1
|
Zheng QX, Luo JY, Wang QH, Chen HH, Jiang JG. Molecular insights into salt tolerance in Dunaliella tertiolecta involving two betaine aldehyde dehydrogenases. World J Microbiol Biotechnol 2024; 41:8. [PMID: 39690290 DOI: 10.1007/s11274-024-04217-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Understanding salt tolerance mechanisms is crucial for addressing the global challenge of soil salinization and advancing sustainable agricultural practices. Dunaliella tertiolecta, thriving in up to 4.5 M NaCl, is a model for studying salt tolerance mechanisms. Two betaine aldehyde dehydrogenase (BADH) genes were identified in D. tertiolecta, namely DtBADH1 and DtBADH2. The phylogenetic analysis revealed that DtBADH1 had similarity to Pseudomonas aeruginosa BADH, while DtBADH2 has high homology to aldehyde dehydrogenase from Chlorella sorokiniana. The 3D models of DtBADH1 and DtBADH2 docking with betaine aldehyde were performed to further validate their binding site, interactions binding the protein and its substrate as well as the conserved amino acids responsible for enzyme activity. We also conducted RNA interference of DtBADH1 and DtBADH2 in D. tertiolecta. Compared to the wild type D. tertiolecta, both BADH-RNAi D. tertiolecta had fewer cell numbers and relatively lower glycine betaine content under high salinity. The findings suggest that both DtBADH1 and DtBADH2 play a crucial role in betaine synthesis, indicating their potential involvement in salt tolerance mechanisms at the molecular level. Additionally, these results highlight D. tertiolecta as a promising candidate for identifying salt stress-responsive genes, which could be utilized for engineering algae or crops to enhance their ability to withstand salinity stress.
Collapse
Affiliation(s)
- Qian-Xi Zheng
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Jia-Yuan Luo
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Qian-Hui Wang
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou, 510640, China
| | - Hao-Hong Chen
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| | - Jian-Guo Jiang
- College of Food Science and Bioengineering, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
2
|
Jin H, Tang M, Zhu L, Yu X, Yang Q, Fu X. Characterization of a Drought-Induced Betaine Aldehyde Dehydrogenase Gene SgBADH from Suaeda glauca. PLANTS (BASEL, SWITZERLAND) 2024; 13:2716. [PMID: 39409587 PMCID: PMC11478665 DOI: 10.3390/plants13192716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Betaine aldehyde dehydrogenases (BADHs) are key enzymes in the biosynthesis of glycine betaine, which is an important organic osmolyte that maintains cell structure and improves plant tolerance to abiotic stresses, especially in halotolerant plants. Improving the drought tolerance of crops will greatly increase their yield. In this study, a novel BADH gene named SgBADH from Suaeda glauca was induced by drought stress or abscisic acid. To explore the biological function of SgBADH, the SgBADH gene was transformed into Arabidopsis. Then, we found SgBADH-overexpressing Arabidopsis seedlings showed enhanced tolerance to drought stress. SgBADH transgenic Arabidopsis seedlings also had longer roots compared with controls under drought stress, while SgBADH-overexpressing Arabidopsis exhibited increased glycine betaine accumulation and decreased malondialdehyde (MDA) under drought stress. Our results suggest that SgBADH might be a positive regulator in plants during the response to drought.
Collapse
Affiliation(s)
- Hangxia Jin
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Min Tang
- Hangzhou Institute for Food and Drug Control, Hangzhou 310022, China;
| | - Longmin Zhu
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Xiaomin Yu
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Qinghua Yang
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| | - Xujun Fu
- Key Laboratory of Digital Upland Crops of Zhejiang Province, Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China; (H.J.); (L.Z.); (X.Y.); (Q.Y.)
| |
Collapse
|
3
|
Cao Y, Yang W, Ma J, Cheng Z, Zhang X, Liu X, Wu X, Zhang J. An Integrated Framework for Drought Stress in Plants. Int J Mol Sci 2024; 25:9347. [PMID: 39273296 PMCID: PMC11395155 DOI: 10.3390/ijms25179347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/27/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
With global warming, drought stress is becoming increasingly severe, causing serious impacts on crop yield and quality. In order to survive under adverse conditions such as drought stress, plants have evolved a certain mechanism to cope. The tolerance to drought stress is mainly improved through the synergistic effect of regulatory pathways, such as transcription factors, phytohormone, stomatal movement, osmotic substances, sRNA, and antioxidant systems. This study summarizes the research progress on plant drought resistance, in order to provide a reference for improving plant drought resistance and cultivating drought-resistant varieties through genetic engineering technology.
Collapse
Affiliation(s)
- Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Wenbo Yang
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Juan Ma
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Zeqiang Cheng
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, The Shennong Laboratory, Zhengzhou 450002, China
| | - Xuan Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xueman Liu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Jinghua Zhang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
4
|
Jampoh EA, Sáfrán E, Babinyec-Czifra D, Kristóf Z, Krárné Péntek B, Fábián A, Barnabás B, Jäger K. Morpho-Anatomical, Physiological and Biochemical Adjustments in Response to Heat and Drought Co-Stress in Winter Barley. PLANTS (BASEL, SWITZERLAND) 2023; 12:3907. [PMID: 38005804 PMCID: PMC10674999 DOI: 10.3390/plants12223907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
This study aimed to investigate the combined effect of high temperatures 10 °C above the optimum and water withholding during microgametogenesis on vegetative processes and determine the response of winter barley genotypes with contrasting tolerance. For this purpose, two barley varieties were analyzed to compare the effect of heat and drought co-stress on their phenology, morpho-anatomy, physiological and biochemical responses and yield constituents. Genotypic variation was observed in response to heat and drought co-stress, which was attributed to differences in anatomy, ultrastructure and physiological and metabolic processes. The co-stress-induced reduction in relative water content, total soluble protein and carbohydrate contents, photosynthetic pigment contents and photosynthetic efficiency of the sensitive Spinner variety was significantly greater than the tolerant Lambada genotype. Based on these observations, it has been concluded that the heat-and-drought stress-tolerance of the Lambada variety is related to the lower initial chlorophyll content of the leaves, the relative resistance of photosynthetic pigments towards stress-triggered degradation, retained photosynthetic parameters and better-preserved leaf ultrastructure. Understanding the key factors underlying heat and drought co-stress tolerance in barley may enable breeders to create barley varieties with improved yield stability under a changing climate.
Collapse
Affiliation(s)
- Emmanuel Asante Jampoh
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
- Doctoral School of Horticultural Sciences, MATE Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary
| | - Eszter Sáfrán
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| | - Dorina Babinyec-Czifra
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, 1053 Budapest, Hungary
| | - Zoltán Kristóf
- Department of Plant Anatomy, ELTE Eötvös Loránd University, 1053 Budapest, Hungary;
| | - Barbara Krárné Péntek
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| | - Attila Fábián
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| | - Beáta Barnabás
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| | - Katalin Jäger
- Biological Resources Department, HUN-REN Centre for Agricultural Research, 2462 Martonvásár, Hungary; (E.A.J.); (E.S.); (D.B.-C.); (B.K.P.); (A.F.); (B.B.)
| |
Collapse
|
5
|
Nefissi Ouertani R, Arasappan D, Ruhlman TA, Ben Chikha M, Abid G, Mejri S, Ghorbel A, Jansen RK. Effects of Salt Stress on Transcriptional and Physiological Responses in Barley Leaves with Contrasting Salt Tolerance. Int J Mol Sci 2022; 23:5006. [PMID: 35563398 PMCID: PMC9103072 DOI: 10.3390/ijms23095006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Salt stress negatively impacts crop production worldwide. Genetic diversity among barley (Hordeum vulgare) landraces adapted to adverse conditions should provide a valuable reservoir of tolerance genes for breeding programs. To identify molecular and biochemical differences between barley genotypes, transcriptomic and antioxidant enzyme profiles along with several morpho-physiological features were compared between salt-tolerant (Boulifa) and salt-sensitive (Testour) genotypes subjected to salt stress. Decreases in biomass, photosynthetic parameters, and relative water content were low in Boulifa compared to Testour. Boulifa had better antioxidant protection against salt stress than Testour, with greater antioxidant enzymes activities including catalase, superoxide dismutase, and guaiacol peroxidase. Transcriptome assembly for both genotypes revealed greater accumulation of differentially expressed transcripts in Testour compared to Boulifa, emphasizing the elevated transcriptional response in Testour following salt exposure. Various salt-responsive genes, including the antioxidant catalase 3, the osmoprotectant betaine aldehyde dehydrogenase 2, and the transcription factors MYB20 and MYB41, were induced only in Boulifa. By contrast, several genes associated with photosystems I and II, and light receptor chlorophylls A and B, were more repressed in Testour. Co-expression network analysis identified specific gene modules correlating with differences in genotypes and morpho-physiological traits. Overall, salinity-induced differential transcript accumulation underlies the differential morpho-physiological response in both genotypes and could be important for breeding salt tolerance in barley.
Collapse
Affiliation(s)
- Rim Nefissi Ouertani
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Dhivya Arasappan
- Center for Biomedical Research Support, University of Texas at Austin, Austin, TX 78712, USA;
| | - Tracey A. Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
| | - Mariem Ben Chikha
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Ghassen Abid
- Laboratory of Legumes and Sustainable Agrosystems, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia;
| | - Samiha Mejri
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Abdelwahed Ghorbel
- Laboratory of Plant Molecular Physiology, Center of Biotechnology of Borj Cedria, BP 901, Hammam-Lif 2050, Tunisia; (M.B.C.); (S.M.); (A.G.)
| | - Robert K. Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA;
- Biotechnology Research Group, Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
6
|
Amelioration Effect of Salicylic Acid Under Salt Stress in Sorghum bicolor L. Appl Biochem Biotechnol 2022; 194:4400-4423. [PMID: 35320507 DOI: 10.1007/s12010-022-03853-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
Salinity is a major abiotic stress, limiting plant growth and agriculture productivity worldwide. Salicylic acid is known to alleviate the negative effects of salinity. The present study demonstrated the impact of SA on sorghum, a moderately salt-tolerant crop, grown for food, fodder, fiber, and fuel. A screen house experiment was conducted using sorghum genotypes Haryana Jowar HJ 513 and HJ 541 under 4 salt levels (0, 5.0, 7.5, and 10.0 dS m-1 NaCl) and 3 SA (0, 25, and 50 mg dm-3) levels with 12 combinations. The leaves were assayed for electrolyte leakage percentage (ELP), i.e., 88.7 % in HJ 541 and 87.2 % in HJ 513, and osmolyte content. Proline content, total soluble carbohydrate content, and glycine betaine content increased considerably. Photosynthetic rate, transpiration rate, and stomatal conductance declined at higher salt levels. The specific enzymatic activities of SOD, CAT, and POX increased 41.1 %, 122.0 %, and 72.8 %, respectively, in HJ 513 under salt stress. Combinations of salt treatment and SA decreased ELP and enhanced osmolyte concentration, rates of gaseous exchange attributes, and also the antioxidant enzymatic activity in salt-stressed leaves. The study established that the specific activity of antioxidative enzymes is enhanced further by addition of SA which may protect the cells from oxidative damage under salt stress, thus mitigating salt stress and enhancing the yield of sorghum. SA can ameliorate the salt stress in plants by affecting the metabolic or physiological frameworks. SA application is an effective management strategy towards mitigating salt stress in order to meet agricultural production and sustainability.
Collapse
|
7
|
Ozturk M, Turkyilmaz Unal B, García-Caparrós P, Khursheed A, Gul A, Hasanuzzaman M. Osmoregulation and its actions during the drought stress in plants. PHYSIOLOGIA PLANTARUM 2021; 172:1321-1335. [PMID: 33280137 DOI: 10.1111/ppl.13297] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/07/2020] [Accepted: 12/01/2020] [Indexed: 05/27/2023]
Abstract
Drought stress, which causes a decline in quality and quantity of crop yields, has become more accentuated these days due to climatic change. Serious measures need to be taken to increase the tolerance of crop plants to acute drought conditions likely to occur due to global warming. Drought stress causes many physiological and biochemical changes in plants, rendering the maintenance of osmotic adjustment highly crucial. The degree of plant resistance to drought varies with plant species and cultivars, phenological stages of the plant, and the duration of plant exposure to the stress. Osmoregulation in plants under low water potential relies on synthesis and accumulation of osmoprotectants or osmolytes such as soluble proteins, sugars, and sugar alcohols, quaternary ammonium compounds, and amino acids, like proline. This review highlights the role of osmolytes in water-stressed plants and of enzymes entailed in their metabolism. It will be useful, especially for researchers working on the development of drought-resistant crops by using the metabolic-engineering techniques.
Collapse
Affiliation(s)
- Munir Ozturk
- Botany Department, Centre for Environmental Studies, Ege University, Izmir, Turkey
| | - Bengu Turkyilmaz Unal
- Department of Biotechnology, Faculty of Science and Arts, Nigde Omer Halisdemir University, Nigde, Turkey
| | - Pedro García-Caparrós
- Agronomy Department of Superior School Engineering, University of Almería, Agrifood Campus of International Excellence, Almería, Spain
| | - Anum Khursheed
- Department of Biochemistry, Quaid-I-Azam University, Islamabad, Pakistan
| | - Alvina Gul
- Department of Plant Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, Bangladesh
| |
Collapse
|
8
|
Ming R, Zhang Y, Wang Y, Khan M, Dahro B, Liu JH. The JA-responsive MYC2-BADH-like transcriptional regulatory module in Poncirus trifoliata contributes to cold tolerance by modulation of glycine betaine biosynthesis. THE NEW PHYTOLOGIST 2021; 229:2730-2750. [PMID: 33131086 DOI: 10.1111/nph.17063] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/26/2020] [Indexed: 05/15/2023]
Abstract
Glycine betaine (GB) is known to accumulate in plants exposed to cold, but the underlying molecular mechanisms and associated regulatory network remain unclear. Here, we demonstrated that PtrMYC2 of Poncirus trifoliata integrates the jasmonic acid (JA) signal to modulate cold-induced GB accumulation by directly regulating PtrBADH-l, a betaine aldehyde dehydrogenase (BADH)-like gene. PtrBADH-l was identified based on transcriptome and expression analysis in P. trifoliata. Overexpression and VIGS (virus-induced gene silencing)-mediated knockdown showed that PtrBADH-l plays a positive role in cold tolerance and GB synthesis. Yeast one-hybrid library screening using PtrBADH-l promoter as baits unraveled PtrMYC2 as an interacting candidate. PtrMYC2 was confirmed to directly bind to two G-box cis-acting elements within PtrBADH-l promoter and acts as a transcriptional activator. In addition, PtrMYC2 functions positively in cold tolerance through modulation of GB synthesis by regulating PtrBADH-l expression. Interestingly, we found that GB accumulation under cold stress was JA-dependent and that PtrMYC2 orchestrates JA-mediated PtrBADH-l upregulation and GB accumulation. This study sheds new light on the roles of MYC2 homolog in modulating GB synthesis. In particular, we propose a transcriptional regulatory module PtrMYC2-PtrBADH-l to advance the understanding of molecular mechanisms underlying the GB accumulation under cold stress.
Collapse
Affiliation(s)
- Ruhong Ming
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yang Zhang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue Wang
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Madiha Khan
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bachar Dahro
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ji-Hong Liu
- Key Laboratory of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
9
|
Harb A, Simpson C, Guo W, Govindan G, Kakani VG, Sunkar R. The Effect of Drought on Transcriptome and Hormonal Profiles in Barley Genotypes With Contrasting Drought Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:618491. [PMID: 33424910 PMCID: PMC7786106 DOI: 10.3389/fpls.2020.618491] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Accepted: 11/27/2020] [Indexed: 05/21/2023]
Abstract
Like many cereal crops, barley is also negatively affected by drought stress. However, due to its simple genome as well as enhanced stress resilient nature compared to rice and wheat, barley has been considered as a model to decipher drought tolerance in cereals. In the present study, transcriptomic and hormonal profiles along with several biochemical features were compared between drought-tolerant (Otis) and drought-sensitive (Baronesse) barley genotypes subjected to drought to identify molecular and biochemical differences between the genotypes. The drought-induced decrease in the leaf relative water content, net photosynthesis, and biomass accumulation was relatively low in Otis compared to Baronesse. The hormonal profiles did not reveal significant differences for majority of the compounds other than the GA20 and the cis-zeatin-o-glucoside (c-ZOG), whose levels were greatly increased in Otis compared to Baronesse under drought. The major differences that emerged from the transcriptome analysis are; (1), the overall number of differentially expressed genes was relatively low in drought-tolerant Otis compared to drought-sensitive Baronesse; (2), a wax biosynthesis gene (CER1), and NAC transcription factors were specifically induced in Otis but not in Baronesse; (3), the degree of upregulation of betaine aldehyde dehydrogenase and a homeobox transcription factor (genes with proven roles in imparting drought tolerance), was greater in Otis compared to Baronesse; (4) the extent of downregulation of gene expression profiles for proteins of the reaction center photosystem II (PSII) (D1 and D2) was low in Otis compared to Baronesse; and, (5), alternative splicing (AS) was also found to differ between the genotypes under drought. Taken together, the overall transcriptional responses were low in drought-tolerant Otis but the genes that could confer drought tolerance were either specifically induced or greatly upregulated in the tolerant genotype and these differences could be important for drought tolerance in barley.
Collapse
Affiliation(s)
- Amal Harb
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, Jordan
- *Correspondence: Amal Harb ;
| | - Craig Simpson
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Wenbin Guo
- Informatics and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
| | - Vijaya Gopal Kakani
- Department of Plant and Soil Science, Oklahoma State University, Stillwater, OK, United States
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, United States
- Ramanjulu Sunkar
| |
Collapse
|
10
|
Singh D, Singh CK, Taunk J, Tomar RSS, Chaturvedi AK, Gaikwad K, Pal M. Transcriptome analysis of lentil (Lens culinaris Medikus) in response to seedling drought stress. BMC Genomics 2017; 18:206. [PMID: 28241862 PMCID: PMC5327544 DOI: 10.1186/s12864-017-3596-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 02/20/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Drought stress is one of the most harmful abiotic stresses in crop plants. As a moderately drought tolerant crop, lentil is a major crop in rainfed areas and a suitable candidate for drought stress tolerance research work. Screening for drought tolerance stress under hydroponic conditions at seedling stage with air exposure is an efficient technique to select genotypes with contrasting traits. Transcriptome analysis provides valuable resources, especially for lentil, as here the information on complete genome sequence is not available. Hence, the present studies were carried out. RESULTS This study was undertaken to understand the biochemical mechanisms and transcriptome changes involved in imparting adaptation to drought stress at seedling stage in drought-tolerant (PDL-2) and drought-sensitive (JL-3) cultivars. Among different physiological and biochemical parameters, a significant increase was recorded in proline, glycine betaine contents and activities of SOD, APX and GPX in PDL-2 compared to JL-3while chlorophyll, RWC and catalase activity decreased significantly in JL-3. Transcriptome changes between the PDL-2 and JL-3 under drought stress were evaluated using Illumina HiSeq 2500 platform. Total number of bases ranged from 5.1 to 6.7 Gb. Sequence analysis of control and drought treated cDNA libraries of PDL-2 and JL-3 produced 74032, 75500, 78328 and 81523 contigs, respectively with respective N50 value of 2011, 2008, 2000 and 1991. Differential gene expression of drought treated genotypes along with their controls revealed a total of 11,435 upregulated and 6,934 downregulated transcripts. For functional classification of DEGs, KEGG pathway annotation analysis extracted a total of 413 GO annotation terms where 176 were within molecular process, 128 in cellular and 109 in biological process groups. CONCLUSION The transcriptional profiles provide a foundation for deciphering the underlying mechanism for drought tolerance in lentil. Transcriptional regulation, signal transduction and secondary metabolism in two genotypes revealed significant differences at seedling stage under severe drought. Our finding suggests role of candidate genes for improving drought tolerance in lentil.
Collapse
Affiliation(s)
- Dharmendra Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Chandan Kumar Singh
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Jyoti Taunk
- Division of Genetics, Indian Agricultural Research Institute, New Delhi, 110012 India
| | | | - Ashish Kumar Chaturvedi
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Kishor Gaikwad
- National Research Centre on Plant Biotechnology, ICAR, New Delhi, 110012 India
| | - Madan Pal
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012 India
| |
Collapse
|
11
|
A betaine aldehyde dehydrogenase gene in quinoa (Chenopodium quinoa): structure, phylogeny, and expression pattern. Genes Genomics 2016. [DOI: 10.1007/s13258-016-0445-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Aymen S, Morena G, Vincenzo L, Laura P, Lorenza B, Abderrazak S, Chedly A, Karim BH. Salt tolerance of the halophyte Limonium delicatulum is more associated with antioxidant enzyme activities than phenolic compounds. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:607-619. [PMID: 32480490 DOI: 10.1071/fp15284] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 03/06/2016] [Indexed: 05/25/2023]
Abstract
In this work we studied the effect of salinity (ranging from 50 to 500mM NaCl) on the physiological and the antioxidant responses of the local halophyte Limonium delicatulum Kuntze. We based our analysis on 12 biochemical assays that are commonly used to measure the antioxidant responses under stress such as oxidative stress markers, enzymes activities and polyphenolic compounds. Our aim was to study parameters that are strongly correlated with the growth response to salinity. Results showed two different growth responses depending on the concentration of NaCl in the medium. Under 50 to 200mM, the growth was stimulated before it decreased significantly at 300-500mM. L. delicatulum revealed a good aptitude to maintain photosynthetic machinery by increasing the concentrations of photosynthetic pigments, which is essential for the stabilisation of photosystems and the photosynthesis process under optimal NaCl concentration. Their breakdown at higher salinity decreased the photosynthetic performance of plants resulting in growth inhibition. Moreover, to reduce the damaging effect of oxidative stress and to tolerate the accumulation of salt ions, L. delicatulum induced the activities of their antioxidant enzymes more than their contents in polyphenolic compounds.
Collapse
Affiliation(s)
- Souid Aymen
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Gabriele Morena
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Longo Vincenzo
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Pucci Laura
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Bellani Lorenza
- National Research Council, Institute of Biology and Agricultural Biotechnology (IBBA), Pisa Unit, Research Area of Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Smaoui Abderrazak
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Abdelly Chedly
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| | - Ben Hamed Karim
- Laboratoire des Plantes Extrêmophiles, Centre de Biotechnologie de Borj Cedria, BP 901, Hammam Lif 2050, Tunisia
| |
Collapse
|
13
|
The effect of triazole induced photosynthetic pigments and biochemical constituents of Zea mays L. (Maize) under drought stress. APPLIED NANOSCIENCE 2015. [DOI: 10.1007/s13204-015-0482-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Functional and expression analyses of two kinds of betaine aldehyde dehydrogenases in a glycinebetaine-hyperaccumulating graminaceous halophyte, Leymus chinensis. SPRINGERPLUS 2015; 4:202. [PMID: 25992309 PMCID: PMC4431990 DOI: 10.1186/s40064-015-0997-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Accepted: 04/23/2015] [Indexed: 01/24/2023]
Abstract
Glycinebetaine (GB) is an important compatible solute for salinity tolerance in many plants. In this study, we analyzed the enzymatic activity and the expression level of betaine aldehyde dehydrogenase (BADH), an important enzyme that catalyzes the last step in the GB synthesis in Leymus chinensis, a GB-hyperaccumulating graminaceous halophyte, and compared with those of barley, a graminaceous glycophyte. We have isolated cDNAs for two BADH genes, LcBADH1 and LcBADH2. LcBADH1 has a putative peroxisomal signal peptide (PTS1) at its C-terminus, while LcBADH2 does not have any typical signal peptide. Using immunofluorescent labeling, we showed that BADH proteins were localized to the cytosol and dot-shaped organelles in the mesophyll and bundle sheath cells of L.chinensis leaves. The affinity of recombinant LcBADH2 for betaine aldehyde was comparable to other plant BADHs, whereas recombinant LcBADH1 showed extremely low affinity for betaine aldehyde, indicating that LcBADH2 plays a major role in GB synthesis in L. chinensis. In addition, the recombinant LcBADH2 protein was tolerant to NaCl whereas LcBADH1 wasn't. The kinetics, subcellular and tissue localization of BADH proteins were comparable between L. chinensis and barley. The activity and expression level of BADH proteins were higher in L. chinensis compared with barley under both normal and salinized conditions, which may be related to the significant difference in the amount of GB accumulation between two plants.
Collapse
|
15
|
Thouvenot L, Deleu C, Berardocco S, Haury J, Thiébaut G. Characterization of the salt stress vulnerability of three invasive freshwater plant species using a metabolic profiling approach. JOURNAL OF PLANT PHYSIOLOGY 2015; 175:113-121. [PMID: 25544588 DOI: 10.1016/j.jplph.2014.11.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
The effects of salt stress on freshwater plants has been little studied up to now, despite the fact that they are expected to present different levels of salt sensitivity or salt resistance depending on the species. The aim of this work was to assess the effect of NaCl at two concentrations on three invasive freshwater species, Elodea canadensis, Myriophyllum aquaticum and Ludwigia grandiflora, by examining morphological and physiological parameters and using metabolic profiling. The growth rate (biomass and stem length) was reduced for all species, whatever the salt treatment, but the response to salt differed between the three species, depending on the NaCl concentration. For E. canadensis, the physiological traits and metabolic profiles were only slightly modified in response to salt, whereas M. aquaticum and L. grandiflora showed great changes. In both of these species, root number, photosynthetic pigment content, amino acids and carbohydrate metabolism were affected by the salt treatments. Moreover, we are the first to report the salt-induced accumulation of compatible solutes in both species. Indeed, in response to NaCl, L. grandiflora mainly accumulated sucrose. The response of M. aquaticum was more complex, because it accumulated not only sucrose and myo-inositol whatever the level of salt stress, but also amino acids such as proline and GABA, but only at high NaCl concentrations. These responses are the metabolic responses typically found in terrestrial plants.
Collapse
Affiliation(s)
- Lise Thouvenot
- University of Rennes 1, UMR 6553 CNRS-Université Rennes 1, Ecosystèmes, Biodiversité, Evolution (ECOBIO), avenue du Général Leclerc, F-35042 Rennes, France; Agrocampus-Ouest, UMR Agrocampus Ouest/INRA-Ecologie et sante des écosystèmes (ESE), rue de St Brieuc, F-35042 Rennes, France
| | - Carole Deleu
- University of Rennes 1, UMR 1349 INRA-Agrocampus Ouest-Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), avenue du Général Leclerc, F-35042 Rennes, France
| | - Solenne Berardocco
- University of Rennes 1, UMR 1349 INRA-Agrocampus Ouest-Université Rennes 1, Institut de Génétique, Environnement et Protection des Plantes (IGEPP), avenue du Général Leclerc, F-35042 Rennes, France
| | - Jacques Haury
- Agrocampus-Ouest, UMR Agrocampus Ouest/INRA-Ecologie et sante des écosystèmes (ESE), rue de St Brieuc, F-35042 Rennes, France
| | - Gabrielle Thiébaut
- University of Rennes 1, UMR 6553 CNRS-Université Rennes 1, Ecosystèmes, Biodiversité, Evolution (ECOBIO), avenue du Général Leclerc, F-35042 Rennes, France.
| |
Collapse
|
16
|
Cardi M, Castiglia D, Ferrara M, Guerriero G, Chiurazzi M, Esposito S. The effects of salt stress cause a diversion of basal metabolism in barley roots: possible different roles for glucose-6-phosphate dehydrogenase isoforms. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 86:44-54. [PMID: 25461699 DOI: 10.1016/j.plaphy.2014.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 11/02/2014] [Indexed: 05/03/2023]
Abstract
In this study the effects of salt stress and nitrogen assimilation have been investigated in roots of hydroponically-grown barley plants exposed to 150 mM NaCl, in presence or absence of ammonium as the sole nitrogen source. Salt stress determines a diversion of root metabolism towards the synthesis of osmolytes, such as glycine betaine and proline, and increased levels of reduced glutathione. The metabolic changes triggered by salt stress result in a decrease in both activities and protein abundance of key enzymes, namely GOGAT and PEP carboxylase, and in a slight increase in HSP70. These variations would enhance the requirement for reductants supplied by the OPPP, consistently with the observed increase in total G6PDH activity. The involvement and occurrence of the different G6PDH isoforms have been investigated, and the kinetic properties of partially purified cytosolic and plastidial G6PDHs determined. Bioinformatic analyses examining co-expression profiles of G6PDHs in Arabidopsis and barley corroborate the data presented. Moreover, the gene coding for the root P2-G6PDH isoform was fully sequenced; the biochemical properties of the corresponding protein were examined experimentally. The results are discussed in the light of the possible distinct roles and regulation of the different G6PDH isoforms during salt stress in barley roots.
Collapse
Affiliation(s)
- Manuela Cardi
- Università di Napoli Federico II, Dipartimento di Biologia, Via Cinthia, 6, I-80126 Napoli, Italy
| | - Daniela Castiglia
- Università di Napoli Federico II, Dipartimento di Biologia, Via Cinthia, 6, I-80126 Napoli, Italy
| | - Myriam Ferrara
- Università di Napoli Federico II, Dipartimento di Biologia, Via Cinthia, 6, I-80126 Napoli, Italy
| | - Gea Guerriero
- Università di Napoli Federico II, Dipartimento di Biologia, Via Cinthia, 6, I-80126 Napoli, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and BioResources - CNR, Via P. Castellino 111, I-80128 Napoli, Italy
| | - Sergio Esposito
- Università di Napoli Federico II, Dipartimento di Biologia, Via Cinthia, 6, I-80126 Napoli, Italy.
| |
Collapse
|
17
|
Tang W, Sun J, Liu J, Liu F, Yan J, Gou X, Lu BR, Liu Y. RNAi-directed downregulation of betaine aldehyde dehydrogenase 1 (OsBADH1) results in decreased stress tolerance and increased oxidative markers without affecting glycine betaine biosynthesis in rice (Oryza sativa). PLANT MOLECULAR BIOLOGY 2014; 86:443-454. [PMID: 25150410 DOI: 10.1007/s11103-014-0239-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2014] [Accepted: 08/14/2014] [Indexed: 06/03/2023]
Abstract
As an important osmoprotectant, glycine betaine (GB) plays an essential role in resistance to abiotic stress in a variety of organisms, including rice (Oryza sativa L.). However, GB content is too low to be detectable in rice, although rice genome possesses several orthologs coding for betaine aldehyde dehydrogenase (BADH) involved in plant GB biosynthesis. Rice BADH1 (OsBADH1) has been shown to be targeted to peroxisome and its overexpression resulted in increased GB biosynthesis and tolerance to abiotic stress. In this study, we demonstrated a pivotal role of OsBADH1 in stress tolerance without altering GB biosynthesis capacity, using the RNA interference (RNAi) technique. OsBADH1 was ubiquitously expressed in different organs, including roots, stems, leaves and flowers. Transgenic rice lines downregulating OsBADH1 exhibited remarkably reduced tolerance to NaCl, drought and cold stresses. The decrease of stress tolerance occurring in the OsBADH1-RNAi repression lines was associated with an elevated level of malondialdehyde content and hydrogen peroxidation. No GB accumulation was detected in transgene-positive and transgene-negative lines derived from heterozygous transgenic T0 plants. Moreover, transgenic OsBADH1-RNAi repression lines showed significantly reduced seed set and yield. In conclusion, the downregulation of OsBADH1, even though not causing any change of GB content, was accounted for the reduction of ability to dehydrogenate the accumulating metabolism-derived aldehydes and subsequently resulted in decreased stress tolerance and crop productivity. These results suggest that OsBADH1 possesses an enzyme activity to catalyze other aldehydes in addition to betaine aldehyde (the precursor of GB) and thus alleviate their toxic effects under abiotic stresses.
Collapse
Affiliation(s)
- Wei Tang
- Ministry of Education Key Laboratory for Bio-resource and Eco-environment, State Key Laboratory of Hydraulics and Mountain River Engineering, College of Life Science, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Stiti N, Podgórska K, Bartels D. Aldehyde dehydrogenase enzyme ALDH3H1 from Arabidopsis thaliana: Identification of amino acid residues critical for cofactor specificity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2014; 1844:681-93. [DOI: 10.1016/j.bbapap.2014.01.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 01/09/2014] [Accepted: 01/13/2014] [Indexed: 11/27/2022]
|
19
|
Heuberger AL, Broeckling CD, Kirkpatrick KR, Prenni JE. Application of nontargeted metabolite profiling to discover novel markers of quality traits in an advanced population of malting barley. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:147-60. [PMID: 24119106 DOI: 10.1111/pbi.12122] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/15/2013] [Accepted: 08/20/2013] [Indexed: 05/02/2023]
Abstract
The process of breeding superior varieties for the agricultural industry is lengthy and expensive. Plant metabolites may act as markers of quality traits, potentially expediting the appraisal of experimental lines during breeding. Here, we evaluated the utility of metabolites as markers by assessing metabolic variation influenced by genetic and environmental factors in an advanced breeding setting and in relation to the phenotypic distribution of 20 quality traits. Nontargeted liquid chromatography-mass spectrometry metabolite profiling was performed on barley (Hordeum vulgare L.) grain and malt from 72 advanced malting barley lines grown at two distinct but climatically similar locations, with 2-row and 6-row barley as the main genetic factors. 27 420 molecular features were detected, and the metabolite and quality trait profiles were similarly influenced by genotype and environment; however, malt was more influenced by genotype compared with barley. An O2PLS model characterized molecular features and quality traits that covaried, and 1319 features associated with at least one of 20 quality traits. An indiscriminant MS/MS acquisition and novel data analysis method facilitated the identification of metabolites. The analysis described 216 primary and secondary metabolites that correlated with multiple quality traits and included amines, amino acids, alkaloids, polyphenolics and lipids. The mechanisms governing quality trait-metabolite associations were interpreted based on colocalization to genetic markers and their gene annotations. The results of this study support the hypothesis that metabolism and quality traits are co-influenced by relatively narrow genetic and environmental factors and illustrate the utility of grain metabolites as functional markers of quality traits.
Collapse
Affiliation(s)
- Adam L Heuberger
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, CO, USA
| | | | | | | |
Collapse
|
20
|
|
21
|
Kopečny D, Končitíková R, Tylichová M, Vigouroux A, Moskalíková H, Soural M, Šebela M, Moréra S. Plant ALDH10 family: identifying critical residues for substrate specificity and trapping a thiohemiacetal intermediate. J Biol Chem 2013; 288:9491-507. [PMID: 23408433 DOI: 10.1074/jbc.m112.443952] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Plant ALDH10 family members are aminoaldehyde dehydrogenases (AMADHs), which oxidize ω-aminoaldehydes to the corresponding acids. They have been linked to polyamine catabolism, osmoprotection, secondary metabolism (fragrance), and carnitine biosynthesis. Plants commonly contain two AMADH isoenzymes. We previously studied the substrate specificity of two AMADH isoforms from peas (PsAMADHs). Here, two isoenzymes from tomato (Solanum lycopersicum), SlAMADHs, and three AMADHs from maize (Zea mays), ZmAMADHs, were kinetically investigated to obtain further clues to the catalytic mechanism and the substrate specificity. We also solved the high resolution crystal structures of SlAMADH1 and ZmAMADH1a because these enzymes stand out from the others regarding their activity. From the structural and kinetic analysis, we can state that five residues at positions 163, 288, 289, 444, and 454 (PsAMADHs numbering) can, directly or not, significantly modulate AMADH substrate specificity. In the SlAMADH1 structure, a PEG aldehyde derived from the precipitant forms a thiohemiacetal intermediate, never observed so far. Its absence in the SlAMADH1-E260A structure suggests that Glu-260 can activate the catalytic cysteine as a nucleophile. We show that the five AMADHs studied here are capable of oxidizing 3-dimethylsulfoniopropionaldehyde to the cryo- and osmoprotectant 3-dimethylsulfoniopropionate. For the first time, we also show that 3-acetamidopropionaldehyde, the third aminoaldehyde besides 3-aminopropionaldehyde and 4-aminobutyraldehyde, is generally oxidized by AMADHs, meaning that these enzymes are unique in metabolizing and detoxifying aldehyde products of polyamine degradation to nontoxic amino acids. Finally, gene expression profiles in maize indicate that AMADHs might be important for controlling ω-aminoaldehyde levels during early stages of the seed development.
Collapse
Affiliation(s)
- David Kopečny
- Department of Protein Biochemistry and Proteomics, Centre of the Region Haná for Biotechnological and Agricultural Research, Olomouc, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Kido EA, Ferreira Neto JRC, Silva RLO, Belarmino LC, Bezerra Neto JP, Soares-Cavalcanti NM, Pandolfi V, Silva MD, Nepomuceno AL, Benko-Iseppon AM. Expression dynamics and genome distribution of osmoprotectants in soybean: identifying important components to face abiotic stress. BMC Bioinformatics 2013; 14 Suppl 1:S7. [PMID: 23369061 PMCID: PMC3548699 DOI: 10.1186/1471-2105-14-s1-s7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Despite the importance of osmoprotectants, no previous in silico evaluation of high throughput data is available for higher plants. The present approach aimed at the identification and annotation of osmoprotectant-related sequences applied to short transcripts from a soybean HT-SuperSAGE (High Throughput Super Serial Analysis of Gene Expression; 26-bp tags) database, and also its comparison with other transcriptomic and genomic data available from different sources. METHODS A curated set of osmoprotectants related sequences was generated using text mining and selected seed sequences for identification of the respective transcripts and proteins in higher plants. To test the efficiency of the seed sequences, these were aligned against four HT-SuperSAGE contrasting libraries generated by our group using soybean tolerant and sensible plants against water deficit, considering only differentially expressed transcripts (p ≤ 0.05). Identified transcripts from soybean and their respective tags were aligned and anchored against the soybean virtual genome. RESULTS The workflow applied resulted in a set including 1,996 seed sequences that allowed the identification of 36 differentially expressed genes related to the biosynthesis of osmoprotectants [Proline (P5CS: 4, P5CR: 2), Trehalose (TPS1: 9, TPPB: 1), Glycine betaine (BADH: 4) and Myo-inositol (MIPS: 7, INPS1: 8)], also mapped in silico in the soybean genome (25 loci). Another approach considered matches using Arabidopsis full length sequences as seed sequences, and allowed the identification of 124 osmoprotectant-related sequences, matching ~10.500 tags anchored in the soybean virtual chromosomes. Osmoprotectant-related genes appeared clustered in all soybean chromosomes, with higher density in some subterminal regions and synteny among some chromosome pairs. CONCLUSIONS Soybean presents all searched osmoprotectant categories with some important members differentially expressed among the comparisons considered (drought tolerant or sensible vs. control; tolerant vs. sensible), allowing the identification of interesting candidates for biotechnological inferences. The identified tags aligned to corresponding genes that matched 19 soybean chromosomes. Osmoprotectant-related genes are not regularly distributed in the soybean genome, but clustered in some regions near the chromosome terminals, with some redundant clusters in different chromosomes indicating their involvement in previous duplication and rearrangements events. The seed sequences, transcripts and map represent the first transversal evaluation for osmoprotectant-related genes and may be easily applied to other plants of interest.
Collapse
Affiliation(s)
- Ederson A Kido
- Departament of Genetics/Biological Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, CEP 50.670-420, Brazil
| | - José RC Ferreira Neto
- Departament of Genetics/Biological Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, CEP 50.670-420, Brazil
| | - Roberta LO Silva
- Departament of Genetics/Biological Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, CEP 50.670-420, Brazil
| | - Luis C Belarmino
- Departament of Genetics/Biological Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, CEP 50.670-420, Brazil
| | - João P Bezerra Neto
- Departament of Genetics/Biological Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, CEP 50.670-420, Brazil
| | - Nina M Soares-Cavalcanti
- Departament of Genetics/Biological Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, CEP 50.670-420, Brazil
| | - Valesca Pandolfi
- Departament of Genetics/Biological Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, CEP 50.670-420, Brazil
| | - Manassés D Silva
- Departament of Genetics/Biological Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, CEP 50.670-420, Brazil
| | - Alexandre L Nepomuceno
- Embrapa Soybean, Brazilian Agricultural Research Corporation, Londrina, PR, CEP 86001-970, Brazil
| | - Ana M Benko-Iseppon
- Departament of Genetics/Biological Sciences Center, Federal University of Pernambuco, Recife, Pernambuco, CEP 50.670-420, Brazil
| |
Collapse
|
23
|
Shelp BJ, Bozzo GG, Trobacher CP, Zarei A, Deyman KL, Brikis CJ. Hypothesis/review: contribution of putrescine to 4-aminobutyrate (GABA) production in response to abiotic stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2012; 193-194:130-135. [PMID: 22794926 DOI: 10.1016/j.plantsci.2012.06.001] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/14/2012] [Accepted: 06/01/2012] [Indexed: 05/19/2023]
Abstract
4-Aminobutyrate (GABA) accumulates in various plant parts, including bulky fruits such as apples, in response to abiotic stress. It is generally believed that the GABA is derived from glutamate, although a contribution from polyamines is possible. Putrescine, but not spermidine and spermine, generally accumulates in response to the genetic manipulation of polyamine biosynthetic enzymes and abiotic stress. However, the GABA levels in stressed plants are influenced by processes other than putrescine availability. It is hypothesized that the catabolism of putrescine to GABA is regulated by a combination of gene-dependent and -independent processes. The expression of several putative diamine oxidase genes is weak, but highly stress-inducible in certain tissues of Arabidopsis. In contrast, candidate genes that encode 4-aminobutyraldehyde dehydrogenase are highly constitutive, but not stress inducible. Changes in O(2) availability and cellular redox balance due to stress may directly influence the activities of diamine oxidase and 4-aminobutyraldehyde dehydrogenase, thereby restricting GABA formation. Apple fruit is known to accumulate GABA under controlled atmosphere storage and therefore could serve as a model system for investigating the relative contribution of putrescine and glutamate to GABA production.
Collapse
Affiliation(s)
- Barry J Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada N1G 2W1.
| | - Gale G Bozzo
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | - Adel Zarei
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Kristen L Deyman
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Carolyne J Brikis
- Department of Plant Agriculture, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| |
Collapse
|
24
|
Díaz-Sánchez ÁG, González-Segura L, Mújica-Jiménez C, Rudiño-Piñera E, Montiel C, Martínez-Castilla LP, Muñoz-Clares RA. Amino acid residues critical for the specificity for betaine aldehyde of the plant ALDH10 isoenzyme involved in the synthesis of glycine betaine. PLANT PHYSIOLOGY 2012; 158:1570-82. [PMID: 22345508 PMCID: PMC3343730 DOI: 10.1104/pp.112.194514] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Plant Aldehyde Dehydrogenase10 (ALDH10) enzymes catalyze the oxidation of ω-primary or ω-quaternary aminoaldehydes, but, intriguingly, only some of them, such as the spinach (Spinacia oleracea) betaine aldehyde dehydrogenase (SoBADH), efficiently oxidize betaine aldehyde (BAL) forming the osmoprotectant glycine betaine (GB), which confers tolerance to osmotic stress. The crystal structure of SoBADH reported here shows tyrosine (Tyr)-160, tryptophan (Trp)-167, Trp-285, and Trp-456 in an arrangement suitable for cation-π interactions with the trimethylammonium group of BAL. Mutation of these residues to alanine (Ala) resulted in significant K(m)(BAL) increases and V(max)/K(m)(BAL) decreases, particularly in the Y160A mutant. Tyr-160 and Trp-456, strictly conserved in plant ALDH10s, form a pocket where the bulky trimethylammonium group binds. This space is reduced in ALDH10s with low BADH activity, because an isoleucine (Ile) pushes the Trp against the Tyr. Those with high BADH activity instead have Ala (Ala-441 in SoBADH) or cysteine, which allow enough room for binding of BAL. Accordingly, the mutation A441I decreased the V(max)/K(m)(BAL) of SoBADH approximately 200 times, while the mutation A441C had no effect. The kinetics with other ω-aminoaldehydes were not affected in the A441I or A441C mutant, demonstrating that the existence of an Ile in the second sphere of interaction of the aldehyde is critical for discriminating against BAL in some plant ALDH10s. A survey of the known sequences indicates that plants have two ALDH10 isoenzymes: those known to be GB accumulators have a high-BAL-affinity isoenzyme with Ala or cysteine in this critical position, while non GB accumulators have low-BAL-affinity isoenzymes containing Ile. Therefore, BADH activity appears to restrict GB synthesis in non-GB-accumulator plants.
Collapse
|
25
|
Abstract
Patterns of diversity distribution in the Isa defense locus in wild-barley populations suggest adaptive selection at this locus. The extent to which environmental selection may act at additional nuclear-encoded defense loci and within the whole chloroplast genome has now been examined by analyses in two grass species. Analysis of genetic diversity in wild barley (Hordeum spontaneum) defense genes revealed much greater variation in biotic stress-related genes than abiotic stress-related genes. Genetic diversity at the Isa defense locus in wild populations of weeping ricegrass [Microlaena stipoides (Labill.) R. Br.], a very distant wild-rice relative, was more diverse in samples from relatively hotter and drier environments, a phenomenon that reflects observations in wild barley populations. Whole-chloroplast genome sequences of bulked weeping ricegrass individuals sourced from contrasting environments showed higher levels of diversity in the drier environment in both coding and noncoding portions of the genome. Increased genetic diversity may be important in allowing plant populations to adapt to greater environmental variation in warmer and drier climatic conditions.
Collapse
|
26
|
Mitsuya S, Kuwahara J, Ozaki K, Saeki E, Fujiwara T, Takabe T. Isolation and characterization of a novel peroxisomal choline monooxygenase in barley. PLANTA 2011; 234:1215-26. [PMID: 21769646 DOI: 10.1007/s00425-011-1478-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Accepted: 06/29/2011] [Indexed: 05/13/2023]
Abstract
Glycine betaine (GB) is a compatible solute accumulated by many plants under various abiotic stresses. GB is synthesized in two steps, choline → betaine aldehyde → GB, where a functional choline-oxidizing enzyme has only been reported in Amaranthaceae (a chloroplastic ferredoxin-dependent choline monooxygenase) thus far. Here, we have cloned a cDNA encoding a choline monooxygenase (CMO) from barley (Hordeum vulgare) plants, HvCMO. In barley plants under non-stress condition, GB had accumulated in all the determined organs (leaves, internodes, awn and floret proper), mostly in the leaves. The expression of HvCMO protein was abundant in the leaves, whereas the expression of betaine aldehyde dehydrogenase (BADH) protein was abundant in the awn, floret proper and the youngest internode than in the leaves. The accumulation of HvCMO mRNA was increased by high osmotic and low-temperature environments. Also, the expression of HvCMO protein was increased by the presence of high NaCl. Immunofluorescent labeling of HvCMO protein and subcellular fractionation analysis showed that HvCMO protein was localized to peroxisomes. [(14)C]choline was oxidized to betaine aldehyde and GB in spinach (Spinacia oleracea) chloroplasts but not in barley, which indicates that the subcellular localization of choline-oxidizing enzyme is different between two plant species. We investigated the choline-oxidizing reaction using recombinant HvCMO protein expressed in yeast (Saccharomyces cerevisiae). The crude extract of HvCMO-expressing yeast coupled with recombinant BBD2 protein converted [(14)C]choline to GB when NADPH was added as a cofactor. These results suggest that choline oxidation in GB synthesis is mediated by a peroxisomal NADPH-dependent choline monooxygenase in barley plants.
Collapse
Affiliation(s)
- Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601, Japan.
| | | | | | | | | | | |
Collapse
|
27
|
Stiti N, Missihoun TD, Kotchoni SO, Kirch HH, Bartels D. Aldehyde Dehydrogenases in Arabidopsis thaliana: Biochemical Requirements, Metabolic Pathways, and Functional Analysis. FRONTIERS IN PLANT SCIENCE 2011; 2:65. [PMID: 22639603 PMCID: PMC3355590 DOI: 10.3389/fpls.2011.00065] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Accepted: 09/23/2011] [Indexed: 05/02/2023]
Abstract
Aldehyde dehydrogenases (ALDHs) are a family of enzymes which catalyze the oxidation of reactive aldehydes to their corresponding carboxylic acids. Here we summarize molecular genetic and biochemical analyses of selected ArabidopsisALDH genes. Aldehyde molecules are very reactive and are involved in many metabolic processes but when they accumulate in excess they become toxic. Thus activity of aldehyde dehydrogenases is important in regulating the homeostasis of aldehydes. Overexpression of some ALDH genes demonstrated an improved abiotic stress tolerance. Despite the fact that several reports are available describing a role for specific ALDHs, their precise physiological roles are often still unclear. Therefore a number of genetic and biochemical tools have been generated to address the function with an emphasis on stress-related ALDHs. ALDHs exert their functions in different cellular compartments and often in a developmental and tissue specific manner. To investigate substrate specificity, catalytic efficiencies have been determined using a range of substrates varying in carbon chain length and degree of carbon oxidation. Mutational approaches identified amino acid residues critical for coenzyme usage and enzyme activities.
Collapse
Affiliation(s)
- Naim Stiti
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| | - Tagnon D. Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| | - Simeon O. Kotchoni
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| | - Hans-Hubert Kirch
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| | - Dorothea Bartels
- Institute of Molecular Physiology and Biotechnology of Plants, University of BonnBonn, Germany
| |
Collapse
|
28
|
Missihoun TD, Schmitz J, Klug R, Kirch HH, Bartels D. Betaine aldehyde dehydrogenase genes from Arabidopsis with different sub-cellular localization affect stress responses. PLANTA 2011; 233:369-82. [PMID: 21053011 DOI: 10.1007/s00425-010-1297-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 09/23/2010] [Indexed: 05/04/2023]
Abstract
Arabidopsis thaliana belongs to those plants that do not naturally accumulate glycine betaine (GB), although its genome contains two genes, ALDH10A8 and ALDH10A9 that code for betaine aldehyde dehydrogenases (BADHs). BADHs were initially known to catalyze the last step of the biosynthesis of GB in plants. But they can also oxidize metabolism-derived aminoaldehydes to their corresponding amino acids in some cases. This study was carried out to investigate the functional properties of Arabidopsis BADH genes. Here, we have shown that ALDH10A8 and ALDH10A9 proteins are targeted to leucoplasts and peroxisomes, respectively. The expression patterns of ALDH10A8 and ALDH10A9 genes have been analysed under abiotic stress conditions. Both genes are expressed in the plant and weakly induced by ABA, salt, chilling (4°C), methyl viologen and dehydration. The role of the ALDH10A8 gene was analysed using T-DNA insertion mutants. There was no phenotypic difference between wild-type and mutant plants in the absence of stress. But ALDH10A8 seedlings and 4-week-old plants were more sensitive to dehydration and salt stress than wild-type plants. The recombinant ALDH10A9 enzyme was shown to oxidize betaine aldehyde, 4-aminobutyraldehyde and 3-aminopropionaldehyde to their corresponding carboxylic acids. We hypothesize that ALDH10A8 or ALDH10A9 may serve as detoxification enzymes controlling the level of aminoaldehydes, which are produced in cellular metabolism under stress conditions.
Collapse
Affiliation(s)
- Tagnon D Missihoun
- Institute of Molecular Physiology and Biotechnology of Plants (IMBIO), University of Bonn, Kirschallee 1, 53115 Bonn, Germany
| | | | | | | | | |
Collapse
|
29
|
Chen THH, Murata N. Glycinebetaine protects plants against abiotic stress: mechanisms and biotechnological applications. PLANT, CELL & ENVIRONMENT 2011; 34:1-20. [PMID: 20946588 DOI: 10.1111/j.1365-3040.2010.02232.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Various compatible solutes enable plants to tolerate abiotic stress, and glycinebetaine (GB) is one of the most-studied among such solutes. Early research on GB focused on the maintenance of cellular osmotic potential in plant cells. Subsequent genetically engineered synthesis of GB-biosynthetic enzymes and studies of transgenic plants demonstrated that accumulation of GB increases tolerance of plants to various abiotic stresses at all stages of their life cycle. Such GB-accumulating plants exhibit various advantageous traits, such as enlarged fruits and flowers and/or increased seed number under non-stress conditions. However, levels of GB in transgenic GB-accumulating plants are relatively low being, generally, in the millimolar range. Nonetheless, these low levels of GB confer considerable tolerance to various stresses, without necessarily contributing significantly to cellular osmotic potential. Moreover, low levels of GB, applied exogenously or generated by transgenes for GB biosynthesis, can induce the expression of certain stress-responsive genes, including those for enzymes that scavenge reactive oxygen species. Thus, transgenic approaches that increase tolerance to abiotic stress have enhanced our understanding of mechanisms that protect plants against such stress.
Collapse
Affiliation(s)
- Tony H H Chen
- Department of Horticulture, ALS 4017, Oregon State University, Corvallis, OR 97331, USA National Institute for Basic Biology, Okazaki 444-8585, Japan
| | | |
Collapse
|
30
|
Klubicová K, Danchenko M, Skultety L, Miernyk JA, Rashydov NM, Berezhna VV, Pret'ová A, Hajduch M. Proteomics analysis of flax grown in Chernobyl area suggests limited effect of contaminated environment on seed proteome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:6940-6. [PMID: 20715763 DOI: 10.1021/es100895s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The accident at the Chernobyl Nuclear Power Plant (CNPP) on April 26, 1986 is the most serious nuclear disaster in human history. Surprisingly, while the area proximal to the CNPP remains substantially contaminated with long-lived radioisotopes including (90)Sr and (137)Cs, the local ecosystem has been able to adapt. To evaluate plant adaptation, seeds of a local flax (Linum usitatissimum) variety Kyivskyi were sown in radio-contaminated and control fields of the Chernobyl region. A total protein fraction was isolated from mature seeds, and analyzed using 2-dimensional electrophoresis combined with tandem-mass spectrometry. Interestingly, growth of the plants in the radio-contaminated environment had little effect on proteome and only 35 protein spots differed in abundance (p-value of ≤0.05) out of 720 protein spots that were quantified for seeds harvested from both radio-contaminated and control fields. Of the 35 differentially abundant spots, 28 proteins were identified using state-of-the-art MS(E) method. Based on the observed changes, the proteome of seeds from plants grown in radio-contaminated soil display minor adjustments to multiple signaling pathways.
Collapse
Affiliation(s)
- Katarína Klubicová
- Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Fujiwara T, Mitsuya S, Miyake H, Hattori T, Takabe T. Characterization of a novel glycinebetaine/proline transporter gene expressed in the mestome sheath and lateral root cap cells in barley. PLANTA 2010; 232:133-43. [PMID: 20376676 DOI: 10.1007/s00425-010-1155-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/17/2010] [Indexed: 05/09/2023]
Abstract
The accumulation of glycinebetaine (GB) is one of the adaptive strategies to adverse salt stress conditions. Although it has been demonstrated that barley plants accumulate GB in response to salt stress and various studies focused on GB synthesis were performed, its transport mechanism is still unclear. In this study, we identified a novel gene, HvProT2, encoding Hordeum vulgare GB/proline transporter from barley plants. Heterologous expression in yeast (Saccharomyces cerevisiae) mutant demonstrated that the affinity of HvProT2 was highest for GB, intermediate for proline and lowest for gamma-aminobutyric acid. Transient expression of fusions of HvProT2 and green fluorescent protein in onion epidermal cells revealed that HvProT2 is localized at the plasma membrane. Relative quantification of mRNA level of HvProT2 using semi-quantitative reverse transcription-polymerase chain reaction analysis showed that HvProT2 is constitutively expressed in both leaves and roots, and the expression level was higher in old leaves than young leaves and roots. Moreover, we found that HvProT2 was expressed in the mestome sheath and lateral root cap cells. We discussed the possible involvement of HvProT2 for salt stress tolerance.
Collapse
Affiliation(s)
- Takashi Fujiwara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | | | |
Collapse
|
32
|
Rosas-Rodríguez JA, Figueroa-Soto CG, Valenzuela-Soto EM. Inhibition of porcine kidney betaine aldehyde dehydrogenase by hydrogen peroxide. Redox Rep 2010; 15:282-7. [PMID: 21208528 PMCID: PMC7067312 DOI: 10.1179/135100010x12826446921941] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Renal hyperosmotic conditions may produce reactive oxygen species, which could have a deleterious effect on the enzymes involved in osmoregulation. Hydrogen peroxide was used to provoke oxidative stress in the environment of betaine aldehyde dehydrogenase in vitro. Enzyme activity was reduced as hydrogen peroxide concentration was increased. Over 50% of the enzyme activity was lost at 100 μM hydrogen peroxide at two temperatures tested. At pH 8.0, under physiological ionic strength conditions, peroxide inhibited the enzyme. Initial velocity assays of betaine aldehyde dehydrogenase in the presence of hydrogen peroxide (0-200 μM) showed noncompetitive inhibition with respect to NAD(+) or to betaine aldehyde at saturating concentrations of the other substrate at pH 7.0 or 8.0. Inhibition data showed that apparent V(max) decreased 40% and 26% under betaine aldehyde and NAD(+) saturating concentrations at pH 8.0, while at pH 7.0 V(max) decreased 40% and 29% at betaine aldehyde and NAD(+) saturating concentrations. There was little change in apparent Km(NAD) at either pH, while Km(BA) increased at pH 7.0. K(i) values at pH 8 and 7 were calculated. Our results suggest that porcine kidney betaine aldehyde dehydrogenase could be inhibited by hydrogen peroxide in vivo, thus compromising the synthesis of glycine betaine.
Collapse
Affiliation(s)
- Jesús A. Rosas-Rodríguez
- Coordinación de Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, Sonora, México
| | - Ciria G. Figueroa-Soto
- Coordinación de Ciencia de los AlimentosCentro de Investigación en Alimentación y Desarrollo A.C., Hermosillo, Sonora, México
| | - Elisa M. Valenzuela-Soto
- Coordinación de Ciencia de los AlimentosCentrode Investigación en Alimentación y Desarrollo A.C., Apartado Postal 1735, Hermosillo 83000, Sonora, México;,
| |
Collapse
|
33
|
Mitsuya S, Yokota Y, Fujiwara T, Mori N, Takabe T. OsBADH1 is possibly involved in acetaldehyde oxidation in rice plant peroxisomes. FEBS Lett 2009; 583:3625-9. [PMID: 19850038 DOI: 10.1016/j.febslet.2009.10.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2009] [Revised: 10/07/2009] [Accepted: 10/13/2009] [Indexed: 11/27/2022]
Abstract
Although rice (Oryza sativa L.) produces little glycine betaine (GB), it has two betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) gene homologs (OsBADH1 and OsBADH2). We found that OsBADH1 catalyzes the oxidation of acetaldehyde efficiently, while the activity of OsBADH2 is extremely low. The accumulation of OsBADH1 mRNA decreases following submergence treatment, but quickly recovers after re-aeration. We confirmed that OsBADH1 localizes in peroxisomes. In this paper, a possible physiological function of OsBADH1 in the oxidation of acetaldehyde produced by catalase in rice plant peroxisomes is discussed.
Collapse
Affiliation(s)
- Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | | | | | | | | |
Collapse
|
34
|
Shao HB, Chu LY, Jaleel CA, Manivannan P, Panneerselvam R, Shao MA. Understanding water deficit stress-induced changes in the basic metabolism of higher plants - biotechnologically and sustainably improving agriculture and the ecoenvironment in arid regions of the globe. Crit Rev Biotechnol 2009; 29:131-51. [PMID: 19412828 DOI: 10.1080/07388550902869792] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water is vital for plant growth, development and productivity. Permanent or temporary water deficit stress limits the growth and distribution of natural and artificial vegetation and the performance of cultivated plants (crops) more than any other environmental factor. Productive and sustainable agriculture necessitates growing plants (crops) in arid and semiarid regions with less input of precious resources such as fresh water. For a better understanding and rapid improvement of soil-water stress tolerance in these regions, especially in the water-wind eroded crossing region, it is very important to link physiological and biochemical studies to molecular work in genetically tractable model plants and important native plants, and further extending them to practical ecological restoration and efficient crop production. Although basic studies and practices aimed at improving soil water stress resistance and plant water use efficiency have been carried out for many years, the mechanisms involved at different scales are still not clear. Further understanding and manipulating soil-plant water relationships and soil-water stress tolerance at the scales of ecology, physiology and molecular biology can significantly improve plant productivity and environmental quality. Currently, post-genomics and metabolomics are very important in exploring anti-drought gene resources in various life forms, but modern agriculturally sustainable development must be combined with plant physiological measures in the field, on the basis of which post-genomics and metabolomics have further practical prospects. In this review, we discuss physiological and molecular insights and effects in basic plant metabolism, drought tolerance strategies under drought conditions in higher plants for sustainable agriculture and ecoenvironments in arid and semiarid areas of the world. We conclude that biological measures are the bases for the solutions to the issues relating to the different types of sustainable development.
Collapse
Affiliation(s)
- Hong-Bo Shao
- Institute of Soil and Water Conservation, Chinese Academy of Science, Northwest A&F University, Yangling, China.
| | | | | | | | | | | |
Collapse
|
35
|
Danchenko M, Skultety L, Rashydov NM, Berezhna VV, Mátel L, Salaj T, Pret'ová A, Hajduch M. Proteomic analysis of mature soybean seeds from the Chernobyl area suggests plant adaptation to the contaminated environment. J Proteome Res 2009; 8:2915-22. [PMID: 19320472 DOI: 10.1021/pr900034u] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The explosion in one of the four reactors of the Chernobyl Nuclear Power Plant (CNPP, Chernobyl) caused the worst nuclear environmental disaster ever seen. Currently, 23 years after the accident, the soil in the close vicinity of CNPP is still significantly contaminated with long-living radioisotopes, such as (137)Cs. Despite this contamination, the plants growing in Chernobyl area were able to adapt to the radioactivity, and survive. The aim of this study was to investigate plant adaptation mechanisms toward permanently increased level of radiation using a quantitative high-throughput proteomics approach. Soybeans of a local variety (Soniachna) were sown in contaminated and control fields in the Chernobyl region. Mature seeds were harvested and the extracted proteins were subjected to two-dimensional gel electrophoresis (2-DE). In total, 9.2% of 698 quantified protein spots on 2-D gel were found to be differentially expressed with a p-value = 0.05. All differentially expressed spots were excised from the 2-D gels and analyzed by tandem mass spectrometry. Identified differentially expressed proteins were categorized into six main metabolic classes. Most abundant functional classes were associated with protein destination and storage followed by disease and defense. On the basis of the identity of these proteins, a working model for plant adaptation toward radio-contaminated Chernobyl soil conditions was proposed. Our results suggest that adaptation toward heavy metal stress, protection against radiation damage, and mobilization of seed storage proteins are involved in plant adaptation mechanism to radioactivity in the Chernobyl region.
Collapse
Affiliation(s)
- Maksym Danchenko
- Department of Reproduction and Developmental Biology, Institute of Plant Genetics and Biotechnology, Slovak Academy of Sciences, Nitra, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Fitzgerald TL, Waters DLE, Henry RJ. Betaine aldehyde dehydrogenase in plants. PLANT BIOLOGY (STUTTGART, GERMANY) 2009; 11:119-30. [PMID: 19228319 DOI: 10.1111/j.1438-8677.2008.00161.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant betaine aldehyde dehydrogenases (BADHs) have been the target of substantial research, especially during the last 20 years. Initial characterisation of BADH as an enzyme involved in the production of glycine betaine (GB) has led to detailed studies of the role of BADH in the response of plants to abiotic stress in vivo, and the potential for transgenic expression of BADH to improve abiotic stress tolerance. These studies have, in turn, yielded significant information regarding BADH and GB function. Recent research has identified the potential for BADH as an antibiotic-free marker for selection of transgenic plants, and a major role for BADH in 2-acetyl-1-pyrroline-based fragrance associated with jasmine and basmati style aromatic rice varieties.
Collapse
Affiliation(s)
- T L Fitzgerald
- Grain Foods CRC, Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW, Australia
| | | | | |
Collapse
|
37
|
Hattori T, Mitsuya S, Fujiwara T, Jagendorf AT, Takabe T. Tissue specificity of glycinebetaine synthesis in barley. PLANT SCIENCE 2009. [PMID: 0 DOI: 10.1016/j.plantsci.2008.10.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
38
|
Fujiwara T, Hori K, Ozaki K, Yokota Y, Mitsuya S, Ichiyanagi T, Hattori T, Takabe T. Enzymatic characterization of peroxisomal and cytosolic betaine aldehyde dehydrogenases in barley. PHYSIOLOGIA PLANTARUM 2008; 134:22-30. [PMID: 18429940 DOI: 10.1111/j.1399-3054.2008.01122.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) is an important enzyme that catalyzes the last step in the synthesis of glycine betaine, a compatible solute accumulated by many plants under various abiotic stresses. In barley (Hordeum vulgare L.), we reported previously the existence of two BADH genes (BBD1 and BBD2) and their corresponding proteins, peroxisomal BADH (BBD1) and cytosolic BADH (BBD2). To investigate their enzymatic properties, we expressed them in Escherichia coli and purified both proteins. Enzymatic analysis indicated that the affinity of BBD2 for betaine aldehyde was reasonable as other plant BADHs, but BBD1 showed extremely low affinity for betaine aldehyde with apparent K(m) of 18.9 microM and 19.9 mM, respectively. In addition, V(max)/K(m) with betaine aldehyde of BBD2 was about 2000-fold higher than that of BBD1, suggesting that BBD2 plays a main role in glycine betaine synthesis in barley plants. However, BBD1 catalyzed the oxidation of omega-aminoaldehydes such as 4-aminobutyraldehyde and 3-aminopropionaldehyde as efficiently as BBD2. We also found that both BBDs oxidized 4-N-trimethylaminobutyraldehyde and 3-N-trimethylaminopropionaldehyde.
Collapse
Affiliation(s)
- Takashi Fujiwara
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, Japan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Chen S, Yang Y, Shi W, Ji Q, He F, Zhang Z, Cheng Z, Liu X, Xu M. Badh2, encoding betaine aldehyde dehydrogenase, inhibits the biosynthesis of 2-acetyl-1-pyrroline, a major component in rice fragrance. THE PLANT CELL 2008; 20:1850-61. [PMID: 18599581 PMCID: PMC2518245 DOI: 10.1105/tpc.108.058917] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 06/04/2008] [Accepted: 06/17/2008] [Indexed: 05/18/2023]
Abstract
In rice (Oryza sativa), the presence of a dominant Badh2 allele encoding betaine aldehyde dehydrogenase (BADH2) inhibits the synthesis of 2-acetyl-1-pyrroline (2AP), a potent flavor component in rice fragrance. By contrast, its two recessive alleles, badh2-E2 and badh2-E7, induce 2AP formation. Badh2 was found to be transcribed in all tissues tested except for roots, and the transcript was detected at higher abundance in young, healthy leaves than in other tissues. Multiple Badh2 transcript lengths were detected, and the complete, full-length Badh2 transcript was much less abundant than partial Badh2 transcripts. 2AP levels were significantly reduced in cauliflower mosaic virus 35S-driven transgenic lines expressing the complete, but not the partial, Badh2 coding sequences. In accordance, the intact, full-length BADH2 protein (503 residues) appeared exclusively in nonfragrant transgenic lines and rice varieties. These results indicate that the full-length BADH2 protein encoded by Badh2 renders rice nonfragrant by inhibiting 2AP biosynthesis. The BADH2 enzyme was predicted to contain three domains: NAD binding, substrate binding, and oligomerization domains. BADH2 was distributed throughout the cytoplasm, where it is predicted to catalyze the oxidization of betaine aldehyde, 4-aminobutyraldehyde (AB-ald), and 3-aminopropionaldehyde. The presence of null badh2 alleles resulted in AB-ald accumulation and enhanced 2AP biosynthesis. In summary, these data support the hypothesis that BADH2 inhibits 2AP biosynthesis by exhausting AB-ald, a presumed 2AP precursor.
Collapse
Affiliation(s)
- Saihua Chen
- National Maize Improvement Center of China, China Agricultural University, Beijing 100193, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Jaleel CA, Manivannan P, Kishorekumar A, Sankar B, Gopi R, Somasundaram R, Panneerselvam R. Alterations in osmoregulation, antioxidant enzymes and indole alkaloid levels in Catharanthus roseus exposed to water deficit. Colloids Surf B Biointerfaces 2007; 59:150-7. [PMID: 17560094 DOI: 10.1016/j.colsurfb.2007.05.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2007] [Revised: 04/23/2007] [Accepted: 05/02/2007] [Indexed: 11/15/2022]
Abstract
Catharanthus roseus (L.) G. Don plants were grown in different water regimes in order to study the drought induced osmotic stress and proline (PRO) metabolism, antioxidative enzyme activities and indole alkaloid accumulation. The plants under pot culture were subjected to 10, 15 and 20 days interval drought (DID) stress from 30 days after sowing (DAS) and regular irrigation was kept as control. The plants were uprooted on 41DAS (10DID), 46DAS (15DID) and 51DAS (20DID). The drought stressed plants showed increased aminoacid (AA), glycine betaine (GB) and PRO contents and decreased proline oxidase (PROX) and increased gamma-glutamyl kinase (gamma-GK) activities when compared to control. The antioxidative enzymes like peroxidase (POX) and polyphenol oxidase (PPO) increased to a significant level in drought stressed plants when compared to control. The drought stressed C. roseus plants showed an increase in total indole alkaloid content in shoots and roots when compared to well-watered control plants. Our results suggest that the cultivation of medicinal plants like C. roseus in water deficit areas would increase its PRO metabolism, osmoregulation, defense system and the level of active principles.
Collapse
Affiliation(s)
- C Abdul Jaleel
- Stress Physiology Lab, Department of Botany, Annamalai University, Annamalainagar 608002, Tamilnadu, India.
| | | | | | | | | | | | | |
Collapse
|
41
|
Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R. Water deficit stress mitigation by calcium chloride in Catharanthus roseus: Effects on oxidative stress, proline metabolism and indole alkaloid accumulation. Colloids Surf B Biointerfaces 2007; 60:110-6. [PMID: 17643271 DOI: 10.1016/j.colsurfb.2007.06.006] [Citation(s) in RCA: 130] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2007] [Revised: 05/30/2007] [Accepted: 06/04/2007] [Indexed: 11/23/2022]
Abstract
The present investigation was conducted to determine whether CaCl(2) increases Catharanthus roseus drought tolerance and if such tolerance is correlated with changes in oxidative stress, osmoregulation and indole alkaloid accumulation. C. roseus plants were grown under water deficit environments with or without CaCl(2). Drought induced oxidative stress was measured in terms of lipid peroxidation (LPO) and H(2)O(2) contents, osmolyte concentration, proline (PRO) metabolizing enzymes and indole alkaloid accumulation. The plants under pot culture were subjected to 10, 15 and 20 days interval drought (DID) stress and drought stress with 5mM CaCl(2) and 5mM CaCl(2) alone from 30 days after planting (DAP) and regular irrigation was kept as control. The plants were uprooted on 41 DAS (10 DID), 46 DAS (15 DID) and 51 DAS (20 DID). Drought stressed plants showed increased LPO, H(2)O(2), glycine betaine (GB) and PRO contents and decreased proline oxidase (PROX) activity and increased gamma-glutamyl kinase (gamma-GK) activity when compared to control. Addition of CaCl(2) to drought stressed plants lowered the PRO concentration by increasing the level of PROX and decreasing the gamma-GK activities. Calcium ions increased the GB contents. CaCl(2) appears to confer greater osmoprotection by the additive role with drought in GB accumulation. The drought with CaCl(2)-treated C. roseus plants showed an increase in total indole alkaloid content in shoots and roots when compared to drought stressed and well-watered plants.
Collapse
Affiliation(s)
- C Abdul Jaleel
- Stress Physiology Lab, Department of Botany, Annamalai University, Annamalainagar 608002, Tamil Nadu, India.
| | | | | | | | | | | | | |
Collapse
|
42
|
Manivannan P, Jaleel CA, Sankar B, Kishorekumar A, Somasundaram R, Lakshmanan GMA, Panneerselvam R. Growth, biochemical modifications and proline metabolism in Helianthus annuus L. as induced by drought stress. Colloids Surf B Biointerfaces 2007; 59:141-9. [PMID: 17560769 DOI: 10.1016/j.colsurfb.2007.05.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 04/27/2007] [Accepted: 05/02/2007] [Indexed: 11/26/2022]
Abstract
In the present investigation, two watering treatments, viz., 100% and 60% field capacity (FC) were used to understand the effects of water deficit on early growth, biomass allocation, pigment and biochemical constituents and proline metabolism of five varieties of Sunflower (Helianthus annuus L.) plants. We found that there was a significant difference in early growth, dry matter accumulation, pigment, biochemical constituents and proline metabolism among the five varieties. The root length, shoot length, total leaf area, fresh and dry weight, chlorophyll a, b, total chlorophyll and carotenoid were significantly reduced under water stress treatments. Water stress increased the proline, free amino acid and glycinebetaine contents along with increased activity of gamma-glutamyl kinase but the activity of proline oxidase reduced as a consequence of water stress.
Collapse
Affiliation(s)
- P Manivannan
- Stress Physiology Lab, Department of Botany, Annamalai University, Annamalainagar 608002, Tamilnadu, India
| | | | | | | | | | | | | |
Collapse
|
43
|
Baldwin JC, Dombrowski JE. Evaluation of Lolium temulentum as a model grass species for the study of salinity stress by PCR-based subtractive suppression hybridization analysis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2006; 171:459-69. [PMID: 25193643 DOI: 10.1016/j.plantsci.2006.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2006] [Revised: 05/05/2006] [Accepted: 05/06/2006] [Indexed: 05/21/2023]
Abstract
Soil salinity is one of the major abiotic stresses responsible for reduced persistence, yield and biomass accumulation in many crops including forage grass. Forage grass species are generally polymorphic, obligate out-crossers, that are self-incompatible. Because of their high genetic diversity, the mechanisms of salt tolerance are poorly understood. Consequently, the development of a useful model grass plant for the study of abiotic stresses is of great importance. We propose the use of Lolium temulentum L. (Darnel ryegrass), a diploid self-fertile species with a short life cycle (2-3 months), as a model system for the study of forage/turf grass species. To evaluate the utility of L. temulentum as a model grass species to study salt stress, a PCR-based subtractive suppression hybridization library was generated and sequenced. A total of 528 unique sequences were identified, among which 167 corresponded to orthologs of previously identified plant stress response genes. The expression patterns in leaf, crown and root tissues of selected genes were analyzed by Northern blot analysis, demonstrating salinity depended regulation of gene expression. These preliminary studies provide proof of concept supporting the use of L. temulentum as a model forage grass for molecular genetic analyses of salinity stress.
Collapse
Affiliation(s)
- James C Baldwin
- USDA-ARS, Cereal Crops Research Unit, 501 Walnut Street, Madison, WI 53726, United States
| | - James E Dombrowski
- USDA-ARS, National Forage Seed Production Research Center, Oregon State University, 3450 SW Campus Way, Corvallis, OR 97331-7102, United States.
| |
Collapse
|
44
|
SHIRASAWA KENTA, TAKABE TOMOKO, TAKABE TETSUKO, KISHITANI SACHIE. Accumulation of glycinebetaine in rice plants that overexpress choline monooxygenase from spinach and evaluation of their tolerance to abiotic stress. ANNALS OF BOTANY 2006; 98:565-71. [PMID: 16790464 PMCID: PMC2803577 DOI: 10.1093/aob/mcl126] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2005] [Revised: 03/23/2006] [Accepted: 04/13/2006] [Indexed: 05/10/2023]
Abstract
BACKGROUND AND AIMS Glycinebetaine (GB), a quaternary ammonium compound, is a very effective compatible solute. In higher plants, GB is synthesized from choline (Cho) via betaine aldehyde (BA). The first and second steps in the biosynthesis of GB are catalysed by choline monooxygenase (CMO) and by betaine aldehyde dehydrogenase (BADH), respectively. Rice (Oryza sativa), which has two genes for BADH, does not accumulate GB because it lacks a functional gene for CMO. Rice plants accumulate GB in the presence of exogenously applied BA, which leads to the development of a significant tolerance to salt, cold and heat stress. The goal in this study was to evaluate and to discuss the effects of endogenously accumulated GB in rice. METHODS Transgenic rice plants that overexpressed a gene for CMO from spinach (Spinacia oleracea) were produced by Agrobacterium-mediated transformation. After Southern and western blotting analysis, GB in rice leaves was quantified by (1)H-NMR spectroscopy and the tolerance of GB-accumulating plants to abiotic stress was investigated. KEY RESULTS Transgenic plants that had a single copy of the transgene and expressed spinach CMO accumulated GB at the level of 0.29-0.43 micromol g(-1) d. wt and had enhanced tolerance to salt stress and temperature stress in the seedling stage. CONCLUSIONS In the CMO-expressing rice plants, the localization of spinach CMO and of endogenous BADHs might be different and/or the catalytic activity of spinach CMO in rice plants might be lower than it is in spinach. These possibilities might explain the low levels of GB in the transgenic rice plants. It was concluded that CMO-expressing rice plants were not effective for accumulation of GB and improvement of productivity.
Collapse
Affiliation(s)
- KENTA SHIRASAWA
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 981-8555, Japan and Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - TOMOKO TAKABE
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 981-8555, Japan and Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - TETSUKO TAKABE
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 981-8555, Japan and Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - SACHIE KISHITANI
- Graduate School of Agricultural Science, Tohoku University, Aoba, Sendai 981-8555, Japan and Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
45
|
Oishi H, Ebina M. Isolation of cDNA and enzymatic properties of betaine aldehyde dehydrogenase from Zoysia tenuifolia. JOURNAL OF PLANT PHYSIOLOGY 2005; 162:1077-86. [PMID: 16255165 DOI: 10.1016/j.jplph.2005.01.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
We isolated cDNAs encoding betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) from the salt-tolerant Poaceae, Zoysia tenuifolia by polymerase chain reactions. Zoysia betaine aldehyde dehydrogenase 1 (ZBD1) is 1892bp long and codes for 507 amino acids. The deduced amino acid sequence of ZBD1 is 88% similar to the sequence of rice BADH. Ten cDNA clones were isolated from a cDNA Library of salt-treated Z. tenuifolia by using the ZBD1 fragment as a probe. The proteins coded in some clones were more homologous to BBD2, the cytosolic BADH of barley, than to ZBD1. To investigate their enzymatic properties, ZBD1 and spinach BADH were expressed in Escherichia coli and purified. The optimal pH of ZBD1 was 9.5, which was more alkaline than that of spinach BADH. ZBD1 was less tolerant to NaCl than spinach BADH. ZBD1 showed not only BADH activity but also aminoaldehyde dehydrogenase activity. The Km values of ZBD1 for betaine aldehyde, 4-aminobutyraldehyde (AB-ald), and 3-aminopropionaldehyde (AP-ald) were 291, 49, and 4.0 microM, respectively. ZBD1 showed higher specific activities for AB-ald and AP-ald than did spinach BADH.
Collapse
Affiliation(s)
- Hideki Oishi
- Japan Grassland Farming and Forage Seed Association, Forage Crop Research Institute, Nishinasuno, Tochigi, Japan.
| | | |
Collapse
|
46
|
Bradbury LMT, Fitzgerald TL, Henry RJ, Jin Q, Waters DLE. The gene for fragrance in rice. PLANT BIOTECHNOLOGY JOURNAL 2005; 3:363-70. [PMID: 17129318 DOI: 10.1111/j.1467-7652.2005.00131.x] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The flavour or fragrance of basmati and jasmine rice is associated with the presence of 2-acetyl-1-pyrroline. A recessive gene (fgr) on chromosome 8 of rice has been linked to this important trait. Here, we show that a gene with homology to the gene that encodes betaine aldehyde dehydrogenase (BAD) has significant polymorphisms in the coding region of fragrant genotypes relative to non-fragrant genotypes. The accumulation of 2-acetyl-1-pyrroline in fragrant rice genotypes may be explained by the presence of mutations resulting in a loss of function of the fgr gene product. The allele in fragrant genotypes has a mutation introducing a stop codon upstream of key amino acid sequences conserved in other BADs. The fgr gene corresponds to the gene encoding BAD2 in rice, while BAD1 is encoded by a gene on chromosome 4. BAD has been linked to stress tolerance in plants. However, the apparent loss of function of BAD2 does not seem to limit the growth of fragrant rice genotypes. Fragrance in domesticated rice has apparently originated from a common ancestor and may have evolved in a genetically isolated population, or may be the outcome of a separate domestication event. This is an example of effective human selection for a recessive trait during domestication.
Collapse
Affiliation(s)
- Louis M T Bradbury
- Centre for Plant Conservation Genetics, Southern Cross University, Lismore, NSW 2480, Australia
| | | | | | | | | |
Collapse
|
47
|
Ramachandra Reddy A, Chaitanya KV, Vivekanandan M. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:1189-202. [PMID: 15602811 DOI: 10.1016/j.jplph.2004.01.013] [Citation(s) in RCA: 719] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Environmental stresses trigger a wide variety of plant responses, ranging from altered gene expression and cellular metabolism to changes in growth rates and crop yields. A plethora of plant reactions exist to circumvent the potentially harmful effects caused by a wide range of both abiotic and biotic stresses, including light, drought, salinity, high temperatures, and pathogen infections. Among the environmental stresses, drought stress is one of the most adverse factors of plant growth and productivity. Understanding the biochemical and molecular responses to drought is essential for a holistic perception of plant resistance mechanisms to water-limited conditions. Drought stress progressively decreases CO2 assimilation rates due to reduced stomatal conductance. Drought stress also induces reduction in the contents and activities of photosynthetic carbon reduction cycle enzymes, including the key enzyme, ribulose-1,5-bisphosphate carboxylase/oxygenase. The critical roles of proline and glycine-betaine, as well as the role of abscisic acid (ABA), under drought stress conditions have been actively researched to understand the tolerance of plants to dehydration. In addition, drought stress-induced generation of active oxygen species is well recognized at the cellular level and is tightly controlled at both the production and consumption levels in vivo, through increased antioxidative systems. Knowledge of sensing and signaling pathways, including ABA-mediated changes in response to drought stress, is essential to improve crop management. This review focuses on the ability and strategies of higher plants to respond and adapt to drought stress.
Collapse
|
48
|
Gao XP, Pan QH, Li MJ, Zhang LY, Wang XF, Shen YY, Lu YF, Chen SW, Liang Z, Zhang DP. Abscisic acid is involved in the water stress-induced betaine accumulation in pear leaves. PLANT & CELL PHYSIOLOGY 2004; 45:742-750. [PMID: 15215509 DOI: 10.1093/pcp/pch089] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
ABA exogenously applied to the leaves of the whole plants of pear (Pyrus bretschneideri Redh. cv. Suly grafted on Pyrus betulaefolia Rehd.) significantly increased the betaine concentrations in the leaves when the plants were well watered. The plants subjected to 'drought plus ABA' treatment had significantly higher betaine concentrations in their leaves than those given drought treatment alone. The 'drought plus ABA' treatment increased the amount of betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) and its activity in the leaves more than did the drought treatment alone. The experiments with detached leaves showed that ABA treatment significantly increased the concentration of betaine, activity of BADH and apparent amount of BADH in non-dehydrated leaves, and enhanced the accumulation of betaine, activity of BADH and apparent amount of BADH in dehydrated leaves. These effects of ABA were both time- and dose-dependent. Two ABA isomers, (-)-cis, trans-ABA and 2-trans, 4-trans-ABA, had no effect on the betaine accumulation in the leaves, showing that the ABA-induced effects are specific. These data demonstrate that ABA is involved in the drought-induced betaine accumulation in the pear leaves.
Collapse
Affiliation(s)
- Xiu-Ping Gao
- China State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100094
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gao XP, Pan QH, Li MJ, Zhang LY, Wang XF, Shen YY, Lu YF, Chen SW, Liang Z, Zhang DP. Abscisic acid is involved in the water stress-induced betaine accumulation in pear leaves. PLANT & CELL PHYSIOLOGY 2004; 45:742-750. [PMID: 15215509 DOI: 10.1111/j.1365-3040.2004.01167.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
ABA exogenously applied to the leaves of the whole plants of pear (Pyrus bretschneideri Redh. cv. Suly grafted on Pyrus betulaefolia Rehd.) significantly increased the betaine concentrations in the leaves when the plants were well watered. The plants subjected to 'drought plus ABA' treatment had significantly higher betaine concentrations in their leaves than those given drought treatment alone. The 'drought plus ABA' treatment increased the amount of betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8) and its activity in the leaves more than did the drought treatment alone. The experiments with detached leaves showed that ABA treatment significantly increased the concentration of betaine, activity of BADH and apparent amount of BADH in non-dehydrated leaves, and enhanced the accumulation of betaine, activity of BADH and apparent amount of BADH in dehydrated leaves. These effects of ABA were both time- and dose-dependent. Two ABA isomers, (-)-cis, trans-ABA and 2-trans, 4-trans-ABA, had no effect on the betaine accumulation in the leaves, showing that the ABA-induced effects are specific. These data demonstrate that ABA is involved in the drought-induced betaine accumulation in the pear leaves.
Collapse
Affiliation(s)
- Xiu-Ping Gao
- China State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing 100094
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Livingstone JR, Maruo T, Yoshida I, Tarui Y, Hirooka K, Yamamoto Y, Tsutui N, Hirasawa E. Purification and properties of betaine aldehyde dehydrogenase from Avena sativa. JOURNAL OF PLANT RESEARCH 2003; 116:133-140. [PMID: 12736784 DOI: 10.1007/s10265-003-0077-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2002] [Accepted: 12/12/2002] [Indexed: 05/24/2023]
Abstract
Betaine aldehyde dehydrogenase (BADH; EC 1.2.1.8) is the enzyme that catalyzes the second step in the synthesis of the osmoprotectant, glycine betaine. NAD-dependent BADH was purified from Avena sativa shoots by DEAE Sephacel, hydroxyapatite, 5'-AMP Sepharose 4B, Mono Q and TSK-GEL column chromatographies to homogeneity by the criterion of native PAGE, and the properties of BADH were compared with those of aminoaldehyde dehydrogenase purified to homogeneity from A. sativa. The molecular mass estimated by both gel filtration using TSK-GEL column and Sephacryl S-200 was 120 and 115, kDa, respectively. The enzyme is a homodimer with a subunit molecular mass of 61 kDa as shown by SDS-PAGE. The pI value of the enzyme was found to be 6.3. The purified enzyme catalyzed not only the oxidation of betaine aldehyde (BAL), but also that of aminoaldehydes, 3-aminopropionaldehyde (APAL), 4-aminobutyraldehyde (ABAL), and 4-guanidinobutyraldehyde (GBAL). The K(m) values for BAL, APAL, ABAL and GBAL were 5x10(-6), 5.4x10(-7), 2.4x10(-5) and 5x10(-5) M, respectively. APAL showed substrate inhibition at a concentration of 0.1 mM. A fragment of BADH cleaved by V8 protease shared homology with other plant BADHs.
Collapse
Affiliation(s)
- Jeyanthi Rebecca Livingstone
- Division of Bio- and Geosciences, Graduate School of Science, Osaka City University, Sumiyoshi-ku, Osaka 558-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|