait mechanisms of evergreen fruit trees. Electronic supplementary material The online version of this article (10.1186/s12864-019-5461-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Dengwei Jue
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China.,School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China
| | - Xuelian Sang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Liqin Liu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Bo Shu
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Yicheng Wang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Chengming Liu
- College of Horticulture, South China Agricultural University, Guangzhou, 510642, China
| | - Yi Wang
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China.
| | - Shengyou Shi
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, 524091, China. .,School of Advanced Agriculture and Bioengineering, Yangtze Normal University, Chongqing, 408100, China.
| |
Collapse
|
35
|
Chiatante D, Rost T, Bryant J, Scippa GS. Regulatory networks controlling the development of the root system and the formation of lateral roots: a comparative analysis of the roles of pericycle and vascular cambium. ANNALS OF BOTANY 2018; 122:697-710. [PMID: 29394314 PMCID: PMC6215048 DOI: 10.1093/aob/mcy003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/08/2018] [Indexed: 05/07/2023]
Abstract
Background The production of a new lateral root from parental root primary tissues has been investigated extensively, and the most important regulatory mechanisms are now well known. A first regulatory mechanism is based on the synthesis of small peptides which interact ectopically with membrane receptors to elicit a modulation of transcription factor target genes. A second mechanism involves a complex cross-talk between plant hormones. It is known that lateral roots are formed even in parental root portions characterized by the presence of secondary tissues, but there is not yet agreement about the putative tissue source providing the cells competent to become founder cells of a new root primordium. Scope We suggest models of possible regulatory mechanisms for inducing specific root vascular cambium (VC) stem cells to abandon their activity in the production of xylem and phloem elements and to start instead the construction of a new lateral root primordium. Considering the ontogenic nature of the VC, the models which we suggest are the result of a comparative review of mechanisms known to control the activity of stem cells in the root apical meristem, procambium and VC. Stem cells in the root meristems can inherit various competences to play different roles, and their fate could be decided in response to cross-talk between endogenous and exogenous signals. Conclusions We have found a high degree of relatedness among the regulatory mechanisms controlling the various root meristems. This fact suggests that competence to form new lateral roots can be inherited by some stem cells of the VC lineage. This kind of competence could be represented by a sensitivity of specific stem cells to factors such as those presented in our models.
Collapse
Affiliation(s)
- Donato Chiatante
- Dipartimento di Biotecnologie e Scienze della Vita, University of Insubria, Varese, Italy
| | - Thomas Rost
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA, USA
| | - John Bryant
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | | |
Collapse
|
36
|
Naruse M, Takahashi H, Kurata N, Ito Y. Cytokinin-induced expression of OSH1 in a shoot-regenerating rice callus. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:267-272. [PMID: 31819732 PMCID: PMC6879368 DOI: 10.5511/plantbiotechnology.18.0614a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/14/2018] [Indexed: 06/10/2023]
Abstract
The expression of a KNOX class 1 gene OSH1 is induced by cytokinin during regeneration of shoots from callus in Oryza sativa L. (rice). This cytokinin-induced expression was enhanced by overexpression of homologues of cytokinin-signalling phosphorelay genes such as a histidine kinase gene OHK3, a phosphotransmitter gene OHP2 and a response regulator gene ORR1 in cultured cells. Regionally overlapped expression of these genes and OSH1 was observed in shoot apex. These results suggest that these cytokinin-signalling genes are positive regulators of the expression of OSH1, and mediate the OSH expression upon shoot regeneration from callus in rice.
Collapse
Affiliation(s)
- Masashi Naruse
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Honami Takahashi
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| | - Nori Kurata
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Yukihiro Ito
- Graduate School of Agricultural Science, Tohoku University, 468-1 Aramaki Aza Aoba, Aoba-ku, Sendai 980-8572, Japan
| |
Collapse
|
37
|
Jiang K, Asami T. Chemical regulators of plant hormones and their applications in basic research and agriculture*. Biosci Biotechnol Biochem 2018; 82:1265-1300. [DOI: 10.1080/09168451.2018.1462693] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
ABSTRACT
Plant hormones are small molecules that play versatile roles in regulating plant growth, development, and responses to the environment. Classic methodologies, including genetics, analytic chemistry, biochemistry, and molecular biology, have contributed to the progress in plant hormone studies. In addition, chemical regulators of plant hormone functions have been important in such studies. Today, synthetic chemicals, including plant growth regulators, are used to study and manipulate biological systems, collectively referred to as chemical biology. Here, we summarize the available chemical regulators and their contributions to plant hormone studies. We also pose questions that remain to be addressed in plant hormone studies and that might be solved with the help of chemical regulators.
Collapse
Affiliation(s)
- Kai Jiang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
38
|
Janečková H, Husičková A, Ferretti U, Prčina M, Pilařová E, Plačková L, Pospíšil P, Doležal K, Špundová M. The interplay between cytokinins and light during senescence in detached Arabidopsis leaves. PLANT, CELL & ENVIRONMENT 2018; 41:1870-1885. [PMID: 29744884 DOI: 10.1111/pce.13329] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 05/06/2023]
Abstract
Light and cytokinins are known to be the key players in the regulation of plant senescence. In detached leaves, the retarding effect of light on senescence is well described; however, it is not clear to what extent is this effect connected with changes in endogenous cytokinin levels. We have performed a detailed analysis of changes in endogenous content of 29 cytokinin forms in detached leaves of Arabidopsis thaliana (wild-type and 3 cytokinin receptor double mutants). Leaves were kept under different light conditions, and changes in cytokinin content were correlated with changes in chlorophyll content, efficiency of photosystem II photochemistry, and lipid peroxidation. In leaves kept in darkness, we have observed decreased content of the most abundant cytokinin free bases and ribosides, but the content of cis-zeatin increased, which indicates the role of this cytokinin in the maintenance of basal leaf viability. Our findings underscore the importance of light conditions on the content of specific cytokinins, especially N6 -(Δ2 -isopentenyl)adenine. On the basis of our results, we present a scheme summarizing the contribution of the main active forms of cytokinins, cytokinin receptors, and light to senescence regulation. We conclude that light can compensate the disrupted cytokinin signalling in detached leaves.
Collapse
Affiliation(s)
- Helena Janečková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Alexandra Husičková
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Ursula Ferretti
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Maroš Prčina
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Eva Pilařová
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 78371, Olomouc, Czech Republic
| | - Lenka Plačková
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 78371, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Pavel Pospíšil
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Karel Doležal
- Laboratory of Growth Regulators, Faculty of Science, Palacký University & Institute of Experimental Botany AS CR, 78371, Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Chemical Biology and Genetics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| | - Martina Špundová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Biophysics, Faculty of Science, Palacký University, 78371, Olomouc, Czech Republic
| |
Collapse
|
39
|
Abstract
The phytohormone cytokinin plays diverse roles in plant development, influencing many agriculturally important processes, including growth, nutrient responses and the response to biotic and abiotic stresses. Cytokinin levels in plants are regulated by biosynthesis and inactivation pathways. Cytokinins are perceived by membrane-localized histidine-kinase receptors and are transduced through a His-Asp phosphorelay to activate a family of transcription factors in the nucleus. Here, and in the accompanying poster, we summarize the current understanding of cytokinin metabolism, transport and signaling, and discuss how this phytohormone regulates changes in gene expression to mediate its pleiotropic effects.
Collapse
Affiliation(s)
- Joseph J Kieber
- University of North Carolina, Biology Department, Chapel Hill, NC 27599-3280, USA
| | - G Eric Schaller
- Dartmouth College, Department of Biological Sciences, Hanover, NH 03755, USA
| |
Collapse
|
40
|
Pernisova M, Grochova M, Konecny T, Plackova L, Harustiakova D, Kakimoto T, Heisler MG, Novak O, Hejatko J. Cytokinin signalling regulates organ identity via AHK4 receptor in Arabidopsis. Development 2018; 145:dev.163907. [DOI: 10.1242/dev.163907] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 06/22/2018] [Indexed: 01/19/2023]
Abstract
Mutual interactions of the phytohormones cytokinins and auxin determine root or shoot identity during postembryonic de novo organogenesis in plants. However, our understanding to the role of hormonal metabolism and perception during early stages of cell fate reprograming is still elusive.
In the hypocotyl explant assay, auxin activated root formation while cytokinins mediated early loss of the root identity, primordia disorganization and initiation of shoot development. Exogenous but also endogenous cytokinins influenced the initiation of newly formed organs as well as the pace of organ developmental sequence. The process of de novo shoot apical meristem establishment was accompanied by accumulation of endogenous cytokinins, differential regulation of genes for individual cytokinin receptors, strong activation of AHK4-mediated signalling and induction of shoot-specific homeodomain regulator WUSCHEL. The latter associated with upregulation of isopentenyladenine-type cytokinins, revealing higher shoot-forming potential when compared with trans-zeatin. Moreover, AHK4-controlled cytokinin signalling negatively regulated root stem cell organizer WUSCHEL RELATED HOMEOBOX 5 in the root quiescent centre. We propose an important role of endogenous cytokinin biosynthesis and AHK4-mediated cytokinin signalling in the control of de novo induced organ identity.
Collapse
Affiliation(s)
- Marketa Pernisova
- CEITEC - Central European Institute of Technology and Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Martina Grochova
- CEITEC - Central European Institute of Technology and Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tomas Konecny
- CEITEC - Central European Institute of Technology and Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Lenka Plackova
- Laboratory of Growth Regulators, CRH, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Danka Harustiakova
- Institute of Biostatistics and Analyses, Faculty of Medicine and Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Tatsuo Kakimoto
- Department of Biological Science, Graduate School of Science, Osaka University, Osaka, Japan
| | | | - Ondrej Novak
- Laboratory of Growth Regulators, CRH, Institute of Experimental Botany AS CR and Faculty of Science of Palacký University, Olomouc, Czech Republic
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology and Functional Genomics and Proteomics, NCBR, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
41
|
Dowd CD, Chronis D, Radakovic ZS, Siddique S, Schmülling T, Werner T, Kakimoto T, Grundler FMW, Mitchum MG. Divergent expression of cytokinin biosynthesis, signaling and catabolism genes underlying differences in feeding sites induced by cyst and root-knot nematodes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:211-228. [PMID: 28746737 DOI: 10.1111/tpj.13647] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/15/2017] [Accepted: 07/21/2017] [Indexed: 05/22/2023]
Abstract
Cyst and root-knot nematodes are obligate parasites of economic importance with a remarkable ability to reprogram root cells into unique metabolically active feeding sites. Previous studies have suggested a role for cytokinin in feeding site formation induced by these two types of nematodes, but the mechanistic details have not yet been described. Using Arabidopsis as a host plant species, we conducted a comparative analysis of cytokinin genes in response to the beet cyst nematode (BCN), Heterodera schachtii, and the root-knot nematode (RKN), Meloidogyne incognita. We identified distinct differences in the expression of cytokinin biosynthesis, catabolism and signaling genes in response to infection by BCN and RKN, suggesting differential manipulation of the cytokinin pathway by these two nematode species. Furthermore, we evaluated Arabidopsis histidine kinase receptor mutant lines ahk2/3, ahk2/4 and ahk3/4 in response to RKN infection. Similar to our previous studies with BCN, these lines were significantly less susceptible to RKN without compromising nematode penetration, suggesting a requirement of cytokinin signaling in RKN feeding site formation. Moreover, an analysis of ahk double mutants using CycB1;1:GUS/ahk introgressed lines revealed contrasting differences in the cytokinin receptors mediating cell cycle activation in feeding sites induced by BCN and RKN.
Collapse
Affiliation(s)
- Carola D Dowd
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Demosthenis Chronis
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| | - Zoran S Radakovic
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Shahid Siddique
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Thomas Schmülling
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
| | - Tomáš Werner
- Institute of Biology/Applied Genetics, Dahlem Centre of Plant Sciences, Freie Universität Berlin, D-14195, Berlin, Germany
- Institute of Plant Sciences, Department of Plant Physiology, University of Graz, Schubertstraße 51, 8010, Graz, Austria
| | - Tatsuo Kakimoto
- Department of Biology, Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043, Japan
| | - Florian M W Grundler
- Rheinische Friedrich-Wilhelms-University of Bonn, INRES - Molecular Phytomedicine, Karlrobert-Kreiten-Straße 13, D-53115, Bonn, Germany
| | - Melissa G Mitchum
- Division of Plant Sciences and Bond Life Sciences Center, University of Missouri, Columbia, MO, 65211, USA
| |
Collapse
|
42
|
Edlund E, Novak O, Karady M, Ljung K, Jansson S. Contrasting patterns of cytokinins between years in senescing aspen leaves. PLANT, CELL & ENVIRONMENT 2017; 40:622-634. [PMID: 28042677 DOI: 10.1111/pce.12899] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 11/01/2016] [Accepted: 11/01/2016] [Indexed: 05/05/2023]
Abstract
Cytokinins are plant hormones that typically block or delay leaf senescence. We profiled 34 different cytokinins/cytokinin metabolites (including precursors, conjugates and degradation products) in leaves of a free-growing mature aspen (Populus tremula) before and after the initiation of autumnal senescence over three consecutive years. The levels and profiles of individual cytokinin species, or classes/groups, varied greatly between years, despite the fact that the onset of autumn senescence was at the same time each year, and senescence was not associated with depletion of either active or total cytokinin levels. Levels of aromatic cytokinins (topolins) were low and changed little over the autumn period. Diurnal variations and weather-dependent variations in cytokinin content were relatively limited. We also followed the expression patterns of all aspen genes implicated as having roles in cytokinin metabolism or signalling, but neither the pattern of regulation of any group of genes nor the expression of any particular gene supported the notion that decreased cytokinin signalling could explain the onset of senescence. Based on the results from this tree, we therefore suggest that cytokinin depletion is unlikely to explain the onset of autumn leaf senescence in aspen.
Collapse
Affiliation(s)
- Erik Edlund
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| | - Ondrej Novak
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany CAS and Faculty of Science, Palacký University, Šlechtitelů 27, Olomouc, CZ-78371, Czech Republic
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Stefan Jansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, 901 87, Sweden
| |
Collapse
|
43
|
Abstract
The history of auxin and cytokinin biology including the initial discoveries by father-son duo Charles Darwin and Francis Darwin (1880), and Gottlieb Haberlandt (1919) is a beautiful demonstration of unceasing continuity of research. Novel findings are integrated into existing hypotheses and models and deepen our understanding of biological principles. At the same time new questions are triggered and hand to hand with this new methodologies are developed to address these new challenges.
Collapse
Affiliation(s)
- Andrej Hurný
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Eva Benková
- Institute of Science and Technology, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
44
|
Klimeš P, Turek D, Mazura P, Gallová L, Spíchal L, Brzobohatý B. High Throughput Screening Method for Identifying Potential Agonists and Antagonists of Arabidopsis thaliana Cytokinin Receptor CRE1/AHK4. FRONTIERS IN PLANT SCIENCE 2017. [PMID: 28642766 PMCID: PMC5463364 DOI: 10.3389/fpls.2017.00947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The CRE1/AHK4 cytokinin receptor is an important component of plants' hormone signaling systems, and compounds that can alter its activity have potential utility for studying the receptor's functions and/or developing new plant growth regulators. A high throughput method was developed for screening compounds with agonist or antagonist properties toward the CRE1/AHK4 cytokinin receptor in a single experiment using the Nanodrop II liquid handling system and 384-well plates. Potential ligands are screened directly, using a reporter system in which receptor signaling activity triggers expression of β-galactosidase in Escherichia coli. This enzyme generates a fluorescent product from a non-fluorescent substrate, allowing the agonistic/antagonistic behavior of tested compounds to be assayed in relation to that of an internal standard (here the natural ligand, trans-zeatin). The method includes a robust control procedure to determine false positive or false negative effects of the tested compounds arising from their fluorescent or fluorescent-quenching properties. The presented method enables robust, automated screening of large libraries of compounds for ability to activate or inhibit the Arabidopsis thaliana cytokinin receptor CRE1/AHK4.
Collapse
Affiliation(s)
- Pavel Klimeš
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR v.v.i. and Central European Institute of Technology, Mendel University in BrnoBrno, Czechia
| | - Dušan Turek
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR v.v.i. and Central European Institute of Technology, Mendel University in BrnoBrno, Czechia
| | - Pavel Mazura
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR v.v.i. and Central European Institute of Technology, Mendel University in BrnoBrno, Czechia
- *Correspondence: Pavel Mazura,
| | - Lucia Gallová
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, OlomoucOlomouc, Czechia
| | - Lukáš Spíchal
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University, OlomoucOlomouc, Czechia
| | - Břetislav Brzobohatý
- Laboratory of Plant Molecular Biology, Institute of Biophysics AS CR v.v.i. and Central European Institute of Technology, Mendel University in BrnoBrno, Czechia
| |
Collapse
|
45
|
Ding W, Tong H, Zheng W, Ye J, Pan Z, Zhang B, Zhu S. Isolation, Characterization and Transcriptome Analysis of a Cytokinin Receptor Mutant Osckt1 in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:88. [PMID: 28197164 PMCID: PMC5281565 DOI: 10.3389/fpls.2017.00088] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/16/2017] [Indexed: 05/04/2023]
Abstract
Cytokinins play important roles in regulating plant development, including shoot and root meristems, leaf longevity, and grain yield. However, the in planta functions of rice cytokinin receptors have not been genetically characterized yet. Here we isolated a rice mutant, Osckt1, with enhanced tolerance to cytokinin treatment. Further analysis showed that Osckt1 was insensitive to aromatic cytokinins but responded normally to isoprenoid and phenylurea-type cytokinins. Map-based cloning revealed that the mutation occurred in a putative cytokinin receptor gene, histidine kinase 6 (OsHK6). OsCKT1 was found to be expressed in various tissues throughout the plant and the protein was located in the endoplasmic reticulum. In addition, whole-genome gene expression profiling analysis showed that OsCKT1 was involved in cytokinin regulation of a number of biological processes, including secondary metabolism, sucrose and starch metabolism, chlorophyll synthesis, and photosynthesis. Our results demonstrate that OsCKT1 plays important roles in cytokinin perception and control of root development in rice.
Collapse
Affiliation(s)
- Wona Ding
- College of Science and Technology, Ningbo UniversityNingbo, China
| | - Huishan Tong
- School of Marine Sciences, Ningbo UniversityNingbo, China
| | - Wenjuan Zheng
- College of Science and Technology, Ningbo UniversityNingbo, China
| | - Jing Ye
- College of Science and Technology, Ningbo UniversityNingbo, China
| | - Zhichong Pan
- College of Science and Technology, Ningbo UniversityNingbo, China
| | - Botao Zhang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of SciencesNingbo, China
- *Correspondence: Botao Zhang, Shihua Zhu,
| | - Shihua Zhu
- College of Science and Technology, Ningbo UniversityNingbo, China
- *Correspondence: Botao Zhang, Shihua Zhu,
| |
Collapse
|
46
|
Raines T, Blakley IC, Tsai YC, Worthen JM, Franco-Zorrilla JM, Solano R, Schaller GE, Loraine AE, Kieber JJ. Characterization of the cytokinin-responsive transcriptome in rice. BMC PLANT BIOLOGY 2016; 16:260. [PMID: 27931185 PMCID: PMC5146874 DOI: 10.1186/s12870-016-0932-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2016] [Accepted: 10/25/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Cytokinin activates transcriptional cascades important for development and the responses to biotic and abiotic stresses. Most of what is known regarding cytokinin-regulated gene expression comes from studies of the dicotyledonous plant Arabidopsis thaliana. To expand the understanding of the cytokinin-regulated transcriptome, we employed RNA-Seq to analyze gene expression in response to cytokinin in roots and shoots of the monocotyledonous plant rice. RESULTS We identified over 4,600 and approximately 2,400 genes differentially expressed in response to cytokinin in roots and shoots respectively. There were some similarities in the sets of cytokinin-regulated genes identified in rice and Arabidopsis, including an up-regulation of genes that act to reduce cytokinin function. Consistent with this, we found that the preferred DNA-binding motif of a rice type-B response regulator is similar to those from Arabidopsis. Analysis of the genes regulated by cytokinin in rice revealed a large number of transcription factors, receptor-like kinases, and genes involved in protein degradation, as well as genes involved in development and the response to biotic stress. Consistent with the over-representation of genes involved in biotic stress, there is a substantial overlap in the genes regulated by cytokinin and those differentially expressed in response to pathogen infection, suggesting that cytokinin plays an integral role in the transcriptional response to pathogens in rice, including the induction of a large number of WRKY transcription factors. CONCLUSIONS These results begin to unravel the complex gene regulation after cytokinin perception in a crop of agricultural importance and provide insight into the processes and responses modulated by cytokinin in monocots.
Collapse
Affiliation(s)
- Tracy Raines
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280 USA
- Present address: AgBiome, Inc., 104 TW Alexander Drive, Bldg 18, Research Triangle Park, NC 27713 USA
| | - Ivory C. Blakley
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Yu-Chang Tsai
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280 USA
- Present address: Department of Agronomy, National Taiwan University, Taipei, 10617 Taiwan
| | | | - José Manuel Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología (CNB)-Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain
| | - Roberto Solano
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB)-Consejo Superior de Investigaciones Científicas (CSIC), Darwin 3, 28049 Madrid, Spain
| | - G. Eric Schaller
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 USA
| | - Ann E. Loraine
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, North Carolina Research Campus, Kannapolis, NC 28081 USA
| | - Joseph J. Kieber
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280 USA
| |
Collapse
|
47
|
Pernisova M, Prat T, Grones P, Harustiakova D, Matonohova M, Spichal L, Nodzynski T, Friml J, Hejatko J. Cytokinins influence root gravitropism via differential regulation of auxin transporter expression and localization in Arabidopsis. THE NEW PHYTOLOGIST 2016; 212:497-509. [PMID: 27322763 DOI: 10.1111/nph.14049] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/05/2016] [Indexed: 05/06/2023]
Abstract
Redirection of intercellular auxin fluxes via relocalization of the PIN-FORMED 3 (PIN3) and PIN7 auxin efflux carriers has been suggested to be necessary for the root gravitropic response. Cytokinins have also been proposed to play a role in controlling root gravitropism, but conclusive evidence is lacking. We present a detailed study of the dynamics of root bending early after gravistimulation, which revealed a delayed gravitropic response in transgenic lines with depleted endogenous cytokinins (Pro35S:AtCKX) and cytokinin signaling mutants. Pro35S:AtCKX lines, as well as a cytokinin receptor mutant ahk3, showed aberrations in the auxin response distribution in columella cells consistent with defects in the auxin transport machinery. Using in vivo real-time imaging of PIN3-GFP and PIN7-GFP in AtCKX3 overexpression and ahk3 backgrounds, we observed wild-type-like relocalization of PIN proteins in the columella early after gravistimulation, with gravity-induced relocalization of PIN7 faster than that of PIN3. Nonetheless, the cellular distribution of PIN3 and PIN7 and expression of PIN7 and the auxin influx carrier AUX1 was affected in AtCKX overexpression lines. Based on the retained cytokinin sensitivity in pin3 pin4 pin7 mutant, we propose the AUX1-mediated auxin transport rather than columella-located PIN proteins as a target of endogenous cytokinins in the control of root gravitropism.
Collapse
Affiliation(s)
- Marketa Pernisova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Tomas Prat
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Peter Grones
- Institute of Science and Technology (IST), Klosterneuburg, AT-3400, Austria
| | - Danka Harustiakova
- Institute of Biostatistics and Analyses, Faculty of Medicine and Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Martina Matonohova
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Lukas Spichal
- Department of Chemical Biology and Genetics, Centre of the Region Hana for Biotechnological and Agricultural Research, Faculty of Science, Palacky University, Olomouc, CZ-78371, Czech Republic
| | - Tomasz Nodzynski
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic
| | - Jiri Friml
- Institute of Science and Technology (IST), Klosterneuburg, AT-3400, Austria
| | - Jan Hejatko
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, CZ-62500, Czech Republic.
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, CZ-62500, Czech Republic.
| |
Collapse
|
48
|
Roy A, Sahoo D, Tripathy BC. Light-hormone interaction in the red-light-induced suppression of photomorphogenesis in rice seedlings. PROTOPLASMA 2016; 253:393-402. [PMID: 25902895 DOI: 10.1007/s00709-015-0818-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2014] [Accepted: 04/07/2015] [Indexed: 06/04/2023]
Abstract
Red light perceived by the shoot bottom suppresses photomorphogenesis in rice seedlings mediated by phytochrome A. Shoots of these seedlings grown in red light having their shoot bottom exposed were deficient in chlorophyll and accumulated high concentration of trans-zeatin riboside. However, reduced presence of isopentynyl adenosine, dihydrozeatin riboside was observed in shoots of red-light-grown non-green seedlings in comparison to green seedling. The message abundance of cytokinin receptor (OsHK5), transporters (OsENT1, OsENT2), and response regulators (OsRR4, OsRR10) was downregulated in these red-light-grown non-green seedlings. Attenuation of greening process was reversed by application of exogenous cytokinin analogue, benzyladenine, or supplementing red light with blue light. In the same vein, the suppression of gene expression of cytokinin receptor, transporters, and type-A response regulators was reversed in red-light-grown seedlings treated with benzyladenine suggesting that the disarrayed cytokinin (CK) signaling cascade is responsible for non-greening of seedlings grown in red light. The reversal of red-light-induced suppression of photomorphogenesis by blue light and benzyladenine demonstrates the interaction of light and cytokinin signaling cascades in the regulation of photomorphogenesis. Partial reversal of greening process by exogenous application of benzyladenine suggests, apart from CKs perception, transportation and responsiveness, other factors are also involved in modulation of suppression of photomorphogenesis by red light.
Collapse
Affiliation(s)
- Ansuman Roy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | | | - Baishnab C Tripathy
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
49
|
Shanks CM, Rice JH, Zubo Y, Schaller GE, Hewezi T, Kieber JJ. The Role of Cytokinin During Infection of Arabidopsis thaliana by the Cyst Nematode Heterodera schachtii. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:57-68. [PMID: 26479273 DOI: 10.1094/mpmi-07-15-0156-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Plant-parasitic cyst nematodes induce the formation of hypermetabolic feeding sites, termed syncytia, as their sole source of nutrients. The formation of the syncytium is orchestrated by the nematode, in part, by modulation of phytohormone responses, including cytokinin. In response to infection by the nematode Heterodera schachtii, cytokinin signaling is transiently induced at the site of infection and in the developing syncytium. Arabidopsis lines with reduced cytokinin sensitivity show reduced susceptibility to nematode infection, indicating that cytokinin signaling is required for optimal nematode development. Furthermore, lines with increased cytokinin sensitivity also exhibit reduced nematode susceptibility. To ascertain why cytokinin hypersensitivity reduces nematode parasitism, we examined the transcriptomes in wild type and a cytokinin-hypersensitive type-A arr Arabidopsis mutant in response to H. schachtii infection. Genes involved in the response to biotic stress and defense response were elevated in the type-A arr mutant in the absence of nematodes and were hyperinduced following H. schachtii infection, which suggests that the Arabidopsis type-A arr mutants impede nematode development because they are primed to respond to pathogen infection. These results suggest that cytokinin signaling is required for optimal H. schachtii parasitism of Arabidopsis but that elevated cytokinin signaling triggers a heightened immune response to nematode infection.
Collapse
Affiliation(s)
- Carly M Shanks
- 1 Department of Biology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| | - J Hollis Rice
- 2 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Yan Zubo
- 3 Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, U.S.A
| | - G Eric Schaller
- 3 Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, U.S.A
| | - Tarek Hewezi
- 2 Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Joseph J Kieber
- 1 Department of Biology, University of North Carolina, Chapel Hill, NC 27599, U.S.A
| |
Collapse
|
50
|
de Vries J, Fischer AM, Roettger M, Rommel S, Schluepmann H, Bräutigam A, Carlsbecker A, Gould SB. Cytokinin-induced promotion of root meristem size in the fern Azolla supports a shoot-like origin of euphyllophyte roots. THE NEW PHYTOLOGIST 2016; 209:705-20. [PMID: 26358624 PMCID: PMC5049668 DOI: 10.1111/nph.13630] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 08/04/2015] [Indexed: 05/10/2023]
Abstract
The phytohormones cytokinin and auxin orchestrate the root meristem development in angiosperms by determining embryonic bipolarity. Ferns, having the most basal euphyllophyte root, form neither bipolar embryos nor permanent embryonic primary roots but rather an adventitious root system. This raises the questions of how auxin and cytokinin govern fern root system architecture and whether this can tell us something about the origin of that root. Using Azolla filiculoides, we characterized the influence of IAA and zeatin on adventitious fern root meristems and vasculature by Nomarski microscopy. Simultaneously, RNAseq analyses, yielding 36,091 contigs, were used to uncover how the phytohormones affect root tip gene expression. We show that auxin restricts Azolla root meristem development, while cytokinin promotes it; it is the opposite effect of what is observed in Arabidopsis. Global gene expression profiling uncovered 145 genes significantly regulated by cytokinin or auxin, including cell wall modulators, cell division regulators and lateral root formation coordinators. Our data illuminate both evolution and development of fern roots. Promotion of meristem size through cytokinin supports the idea that root meristems of euphyllophytes evolved from shoot meristems. The foundation of these roots was laid in a postembryonically branching shoot system.
Collapse
Affiliation(s)
- Jan de Vries
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Angela Melanie Fischer
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Mayo Roettger
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Sophie Rommel
- Population GeneticsHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Henriette Schluepmann
- Molecular Plant PhysiologyUtrecht UniversityPadualaan 83584CH Utrechtthe Netherlands
| | - Andrea Bräutigam
- Plant BiochemistryHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| | - Annelie Carlsbecker
- Department of Organismal Biology, Physiological BotanyUppsala BioCenterLinnean Centre for Plant BiologyUppsala UniversityUlls väg 24ESE‐756 51UppsalaSweden
| | - Sven Bernhard Gould
- Molecular EvolutionHeinrich‐Heine‐University DüsseldorfUniversitätsstr. 140225DüsseldorfGermany
| |
Collapse
|