1
|
Song Z, Liu J, Qian X, Xia Z, Wang B, Liu N, Yi Z, Li Z, Dong Z, Zhang C, Zhang B, Tadege M, Dong Y, Li Y. Functional Verification of the Soybean Pseudo-Response Factor GmPRR7b and Regulation of Its Rhythmic Expression. Int J Mol Sci 2025; 26:2446. [PMID: 40141089 PMCID: PMC11942516 DOI: 10.3390/ijms26062446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/28/2025] Open
Abstract
The pseudo response regulator (PRR) gene is an important component of the core oscillator involved in plant circadian rhythms and plays an important role in regulating plant growth and development and stress responses. In this study, we investigated the function of GmPRR7b by overexpression and gene editing approaches. It was found that GmPRR7b plays a role in delaying flowering. While GmPRR7b overexpressing plants showed significantly delayed flowering compared to untransformed WT, GmPRR7b edited plants flowered earlier than the control WT. On the basis of previous research results and bioinformatics analysis, we re-identified 14 soybean PRR genes and analysed their rhythmic expression. Based on the rhythmic expression pattern, we found that GmPRR5/9a and GmPRR5/9b interacted with GmPRR7b by yeast two-hybrid and bimolecular fluorescence complementation (BiFC) experiments. Combined with the expression regulatory networks of the GmPRR7b, we inferred a possible regulatory mechanism by which GmPRR7b affects flowering through quit rhythm expression. These research elements provide valuable references for understanding growth, development, and circadian regulation in soybean.
Collapse
Affiliation(s)
- Ziye Song
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Jia Liu
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Xueyan Qian
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhengjun Xia
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China;
| | - Bo Wang
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Nianxi Liu
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhigang Yi
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhi Li
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Zhimin Dong
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Chunbao Zhang
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Bo Zhang
- School of Plant and Environmental Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VI 24061, USA;
| | - Million Tadege
- Institute of Agricultural Biosciences, Oklahoma State University, Stillwater, OK 74078, USA;
| | - Yingshan Dong
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| | - Yuqiu Li
- Jilin Academy Agricultural of Science (Northeast Agricultural Research Center of China), Changchun 130033, China; (Z.S.); (J.L.); (X.Q.); (B.W.); (N.L.); (Z.Y.); (Z.L.); (Z.D.); (C.Z.)
| |
Collapse
|
2
|
Kim YJ, Kim WY, Somers DE. HOS15-mediated turnover of PRR7 enhances freezing tolerance. THE NEW PHYTOLOGIST 2024; 244:798-810. [PMID: 39155726 PMCID: PMC11449641 DOI: 10.1111/nph.20062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 07/29/2024] [Indexed: 08/20/2024]
Abstract
Arabidopsis PSEUDORESPONSE REGULATOR7 (PRR7) is a core component of the circadian oscillator which also plays a crucial role in freezing tolerance. PRR7 undergoes proteasome-dependent degradation to discretely phase maximal expression in early evening. While its repressive activity on downstream genes is integral to cold regulation, the mechanism of the conditional regulation of the PRR7 abundance is unknown. We used mutant analysis, protein interaction and ubiquitylation assays to establish that the ubiquitin ligase adaptor, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), controls the protein accumulation pattern of PRR7 through direct protein-protein interactions at low temperatures. Freezing tolerance and electrolyte leakage assays show that PRR7 enhances cold temperature sensitivity, supported by ChIP-qPCR at C-REPEAT BINDING FACTOR1 (CBF1) and COLD-REGULATED 15A (COR15A) promoters where PRR7 levels were higher in hos15 mutants. HOS15 mediates PRR7 turnover through enhanced ubiquitylation at low temperature in the dark. Under the same conditions, increased PRR7 association with the promoters of CBFs and COR15A in hos15 correlates with decreased CBF1 and COR15A transcription and enhanced freezing sensitivity. We propose a novel mechanism whereby HOS15-mediated degradation of PRR7 provides an intersection between the circadian system and other cold acclimation pathways that lead to increased freezing tolerance.
Collapse
Affiliation(s)
- Yeon Jeong Kim
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center (PBRRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, 52828, Korea
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
3
|
Zhang J, Jin H, Chen Y, Jiang Y, Gu L, Lin G, Lin C, Wang Q. The eukaryotic translation initiation factor eIF4E regulates flowering and circadian rhythm in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:123-138. [PMID: 39145515 DOI: 10.1111/tpj.16975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 08/16/2024]
Abstract
Translation initiation is a critical, rate-limiting step in protein synthesis. The eukaryotic translation initiation factor 4E (eIF4E) plays an essential role in this process. However, the mechanisms by which eIF4E-dependent translation initiation regulates plant growth and development remain not fully understood. In this study, we found that Arabidopsis eIF4E proteins are distributed in both the nucleus and cytoplasm, with only the cytoplasmic eIF4E being involved in the control of photoperiodic flowering. Genome-wide translation profiling using Ribo-tag sequencing reveals that eIF4E may regulate plant flowering by maintaining the homeostatic translation of components in the photoperiodic flowering pathway. eIF4E not only regulates the translation of flowering genes such as FLOWERING LOCUS T (FT) and FLOWERING LOCUS D (FLD) but also influences the translation of circadian genes like CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR 9 (PRR9). Consistently, our results show that the eIF4E modulates the rhythmic oscillation of the circadian clock. Together, our study provides mechanistic insights into how the protein translation regulates multiple developmental processes in Arabidopsis, including the circadian clock and photoperiodic flowering.
Collapse
Affiliation(s)
- Jing Zhang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huanhuan Jin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yadi Chen
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yonghong Jiang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lianfeng Gu
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guifang Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chentao Lin
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qin Wang
- College of Life Sciences, Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
4
|
Liu Z, Liu W, Wang Z, Xie Z, Qi K, Yue D, Li Y, Zhang S, Wu J, Wang P. Molecular characterization of PSEUDO RESPONSE REGULATOR family in Rosaceae and function of PbPRR59a and PbPRR59b in flowering regulation. BMC Genomics 2024; 25:794. [PMID: 39169310 PMCID: PMC11340073 DOI: 10.1186/s12864-024-10720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/16/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND PSEUDO RESPONSE REGULATOR (PRR) genes are essential components of circadian clock, playing vital roles in multiple processes including plant growth, flowering and stress response. Nonetheless, little is known about the evolution and function of PRR family in Rosaceae species. RESULTS In this study, a total of 43 PRR genes in seven Rosaceae species were identified through comprehensive analysis. The evolutionary relationships were analyzed with phylogenetic tree, duplication events and synteny. PRR genes were classified into three groups (PRR1, PRR5/9, PRR3/7). The expansion of PRR family was mainly derived from dispersed and whole-genome duplication events. Purifying selection was the major force for PRR family evolution. Synteny analysis indicated the existence of multiple orthologous PRR gene pairs between pear and other Rosaceae species. Moreover, the conserved motifs of eight PbPRR proteins supported the phylogenetic relationship. PRR genes showed diverse expression pattern in various tissues of pear (Pyrus bretschneideri). Transcript analysis under 12-h light/ dark cycle and constant light conditions revealed that PRR genes exhibited distinct rhythmic oscillations in pear. PbPRR59a and PbPRR59b highly homologous to AtPRR5 and AtPRR9 were cloned for further functional verification. PbPRR59a and PbPRR59b proteins were localized in the nucleus. The ectopic overexpression of PbPRR59a and PbPRR59b significantly delayed flowering in Arabidopsis transgenic plants by repress the expression of AtGI, AtCO and AtFT under long-day conditions. CONCLUSIONS These results provide information for exploring the evolution of PRR genes in plants, and contribute to the subsequent functional studies of PRR genes in pear and other Rosaceae species.
Collapse
Affiliation(s)
- Zhe Liu
- School of Pharmacy, Changzhi Medical College, Changzhi, 046000, China
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weijuan Liu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhangqing Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihua Xie
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kaijie Qi
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dong Yue
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yu Li
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shaoling Zhang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Juyou Wu
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Zhongshan Biological Breeding Laboratory, Nanjing, 210014, China
| | - Peng Wang
- Sanya Institute of Nanjing Agricultural University, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Key Laboratory for Horticultural Crop Breeding, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
5
|
Denyer T, Wu PJ, Colt K, Abramson BW, Pang Z, Solansky P, Mamerto A, Nobori T, Ecker JR, Lam E, Michael TP, Timmermans MCP. Streamlined spatial and environmental expression signatures characterize the minimalist duckweed Wolffia australiana. Genome Res 2024; 34:1106-1120. [PMID: 38951025 PMCID: PMC11368201 DOI: 10.1101/gr.279091.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Single-cell genomics permits a new resolution in the examination of molecular and cellular dynamics, allowing global, parallel assessments of cell types and cellular behaviors through development and in response to environmental circumstances, such as interaction with water and the light-dark cycle of the Earth. Here, we leverage the smallest, and possibly most structurally reduced, plant, the semiaquatic Wolffia australiana, to understand dynamics of cell expression in these contexts at the whole-plant level. We examined single-cell-resolution RNA-sequencing data and found Wolffia cells divide into four principal clusters representing the above- and below-water-situated parenchyma and epidermis. Although these tissues share transcriptomic similarity with model plants, they display distinct adaptations that Wolffia has made for the aquatic environment. Within this broad classification, discrete subspecializations are evident, with select cells showing unique transcriptomic signatures associated with developmental maturation and specialized physiologies. Assessing this simplified biological system temporally at two key time-of-day (TOD) transitions, we identify additional TOD-responsive genes previously overlooked in whole-plant transcriptomic approaches and demonstrate that the core circadian clock machinery and its downstream responses can vary in cell-specific manners, even in this simplified system. Distinctions between cell types and their responses to submergence and/or TOD are driven by expression changes of unexpectedly few genes, characterizing Wolffia as a highly streamlined organism with the majority of genes dedicated to fundamental cellular processes. Wolffia provides a unique opportunity to apply reductionist biology to elucidate signaling functions at the organismal level, for which this work provides a powerful resource.
Collapse
Affiliation(s)
- Tom Denyer
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Pin-Jou Wu
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Kelly Colt
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Bradley W Abramson
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Applied Sciences and Life Sciences Laboratory, Noblis, Reston, Virginia 20191, USA
| | - Zhili Pang
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA
| | - Pavel Solansky
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany
| | - Allen Mamerto
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Tatsuya Nobori
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Joseph R Ecker
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Genomic Analysis Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA;
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA;
| | - Marja C P Timmermans
- Center for Plant Molecular Biology, University of Tübingen, Tübingen 72076, Germany;
| |
Collapse
|
6
|
Kim YJ, Kim WY, Somers DE. HOS15-mediated turnover of PRR7 enhances freezing tolerance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599783. [PMID: 38979283 PMCID: PMC11230174 DOI: 10.1101/2024.06.20.599783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Arabidopsis PSEUDO RESPONSE REGULATOR7 (PRR7) is a core component of the circadian oscillator which also plays a crucial role in freezing tolerance. PRR7 undergoes proteasome-dependent degradation to discretely phase maximal expression in early evening. While its transcriptional repressive activity on downstream genes is integral to cold regulation, the mechanism of the conditional regulation of the PRR7 protein activity is unknown. We used double mutant analysis, protein interaction and ubiquitylation assays to establish that the ubiquitin ligase adaptor, HIGH EXPRESSION OF OSMOTICALLY RESPONSIVE GENE 15 (HOS15), controls the protein accumulation pattern of PRR7 through direct protein-protein interactions. Freezing tolerance and electrolyte leakage assays show that PRR7 enhances cold temperature sensitivity, supported by ChIP-qPCR at C-REPEAT BINDING FACTOR (CBF) and COLD REGULATED 15A (COR15A) promoters where PRR7 levels were higher in hos15 mutants. We establish that HOS15 mediates PRR7 protein turnover through enhanced ubiquitylation at low temperature in the dark. Under the same conditions, increased PRR7 association with the promoter regions of CBFs and COR15A in hos15 correlates with decreased CBF1 and COR15A transcription and enhanced freezing sensitivity. We propose a novel mechanism whereby HOS15-mediated regulation of PRR7 provides an intersection between the circadian system and other cold acclimation pathways leading to freezing tolerance through upregulation of CBF1 and COR15A.
Collapse
Affiliation(s)
- Yeon Jeong Kim
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Woe Yeon Kim
- Division of Applied Life Science (BK21 Four), Plant Biological Rhythm Research Center (PBRRC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - David E Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Liang T, Yu S, Pan Y, Wang J, Kay SA. The interplay between the circadian clock and abiotic stress responses mediated by ABF3 and CCA1/LHY. Proc Natl Acad Sci U S A 2024; 121:e2316825121. [PMID: 38319968 PMCID: PMC10873597 DOI: 10.1073/pnas.2316825121] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 01/09/2024] [Indexed: 02/08/2024] Open
Abstract
Climate change is a global concern for all life on our planet, including humans and plants. Plants' growth and development are significantly affected by abiotic stresses, including adverse temperature, inadequate or excess water availability, nutrient deficiency, and salinity. The circadian clock is a master regulator of numerous developmental and metabolic processes in plants. In an effort to identify new clock-related genes and outputs through bioinformatic analysis, we have revealed that CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and LATE ELONGATED HYPOCOTYL (LHY) play a crucial role in regulating a wide range of abiotic stress responses and target ABSCISIC ACID RESPONSIVE ELEMENTS-BINDING FACTOR3 (ABF3), a key transcription factor in the plant hormone Abscisic acid (ABA)-signaling pathway. Specifically, we found that CCA1 and LHY regulate the expression of ABF3 under diel conditions, as well as seed germination under salinity. Conversely, ABF3 controls the expression of core clock genes and orchestrates the circadian period in a stress-responsive manner. ABF3 delivers the stress signal to the central oscillator by binding to the promoter of CCA1 and LHY. Overall, our study uncovers the reciprocal regulation between ABF3 and CCA1/LHY and molecular mechanisms underlying the interaction between the circadian clock and abiotic stress. This finding may aid in developing molecular and genetic solutions for plants to survive and thrive in the face of climate change.
Collapse
Affiliation(s)
- Tong Liang
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Shi Yu
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Yuanzhong Pan
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Jiarui Wang
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| | - Steve A. Kay
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA90089
| |
Collapse
|
8
|
Li L, Zhang X, Ding F, Hou J, Wang J, Luo R, Mao W, Li X, Zhu H, Yang L, Li Y, Hu J. Genome-wide identification of the melon (Cucumis melo L.) response regulator gene family and functional analysis of CmRR6 and CmPRR3 in response to cold stress. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154160. [PMID: 38147808 DOI: 10.1016/j.jplph.2023.154160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 12/03/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
The response regulator (RR) gene family play crucial roles in cytokinin signal transduction, plant development, and resistance to abiotic stress. However, there are no reports on the identification and functional characterization of RR genes in melon. In this study, a total of 18 CmRRs were identified and classified into type A, type B, and clock PRRs, based on phylogenetic analysis. Most of the CmRRs displayed tissue-specific expression patterns, and some were induced by cold stress according to two RNA-seq datasets. The expression patterns of CmRR2/6/11/15 and CmPRR2/3 under cold treatment were confirmed by qRT-PCR. Subcellular localization assays indicated that CmRR6 and CmPRR3 were primarily localized in the nucleus and chloroplast. Furthermore, when either CmRR6 or CmPRR3 were silenced using tobacco ringspot virus (TRSV), the cold tolerance of the virus-induced gene silencing (VIGS) melon plants were significantly enhanced, as evidenced by measurements of chlorophyll fluorescence, ion leakage, reactive oxygen, proline, and malondialdehyde levels. Additionally, the expression levels of CmCBF1, CmCBF2, and CmCBF3 were significantly increased in CmRR6-silenced and CmPRR3-silenced plants under cold treatment. Our findings suggest that CmRRs contribute to cold stress responses and provide new insights for further pursuing the molecular mechanisms underlying CmRRs-mediated cold tolerance in melon.
Collapse
Affiliation(s)
- Lili Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuyue Zhang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fei Ding
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Juan Hou
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China
| | - Jiyu Wang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Renren Luo
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenwen Mao
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China
| | - Xiang Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Huayu Zhu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Luming Yang
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; International Joint Laboratory of Henan Horticultural Crop Biology, Pingan Avenue 218, Zhengdong New District, Zhengzhou, 450046, China
| | - Ying Li
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Jianbin Hu
- College of Horticulture, Henan Agricultural University, Zhengzhou, 450046, China; Research Center of Cucurbit Germplasm Enhancement and Utilization of Henan Province, Zhengzhou, 450046, China.
| |
Collapse
|
9
|
Zhao JX, Wang S, Liu J, Jiang XD, Wen J, Suo ZQ, Liu J, Zhong MC, Wang Q, Gu Z, Liu C, Deng Y, Hu JY, Li DZ. A comparative full-length transcriptomic resource provides insight into the perennial monocarpic mass flowering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1842-1855. [PMID: 37665679 DOI: 10.1111/tpj.16452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023]
Abstract
Perennial monocarpic mass flowering represents as a key developmental innovation in flowering time diversity in several biological and economical essential families, such as the woody bamboos and the shrubby Strobilanthes. However, molecular and genetic mechanisms underlying this important biodiversity remain poorly investigated. Here, we generated a full-length transcriptome resource incorporated into the BlueOmics database (http://blueomics.iflora.cn) for two Strobilanthes species, which feature contrasting flowering time behaviors. Using about 112 and 104 Gb Iso-seq reads together with ~185 and ~75 Gb strand-specific RNA seq data, we annotated 80 971 and 79 985 non-redundant full-length transcripts for the perennial polycarpic Strobilanthes tetrasperma and the perennial monocarpic Strobilanthes biocullata, respectively. In S. tetrasperma, we identified 8794 transcripts showing spatiotemporal expression in nine tissues. In leaves and shoot apical meristems at two developmental stages, 977 and 1121 transcripts were differentially accumulated in S. tetrasperma and S. biocullata, respectively. Interestingly, among the 33 transcription factors showing differential expression in S. tetrasperma but without differential expression in S. biocullata, three were involved potentially in the photoperiod and circadian-clock pathway of flowering time regulation (FAR1 RELATED SEQUENCE 12, FRS12; NUCLEAR FACTOR Y A1, NFYA1; PSEUDO-RESPONSE REGULATOR 5, PRR5), hence provides an important clue in deciphering the flowering diversity mechanisms. Our data serve as a key resource for further dissection of molecular and genetic mechanisms underpinning key biological innovations, here, the perennial monocarpic mass flowering.
Collapse
Affiliation(s)
- Jiu-Xia Zhao
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jiazhi Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiao-Dong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jing Wen
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Quan Suo
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jie Liu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mi-Cai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Qin Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Zhirong Gu
- Administration of National Nature Reserve of Badagongshan, Sangzhi, 427000, Hunan, China
| | - Changning Liu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Yunnan Key Laboratory of Crop Wild Relatives Omics, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China
- Center of Conservation Biology, Core Botanical Gardens, Chinese Academy of Sciences, Guangzhou, 510650, China
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| |
Collapse
|
10
|
McCombe CL, Catanzariti AM, Greenwood JR, Desai AM, Outram MA, Yu DS, Ericsson DJ, Brenner SE, Dodds PN, Kobe B, Jones DA, Williams SJ. A rust-fungus Nudix hydrolase effector decaps mRNA in vitro and interferes with plant immune pathways. THE NEW PHYTOLOGIST 2023; 239:222-239. [PMID: 36631975 DOI: 10.1111/nph.18727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/02/2023] [Indexed: 06/02/2023]
Abstract
To infect plants, pathogenic fungi secrete small proteins called effectors. Here, we describe the catalytic activity and potential virulence function of the Nudix hydrolase effector AvrM14 from the flax rust fungus (Melampsora lini). We completed extensive in vitro assays to characterise the enzymatic activity of the AvrM14 effector. Additionally, we used in planta transient expression of wild-type and catalytically dead AvrM14 versions followed by biochemical assays, phenotypic analysis and RNA sequencing to unravel how the catalytic activity of AvrM14 impacts plant immunity. AvrM14 is an extremely selective enzyme capable of removing the protective 5' cap from mRNA transcripts in vitro. Homodimerisation of AvrM14 promoted biologically relevant mRNA cap cleavage in vitro and this activity was conserved in related effectors from other Melampsora spp. In planta expression of wild-type AvrM14, but not the catalytically dead version, suppressed immune-related reactive oxygen species production, altered the abundance of some circadian-rhythm-associated mRNA transcripts and reduced the hypersensitive cell-death response triggered by the flax disease resistance protein M1. To date, the decapping of host mRNA as a virulence strategy has not been described beyond viruses. Our results indicate that some fungal pathogens produce Nudix hydrolase effectors with in vitro mRNA-decapping activity capable of interfering with plant immunity.
Collapse
Affiliation(s)
- Carl L McCombe
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Ann-Maree Catanzariti
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Julian R Greenwood
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Anna M Desai
- Plant and Microbial Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Megan A Outram
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel S Yu
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Daniel J Ericsson
- Australian Synchrotron, Macromolecular Crystallography, Clayton, Vic., 3168, Australia
| | - Steven E Brenner
- Plant and Microbial Biology Department, University of California, Berkeley, CA, 94720, USA
| | - Peter N Dodds
- Black Mountain Science and Innovation Park, CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Qld, 4072, Australia
| | - David A Jones
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Simon J Williams
- Plant Sciences Division, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
11
|
Maeda AE, Nakamichi N. Plant clock modifications for adapting flowering time to local environments. PLANT PHYSIOLOGY 2022; 190:952-967. [PMID: 35266545 PMCID: PMC9516756 DOI: 10.1093/plphys/kiac107] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 02/09/2022] [Indexed: 05/25/2023]
Abstract
During and after the domestication of crops from ancestral wild plants, humans selected cultivars that could change their flowering time in response to seasonal daylength. Continuous selection of this trait eventually allowed the introduction of crops into higher or lower latitudes and different climates from the original regions where domestication initiated. In the past two decades, numerous studies have found the causal genes or alleles that change flowering time and have assisted in adapting crop species such as barley (Hordeum vulgare), wheat (Triticum aestivum L.), rice (Oryza sativa L.), pea (Pisum sativum L.), maize (Zea mays spp. mays), and soybean (Glycine max (L.) Merr.) to new environments. This updated review summarizes the genes or alleles that contributed to crop adaptation in different climatic areas. Many of these genes are putative orthologs of Arabidopsis (Arabidopsis thaliana) core clock genes. We also discuss how knowledge of the clock's molecular functioning can facilitate molecular breeding in the future.
Collapse
Affiliation(s)
- Akari E Maeda
- Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Norihito Nakamichi
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
12
|
Nakamichi R, Kitada S, Kishino H. Exploratory analysis of multi-trait coadaptations in light of population history. Ecol Evol 2022; 12:e8755. [PMID: 35342584 PMCID: PMC8933610 DOI: 10.1002/ece3.8755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 02/18/2022] [Indexed: 11/15/2022] Open
Abstract
During the process of range expansion, populations encounter a variety of environments. They respond to the local environments by modifying their mutually interacting traits. Common approaches of landscape analysis include first focusing on the genes that undergo diversifying selection or directional selection in response to environmental variation. To understand the whole history of populations, it is ideal to capture the history of their range expansion with reference to the series of surrounding environments and to infer the multitrait coadaptation. To this end, we propose a complementary approach; it is an exploratory analysis using up-to-date methods that integrate population genetic features and features of selection on multiple traits. First, we conduct correspondence analysis of site frequency spectra, traits, and environments with auxiliary information of population-specific fixation index (F ST). This visualizes the structure and the ages of populations and helps infer the history of range expansion, encountered environmental changes, and selection on multiple traits. Next, we further investigate the inferred history using an admixture graph that describes the population split and admixture. Finally, principal component analysis of the selection on edge-by-trait (SET) matrix identifies multitrait coadaptation and the associated edges of the admixture graph. We introduce a newly defined factor loadings of environmental variables in order to identify the environmental factors that caused the coadaptation. A numerical simulation of one-dimensional stepping-stone population expansion showed that the exploratory analysis reconstructed the pattern of the environmental selection that was missed by analysis of individual traits. Analysis of a public dataset of natural populations of black cottonwood in northwestern America identified the first principal component (PC) coadaptation of photosynthesis- vs growth-related traits responding to the geographical clines of temperature and day length. The second PC coadaptation of volume-related traits suggested that soil condition was a limiting factor for aboveground environmental selection.
Collapse
Affiliation(s)
| | - Shuichi Kitada
- Tokyo University of Marine Science and TechnologyTokyoJapan
| | - Hirohisa Kishino
- Graduate School of Agriculture and Life SciencesThe University of TokyoTokyoJapan
- The Research Institute of Evolutionary BiologyTokyoJapan
- AI/Data Science Social Implementation LaboratoryChuo UniversityTokyoJapan
| |
Collapse
|
13
|
Osnato M, Cota I, Nebhnani P, Cereijo U, Pelaz S. Photoperiod Control of Plant Growth: Flowering Time Genes Beyond Flowering. FRONTIERS IN PLANT SCIENCE 2022; 12:805635. [PMID: 35222453 PMCID: PMC8864088 DOI: 10.3389/fpls.2021.805635] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 05/02/2023]
Abstract
Fluctuations in environmental conditions greatly influence life on earth. Plants, as sessile organisms, have developed molecular mechanisms to adapt their development to changes in daylength, or photoperiod. One of the first plant features that comes to mind as affected by the duration of the day is flowering time; we all bring up a clear image of spring blossom. However, for many plants flowering happens at other times of the year, and many other developmental aspects are also affected by changes in daylength, which range from hypocotyl elongation in Arabidopsis thaliana to tuberization in potato or autumn growth cessation in trees. Strikingly, many of the processes affected by photoperiod employ similar gene networks to respond to changes in the length of light/dark cycles. In this review, we have focused on developmental processes affected by photoperiod that share similar genes and gene regulatory networks.
Collapse
Affiliation(s)
- Michela Osnato
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institute of Environmental Science and Technology of the Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ignacio Cota
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Poonam Nebhnani
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Unai Cereijo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
| | - Soraya Pelaz
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
14
|
Jurca M, Sjölander J, Ibáñez C, Matrosova A, Johansson M, Kozarewa I, Takata N, Bakó L, Webb AAR, Israelsson-Nordström M, Eriksson ME. ZEITLUPE Promotes ABA-Induced Stomatal Closure in Arabidopsis and Populus. FRONTIERS IN PLANT SCIENCE 2022; 13:829121. [PMID: 35310670 PMCID: PMC8924544 DOI: 10.3389/fpls.2022.829121] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/26/2022] [Indexed: 05/22/2023]
Abstract
Plants balance water availability with gas exchange and photosynthesis by controlling stomatal aperture. This control is regulated in part by the circadian clock, but it remains unclear how signalling pathways of daily rhythms are integrated into stress responses. The serine/threonine protein kinase OPEN STOMATA 1 (OST1) contributes to the regulation of stomatal closure via activation of S-type anion channels. OST1 also mediates gene regulation in response to ABA/drought stress. We show that ZEITLUPE (ZTL), a blue light photoreceptor and clock component, also regulates ABA-induced stomatal closure in Arabidopsis thaliana, establishing a link between clock and ABA-signalling pathways. ZTL sustains expression of OST1 and ABA-signalling genes. Stomatal closure in response to ABA is reduced in ztl mutants, which maintain wider stomatal apertures and show higher rates of gas exchange and water loss than wild-type plants. Detached rosette leaf assays revealed a stronger water loss phenotype in ztl-3, ost1-3 double mutants, indicating that ZTL and OST1 contributed synergistically to the control of stomatal aperture. Experimental studies of Populus sp., revealed that ZTL regulated the circadian clock and stomata, indicating ZTL function was similar in these trees and Arabidopsis. PSEUDO-RESPONSE REGULATOR 5 (PRR5), a known target of ZTL, affects ABA-induced responses, including stomatal regulation. Like ZTL, PRR5 interacted physically with OST1 and contributed to the integration of ABA responses with circadian clock signalling. This suggests a novel mechanism whereby the PRR proteins-which are expressed from dawn to dusk-interact with OST1 to mediate ABA-dependent plant responses to reduce water loss in time of stress.
Collapse
Affiliation(s)
- Manuela Jurca
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Johan Sjölander
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Cristian Ibáñez
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Departamento de Biología Universidad de La Serena, La Serena, Chile
| | - Anastasia Matrosova
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Mikael Johansson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- RNA Biology and Molecular Physiology, Faculty for Biology, Bielefeld University, Bielefeld, Germany
| | - Iwanka Kozarewa
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Naoki Takata
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Japan
| | - Laszlo Bakó
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Alex A. R. Webb
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Maria Israelsson-Nordström
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Maria E. Eriksson
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
- *Correspondence: Maria E. Eriksson,
| |
Collapse
|
15
|
Tian W, Wang R, Bo C, Yu Y, Zhang Y, Shin GI, Kim WY, Wang L. SDC mediates DNA methylation-controlled clock pace by interacting with ZTL in Arabidopsis. Nucleic Acids Res 2021; 49:3764-3780. [PMID: 33675668 PMCID: PMC8053106 DOI: 10.1093/nar/gkab128] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/29/2022] Open
Abstract
Molecular bases of eukaryotic circadian clocks mainly rely on transcriptional-translational feedback loops (TTFLs), while epigenetic codes also play critical roles in fine-tuning circadian rhythms. However, unlike histone modification codes that play extensive and well-known roles in the regulation of circadian clocks, whether DNA methylation (5mC) can affect the circadian clock, and the associated underlying molecular mechanisms, remains largely unexplored in many organisms. Here we demonstrate that global genome DNA hypomethylation can significantly lengthen the circadian period of Arabidopsis. Transcriptomic and genetic evidence demonstrate that SUPPRESSOR OF drm1 drm2 cmt3 (SDC), encoding an F-box containing protein, is required for the DNA hypomethylation-tuned circadian clock. Moreover, SDC can physically interact with another F-box containing protein ZEITLUPE (ZTL) to diminish its accumulation. Genetic analysis further revealed that ZTL and its substrate TIMING OF CAB EXPRESSION 1 (TOC1) likely act downstream of DNA methyltransferases to control circadian rhythm. Together, our findings support the notion that DNA methylation is important to maintain proper circadian pace in Arabidopsis, and further established that SDC links DNA hypomethylation with a proteolytic cascade to assist in tuning the circadian clock.
Collapse
Affiliation(s)
- Wenwen Tian
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ruyi Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Cunpei Bo
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yingjun Yu
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yuanyuan Zhang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China
| | - Gyeong-Im Shin
- Division of Applied Life Science (BK21Plus), Research Institute of Life Sciences (RILS) and Institute of Agricultural and Life Science(IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21Plus), Research Institute of Life Sciences (RILS) and Institute of Agricultural and Life Science(IALS), Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, People's Republic of China.,University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| |
Collapse
|
16
|
Liang L, Zhang Z, Cheng N, Liu H, Song S, Hu Y, Zhou X, Zhang J, Xing Y. The transcriptional repressor OsPRR73 links circadian clock and photoperiod pathway to control heading date in rice. PLANT, CELL & ENVIRONMENT 2021; 44:842-855. [PMID: 33377200 DOI: 10.1111/pce.13987] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 05/24/2023]
Abstract
The phase transition from vegetative to reproductive growth is triggered by internal and external signals that participate in circadian clock in plants. We identified a rice floral inhibitor OsPRR73 encoding a CONSTANS protein. Overexpression of OsPRR73 resulted in late heading under both long-day (LD) and short-day (SD) conditions. Knockout mutants led to early heading under LD conditions but no change under SD. OsPRR73 mRNA accumulated at noon and exhibited a robust oscillation under constant light (LL) and constant darkness (DD) conditions. OsPRR73 overexpression exerted negative feedback on endogenous OsPRR73 expression and altered diurnal expressions of key flowering genes and circadian clock genes. OsPRR73 bound to the promoters of the floral gene Ehd1 and the circadian gene OsLHY, and significantly suppressed their expression at dawn. In LL and DD, the oscillatory patterns of the circadian genes OsLHY, OsTOC1, OsGI and OsELF3 were varied in OsPRR73OX and osprr73 mutants. OsPRR73 expression was decreased in osphyb mutants, and overexpression of OsPRR73 complemented the early heading date phenotype of osphyb, indicating OsPRR73 works downstream of OsPhyB. Therefore, OsPRR73 is involved in a feedback loop of the rice clock and connects the photoperiod flowering pathway by binding to the Ehd1 promoter in rice.
Collapse
Affiliation(s)
- Liwen Liang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Zhanyi Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Niannian Cheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Haiyang Liu
- College of Agriculture, Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
| | - Song Song
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yong Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jia Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
17
|
Hwang G, Park J, Kim S, Park J, Seo D, Oh E. Overexpression of BBX18 Promotes Thermomorphogenesis Through the PRR5-PIF4 Pathway. FRONTIERS IN PLANT SCIENCE 2021; 12:782352. [PMID: 34899810 PMCID: PMC8651621 DOI: 10.3389/fpls.2021.782352] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/03/2021] [Indexed: 05/19/2023]
Abstract
Thermomorphogenesis is the morphological response of plants to an elevation in the ambient temperature, which is mediated by the bHLH transcription factor PIF4. The evening-expressed clock component, PRR5, directly represses the expression of PIF4 mRNA. Additionally, PRR5 interacts with PIF4 protein and represses its transactivation activity, which in turn suppresses the thermoresponsive growth in the evening. Here, we found that the B-box zinc finger protein, BBX18, interacts with PRR5 through the B-Box2 domain. Deletion of the B-Box2 domain abolished the functions of BBX18, including the stimulation of PIF4 mRNA expression and hypocotyl growth. Overexpression of BBX18, and not of B-Box2-deleted BBX18, restored the expression of thermoresponsive genes in the evening. We further show that BBX18 prevents PRR5 from inhibiting PIF4-mediated high temperature responses. Taken together, our results suggest that BBX18 regulates thermoresponsive growth through the PRR5-PIF4 pathway.
Collapse
|
18
|
Wang Y, He Y, Su C, Zentella R, Sun TP, Wang L. Nuclear Localized O-Fucosyltransferase SPY Facilitates PRR5 Proteolysis to Fine-Tune the Pace of Arabidopsis Circadian Clock. MOLECULAR PLANT 2020; 13:446-458. [PMID: 31899321 PMCID: PMC7058189 DOI: 10.1016/j.molp.2019.12.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/25/2019] [Accepted: 12/28/2019] [Indexed: 05/07/2023]
Abstract
Post-translational modifications play essential roles in finely modulating eukaryotic circadian clock systems. In plants, the effects of O-glycosylation on the circadian clock and the underlying mechanisms remain largely unknown. The O-fucosyltransferase SPINDLY (SPY) and the O-GlcNAc transferase SECRET AGENT (SEC) are two prominent O-glycosylation enzymes in higher plants, with both overlapped and unique functions in plant growth and development. Unlike the critical role of O-GlcNAc in regulating the animal circadian clock, here we report that nuclear-localized SPY, but not SEC, specifically modulates the pace of the Arabidopsis circadian clock. By identifying the interactome of SPY, we identified PSEUDO-RESPONSE REGULATOR 5 (PRR5), one of the core circadian clock components, as a new SPY-interacting protein. PRR5 can be O-fucosylated by SPY in planta, while point mutation in the catalytic domain of SPY abolishes the O-fucosylation of PRR5. The protein abundance of PRR5 is strongly increased in spy mutants, while the degradation rate of PRR5 is much reduced, suggesting that PRR5 proteolysis is promoted by SPY-mediated O-fucosylation. Moreover, multiple lines of genetic evidence indicate that PRR5 is a major downstream target of SPY to specifically mediate its modulation of the circadian clock. Collectively, our findings provide novel insights into the specific role of the O-fucosyltransferase activity of SPY in modulating the circadian clock and implicate that O-glycosylation might play an evolutionarily conserved role in modulating the circadian clock system, via O-GlcNAcylation in mammals, but via O-fucosylation in higher plants.
Collapse
Affiliation(s)
- Yan Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqing He
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Su
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, NC 27708, USA
| | - Lei Wang
- Key Laboratory of Plant Molecular Physiology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
19
|
Central clock components modulate plant shade avoidance by directly repressing transcriptional activation activity of PIF proteins. Proc Natl Acad Sci U S A 2020; 117:3261-3269. [PMID: 31988133 DOI: 10.1073/pnas.1918317117] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Light-environment signals, sensed by plant phytochrome photoreceptors, are transduced to target genes through direct regulation of PHYTOCHROME-INTERACTING FACTOR (PIF) transcription factor abundance and activity. Previous genome-wide DNA-binding and expression analysis has identified a set of genes that are direct targets of PIF transcriptional regulation. However, quantitative analysis of promoter occupancy versus expression level has suggested that unknown "trans factors" modulate the intrinsic transcriptional activation activity of DNA-bound PIF proteins. Here, using computational analysis of published data, we have identified PSEUDO-RESPONSE REGULATORS (PRR5 and PRR7) as displaying a high frequency of colocalization with the PIF proteins at their binding sites in the promoters of PIF Direct Target Genes (DTGs). We show that the PRRs function to suppress PIF-stimulated growth in the light and vegetative shade and that they repress the rapid PIF-induced expression of PIF-DTGs triggered by exposure to shade. The repressive action of the PRRs on both growth and DTG expression requires the PIFs, indicating direct action on PIF activity, rather than a parallel antagonistic pathway. Protein interaction assays indicate that the PRRs exert their repressive activity by binding directly to the PIF proteins in the nucleus. These findings support the conclusion that the PRRs function as direct outputs from the core circadian oscillator to regulate the expression of PIF-DTGs through modulation of PIF transcriptional activation activity, thus expanding the roles of the multifunctional PIF-signaling hub.
Collapse
|
20
|
Ke YT, Lin KF, Gu CH, Yeh CH. Molecular Characterization and Expression Profile of PaCOL1, a CONSTANS-like Gene in Phalaenopsis Orchid. PLANTS (BASEL, SWITZERLAND) 2020; 9:plants9010068. [PMID: 31947959 PMCID: PMC7020484 DOI: 10.3390/plants9010068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/30/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
CONSTANS (CO) and CONSTANS-like (COL) genes play important roles in coalescing signals from photoperiod and temperature pathways. However, the mechanism of CO and COLs involved in regulating the developmental stage transition and photoperiod/temperature senescing remains unclear. In this study, we identified a COL ortholog gene from the Taiwan native orchid Phalaenopsis aphrodite. The Phalaenopsis aphrodite CONSTANS-like 1 (PaCOL1) belongs to the B-box protein family and functions in the nucleus and cytosol. Expression profile analysis of Phalaenopsis aphrodite revealed that PaCOL1 was significantly expressed in leaves, but its accumulation was repressed during environmental temperature shifts. We found a differential profile for PaCOL1 accumulation, with peak accumulation at late afternoon and at the middle of the night. Arabidopsis with PaCOL1 overexpression showed earlier flowering under short-day (SD) conditions (8 h/23 °C light and 16 h/23 °C dark) but similar flowering time under long-day (LD) conditions (16 h/23 °C light and 8 h/23 °C dark). Transcriptome sequencing revealed several genes upregulated in PaCOL1-overexpressing Arabidopsis plants that were previously involved in flowering regulation of the photoperiod pathway. Yeast two-hybrid (Y2H) analysis and bimolecular fluorescence complementation (BiFC) analysis revealed that PaCOL1 could interact with a crucial clock-associated regulator, AtCCA1, and a flowering repressor, AtFLC. Furthermore, expressing PaCOL1 in cca1.lhy partially reversed the mutant flowering time under photoperiod treatment, which confirms the role of PaCOL1 function in the rhythmic associated factors for modulating flowering.
Collapse
|
21
|
Feke A, Liu W, Hong J, Li MW, Lee CM, Zhou EK, Gendron JM. Decoys provide a scalable platform for the identification of plant E3 ubiquitin ligases that regulate circadian function. eLife 2019; 8:44558. [PMID: 30950791 PMCID: PMC6483598 DOI: 10.7554/elife.44558] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/04/2019] [Indexed: 12/30/2022] Open
Abstract
The circadian clock relies on regulated degradation of clock proteins to maintain rhythmicity. Despite this, we know few components that mediate protein degradation. This is due to high levels of functional redundancy within plant E3 ubiquitin ligase families. In order to overcome this issue and discover E3 ubiquitin ligases that control circadian function, we generated a library of transgenic Arabidopsis plants expressing dominant-negative ‘decoy’ E3 ubiquitin ligases. We determined their effects on the circadian clock and identified dozens of new potential regulators of circadian function. To demonstrate the potency of the decoy screening methodology to overcome redundancy and identify bona fide clock regulators, we performed follow-up studies on MAC3A (PUB59) and MAC3B (PUB60). We show that they redundantly control circadian period by regulating splicing. This work demonstrates the viability of ubiquitin ligase decoys as a screening platform to overcome genetic challenges and discover E3 ubiquitin ligases that regulate plant development. Plants have an internal time keeper known as the circadian clock that operates in 24-hour cycles to coordinate the plants behaviors with the environment. The clock is made of many different proteins and plants carefully control when they make and destroy these proteins to regulate the cycle. Inside plant cells, enzymes known as E3 ubiquitin ligases determine which proteins are destroyed by labelling target proteins with a small tag. Plants have hundreds of different E3 ubiquitin ligases, leading to overlaps in the roles the different enzymes play. These overlaps make it difficult to identify the specific E3 ubiquitin ligases that are involved in a particular process. As a result, only few E3 ubiquitin ligases implicated in the circadian clock have been identified so far. A small weed known as Arabidopsis is often used in research studies because it grows quickly and the genes can be easily manipulated. Here, Feke et al. set out to develop a new tool to identify the specific E3 ubiquitin ligases involved in regulating the circadian clock in Arabidopsis. The team created a library of hundreds of Arabidopsis plants producing different decoy E3 ubiquitin ligases that retained their ability to bind to target proteins but were unable to degrade them. Nearly a quarter of the E3 ligases found in Arabidopsis were represented in this library. The decoy enzymes protected the target proteins from being degraded by the normal E3 ubiquitin ligases, resulting in the library plants having presumably higher levels of these target proteins compared to normal Arabidopsis plants. By tracking circadian rhythms in these plants, the team was able to identify the individual E3 ligases that control the circadian clock. The experiments revealed several E3 ligases that may regulate the circadian clock, including two enzymes called MAC3A and MAC3B. Further experiments demonstrated that MAC3A and MAC3B have similar roles in regulating the circadian clock and can compensate for the absence of the other. The library of Arabidopsis plants generated by Feke et al. is now available for other researchers to use in their studies. In the future this approach could be adapted to make similar libraries for crops and other plants that have even more E3 ligase enzymes than Arabidopsis.
Collapse
Affiliation(s)
- Ann Feke
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Wei Liu
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Jing Hong
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States.,School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Man-Wah Li
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Chin-Mei Lee
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Elton K Zhou
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| | - Joshua M Gendron
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, United States
| |
Collapse
|
22
|
NPR1 and Redox Rhythmx: Connections, between Circadian Clock and Plant Immunity. Int J Mol Sci 2019; 20:ijms20051211. [PMID: 30857376 PMCID: PMC6429127 DOI: 10.3390/ijms20051211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/06/2019] [Accepted: 03/06/2019] [Indexed: 01/08/2023] Open
Abstract
The circadian clock in plants synchronizes biological processes that display cyclic 24-h oscillation based on metabolic and physiological reactions. This clock is a precise timekeeping system, that helps anticipate diurnal changes; e.g., expression levels of clock-related genes move in synchrony with changes in pathogen infection and help prepare appropriate defense responses in advance. Salicylic acid (SA) is a plant hormone and immune signal involved in systemic acquired resistance (SAR)-mediated defense responses. SA signaling induces cellular redox changes, and degradation and rhythmic nuclear translocation of the non-expresser of PR genes 1 (NPR1) protein. Recent studies demonstrate the ability of the circadian clock to predict various potential attackers, and of redox signaling to determine appropriate defense against pathogen infection. Interaction of the circadian clock with redox rhythm promotes the balance between immunity and growth. We review here a variety of recent evidence for the intricate relationship between circadian clock and plant immune response, with a focus on the roles of redox rhythm and NPR1 in the circadian clock and plant immunity.
Collapse
|
23
|
Abstract
Circadian oscillators are networks of biochemical feedback loops that generate 24-hour rhythms in organisms from bacteria to animals. These periodic rhythms result from a complex interplay among clock components that are specific to the organism, but share molecular mechanisms across kingdoms. A full understanding of these processes requires detailed knowledge, not only of the biochemical properties of clock proteins and their interactions, but also of the three-dimensional structure of clockwork components. Posttranslational modifications and protein–protein interactions have become a recent focus, in particular the complex interactions mediated by the phosphorylation of clock proteins and the formation of multimeric protein complexes that regulate clock genes at transcriptional and translational levels. This review covers the structural aspects of circadian oscillators, and serves as a primer for this exciting realm of structural biology.
Collapse
Affiliation(s)
- Reena Saini
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany
| | - Mariusz Jaskolski
- Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland.,Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan, Poland
| | - Seth J Davis
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Cologne, Germany. .,Department of Biology, University of York, York, UK.
| |
Collapse
|
24
|
Kim YJ, Somers DE. Luciferase-Based Screen for Post-translational Control Factors in the Regulation of the Pseudo-Response Regulator PRR7. FRONTIERS IN PLANT SCIENCE 2019; 10:667. [PMID: 31191580 PMCID: PMC6540683 DOI: 10.3389/fpls.2019.00667] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 05/02/2019] [Indexed: 05/04/2023]
Abstract
Control of protein turnover is a key post-translational control point in the oscillatory network of the circadian clock. Some elements, such as TOC1 and PRR5 are engaged by a well-described F-box protein, ZEITLUPE, dedicated to their proteolytic turnover to shape their expression profile to a specific time of night. For most other clock components the regulation of their protein abundance is unknown, though turnover is often rapid and often lags the cycling of the respective mRNA. Here we report the design and results of an unbiased genetic screen in Arabidopsis to uncover proteolytic regulatory factors of PSEUDO-RESPONSE REGULATOR 7 (PRR7), a transcriptional repressor that peaks in the late afternoon. We performed EMS mutagenesis on a transgenic line expressing a PRR7::PRR7-luciferase (PRR7-LUC) translational fusion that accurately recapitulates the diurnal and circadian oscillations of the endogenous PRR7 protein. Using continuous luciferase imaging under constant light, we recovered mutants that alter the PRR7-LUC waveform and some that change period. We have identified novel alleles of ELF3 and ELF4, core components of the ELF3-ELF4-LUX Evening Complex (EC), that dampen the oscillation of PRR7-LUC. We report the characterization of two new hypomorphic alleles of ELF3 that help to understand the relationship between molecular potency and phenotype.
Collapse
|
25
|
Peng D, Jiang Y, Liu X, Zhou B. Molecular characterization of a CONSTANS gene from Sapium sebiferum (L.) Rxob. Gene 2018; 654:69-76. [PMID: 29466764 DOI: 10.1016/j.gene.2018.02.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 02/11/2018] [Accepted: 02/14/2018] [Indexed: 10/18/2022]
Abstract
Sapium sebiferum (L.) Roxb [S. sebiferum L.] is not only one of the most important economic woody oil trees, but is also a significant traditional herbal medicine in China. The CONSTANS (CO) gene is a key regulator of the long day-dependent flowering pathway in Arabidopsis and other plants. To gain insight into the role of CO in woody oil trees, SsCO from S. sebiferum L. was isolated and characterized in this study. The corresponding SsCO protein, with 340 amino acid residues, included two putative zinc finger motifs B-Box1 and B-Box2 in the N-terminal region and a conserved CCT domain in the C-terminal region. SsCO expression was high in flowers and exhibited distinct circadian regulation. In addition, SsCO had a transcriptional activation effect in yeast strains. Moreover, heterologous expression of SsCO complemented the late-flowering phenotype of the Arabidopsis CO mutant co-1. These results indicate that SsCO is a transcription factor and may regulate the photoperiodic flowering time and SsCO is regulated by circadian rhythms in Sapium sebiferum L.
Collapse
Affiliation(s)
- Dan Peng
- College of Bioscience and Biotechnology, Central South University of Forestry and Technology, 410018 Changsha, China; Forestry Biotechnology Hunan Key Laboratories, Hunan, Changsha 410018, China
| | - Yueqiao Jiang
- College of Bioscience and Biotechnology, Central South University of Forestry and Technology, 410018 Changsha, China
| | - Xuanming Liu
- Key Laboratory of Plant Function Gnomonic for Development and Regulation, Hunan University, 410082 Changsha, China
| | - Bo Zhou
- College of Bioscience and Biotechnology, Central South University of Forestry and Technology, 410018 Changsha, China; Key Laboratory of Cultivation and Protection for Non-Wood Forest Tree, Central South University of Forestry and Technology, 410018 Changsha, China; Collaborative Innovation Central of Cultivation and Utilization for Non-Wood Forest Tree, Central South University of Forestry and Technology, 410018 Changsha, China; Forestry Biotechnology Hunan Key Laboratories, Hunan, Changsha 410018, China.
| |
Collapse
|
26
|
Yan J, Mao D, Liu X, Wang L, Xu F, Wang G, Zhang W, Liao Y. Isolation and functional characterization of a circadian-regulated CONSTANS homolog (GbCO) from Ginkgo biloba. PLANT CELL REPORTS 2017; 36:1387-1399. [PMID: 28616659 DOI: 10.1007/s00299-017-2162-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
This is the first report to clone and functionally characterize a flowering time gene GbCO in perennial gymnosperm Ginkgo biloba. GbCO complements the co mutant of Arabidopsis, restoring normal early flowering. CONSTANS (CO) is a central regulator of photoperiod pathway, which channels inputs from light, day length, and circadian clock to promote the floral transition. In order to understand the role of CO in gymnosperm Ginkgo biloba, which has a long juvenile phase (15-20 years), a CO homolog (GbCO) was isolated and characterized from G. biloba. GbCO encodes a 1741-bp gene with a predicted protein of 400 amino acids with two zinc finger domains (B-box I and B-box II) and a CCT domain. Phylogenic analysis classified GbCO into the group 1a clade of CO families in accordance with the grouping scheme for Arabidopsis CO (AtCO). Southern blot analysis indicated that GbCO belongs to a multigene family in G. biloba. Real-time PCR analysis showed that GbCO was expressed in aerial parts of Ginkgo, with the highest transcript level of GbCO being observed in shoot apexes. GbCO transcript level exhibited a strong diurnal rhythm under flowering-inductive long days and peaked during early morning, suggesting that GbCO is tightly coupled to the floral inductive long-day signal. In addition, an increasing trend of GbCO transcript level was observed both in shoot tips and leaves as the shoot growth under long-day condition, whereas GbCO transcript level decreased in both tissues under short-day condition prior to growth cessation of shoot in G. biloba. GbCO complemented the Arabidopsis co-2 mutant, restoring normal early flowering. All the evidence being taken together, our findings suggested that GbCO served as a potential inducer of flowering in G. biloba.
Collapse
Affiliation(s)
- Jiaping Yan
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Dun Mao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Xiaomeng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Lanlan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Feng Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China.
| | - Guiyuan Wang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| | - Yongling Liao
- College of Horticulture and Gardening, Yangtze University, Jingzhou, 434025, Hubei, China
| |
Collapse
|
27
|
Cheval C, Perez M, Leba LJ, Ranty B, Perochon A, Reichelt M, Mithöfer A, Robe E, Mazars C, Galaud JP, Aldon D. PRR2, a pseudo-response regulator, promotes salicylic acid and camalexin accumulation during plant immunity. Sci Rep 2017; 7:6979. [PMID: 28765536 PMCID: PMC5539105 DOI: 10.1038/s41598-017-07535-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/26/2017] [Indexed: 11/25/2022] Open
Abstract
Calcium signalling mediated by Calmodulin (CaM) and calmodulin-like (CML) proteins is critical to plant immunity. CaM and CML regulate a wide range of target proteins and cellular responses. While many CaM-binding proteins have been identified, few have been characterized for their specific role in plant immunity. Here, we report new data on the biological function of a CML-interacting partner, PRR2 (PSEUDO-RESPONSE REGULATOR 2), a plant specific transcription factor. Until now, the physiological relevance of PRR2 remained largely unknown. Using a reverse genetic strategy in A. thaliana, we identified PRR2 as a positive regulator of plant immunity. We propose that PRR2 contributes to salicylic acid (SA)-dependent responses when challenged with the phytopathogenic bacterium Pseudomonas syringae. PRR2 is transcriptionally upregulated by SA and P. syringae, enhances SA biosynthesis and SA signalling responses; e.g. in response to P. syringae, PRR2 induces the production of SA and the accumulation of the defence-related protein PR1. Moreover, PRR2 overexpressing lines exhibit an enhanced production of camalexin, a phytoalexin that confers enhanced resistance against pathogens. Together, these data reveal the importance of PRR2 in plant immune responses against P. syringae and suggest a novel function for this particular plant specific transcription factor in plant physiology.
Collapse
Affiliation(s)
- C Cheval
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - M Perez
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - L J Leba
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
- UMR QualiSud, Université de Guyane, Campus Universitaire de Troubiran, P.O. Box 792, 97337, Cayenne Cedex, French Guiana, France
| | - B Ranty
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - A Perochon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
- University College Dublin Earth Institute and School of Biology and Environmental Science, College of Science, University College Dublin, Belfield, Dublin, Ireland
| | - M Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, 07745, Jena, Germany
| | - A Mithöfer
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans Knöll Strasse 8, 07745, Jena, Germany
| | - E Robe
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - C Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - J P Galaud
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France
| | - D Aldon
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, 24 chemin de Borde Rouge, Auzeville, BP42617, 31326, Castanet-Tolosan, France.
| |
Collapse
|
28
|
Sanchez SE, Kay SA. The Plant Circadian Clock: From a Simple Timekeeper to a Complex Developmental Manager. Cold Spring Harb Perspect Biol 2016; 8:cshperspect.a027748. [PMID: 27663772 PMCID: PMC5131769 DOI: 10.1101/cshperspect.a027748] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant circadian clock allows organisms to anticipate the predictable changes in the environment by adjusting their developmental and physiological traits. In the last few years, it was determined that responses known to be regulated by the oscillator are also able to modulate clock performance. These feedback loops and their multilayer communications create a complex web, and confer on the clock network a role that exceeds the measurement of time. In this article, we discuss the current knowledge of the wiring of the clock, including the interplay with metabolism, hormone, and stress pathways in the model species Arabidopsis thaliana We outline the importance of this system in crop agricultural traits, highlighting the identification of natural alleles that alter the pace of the timekeeper. We report evidence supporting the understanding of the circadian clock as a master regulator of plant life, and we hypothesize on its relevant role in the adaptability to the environment and the impact on the fitness of most organisms.
Collapse
Affiliation(s)
- Sabrina E Sanchez
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92093
| | - Steve A Kay
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, California 92093
| |
Collapse
|
29
|
Ford B, Deng W, Clausen J, Oliver S, Boden S, Hemming M, Trevaskis B. Barley (Hordeum vulgare) circadian clock genes can respond rapidly to temperature in an EARLY FLOWERING 3-dependent manner. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5517-5528. [PMID: 27580625 PMCID: PMC5049398 DOI: 10.1093/jxb/erw317] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An increase in global temperatures will impact future crop yields. In the cereal crops wheat and barley, high temperatures accelerate reproductive development, reducing the number of grains per plant and final grain yield. Despite this relationship between temperature and cereal yield, it is not clear what genes and molecular pathways mediate the developmental response to increased temperatures. The plant circadian clock can respond to changes in temperature and is important for photoperiod-dependent flowering, and so is a potential mechanism controlling temperature responses in cereal crops. This study examines the relationship between temperature, the circadian clock, and the expression of flowering-time genes in barley (Hordeum vulgare), a crop model for temperate cereals. Transcript levels of barley core circadian clock genes were assayed over a range of temperatures. Transcript levels of core clock genes CCA1, GI, PRR59, PRR73, PRR95, and LUX are increased at higher temperatures. CCA1 and PRR73 respond rapidly to a decrease in temperature whereas GI and PRR59 respond rapidly to an increase in temperature. The response of GI and the PRR genes to changes in temperature is lost in the elf3 mutant indicating that their response to temperature may be dependent on a functional ELF3 gene.
Collapse
Affiliation(s)
- Brett Ford
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Weiwei Deng
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Jenni Clausen
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Sandra Oliver
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Scott Boden
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Megan Hemming
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| | - Ben Trevaskis
- CSIRO Agriculture, GPO Box 1600, Canberra, ACT 2601, Australia
| |
Collapse
|
30
|
Park HJ, Kim WY, Yun DJ. A New Insight of Salt Stress Signaling in Plant. Mol Cells 2016; 39:447-59. [PMID: 27239814 PMCID: PMC4916396 DOI: 10.14348/molcells.2016.0083] [Citation(s) in RCA: 167] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/06/2016] [Accepted: 05/16/2016] [Indexed: 12/12/2022] Open
Abstract
Many studies have been conducted to understand plant stress responses to salinity because irrigation-dependent salt accumulation compromises crop productivity and also to understand the mechanism through which some plants thrive under saline conditions. As mechanistic understanding has increased during the last decades, discovery-oriented approaches have begun to identify genetic determinants of salt tolerance. In addition to osmolytes, osmoprotectants, radical detoxification, ion transport systems, and changes in hormone levels and hormone-guided communications, the Salt Overly Sensitive (SOS) pathway has emerged to be a major defense mechanism. However, the mechanism by which the components of the SOS pathway are integrated to ultimately orchestrate plant-wide tolerance to salinity stress remains unclear. A higher-level control mechanism has recently emerged as a result of recognizing the involvement of GIGANTEA (GI), a protein involved in maintaining the plant circadian clock and control switch in flowering. The loss of GI function confers high tolerance to salt stress via its interaction with the components of the SOS pathway. The mechanism underlying this observation indicates the association between GI and the SOS pathway and thus, given the key influence of the circadian clock and the pathway on photoperiodic flowering, the association between GI and SOS can regulate growth and stress tolerance. In this review, we will analyze the components of the SOS pathways, with emphasis on the integration of components recognized as hallmarks of a halophytic lifestyle.
Collapse
Affiliation(s)
- Hee Jin Park
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
| | - Woe-Yeon Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
- Institute of Agriculture & Life Sciences, Graduate School of Gyeongsang National University, Jinju 52828,
Korea
| | - Dae-Jin Yun
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Jinju 52828,
Korea
| |
Collapse
|
31
|
Foo M, Somers DE, Kim PJ. Kernel Architecture of the Genetic Circuitry of the Arabidopsis Circadian System. PLoS Comput Biol 2016; 12:e1004748. [PMID: 26828650 PMCID: PMC4734688 DOI: 10.1371/journal.pcbi.1004748] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 01/11/2016] [Indexed: 02/03/2023] Open
Abstract
A wide range of organisms features molecular machines, circadian clocks, which generate endogenous oscillations with ~24 h periodicity and thereby synchronize biological processes to diurnal environmental fluctuations. Recently, it has become clear that plants harbor more complex gene regulatory circuits within the core circadian clocks than other organisms, inspiring a fundamental question: are all these regulatory interactions between clock genes equally crucial for the establishment and maintenance of circadian rhythms? Our mechanistic simulation for Arabidopsis thaliana demonstrates that at least half of the total regulatory interactions must be present to express the circadian molecular profiles observed in wild-type plants. A set of those essential interactions is called herein a kernel of the circadian system. The kernel structure unbiasedly reveals four interlocked negative feedback loops contributing to circadian rhythms, and three feedback loops among them drive the autonomous oscillation itself. Strikingly, the kernel structure, as well as the whole clock circuitry, is overwhelmingly composed of inhibitory, rather than activating, interactions between genes. We found that this tendency underlies plant circadian molecular profiles which often exhibit sharply-shaped, cuspidate waveforms. Through the generation of these cuspidate profiles, inhibitory interactions may facilitate the global coordination of temporally-distant clock events that are markedly peaked at very specific times of day. Our systematic approach resulting in experimentally-testable predictions provides insights into a design principle of biological clockwork, with implications for synthetic biology.
Collapse
Affiliation(s)
- Mathias Foo
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Republic of Korea
- School of Engineering, University of Warwick, Coventry, United Kingdom
| | - David E. Somers
- Department of Molecular Genetics, The Ohio State University, Columbus, Ohio, United States of America
| | - Pan-Jun Kim
- Asia Pacific Center for Theoretical Physics, Pohang, Gyeongbuk, Republic of Korea
- Department of Physics, Pohang University of Science and Technology, Pohang, Gyeongbuk, Republic of Korea
| |
Collapse
|
32
|
Park H, Kim WY, Pardo J, Yun DJ. Molecular Interactions Between Flowering Time and Abiotic Stress Pathways. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2016; 327:371-412. [DOI: 10.1016/bs.ircmb.2016.07.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
33
|
Barah P, B N MN, Jayavelu ND, Sowdhamini R, Shameer K, Bones AM. Transcriptional regulatory networks in Arabidopsis thaliana during single and combined stresses. Nucleic Acids Res 2015; 44:3147-64. [PMID: 26681689 PMCID: PMC4838348 DOI: 10.1093/nar/gkv1463] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 11/28/2015] [Indexed: 11/25/2022] Open
Abstract
Differentially evolved responses to various stress conditions in plants are controlled by complex regulatory circuits of transcriptional activators, and repressors, such as transcription factors (TFs). To understand the general and condition-specific activities of the TFs and their regulatory relationships with the target genes (TGs), we have used a homogeneous stress gene expression dataset generated on ten natural ecotypes of the model plant Arabidopsis thaliana, during five single and six combined stress conditions. Knowledge-based profiles of binding sites for 25 stress-responsive TF families (187 TFs) were generated and tested for their enrichment in the regulatory regions of the associated TGs. Condition-dependent regulatory sub-networks have shed light on the differential utilization of the underlying network topology, by stress-specific regulators and multifunctional regulators. The multifunctional regulators maintain the core stress response processes while the transient regulators confer the specificity to certain conditions. Clustering patterns of transcription factor binding sites (TFBS) have reflected the combinatorial nature of transcriptional regulation, and suggested the putative role of the homotypic clusters of TFBS towards maintaining transcriptional robustness against cis-regulatory mutations to facilitate the preservation of stress response processes. The Gene Ontology enrichment analysis of the TGs reflected sequential regulation of stress response mechanisms in plants.
Collapse
Affiliation(s)
- Pankaj Barah
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Mahantesha Naika B N
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Naresh Doni Jayavelu
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| | - Ramanathan Sowdhamini
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Khader Shameer
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, GKVK campus, Bangalore 560 065, India
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, Trondheim N-7491, Norway
| |
Collapse
|
34
|
Huang H, Alvarez S, Bindbeutel R, Shen Z, Naldrett MJ, Evans BS, Briggs SP, Hicks LM, Kay SA, Nusinow DA. Identification of Evening Complex Associated Proteins in Arabidopsis by Affinity Purification and Mass Spectrometry. Mol Cell Proteomics 2015; 15:201-17. [PMID: 26545401 PMCID: PMC4762519 DOI: 10.1074/mcp.m115.054064] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Indexed: 11/30/2022] Open
Abstract
Many species possess an endogenous circadian clock to synchronize internal physiology with an oscillating external environment. In plants, the circadian clock coordinates growth, metabolism and development over daily and seasonal time scales. Many proteins in the circadian network form oscillating complexes that temporally regulate myriad processes, including signal transduction, transcription, protein degradation and post-translational modification. In Arabidopsis thaliana, a tripartite complex composed of EARLY FLOWERING 4 (ELF4), EARLY FLOWERING 3 (ELF3), and LUX ARRHYTHMO (LUX), named the evening complex, modulates daily rhythms in gene expression and growth through transcriptional regulation. However, little is known about the physical interactions that connect the circadian system to other pathways. We used affinity purification and mass spectrometry (AP-MS) methods to identify proteins that associate with the evening complex in A. thaliana. New connections within the circadian network as well as to light signaling pathways were identified, including linkages between the evening complex, TIMING OF CAB EXPRESSION1 (TOC1), TIME FOR COFFEE (TIC), all phytochromes and TANDEM ZINC KNUCKLE/PLUS3 (TZP). Coupling genetic mutation with affinity purifications tested the roles of phytochrome B (phyB), EARLY FLOWERING 4, and EARLY FLOWERING 3 as nodes connecting the evening complex to clock and light signaling pathways. These experiments establish a hierarchical association between pathways and indicate direct and indirect interactions. Specifically, the results suggested that EARLY FLOWERING 3 and phytochrome B act as hubs connecting the clock and red light signaling pathways. Finally, we characterized a clade of associated nuclear kinases that regulate circadian rhythms, growth, and flowering in A. thaliana. Coupling mass spectrometry and genetics is a powerful method to rapidly and directly identify novel components and connections within and between complex signaling pathways.
Collapse
Affiliation(s)
- He Huang
- From the ‡Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, Missouri, 63132
| | - Sophie Alvarez
- From the ‡Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, Missouri, 63132
| | - Rebecca Bindbeutel
- From the ‡Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, Missouri, 63132
| | - Zhouxin Shen
- §University of California San Diego, Division of Biological Sciences, Cell and Developmental Biology Section, 9500 Gilman Drive, La Jolla, California 92093-0116
| | - Michael J Naldrett
- From the ‡Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, Missouri, 63132
| | - Bradley S Evans
- From the ‡Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, Missouri, 63132
| | - Steven P Briggs
- §University of California San Diego, Division of Biological Sciences, Cell and Developmental Biology Section, 9500 Gilman Drive, La Jolla, California 92093-0116
| | - Leslie M Hicks
- ¶The University of North Carolina at Chapel Hill, Department of Chemistry, Chapel Hill, North Carolina 27599
| | - Steve A Kay
- ‖University of Southern California, Molecular and Computational Biology Section, Los Angeles, California 90089
| | - Dmitri A Nusinow
- From the ‡Donald Danforth Plant Science Center, 975 N. Warson Road, St. Louis, Missouri, 63132;
| |
Collapse
|
35
|
Mizuno T, Kitayama M, Oka H, Tsubouchi M, Takayama C, Nomoto Y, Yamashino T. The EC night-time repressor plays a crucial role in modulating circadian clock transcriptional circuitry by conservatively double-checking both warm-night and night-time-light signals in a synergistic manner in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:2139-51. [PMID: 25332490 DOI: 10.1093/pcp/pcu144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
During the last decade, significant research progress has been made in Arabidopsis thaliana in defining the molecular mechanisms behind the plant circadian clock. The circadian clock must have the ability to integrate both external light and ambient temperature signals into its transcriptional circuitry to regulate its function properly. We previously showed that transcription of a set of clock genes including LUX (LUX ARRHYTHMO), GI (GIGANTEA), LNK1 (NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED GENE 1), PRR9 (PSEUDO-RESPONSE REGULATOR 9) and PRR7 is commonly regulated through the evening complex (EC) night-time repressor in response to both moderate changes in temperature (Δ6°C) and differences in steady-state growth-compatible temperature (16-28°C). Here, we further show that a night-time-light signal also feeds into the circadian clock transcriptional circuitry through the EC night-time repressor, so that the same set of EC target genes is up-regulated in response to a night-time-light pulse. This light-induced event is dependent on phytochromes, but not cryptochromes. Interestingly, both the warm-night and night-time-light signals negatively modulate the activity of the EC night-time repressor in a synergistic manner. In other words, an exponential burst of transcription of the EC target genes is observed only when these signals are simultaneously fed into the repressor. Taken together, we propose that the EC night-time repressor plays a crucial role in modulating the clock transcriptional circuitry to keep track properly of seasonal changes in photo- and thermal cycles by conservatively double-checking the external light and ambient temperature signals.
Collapse
Affiliation(s)
- Takeshi Mizuno
- Laboratory of Molecular and Functional Genomics, School of Agriculture, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Miki Kitayama
- Laboratory of Molecular and Functional Genomics, School of Agriculture, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Haruka Oka
- Laboratory of Molecular and Functional Genomics, School of Agriculture, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Mayuka Tsubouchi
- Laboratory of Molecular and Functional Genomics, School of Agriculture, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Chieko Takayama
- Laboratory of Molecular and Functional Genomics, School of Agriculture, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Yuji Nomoto
- Laboratory of Molecular and Functional Genomics, School of Agriculture, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| | - Takafumi Yamashino
- Laboratory of Molecular and Functional Genomics, School of Agriculture, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601 Japan
| |
Collapse
|
36
|
Jover-Gil S, Paz-Ares J, Micol JL, Ponce MR. Multi-gene silencing in Arabidopsis: a collection of artificial microRNAs targeting groups of paralogs encoding transcription factors. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:149-160. [PMID: 25040904 DOI: 10.1111/tpj.12609] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2013] [Revised: 06/27/2014] [Accepted: 07/02/2014] [Indexed: 06/03/2023]
Abstract
Functional redundancy often hampers the analysis of gene families. To overcome this difficulty, we constructed Arabidopsis thaliana lines that expressed artificial microRNAs designed to simultaneously target two to six paralogous genes encoding members of transcription factor families. Of the 576 genes that we chose as targets, only 122 had already been functionally studied at some level. As a simple indicator of the inhibitory effects of our amiRNAs on their targets, we examined the amiRNA-expressing transgenic lines for morphological phenotypes at the rosette stage. Of 338 transgenes tested, 21 caused a visible morphological phenotype in leaves, a proportion that is much higher than that expected as a result of insertional mutagenesis. Also, our collection probably represents many other mutant phenotypes, not just those in leaves. This robust, versatile method enables functional examination of redundant transcription factor paralogs, and is particularly useful for genes that occur in tandem.
Collapse
Affiliation(s)
- Sara Jover-Gil
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202, Elche, Alicante, Spain
| | | | | | | |
Collapse
|
37
|
Geraldes A, Farzaneh N, Grassa CJ, McKown AD, Guy RD, Mansfield SD, Douglas CJ, Cronk QCB. Landscape genomics of Populus trichocarpa: the role of hybridization, limited gene flow, and natural selection in shaping patterns of population structure. Evolution 2014; 68:3260-80. [PMID: 25065449 DOI: 10.1111/evo.12497] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 07/08/2014] [Indexed: 01/17/2023]
Abstract
Populus trichocarpa is an ecologically important tree across western North America. We used a large population sample of 498 accessions over a wide geographical area genotyped with a 34K Populus SNP array to quantify geographical patterns of genetic variation in this species (landscape genomics). We present evidence that three processes contribute to the observed patterns: (1) introgression from the sister species P. balsamifera, (2) isolation by distance (IBD), and (3) natural selection. Introgression was detected only at the margins of the species' distribution. IBD was significant across the sampled area as a whole, but no evidence of restricted gene flow was detected in a core of drainages from southern British Columbia (BC). We identified a large number of FST outliers. Gene Ontology analyses revealed that FST outliers are overrepresented in genes involved in circadian rhythm and response to red/far-red light when the entire dataset is considered, whereas in southern BC heat response genes are overrepresented. We also identified strong correlations between geoclimate variables and allele frequencies at FST outlier loci that provide clues regarding the selective pressures acting at these loci.
Collapse
Affiliation(s)
- Armando Geraldes
- Department of Botany, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Matsushika A, Murakami M, Ito S, Nakamichi N, Yamashino T, Mizuno T. Characterization of Circadian-Associated Pseudo-Response Regulators: I. Comparative Studies on a Series of Transgenic Lines Misexpressing Five Distinctive PRR Genes inArabidopsis thaliana. Biosci Biotechnol Biochem 2014; 71:527-34. [PMID: 17284849 DOI: 10.1271/bbb.60583] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Every member of a small family of Pseudo-Response Regulator (PRR) genes, including Timing of Cab Expression 1 (TOC1 [or PRR1]), are believed to play roles close to the circadian clock in the model higher plant Arabidopsis thaliana. In this study we established a transgenic line that misexpresses (or overexpresses) the PRR7 gene. As compared with wild-type plants, the resulting PRR7-misexpressing plants (designated PRR7-ox) showed characteristic phenotypes as to hallmarked circadian-associated biological events: (i) early flowering in a manner independent of photoperiodicity, (ii) hypersensitive response to red light during early photomorphogenesis, and (iii) altered free-running rhythms with long period of clock-associated genes. Finally, a series of all transgenic lines (PRR1-ox, PRR3-ox, PRR5-ox, PRR7-ox, and PRR9-ox) were characterized comparatively with regard to their clock-associated roles. The results suggested that the five homologous PRR factors play coordinate roles, distinctively from one another, and closely to the circadian clock in higher plants.
Collapse
Affiliation(s)
- Akinori Matsushika
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Furocho, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Matsushika A, Kawamura M, Nakamura Y, Kato T, Murakami M, Yamashino T, Mizuno T. Characterization of Circadian-Associated Pseudo-Response Regulators: II. The Function of PRR5 and Its Molecular Dissection inArabidopsis thaliana. Biosci Biotechnol Biochem 2014; 71:535-44. [PMID: 17284847 DOI: 10.1271/bbb.60584] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Together with PRR1/TOC1, PRR5 belongs to the small family of Pseudo-Response Regulators (PRRs), which function as clock components of Arabidopsis thaliana. We employed a set of transgenic lines, each of which was designed to misexpress a truncated form of the PRR5 molecule, together with the original transgenic line (named PRR5-ox) that misexpresses the entire PRR5 polypeptide. The results of genetic analysis suggested that PRR5-ox seedlings showed a phenotype of hypersensitivity to red light during early photomorphogenesis in a manner dependent on red light photoreceptors (PhyA and PhyB), but independent of PRR1/TOC1. The set of newly constructed transgenic lines (named PRR5-N-ox and PRR5-C-ox) were also characterized in terms of circadian-associated phenotypes. The results suggest that the N-terminal pseudo-receiver domain of the PRR5 molecule seems to be dispensable for the misexpressed PRR5 molecule to bring about the phenotype of red light sensitivity. However, PRR5-N-ox plants, misexpressing only the pseudo-receiver domain, showed a phenotype of long period of free-running circadian rhythms of certain clock-controlled genes. Considering these and other results, we discuss the structure and function of PRR5 in the context of current views of the circadian clock in higher plants.
Collapse
Affiliation(s)
- Akinori Matsushika
- Laboratory of Molecular Microbiology, School of Agriculture, Nagoya University, Furocho, Nagoya, Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Mizuno T, Nomoto Y, Oka H, Kitayama M, Takeuchi A, Tsubouchi M, Yamashino T. Ambient temperature signal feeds into the circadian clock transcriptional circuitry through the EC night-time repressor in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2014; 55:958-76. [PMID: 24500967 DOI: 10.1093/pcp/pcu030] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
An interlocking multiloop model has been generally accepted to describe the transcriptional circuitry of core clock genes, through which robust circadian rhythms are generated in Arabidopsis thaliana. The circadian clock must have the ability to integrate ambient temperature signals into the clock transcriptional circuitry to regulate clock function properly. Clarification of the underlying mechanism is a longstanding subject in the field. Here, we provide evidence that temperature signals feed into the clock transcriptional circuitry through the evening complex (EC) night-time repressor consisting of EARLY FLOWERING 3 (ELF3, ELF4) and LUX ARRHYTHMO (LUX; also known as PCL1). Chromatin immunoprecipitation assays showed that PSEUDO-RESPONSE REGULATOR7 (PRR7), GIGANTEA (GI) and LUX are direct targets of the night-time repressor. Consequently, transcription of PRR9/PRR7, GI and LUX is commonly regulated through the night-time repressor in response to both moderate changes in temperature (Δ6°C) and differences in the steady-state growth-compatible temperature (16-28°C). A warmer temperature inhibits EC function more, whereas a cooler temperature stimulates it more. Consequently, the expression of these target genes is up-regulated in response to a warm temperature specifically during the dark period, whereas they are reversibly down-regulated in response to a cool temperature. Transcription of another EC target, the PIF4 (PHYTOCHROME-INTERACTING FACTOR 4) gene, is modulated through the same thermoregulatory mechanism. The last finding revealed the sophisticated physiological mechanism underlying the clock-controlled output pathway, which leads to the PIF4-mediated temperature-adaptive regulation of hypocotyl elongation.
Collapse
Affiliation(s)
- Takeshi Mizuno
- Laboratory of Molecular and Functional Genomics, School of Agriculture, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8601 Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Arabidopsis CRY2 and ZTL mediate blue-light regulation of the transcription factor CIB1 by distinct mechanisms. Proc Natl Acad Sci U S A 2013; 110:17582-7. [PMID: 24101505 DOI: 10.1073/pnas.1308987110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Plants possess multiple photoreceptors to mediate light regulation of growth and development, but it is not well understood how different photoreceptors coordinate their actions to jointly regulate developmental responses, such as flowering time. In Arabidopsis, the photoexcited cryptochrome 2 interacts with the transcription factor CRYPTOCHROME-INTERACTING basic helix-loop-helix 1 (CIB1) to activate transcription and floral initiation. We show that the CIB1 protein expression is regulated by blue light; CIB1 is highly expressed in plants exposed to blue light, but levels of the CIB1 protein decreases in the absence of blue light. We demonstrate that CIB1 is degraded by the 26S proteasome and that blue light suppresses CIB1 degradation. Surprisingly, although cryptochrome 2 physically interacts with CIB1 in response to blue light, it is not the photoreceptor mediating blue-light suppression of CIB1 degradation. Instead, two of the three light-oxygen-voltage (LOV)-domain photoreceptors, ZEITLUPE and LOV KELCH PROTEIN 2, but not FLAVIN-BINDING KELCH REPEAT 1, are required for the function and blue-light suppression of degradation of CIB1. These results support the hypothesis that the evolutionarily unrelated blue-light receptors, cryptochrome and LOV-domain F-box proteins, mediate blue-light regulation of the same transcription factor by distinct mechanisms.
Collapse
|
42
|
Huan Q, Mao Z, Zhang J, Xu Y, Chong K. Transcriptome-wide analysis of vernalization reveals conserved and species-specific mechanisms in Brachypodium. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:696-709. [PMID: 23551346 DOI: 10.1111/jipb.12050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/07/2013] [Indexed: 05/08/2023]
Abstract
Several temperate cereals need vernalization to promote flowering. Little, however, is known about the vernalization-memory-related genes, and almost no comparative analysis has been performed. Here, RNA-Seq was used for transcriptome analysis in non-vernalized, vernalized and post-vernalized Brachypodium distachyon (L.) Beauv. seedlings. In total, the expression of 1,665 genes showed significant changes (fold change ≥4) in response to vernalization. Among them, 674 putative vernalization-memory-related genes with a constant response to vernalization were significantly enriched in transcriptional regulation and monooxygenase-mediated biological processes. Comparative analysis of vernalization-memory-related genes with barley demonstrated that the oxidative-stress response was the most conserved pathway between these two plant species. Moreover, Brachypodium preferred to regulate transcription and protein phosphorylation processes, while vernalization-memory-related genes, whose products are cytoplasmic membrane-bound-vesicle-located proteins, were preferred to be regulated in barley. Correlation analysis of the vernalization-related genes with barley revealed that the vernalization mechanism was conserved between these two plant species. In summary, vernalization, including its memory mechanism, is conserved between Brachypodium and barley, although several species-specific features also exist. The data reported here will provide primary resources for subsequent functional research in vernalization.
Collapse
Affiliation(s)
- Qing Huan
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | | | | | | | | |
Collapse
|
43
|
Takase M, Mizoguchi T, Kozuka T, Tsukaya H. The unique function of the Arabidopsis circadian clock gene PRR5 in the regulation of shade avoidance response. PLANT SIGNALING & BEHAVIOR 2013; 8:e23534. [PMID: 23333981 PMCID: PMC7030191 DOI: 10.4161/psb.23534] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Shade avoidance response (S.A.R) is regulated by light and circadian clock. Circadian clock controls S.A.R by the transcriptional regulation of positive regulators of S.A.R, PIF4 and PIF5, to prevent plants from responding to 'light' of dark period. Thus, in many cases, deficits in circadian clock appear in abnormalities of hypocotyl and/or petiole elongation. Previously, interesting phenomena were reported that the triple mutants of PSEUDO RESPONSE REGULATORS9, 7 and 5, which are clock components, show longer petioles and smaller leaves under light/dark cycle than those under continuous lighting. These S.A.R-like phenotypes cannot be explained by their hyposensitivity to red light. We demonstrated detailed analyses of this mutant to reveal the leaf-specific S.A.R regulated by circadian clock. Expression analyses of S.A.R-related genes suggested that PRR5 functions as a repressor of S.A.R. Morphological analyses of leaves under different light condition revealed that PRR5 is involved in the inhibition of leaf expansion in S.A.R.
Collapse
Affiliation(s)
- Masahide Takase
- Department of Biological Science; Graduate School of Science; The University of Tokyo; Tokyo, Japan
| | - Tsuyoshi Mizoguchi
- Department of Life Science; International Christian University; Mitaka; Tokyo, Japan
| | - Toshiaki Kozuka
- Department of Botany; Graduate School of Science; Kyoto University; Kyoto, Japan
| | - Hirokazu Tsukaya
- Department of Biological Science; Graduate School of Science; The University of Tokyo; Tokyo, Japan
- Correspondence to: Hirokazu Tsukaya,
| |
Collapse
|
44
|
Chow BY, Kay SA. Global approaches for telling time: omics and the Arabidopsis circadian clock. Semin Cell Dev Biol 2013; 24:383-92. [PMID: 23435351 DOI: 10.1016/j.semcdb.2013.02.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 02/08/2013] [Accepted: 02/12/2013] [Indexed: 12/31/2022]
Abstract
The circadian clock is an endogenous timer that anticipates and synchronizes biological processes to the environment. Traditional genetic approaches identified the underlying principles and genetic components, but new discoveries have been greatly impeded by the embedded redundancies that confer necessary robustness to the clock architecture. To overcome this, global (omic) techniques have provided a new depth of information about the Arabidopsis clock. Our understanding of the factors, regulation, and mechanistic connectivity between clock genes and with output processes has substantially broadened through genomic (cDNA libraries, yeast one-hybrid, protein binding microarrays, and ChIP-seq), transcriptomic (microarrays, RNA-seq), proteomic (mass spectrometry and chemical libraries), and metabolomic (mass spectrometry) approaches. This evolution in research will undoubtedly enhance our understanding of how the circadian clock optimizes growth and fitness.
Collapse
Affiliation(s)
- Brenda Y Chow
- Section of Cell and Developmental Biology and Center for Chronobiology, Division of Biological Sciences, University of California San Diego, La Jolla, CA 92093, United States.
| | | |
Collapse
|
45
|
Abstract
The circadian clock is an endogenous timing system responsible for coordinating an organism's biological processes with its environment. Interlocked transcriptional feedback loops constitute the fundamental architecture of the circadian clock. In Arabidopsis, three feedback loops, the core loop, morning loop and evening loop, comprise a network that is the basis of the circadian clock. The components of these three loops are regulated in distinct ways, including transcriptional, post-transcriptional and posttranslational mechanisms. The discovery of the DNA-binding and repressive activities of TOC1 has overturned our initial concept of its function in the circadian clock. The alternative splicing of circadian clock-related genes plays an essential role in normal functioning of the clock and enables organisms to sense environmental changes. In this review, we describe the regulatory mechanisms of the circadian clock that have been identified in Arabidopsis.
Collapse
Affiliation(s)
- Xiaoxue Wang
- College of Agronomy; Rice Research Institute; Shenyang Agricultural University; Shenyang, P.R. China
| | - Ligeng Ma
- College of Biological Sciences; Capital Normal University; Beijing, P.R. China
- Corresponding author: Ligeng Ma;
| |
Collapse
|
46
|
Transcriptional corepressor TOPLESS complexes with pseudoresponse regulator proteins and histone deacetylases to regulate circadian transcription. Proc Natl Acad Sci U S A 2012; 110:761-6. [PMID: 23267111 DOI: 10.1073/pnas.1215010110] [Citation(s) in RCA: 204] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Circadian clocks are ubiquitous molecular time-keeping mechanisms that coordinate physiology and metabolism and provide an adaptive advantage to higher plants. The central oscillator of the plant clock is composed of interlocked feedback loops that involve multiple repressive factors acting throughout the circadian cycle. Pseudo response regulators (PRRs) comprise a five-member family that is essential to the function of the central oscillator. PRR5, PRR7, and PRR9 can bind the promoters of the core clock genes circadian clock associated 1 (CCA1) and late elongated hypocotyl (LHY) to restrict their expression to near dawn, but the mechanism has been unclear. Here we report that members of the plant Groucho/Tup1 corepressor family, topless/topless-related (TPL/TPR), interact with these three PRR proteins at the CCA1 and LHY promoters to repress transcription and alter circadian period. This activity is diminished in the presence of the inhibitor trichostatin A, indicating the requirement of histone deacetylase for full TPL activity. Additionally, a complex of PRR9, TPL, and histone deacetylase 6, can form in vivo, implicating this tripartite association as a central repressor of circadian gene expression. Our findings show that the TPL/TPR corepressor family are components of the central circadian oscillator mechanism and reinforces the role of this family as central to multiple signaling pathways in higher plants.
Collapse
|
47
|
Zuther E, Schulz E, Childs LH, Hincha DK. Clinal variation in the non-acclimated and cold-acclimated freezing tolerance of Arabidopsis thaliana accessions. PLANT, CELL & ENVIRONMENT 2012; 35:1860-78. [PMID: 22512351 DOI: 10.1111/j.1365-3040.2012.02522.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arabidopsis thaliana is a geographically widely spread species consisting of local accessions differing both genetically and phenotypically. These differences may constitute environmental adaptations and a latitudinal cline in freezing tolerance has been shown previously. Many plants, including Arabidopsis, exhibit increased freezing tolerance after cold exposure (cold acclimation). Here we present evidence for geographical clines (both latitudinal and longitudinal) in acclimated (ACC) and non-acclimated (NA) freezing tolerance, estimated from electrolyte leakage measurements on 54 accessions. Leaf Pro contents were not correlated with freezing tolerance, while sugar contents (Glc, Fru, Suc, Raf) were in the ACC, but not the NA state. Expression levels of 14 cold-induced genes were investigated before and after 2 weeks of cold acclimation by quantitative RT-PCR. Expression of the CBF1, 2 and 3 genes was not correlated with freezing tolerance. The expression of some CBF-regulated (COR) genes, however, was correlated specifically with ACC freezing tolerance. A tight correlation between CBF and COR gene expression was only observed under non-acclimating conditions, where CBF and COR expression were also correlated with the expression of PRR5, a component of the circadian clock. Collectively, this study sheds new light on the molecular determinants of plant-freezing tolerance and cold acclimation and their geographical dependence.
Collapse
Affiliation(s)
- Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | | | | | | |
Collapse
|
48
|
Pokhilko A, Fernández AP, Edwards KD, Southern MM, Halliday KJ, Millar AJ. The clock gene circuit in Arabidopsis includes a repressilator with additional feedback loops. Mol Syst Biol 2012; 8:574. [PMID: 22395476 PMCID: PMC3321525 DOI: 10.1038/msb.2012.6] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 02/13/2012] [Indexed: 12/17/2022] Open
Abstract
Circadian clocks synchronise biological processes with the day/night cycle, using molecular mechanisms that include interlocked, transcriptional feedback loops. Recent experiments identified the evening complex (EC) as a repressor that can be essential for gene expression rhythms in plants. Integrating the EC components in this role significantly alters our mechanistic, mathematical model of the clock gene circuit. Negative autoregulation of the EC genes constitutes the clock's evening loop, replacing the hypothetical component Y. The EC explains our earlier conjecture that the morning gene Pseudo-Response Regulator 9 was repressed by an evening gene, previously identified with Timing Of CAB Expression1 (TOC1). Our computational analysis suggests that TOC1 is a repressor of the morning genes Late Elongated Hypocotyl and Circadian Clock Associated1 rather than an activator as first conceived. This removes the necessity for the unknown component X (or TOC1mod) from previous clock models. As well as matching timeseries and phase-response data, the model provides a new conceptual framework for the plant clock that includes a three-component repressilator circuit in its complex structure.
Collapse
|
49
|
Chen J, Chen JY, Wang JN, Kuang JF, Shan W, Lu WJ. Molecular characterization and expression profiles of MaCOL1, a CONSTANS-like gene in banana fruit. Gene 2012; 496:110-7. [PMID: 22285923 DOI: 10.1016/j.gene.2012.01.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 01/07/2012] [Accepted: 01/10/2012] [Indexed: 01/06/2023]
Abstract
CONSTANS (CO) gene is a key transcription regulator that controls the long-day induction of flowering in Arabidopsis plant. However, CO gene involved in fruit ripening and stress responses is poorly understood. In the present study, a novel cDNA encoding CONSTANS-like gene, designated as MaCOL1 was isolated and characterized from banana fruit. The full length cDNA sequence was 1887bp with an open reading frame (ORF) of 1242bp, encoding 414 amino acids with a molecular weight of 46.20kDa and a theoretical isoelectric point of 5.40. Sequence alignment showed that MaCOL1 contained two B-box zinc finger motifs and a CCT domain. In addition, MaCOL1 showed transcriptional activity in yeast and was a nucleus-localized protein. Real-time PCR analysis showed that MaCOL1 was differentially expressed among various banana plant organs, with higher expression in flower. Expression of MaCOL1 in peel changed slightly, while accumulation of MaCOL1 transcripts in pulp obviously increased during natural or ethylene-induced fruit ripening, suggesting that MaCOL1 might be associated with the pulp ripening of banana fruit. Moreover, accumulation of MaCOL1 transcript was obviously enhanced by abiotic and biotic stresses, such as chilling and pathogen Colletotrichum musae infection. Taken together, our results suggest that MaCOL1 is a transcription activator and may be involved in fruit ripening and stress responses.
Collapse
Affiliation(s)
- Jiao Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | | | | | | | | | | |
Collapse
|
50
|
Saithong T, Bumee S, Liamwirat C, Meechai A. Analysis and practical guideline of constraint-based boolean method in genetic network inference. PLoS One 2012; 7:e30232. [PMID: 22272315 PMCID: PMC3260258 DOI: 10.1371/journal.pone.0030232] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 12/12/2011] [Indexed: 11/19/2022] Open
Abstract
Boolean-based method, despite of its simplicity, would be a more attractive approach for inferring a network from high-throughput expression data if its effectiveness has not been limited by high false positive prediction. In this study, we explored factors that could simply be adjusted to improve the accuracy of inferring networks. Our work focused on the analysis of the effects of discretisation methods, biological constraints, and stringency of boolean function assignment on the performance of boolean network, including accuracy, precision, specificity and sensitivity, using three sets of microarray time-series data. The study showed that biological constraints have pivotal influence on the network performance over the other factors. It can reduce the variation in network performance resulting from the arbitrary selection of discretisation methods and stringency settings. We also presented the master boolean network as an approach to establish the unique solution for boolean analysis. The information acquired from the analysis was summarised and deployed as a general guideline for an efficient use of boolean-based method in the network inference. In the end, we provided an example of the use of such a guideline in the study of Arabidopsis circadian clock genetic network from which much interesting biological information can be inferred.
Collapse
Affiliation(s)
- Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| | | | | | | |
Collapse
|