1
|
Zhang T, Xiang Y, Ye M, Yuan M, Xu G, Zhou DX, Zhao Y. The uORF-HsfA1a-WOX11 module controls crown root development in rice. THE NEW PHYTOLOGIST 2025. [PMID: 40396436 DOI: 10.1111/nph.70214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Accepted: 04/24/2025] [Indexed: 05/22/2025]
Abstract
OsWOX11 is a key essential determinant of crown root development in rice. However, either overexpression or downregulation of OsWOX11 results in pleiotropic developmental defects, including dwarfism and reduced yield. Therefore, it is necessary to ensure an optimal level of OsWOX11 expression for balancing the subterranean root system and aerial organ development. OsHsfA1a activates OsWOX11 expression by directly binding to heat stress element-like elements within its promoter. Genetic evidence demonstrated that OsHsfA1a overexpressing or knockout transgenic plants phenocopied the crown root growth in OsWOX11 transgenic plants. Additionally, increased expression of OsWOX11 in OsHsfA1a RNAi background could partially complement the defective crown root phenotypes. A uORF (uORFHsfA1a) was identified within the 5'-untranslated region of OsHsfA1a. Transient expression assays coupled with ribosome profiling revealed that uORFHsfA1a attenuated the translation efficiency of OsHsfA1a mRNA. Furthermore, HsfA1aP:uORFHsfA1a-HsfA1a-GFP plants exhibited wild-type crown root phenotypes, whereas uORFHsfA1a knockout transgenic plants displayed similar crown root phenotypes to OsWOX11 overexpressing plants. These findings suggest that uORFHsfA1a fine-tunes the crown root development by repressing OsHsfA1a translation, thereby indirectly modulating OsWOX11 transcript levels. Our study demonstrated a novel uORFHsfA1a-HsfA1a-WOX11 regulatory module that coordinated transcriptional and translational control to maintain optimal OsWOX11 expression. This mechanism ensures the trade-off between root and shoot development. Importantly, targeting uORFHsfA1a regulatory elements provided a new strategy for engineering robust root system architecture without compromising agronomic traits, thereby addressing a critical challenge in cereal crop improvement.
Collapse
Affiliation(s)
- Ting Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- College of Food and Biology, Jingchu University of Technology, Jingmen, Hubei, 448000, China
| | - Yimeng Xiang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Miaomiao Ye
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Meng Yuan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guoyong Xu
- State Key Laboratory of Hybrid Rice, Institute for Advanced Studies (IAS), Wuhan University, Wuhan, 430072, China
| | - Dao-Xiu Zhou
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
- Institute of Plant Science Paris-Saclay (IPS2), CNRS, INRAE, University Paris-Saclay, Orsay, 91405, France
| | - Yu Zhao
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
2
|
Fragkostefanakis S, Schleiff E, Scharf KD. Back to the basics: the molecular blueprint of plant heat stress transcription factors. Biol Chem 2025:hsz-2025-0115. [PMID: 40223542 DOI: 10.1515/hsz-2025-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Heat stress transcription factors (HSFs) play a pivotal role in regulating plant responses to heat and other environmental stresses, as well as developmental processes. HSFs possess conserved domains responsible for DNA binding, oligomerization, and transcriptional regulation, which collectively enable precise and dynamic control of cellular responses to environmental stimuli. Functional diversification of HSFs has been demonstrated through genetic studies in model plants such as Arabidopsis thaliana and economically important crops like tomato, rice, and wheat. However, the underlying molecular mechanisms that govern HSF function remain only partially understood, and for a handful of HSFs. Advancements in structural biology, biochemistry, molecular biology, and genomics shed light into how HSFs mediate stress responses at the molecular level. These insights offer exciting opportunities to leverage HSF biology for gene editing and crop improvement, enabling the customization of stress tolerance traits via regulation of HSF-dependent regulatory networks to enhance thermotolerance. This review synthesizes current knowledge on HSF structure and function, providing a perspective on their roles in plant adaptation to a changing climate.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Molecular and Cell Biology of Plants, 9173 Institute of Molecular Biosciences, Goethe University Frankfurt , D-60438 Frankfurt/Main, Germany
| | - Enrico Schleiff
- Molecular and Cell Biology of Plants, 9173 Institute of Molecular Biosciences, Goethe University Frankfurt , D-60438 Frankfurt/Main, Germany
| | - Klaus-Dieter Scharf
- Molecular and Cell Biology of Plants, 9173 Institute of Molecular Biosciences, Goethe University Frankfurt , D-60438 Frankfurt/Main, Germany
| |
Collapse
|
3
|
Wei J, Cui J, Zheng G, Dong X, Wu Z, Fang Y, Sa E, Zhu S, Li B, Wei H, Liu Z. BnaHSFA2, a heat shock transcription factor interacting with HSP70 and MPK11, enhances freezing tolerance in transgenic rapeseed. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109423. [PMID: 39719774 DOI: 10.1016/j.plaphy.2024.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 11/28/2024] [Accepted: 12/17/2024] [Indexed: 12/26/2024]
Abstract
Heat shock transcription factors (Hsfs) play important roles in plant developmental regulations and various abiotic stress responses. However, their evolutionary mechanism of freezing tolerance remains poorly understood. In our previous transcriptomics study based on DNA methylation sequencing, the BnaHsfA2 was found to be significantly accumulated in winter rapeseed (Brassica rapa L.) under freezing stress, and the expression levels of BnaHsfA2 showed a gradual increasing trend over three years. In this study, BnaHsfA2 was isolated and characterized. Its' encoding protein has a relatively high phylogenetic relationship with the AtHsfA2; Subcellular localization results indicated that BnaHsfA2 was a nuclear protein; BnaHsfA2 exhibited higher expression levels in mature seed coats and seeds, seedling leaves, flowering filaments as well as anthers. The transcription level of BnaHsfA2 in leaves of rapeseed seedling was significantly increased at -4 °C stress for 12h and 24h. BnaHsfA2 promoter has many stress-responsive cis-regulatory elements. β-glucuronidase (GUS) staining assays indicated that the BnaHsfA2 promoter was induced under freezing stress, and it's 5'-deletion fragment from 465 to 1284 was essential for the transcriptional expression in response to freezing stress. The BnaHsfA2-transgenic rapeseed lines showed greater freezing resistance in comparison with the wild type (WT); the BnaHsfA2 overexpression lines showed increased antioxidant enzyme activities, decreased level of lipid peroxidation and reactive oxygen species (ROS) accumulation compared to the WT. Finally, yeast two-hybrid assay demonstrated that BnaHsfA2 interacted with rapeseed mitogen-activated protein kinase 11 (BnaMPK11) and heat shock factor-binding protein (BnaHsp70). The study will pave the way for further understanding the regulatory networks of BnaHsfA2 in plants under abiotic stress.
Collapse
Affiliation(s)
- Jiaping Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Junmei Cui
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Guoqiang Zheng
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Xiaoyun Dong
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Zefeng Wu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Yan Fang
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Ermei Sa
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Shujun Zhu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Baojing Li
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Hongyan Wei
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Zigang Liu
- State Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China.
| |
Collapse
|
4
|
Zheng L, Zhang Q, Wang C, Wang Z, Gao J, Zhang R, Shi Y, Zheng X. The heat shock factor HSFB1 coordinates plant growth and drought tolerance in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17258. [PMID: 39918871 DOI: 10.1111/tpj.17258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/05/2024] [Accepted: 12/26/2024] [Indexed: 02/09/2025]
Abstract
Plants are constantly challenged by a diversity of abiotic stressors, and growth arrest is a common plant response aimed at enhancing stress tolerance. Because of this growth/stress tolerance antagonism, plants must finely modulate their growth and responses to environmental stimuli. Here, we demonstrate that HSFB1, a heat shock transcription factor, plays a critical role in the coordination of plant growth and drought stress responses in Arabidopsis thaliana. First, we found that HSFB1 negatively regulates plant growth and development under normal conditions and that HSFB1 expression is enhanced under drought stress. Conversely, the loss-of-function mutant hsfb1 exhibited increased plant growth and reduced drought stress tolerance compared with the wild-type. Consistently, overexpression of HSFB1 suppressed plant growth and enhanced drought stress tolerance. Subsequently, via chromatin immunoprecipitation sequencing, RNA sequencing, and transient expression assays, we screened and identified the heat shock protein 101 (HSP101) gene as a direct transcriptional target of HSFB1. Genetic analysis suggested that HSP101 functions downstream of HSFB1 to positively regulate drought tolerance in plants. Furthermore, we found that HSFB1 physically interacts with the eukaryotic translation initiation factor eIF3G1, and this interaction appears to be further enhanced under drought stress. Notably, the mutation of eif3g1 increased the severity of drought-induced growth inhibition in the hsfb1 mutant, and eIF3G1 enhanced the transcriptional activation of HSFB1 on the HSP101 promoter under drought stress. Altogether, our findings highlight HSFB1 as a key regulator coordinating plant growth and drought stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Lanjie Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qianlong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Chen Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhongbao Wang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jie Gao
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Runcong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yong Shi
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Center for Crop Genome Engineering, Henan Agricultural University, Zhengzhou, 450046, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
5
|
Zhang H, Meng X, Liu R, Li R, Wang Y, Ma Z, Liu Z, Duan S, Li G, Guo X. Heat shock factor ZmHsf17 positively regulates phosphatidic acid phosphohydrolase ZmPAH1 and enhances maize thermotolerance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:493-512. [PMID: 39324623 PMCID: PMC11714762 DOI: 10.1093/jxb/erae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Heat stress adversely impacts plant growth, development, and grain yield. Heat shock factors (Hsf), especially the HsfA2 subclass, play a pivotal role in the transcriptional regulation of genes in response to heat stress. In this study, the coding sequence of maize ZmHsf17 was cloned. ZmHsf17 contained conserved domains including a DNA binding domain, oligomerization domain, and transcriptional activation domain. The protein was nuclear localized and had transcription activation activity. Yeast two-hybrid and split luciferase complementation assays confirmed the interaction of ZmHsf17 with members of the maize HsfA2 subclass. Overexpression of ZmHsf17 in maize significantly increased chlorophyll content and net photosynthetic rate, and enhanced the stability of cellular membranes. Through integrative analysis of ChIP-seq and RNA-seq datasets, ZmPAH1, encoding phosphatidic acid phosphohydrolase of lipid metabolic pathways, was identified as a target gene of ZmHsf17. The promoter fragment of ZmPAH1 was bound by ZmHsf17 in protein-DNA interaction experiments in vivo and in vitro. Lipidomic data also indicated that the overexpression of ZmHsf17 increased levels of some critical membrane lipid components of maize leaves under heat stress. This research provides new insights into the role of the ZmHsf17-ZmPAH1 module in regulating thermotolerance in maize.
Collapse
Affiliation(s)
- Huaning Zhang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Xiangzhao Meng
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Ran Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Ran Li
- College of Agriculture and Forestry Science and Technology, Hebei North University, Zhangjiakou 075000, P. R. China
| | - Yantao Wang
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
- School of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056000, P. R. China
| | - Zhenyu Ma
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Zihui Liu
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Shuonan Duan
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Guoliang Li
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| | - Xiulin Guo
- Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, P. R. China
| |
Collapse
|
6
|
Xue M, You Y, Zhang L, Cao J, Xu M, Chen S. ZmHsp18 screened from the ZmHsp20 gene family confers thermotolerance in maize. BMC PLANT BIOLOGY 2024; 24:1048. [PMID: 39506700 PMCID: PMC11539784 DOI: 10.1186/s12870-024-05763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Heat stress has become one of the abiotic stresses that pose an increasing threat to maize production due to global warming. The Hsp20 gene family confers tolerance to various abiotic stresses in plants. However, very few Hsp20s have been identified in relation to maize thermotolerance. In this study, we conducted a comprehensive study of Hsp20s involved in thermotolerance in maize. A total of 33 maize Hsp20 genes (ZmHsp20s) were identified through scanning for a conserved α-crystalline domain (ACD), and they were categorized into 14 subfamilies based on phylogenetic analysis. These genes are distributed across all maize chromosomes and nine of them are in regions previously identified as heat-tolerance quantitative trait loci (hrQTL). These hrQTL-associated ZmHsp20s show variation in tissue-specific expression profiles under normal conditions, and seven of them possess 1-5 heat stress elements in their promoters. The integration of RNA-seq data with real-time RT-PCR analysis indicated that ZmHsp23.4, ZmHsp22.8B and ZmHsp18 were dramatically induced under heat stress. Additionally, these genes exhibited co-expression patterns with key ZmHsfs, which are crucial in the heat tolerance pathway. When a null mutant carrying a frame-shifted ZmHsp18 gene was subjected to heat stress, its survival rate decreased significantly, indicating a critical role of ZmHsp18 in maize thermotolerance. Our study lays the groundwork for further research into the roles of ZmHsp20s in enhancing maize's thermotolerance.
Collapse
Affiliation(s)
- Ming Xue
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yiwen You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Luyao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jinming Cao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Mingliang Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Saihua Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
7
|
Zhao H, Liu Y, Zhu Z, Feng Q, Ye Y, Zhang J, Han J, Zhou C, Xu J, Yan X, Li X. Mediator subunit MED8 interacts with heat shock transcription factor HSF3 to promote fucoxanthin synthesis in the diatom Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2024; 241:1574-1591. [PMID: 38062856 DOI: 10.1111/nph.19467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/18/2023] [Indexed: 01/26/2024]
Abstract
Fucoxanthin, a natural carotenoid that has substantial pharmaceutical value due to its anticancer, antioxidant, antiobesity, and antidiabetic properties, is biosynthesized from glyceraldehyde-3-phosphate (G3P) via a series of enzymatic reactions. However, our understanding of the transcriptional mechanisms involved in fucoxanthin biosynthesis remains limited. Using reverse genetics, the med8 mutant was identified based on its phenotype of reduced fucoxanthin content, and the biological functions of MED8 in fucoxanthin synthesis were characterized using approaches such as gene expression, protein subcellular localization, protein-protein interaction and chromatin immunoprecipitation assay. Gene-editing mutants of MED8 exhibited decreased fucoxanthin content as well as reduced expression levels of six key genes involved in fucoxanthin synthesis, namely DXS, PSY1, ZDS-like, CRTISO5, ZEP1, and ZEP3, when compared to the wild-type (WT) strain. Furthermore, we showed that MED8 interacts with HSF3, and genetic analysis revealed their shared involvement in the genetic pathway governing fucoxanthin synthesis. Additionally, HSF3 was required for MED8 association with the promoters of the six fucoxanthin synthesis genes. In conclusion, MED8 and HSF3 are involved in fucoxanthin synthesis by modulating the expression of the fucoxanthin synthesis genes. Our results increase the understanding of the molecular regulation mechanisms underlying fucoxanthin synthesis in the diatom P. tricornutum.
Collapse
Affiliation(s)
- Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yan Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Zhengjiang Zhu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Qingkai Feng
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuemei Ye
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Jinrong Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
8
|
Zhu QY, Zhang LL, Liu JX. NFXL1 functions as a transcriptional activator required for thermotolerance at reproductive stage in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:54-65. [PMID: 38141041 DOI: 10.1111/jipb.13604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/21/2023] [Indexed: 12/24/2023]
Abstract
Plants are highly susceptible to abiotic stresses, particularly heat stress during the reproductive stage. However, the specific molecular mechanisms underlying this sensitivity remain largely unknown. In the current study, we demonstrate that the Nuclear Transcription Factor, X-box Binding Protein 1-Like 1 (NFXL1), directly regulates the expression of DEHYDRATION-RESPONSIVE ELEMENT-BINDING PROTEIN 2A (DREB2A), which is crucial for reproductive thermotolerance in Arabidopsis. NFXL1 is upregulated by heat stress, and its mutation leads to a reduction in silique length (seed number) under heat stress conditions. RNA-Seq analysis reveals that NFXL1 has a global impact on the expression of heat stress responsive genes, including DREB2A, Heat Shock Factor A3 (HSFA3) and Heat Shock Protein 17.6 (HSP17.6) in flower buds. Interestingly, NFXL1 is enriched in the promoter region of DREB2A, but not of either HSFA3 or HSP17.6. Further experiments using electrophoretic mobility shift assay have confirmed that NFXL1 directly binds to the DNA fragment derived from the DREB2A promoter. Moreover, effector-reporter assays have shown that NFXL1 activates the DREB2A promoter. The DREB2A mutants are also heat stress sensitive at the reproductive stage, and DEREB2A is epistatic to NFXL1 in regulating thermotolerance in flower buds. It is known that HSFA3, a direct target of DREB2A, regulates the expression of heat shock proteins genes under heat stress conditions. Thus, our findings establish NFXL1 as a critical upstream regulator of DREB2A in the transcriptional cassette responsible for heat stress responses required for reproductive thermotolerance in Arabidopsis.
Collapse
Affiliation(s)
- Qiao-Yun Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Lin-Lin Zhang
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Jian-Xiang Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
9
|
Ding X, Lv M, Liu Y, Guo Q, Gai J, Yang S. A small heat shock protein GmHSP18.5a improves the male fertility restorability of cytoplasmic male sterility-based restorer line under high temperature stress in soybean. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 337:111867. [PMID: 37741497 DOI: 10.1016/j.plantsci.2023.111867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 09/11/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
Small heat shock protein (sHSP) is involved in high temperature (HT) stress response. However, the function of sHSPs in regulating male fertility of soybean under HT stress remains largely unknown. Here, we identified a sHSP gene, GmHSP18.5a, which was responded to HT stress during flowering in cytoplasmic male sterility (CMS)-based restorer line of soybean. Moreover, GmHSFA6b turned out to directly activated the expression of GmHSP18.5a by binding to the heat shock cis-element in its promoter. Overexpression of GmHSP18.5a increased male fertility in transgenic Arabidopsis, soybean CMS-based restorer line and its hybrid F1 with CMS line under HT stress. Reactive oxygen species (ROS) content detection revealed that GmHSP18.5a promoted the ROS scavenging ability of Arabidopsis inflorescence and soybean flower bud under HT stress. Enzyme activity assay and gene expression analysis indicated that GmHS18.5a mainly increased the activity of antioxidant enzymes and the expression level of ROS metabolism-related genes under HT stress. Our results indicated that GmHSP18.5a improved the male fertility restorability of CMS-based restorer line in soybean by regulating ROS metabolic pathway and reducing ROS accumulation. Our findings not only revealed the molecular mechanism of sHSP regulating the male fertility of soybean under HT stress, but also provided a theoretical basis for creating strong restorer line with thermotolerance.
Collapse
Affiliation(s)
- Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Menglin Lv
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Ying Liu
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Qingling Guo
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture and Rural Affairs of the People's Republic of China), MOE National Innovation Platform for Soybean Bio-breeding Industry and Education Integration, State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing 210095, PR China.
| |
Collapse
|
10
|
Xu Y, Jin Y, He D, Di H, Liang Y, Xu Y. A Genome-Wide Analysis and Expression Profile of Heat Shock Transcription Factor (Hsf) Gene Family in Rhododendron simsii. PLANTS (BASEL, SWITZERLAND) 2023; 12:3917. [PMID: 38005814 PMCID: PMC10674592 DOI: 10.3390/plants12223917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/01/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Heat shock transcription factors are key players in a number of transcriptional regulatory pathways that function during plant growth and development. However, their mode of action in Rhododendron simsii is still unclear. In this study, 22 RsHsf genes were identified from genomic data of R. simsii. The 22 genes were randomly distributed on 12 chromosomes, and were divided into three major groups according to their phylogenetic relationships. The structures and conserved motifs were predicted for the 22 genes. Analysis of cis-acting elements revealed stress-responsive and phytohormone-responsive elements in the gene promoter regions, but the types and number varied among the different groups of genes. Transcriptional profile analyses revealed that RsHsfs were expressed in a tissue-specific manner, with particularly high transcript levels in the roots. The transcriptional profiles under abiotic stress were detected by qRT-PCR, and the results further validated the critical function of RsHsfs. This study provides basic information about RsHsf family in R. simsii, and paves the way for further research to clarify their precise roles and to breed new stress-tolerant varieties.
Collapse
Affiliation(s)
- Yanan Xu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (Y.X.); (H.D.); (Y.L.)
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ying Jin
- Zhuji Economic Specialty Station, Zhuji 311800, China; (Y.J.); (D.H.)
| | - Dan He
- Zhuji Economic Specialty Station, Zhuji 311800, China; (Y.J.); (D.H.)
| | - Haochen Di
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (Y.X.); (H.D.); (Y.L.)
| | - Ying Liang
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (Y.X.); (H.D.); (Y.L.)
| | - Yanxia Xu
- Jiyang College, Zhejiang A&F University, Zhuji 311800, China; (Y.X.); (H.D.); (Y.L.)
- Zhuji Economic Specialty Station, Zhuji 311800, China; (Y.J.); (D.H.)
| |
Collapse
|
11
|
Pardal R, Scheres B, Heidstra R. SCHIZORIZA domain-function analysis identifies requirements for its specific role in cell fate segregation. PLANT PHYSIOLOGY 2023; 193:1866-1879. [PMID: 37584278 PMCID: PMC10602604 DOI: 10.1093/plphys/kiad456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 08/17/2023]
Abstract
Plant development continues postembryonically with a lifelong ability to form new tissues and organs. Asymmetric cell division, coupled with fate segregation, is essential to create cellular diversity during tissue and organ formation. Arabidopsis (Arabidopsis thaliana) plants harboring mutations in the SCHIZORIZA (SCZ) gene display fate segregation defects in their roots, resulting in the presence of an additional layer of endodermis, production of root hairs from subepidermal tissue, and misexpression of several tissue identity markers. Some of these defects are observed in tissues where SCZ is not expressed, indicating that part of the SCZ function is nonautonomous. As a class B HEAT-SHOCK TRANSCRIPTION FACTOR (HSFB), the SCZ protein contains several conserved domains and motifs. However, which domain(s) discriminates SCZ from its family members to obtain a role in development remains unknown. Here, we investigate how each domain contributes to SCZ function in Arabidopsis root patterning by generating altered versions of SCZ by domain swapping and mutation. We show that the SCZ DNA-binding domain is the main factor for its developmental function, and that SCZ likely acts as a nonmotile transcriptional repressor. Our results demonstrate how members of the HSF family can evolve toward functions beyond stress response.
Collapse
Affiliation(s)
- Renan Pardal
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Ben Scheres
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| | - Renze Heidstra
- Cluster of Plant Developmental Biology, Laboratory of Molecular Biology, Wageningen University & Research, 6708 PB, Wageningen, The Netherlands
| |
Collapse
|
12
|
Xie K, Guo J, Wang S, Ye W, Sun F, Zhang C, Xi Y. Genome-wide identification, classification, and expression analysis of heat shock transcription factor family in switchgrass (Panicum virgatum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107848. [PMID: 37392668 DOI: 10.1016/j.plaphy.2023.107848] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/03/2023]
Abstract
Switchgrass is one of the most promising bioenergy crops and is generally cultivated in arid climates and poor soils. Heat shock transcription factors (Hsfs) are key regulators of plant responses to abiotic and biotic stressors. However, their role and mechanism of action in switchgrass have not been elucidated. Hence, this study aimed to identify the Hsf family in switchgrass and understand its functional role in heat stress signal transduction and heat tolerance by using bioinformatics and RT-PCR analysis. Forty-eight PvHsfs were identified and divided into three main classes based on their gene structure and phylogenetic relationships: HsfA, HsfB, and HsfC. The results of the bioinformatics analysis showed a DNA-binding domain (DBD) at the N-terminal in PvHsfs, and they were not evenly distributed on all chromosomes except for chromosomes 8 N and 8 K. Many cis-elements related to plant development, stress responses, and plant hormones were identified in the promoter sequence of each PvHsf. Segmental duplication is the primary force underlying Hsf family expansion in switchgrass. The results of the expression pattern of PvHsfs in response to heat stress showed that PvHsf03 and PvHsf25 might play critical roles in the early and late stages of switchgrass response to heat stress, respectively, and HsfB mainly showed a negative response to heat stress. Ectopic expression of PvHsf03 in Arabidopsis significantly increased the heat resistance of seedlings. Overall, our research lays a notable foundation for studying the regulatory network in response to deleterious environments and for further excavating tolerance genes in switchgrass.
Collapse
Affiliation(s)
- Kunliang Xie
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| | - Jinliang Guo
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Shaoyu Wang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Wenjie Ye
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Fengli Sun
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Chao Zhang
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China
| | - Yajun Xi
- College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
13
|
Song J, Zhao H, Zhang L, Li Z, Han J, Zhou C, Xu J, Li X, Yan X. The Heat Shock Transcription Factor PtHSF1 Mediates Triacylglycerol and Fucoxanthin Synthesis by Regulating the Expression of GPAT3 and DXS in Phaeodactylum tricornutum. PLANT & CELL PHYSIOLOGY 2023; 64:622-636. [PMID: 36947404 DOI: 10.1093/pcp/pcad023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 01/31/2023] [Accepted: 03/21/2023] [Indexed: 06/16/2023]
Abstract
In addition to being important primary productive forces in marine ecosystems, diatoms are also rich in bioactive substances such as triacylglycerol and fucoxanthin. However, little is known about the transcriptional mechanisms underlying the biosynthesis of these substances. In this study, we found that the heat shock transcription factor PtHSF1 positively regulated the synthesis of triacylglycerol and fucoxanthin in Phaeodactylum tricornutum. Overexpression of PtHSF1 could increase the contents of triacylglycerol and fucoxanthin and upregulate key enzyme genes involved in the triacylglycerol and fucoxanthin biosynthesis pathways. On the other hand, gene silencing of PtHSF1 reduced the contents of triacylglycerol and fucoxanthin and the expression of the key enzyme genes involved in the triacylglycerol and fucoxanthin biosynthesis pathways. Further biochemical analysis revealed that PtHSF1 upregulated glycerol-2-phosphate acyltransferase 3 (GPAT3) and 1-deoxy-d-xylulose 5-phosphate synthase (DXS) by directly binding to their promoters, while genetic analysis demonstrated that PtHSF1 acted upstream of GPAT3 and DXS to regulate triacylglycerol and fucoxanthin synthesis. Therefore, in addition to elucidating the regulation mechanisms underlying PtHSF1-mediated triacylglycerol and fucoxanthin synthesis, this study also provided a candidate target for metabolic engineering of triacylglycerol and fucoxanthin in P. tricornutum.
Collapse
Affiliation(s)
- Jianquan Song
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Hejing Zhao
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Linxin Zhang
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Zheng Li
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Jilin Xu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| |
Collapse
|
14
|
Liu L, Zhang Y, Tang C, Shen Q, Fu J, Wang Q. Maize Transcription Factor ZmHsf28 Positively Regulates Plant Drought Tolerance. Int J Mol Sci 2023; 24:ijms24098079. [PMID: 37175787 PMCID: PMC10179534 DOI: 10.3390/ijms24098079] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023] Open
Abstract
Identification of central genes governing plant drought tolerance is fundamental to molecular breeding and crop improvement. Here, maize transcription factor ZmHsf28 is identified as a positive regulator of plant drought responses. ZmHsf28 exhibited inducible gene expression in response to drought and other abiotic stresses. Overexpression of ZmHsf28 diminished drought effects in Arabidopsis and maize. Gene silencing of ZmHsf28 via the technology of virus-induced gene silencing (VIGS) impaired maize drought tolerance. Overexpression of ZmHsf28 increased jasmonate (JA) and abscisic acid (ABA) production in transgenic maize and Arabidopsis by more than two times compared to wild-type plants under drought conditions, while it decreased reactive oxygen species (ROS) accumulation and elevated stomatal sensitivity significantly. Transcriptomic analysis revealed extensive gene regulation by ZmHsf28 with upregulation of JA and ABA biosynthesis genes, ROS scavenging genes, and other drought related genes. ABA treatment promoted ZmHsf28 regulation of downstream target genes. Specifically, electrophoretic mobility shift assays (EMSA) and yeast one-hybrid (Y1H) assay indicated that ZmHsf28 directly bound to the target gene promoters to regulate their gene expression. Taken together, our work provided new and solid evidence that ZmHsf28 improves drought tolerance both in the monocot maize and the dicot Arabidopsis through the implication of JA and ABA signaling and other signaling pathways, shedding light on molecular breeding for drought tolerance in maize and other crops.
Collapse
Affiliation(s)
- Lijun Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Yuhan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Chen Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qinqin Shen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jingye Fu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qiang Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
15
|
Mihailova G, Tchorbadjieva M, Rakleova G, Georgieva K. Differential Accumulation of sHSPs Isoforms during Desiccation of the Resurrection Plant Haberlea rhodopensis Friv. under Optimal and High Temperature. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010238. [PMID: 36676187 PMCID: PMC9863180 DOI: 10.3390/life13010238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/06/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Haberlea rhodopensis belongs to the small group of angiosperms that can survive desiccation to air-dry state and quickly restore their metabolism upon rehydration. In the present study, we investigated the accumulation of sHSPs and the extent of non-photochemical quenching during the downregulation of photosynthesis in H. rhodopensis leaves under desiccation at optimum (23 °C) and high temperature (38 °C). Desiccation of plants at 38 °C caused a stronger reduction in photosynthetic activity and corresponding enhancement in thermal energy dissipation. The accumulation of sHSPs was investigated by Western blot. While no expression of sHPSs was detected in the unstressed control sample, exposure of well-hydrated plants to high temperature induced an accumulation of sHSPs. Only a faint signal was observed at 50% RWC when dehydration was applied at 23 °C. Several cross-reacting polypeptide bands in the range of 16.5-19 kDa were observed in plants desiccated at high temperature. Two-dimensional electrophoresis and immunoblotting revealed the presence of several sHSPs with close molecular masses and pIs in the range of 5-8.0 that differed for each stage of treatment. At the latest stages of desiccation, fourteen different sHSPs could be distinguished, indicating that sHSPs might play a crucial role in H. rhodopensis under dehydration at high temperatures.
Collapse
Affiliation(s)
- Gergana Mihailova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
- Correspondence: ; Tel.: +359-2-979-2688
| | - Magdalena Tchorbadjieva
- Department of Biochemistry, Faculty of Biology, Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Goritsa Rakleova
- Department of Biochemistry, Faculty of Biology, Sofia University, 8 Dragan Tsankov Blvd., 1164 Sofia, Bulgaria
| | - Katya Georgieva
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria
| |
Collapse
|
16
|
Yang J, Qu X, Li T, Gao Y, Du H, Zheng L, Ji M, Zhang P, Zhang Y, Hu J, Liu L, Lu Z, Yang Z, Zhang H, Yang J, Jiao Y, Zheng X. HY5-HDA9 orchestrates the transcription of HsfA2 to modulate salt stress response in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:45-63. [PMID: 36165397 DOI: 10.1111/jipb.13372] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Integration of light signaling and diverse abiotic stress responses contribute to plant survival in a changing environment. Some reports have indicated that light signals contribute a plant's ability to deal with heat, cold, and stress. However, the molecular link between light signaling and the salt-response pathways remains unclear. We demonstrate here that increasing light intensity elevates the salt stress tolerance of plants. Depletion of HY5, a key component of light signaling, causes Arabidopsis thaliana to become salinity sensitive. Interestingly, the small heat shock protein (sHsp) family genes are upregulated in hy5-215 mutant plants, and HsfA2 is commonly involved in the regulation of these sHsps. We found that HY5 directly binds to the G-box motifs in the HsfA2 promoter, with the cooperation of HISTONE DEACETYLASE 9 (HDA9), to repress its expression. Furthermore, the accumulation of HDA9 and the interaction between HY5 and HDA9 are significantly enhanced by salt stress. On the contrary, high temperature triggers HY5 and HDA9 degradation, which leads to dissociation of HY5-HDA9 from the HsfA2 promoter, thereby reducing salt tolerance. Under salt and heat stress conditions, fine tuning of protein accumulation and an interaction between HY5 and HDA9 regulate HsfA2 expression. This implies that HY5, HDA9, and HsfA2 play important roles in the integration of light signaling with salt stress and heat shock response.
Collapse
Affiliation(s)
- Jiaheng Yang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiao Qu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Tao Li
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yixiang Gao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haonan Du
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lanjie Zheng
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Manchun Ji
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Paifeng Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yan Zhang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jinxin Hu
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Liangyu Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Zefu Lu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zijian Yang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Huiyong Zhang
- College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianping Yang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yongqing Jiao
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xu Zheng
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
17
|
Liu R, Zou P, Yan ZY, Chen X. Identification, classification, and expression profile analysis of heat shock transcription factor gene family in Salvia miltiorrhiza. PeerJ 2022; 10:e14464. [PMID: 36523473 PMCID: PMC9745953 DOI: 10.7717/peerj.14464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/03/2022] [Indexed: 12/09/2022] Open
Abstract
In response to abiotic stresses, transcription factors are essential. Heat shock transcription factors (HSFs), which control gene expression, serve as essential regulators of plant growth, development, and stress response. As a model medicinal plant, Salvia miltiorrhiza is a crucial component in the treatment of cardiovascular illnesses. But throughout its growth cycle, S.miltiorrhiza is exposed to a series of abiotic challenges, including heat and drought. In this study, 35 HSF genes were identified based on genome sequencing of Salvia miltiorrhiza utilizing bioinformatics techniques. Additionally, 35 genes were classified into three groups by phylogeny and gene structural analysis, comprising 22 HSFA, 11 HSFB, and two HSFC. The distribution and sequence analysis of motif showed that SmHSFs were relatively conservative. In SmHSF genes, analysis of the promoter region revealed the presence of many cis-acting elements linked to stress, hormones, and growth and development, suggesting that these factors have regulatory roles. The majority of SmHSFs were expressed in response to heat and drought stress, according to combined transcriptome and real-time quantitative PCR (qRT-PCR) analyses. In conclusion, this study looked at the SmHSF gene family using genome-wide identification, evolutionary analysis, sequence characterization, and expression analysis. This research serves as a foundation for further investigations into the role of HSF genes and their molecular mechanisms in plant stress responses.
Collapse
Affiliation(s)
- Rui Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Peijin Zou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Zhu-Yun Yan
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| | - Xin Chen
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China,Key Laboratory of Characteristic Chinese Medicinal Resources in Southwest, Chengdu, Sichuan, China
| |
Collapse
|
18
|
Luo J, Jiang J, Sun S, Wang X. Brassinosteroids promote thermotolerance through releasing BIN2-mediated phosphorylation and suppression of HsfA1 transcription factors in Arabidopsis. PLANT COMMUNICATIONS 2022; 3:100419. [PMID: 35927943 PMCID: PMC9700127 DOI: 10.1016/j.xplc.2022.100419] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/10/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
High temperature adversely affects plant growth and development. The steroid phytohormones brassinosteroids (BRs) are recognized to play important roles in plant heat stress responses and thermotolerance, but the underlying mechanisms remain obscure. Here, we demonstrate that the glycogen synthase kinase 3 (GSK3)-like kinase BRASSINOSTEROID INSENSITIVE2 (BIN2), a negative component in the BR signaling pathway, interacts with the master heat-responsive transcription factors CLASS A1 HEAT SHOCK TRANSCRIPTION FACTORS (HsfA1s). Furthermore, BIN2 phosphorylates HsfA1d on T263 and S56 to suppress its nuclear localization and inhibit its DNA-binding ability, respectively. BR signaling promotes plant thermotolerance by releasing the BIN2 suppression of HsfA1d to facilitate its nuclear localization and DNA binding. Our study provides insights into the molecular mechanisms by which BRs promote plant thermotolerance by strongly regulating HsfA1d through BIN2 and suggests potential ways to improve crop yield under extreme high temperatures.
Collapse
Affiliation(s)
- Jinyu Luo
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China
| | - Jianjun Jiang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China
| | - Shiyong Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China
| | - Xuelu Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan University, Kaifeng 475004, China; Sanya Institute of Henan University, Sanya 572025, China.
| |
Collapse
|
19
|
Rao S, Gupta A, Bansal C, Sorin C, Crespi M, Mathur S. A conserved HSF:miR169:NF-YA loop involved in tomato and Arabidopsis heat stress tolerance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:7-26. [PMID: 36050841 DOI: 10.1111/tpj.15963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/15/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Heat stress transcription factors (HSFs) and microRNAs (miRNAs) regulate different stress and developmental networks in plants. Regulatory feedback mechanisms are at the basis of these networks. Here, we report that plants improve their heat stress tolerance through HSF-mediated transcriptional regulation of MIR169 and post-transcriptional regulation of Nuclear Factor-YA (NF-YA) transcription factors. We show that HSFs recognize tomato (Solanum lycopersicum) and Arabidopsis MIR169 promoters using yeast one-hybrid/chromatin immunoprecipitation-quantitative PCR. Silencing tomato HSFs using virus-induced gene silencing (VIGS) reduced Sly-MIR169 levels and enhanced Sly-NF-YA9/A10 target expression. Further, Sly-NF-YA9/A10 VIGS knockdown tomato plants and Arabidopsis plants overexpressing At-MIR169d or At-nf-ya2 mutants showed a link with increased heat tolerance. In contrast, Arabidopsis plants overexpressing At-NF-YA2 and those expressing a non-cleavable At-NF-YA2 form (miR169d-resistant At-NF-YA2) as well as plants in which At-miR169d regulation is inhibited (miR169d mimic plants) were more sensitive to heat stress, highlighting NF-YA as a negative regulator of heat tolerance. Furthermore, post-transcriptional cleavage of NF-YA by elevated miR169 levels resulted in alleviation of the repression of the heat stress effector HSFA7 in tomato and Arabidopsis, revealing a retroactive control of HSFs by the miR169:NF-YA node. Hence, a regulatory feedback loop involving HSFs, miR169s and NF-YAs plays a critical role in the regulation of the heat stress response in tomato and Arabidopsis plants.
Collapse
Affiliation(s)
- Sombir Rao
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Apoorva Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Chandni Bansal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| | - Celine Sorin
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Univ Evry, 91405, Orsay, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405, Orsay, France
| | - Martin Crespi
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, Univ Evry, 91405, Orsay, France
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405, Orsay, France
| | - Saloni Mathur
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110 067, India
| |
Collapse
|
20
|
Zhang Y, Wang C, Wang C, Yun L, Song L, Idrees M, Liu H, Zhang Q, Yang J, Zheng X, Zhang Z, Gao J. OsHsfB4b Confers Enhanced Drought Tolerance in Transgenic Arabidopsis and Rice. Int J Mol Sci 2022; 23:ijms231810830. [PMID: 36142741 PMCID: PMC9501395 DOI: 10.3390/ijms231810830] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/06/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock factors (Hsfs) play pivotal roles in plant stress responses and confer stress tolerance. However, the functions of several Hsfs in rice (Oryza sativa L.) are not yet known. In this study, genome-wide analysis of the Hsf gene family in rice was performed. A total of 25 OsHsf genes were identified, which could be clearly clustered into three major groups, A, B, and C, based on the characteristics of the sequences. Bioinformatics analysis showed that tandem duplication and fragment replication were two important driving forces in the process of evolution and expansion of the OsHsf family genes. Both OsHsfB4b and OsHsfB4d showed strong responses to the stress treatment. The results of subcellular localization showed that the OsHsfB4b protein was in the nucleus whereas the OsHsfB4d protein was located in both the nucleus and cytoplasm. Over-expression of the OsHsfB4b gene in Arabidopsis and rice can increase the resistance to drought stress. This study provides a basis for understanding the function and evolutionary history of the OsHsf gene family, enriching our knowledge of understanding the biological functions of OsHsfB4b and OsHsfB4d genes involved in the stress response in rice, and also reveals the potential value of OsHsfB4b in rice environmental adaptation improvement.
Collapse
Affiliation(s)
- Yan Zhang
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Chen Wang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Changyu Wang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Liu Yun
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Linhu Song
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Muhammad Idrees
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
| | - Huiying Liu
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Qianlong Zhang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Jingyu Yang
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Xu Zheng
- State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Longzi Lake Campus, College of Agronomy, Henan Agricultural University, Zhengzhou 450046, China
| | - Zhiyong Zhang
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- Correspondence: (Z.Z.); (J.G.)
| | - Jie Gao
- College of Life Sciences, Neijiang Normal University, Neijiang 641004, China
- Correspondence: (Z.Z.); (J.G.)
| |
Collapse
|
21
|
Song S, Willems LAJ, Jiao A, Zhao T, Eric Schranz M, Bentsink L. The membrane associated NAC transcription factors ANAC060 and ANAC040 are functionally redundant in the inhibition of seed dormancy in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5514-5528. [PMID: 35604925 PMCID: PMC9467645 DOI: 10.1093/jxb/erac232] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
The NAC family of transcription factors is involved in plant development and various biotic and abiotic stresses. The Arabidopsis thaliana ANAC genes ANAC060, ANAC040, and ANAC089 are highly homologous based on protein and nucleotide sequence similarity. These three genes are predicted to be membrane bound transcription factors (MTFs) containing a conserved NAC domain, but divergent C-terminal regions. The anac060 mutant shows increased dormancy when compared with the wild type. Mutations in ANAC040 lead to higher seed germination under salt stress, and a premature stop codon in ANAC089 Cvi allele results in seeds exhibiting insensitivity to high concentrations of fructose. Thus, these three homologous MTFs confer distinct functions, although all related to germination. To investigate whether the differences in function are caused by a differential spatial or temporal regulation, or by differences in the coding sequence (CDS), we performed swapping experiments in which the promoter and CDS of the three MTFs were exchanged. Seed dormancy and salt and fructose sensitivity analyses of transgenic swapping lines in mutant backgrounds showed that there is functional redundancy between ANAC060 and ANAC040, but not between ANAC060 and ANAC089.
Collapse
Affiliation(s)
- Shuang Song
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Leo A J Willems
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Ao Jiao
- Wageningen Seed Science Centre, Laboratory of Plant Physiology, Wageningen University, PB Wageningen, The Netherlands
| | - Tao Zhao
- Present address: State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - M Eric Schranz
- Biosystematics Group, Wageningen University, PB Wageningen, The Netherlands
| | | |
Collapse
|
22
|
Li Z, Zhang J. Effects of Raised Ambient Temperature on the Local and Systemic Adaptions of Maize. PLANTS (BASEL, SWITZERLAND) 2022; 11:755. [PMID: 35336636 PMCID: PMC8949135 DOI: 10.3390/plants11060755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 06/14/2023]
Abstract
Maize is a staple food, feed, and industrial crop. One of the major stresses on maize production is heat stress, which is usually accompanied by other stresses, such as drought or salinity. In this review, we compared the effects of high temperatures on maize production in China. Heat stress disturbs cellular homeostasis and impedes growth and development in plants. Plants have evolved a variety of responses to minimize the damage related to high temperatures. This review summarized the responses in different cell organelles at elevated temperatures, including transcriptional regulation control in the nuclei, unfolded protein response and endoplasmic reticulum-associated protein quality control in the endoplasmic reticulum (ER), photosynthesis in the chloroplast, and other cell activities. Cells coordinate their activities to mediate the collective stresses of unfavorable environments. Accordingly, we evaluated heat stress at the local and systemic levels in in maize. We discussed the physiological and morphological changes in sensing tissues in response to heat stress in maize and the existing knowledge on systemically acquired acclimation in plants. Finally, we discussed the challenges and prospects of promoting corn thermotolerance by breeding and genetic manipulation.
Collapse
|
23
|
Fu J, Huang S, Qian J, Qing H, Wan Z, Cheng H, Zhang C. Genome-Wide Identification of Petunia HSF Genes and Potential Function of PhHSF19 in Benzenoid/Phenylpropanoid Biosynthesis. Int J Mol Sci 2022; 23:ijms23062974. [PMID: 35328393 PMCID: PMC8951162 DOI: 10.3390/ijms23062974] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 11/17/2022] Open
Abstract
Volatile benzenoids/phenylpropanoids are the main flower scent compounds in petunia (Petunia hybrida). Heat shock factors (HSFs), well known as the main regulator of heat stress response, have been found to be involved in the biosynthesis of benzenoid/phenylpropanoid and other secondary metabolites. In order to figure out the potential function of HSFs in the regulation of floral scent in petunia, we systematically identified the genome-wide petunia HSF genes and analyzed their expression and then the interaction between the key petunia HSF gene with target gene involved in benzenoid/phenylpropanoid biosynthesis. The results revealed that 34 HSF gene family members were obtained in petunia, and most petunia HSFs contained one intron. The phylogenetic analysis showed that 23 petunia HSFs were grouped into the largest subfamily HSFA, while only two petunia HSFs were in HSFC subfamily. The DBD domain and NLS motif were well conserved in most petunia HSFs. Most petunia HSF genes’ promoters contained STRE motifs, the highest number of cis-acting element. PhHSF19 is highly expressed in petal tubes, followed by peduncles and petal limbs. During flower development, the expression level of PhHSF19 was dramatically higher at earlier flower opening stages than that at the bud stage, suggesting that PhHSF19 may have potential roles in regulating benzenoid/phenylpropanoid biosynthesis. The expression pattern of PhHSF19 is positively related with PhPAL2, which catalyzes the first committed step in the phenylpropanoid pathway. In addition, there are three STRE elements in the promoter of PhPAL2. PhHSF19 was proven to positively regulate the expression of PhPAL2 according to the yeast one hybrid and dual luciferase assays. These results lay a theoretical foundation for further studies of the regulation of HSFs on plant flower scent biosynthesis.
Collapse
|
24
|
Ding X, Chen L, Guo J, Gai J, Yang S. A small RNA of miR2119b from soybean CMS line acts as a negative regulator of male fertility in transgenic Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:210-221. [PMID: 34371391 DOI: 10.1016/j.plaphy.2021.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/16/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
The miR2119 is involved in the growth, development and abiotic stress response of some legumes, including Medicago truncatula, Phaseolus vulgaris and soybean (Glycine max (L.) Merr.). Our previous small RNA sequencing analysis showed that miR2119b was up-regulated in the flower buds of soybean cytoplasmic male sterile (CMS) line compared with its maintainer line, but the role and mechanism of miR2119b in the regulation of soybean male fertility are still unclear. In this study, the gma-miR2119b and its target gene alcohol dehydrogenase 1.3b (ADH1.3b) were characterized and found to be highly expressed in the flowers of soybean CMS line and its maintainer. Transgenic Arabidopsis plants overexpressing gma-miR2119b exhibit male fertility abnormalities, including pollen fertility and germination rate decreased. Enzyme activity detection found the ADH and catalase (CAT) enzyme activities in inflorescence of gma-miR2119b overexpressed plants were lower than those of wild-type. Bioinformatics and gene expression analysis showed that gma-miR2119b/GmADH1.3b module was responsive to high temperature (HT) stress during flowering. After HT stress, the gma-miR2119b overexpressed plants showed male sterility, including shorter filament, sterile pollen, indehiscent anther and non seed. Moreover, some key genes involved in HT response and reactive oxygen species (ROS) signal regulation pathway, including heat shock protein70, galactinol synthase 1 and CAT, showed down-regulated expression in transgenic plants under HT stress, suggesting that gma-miR2119b regulates male fertility via HT-ROS signaling pathway under HT stress. It was speculated that the gma-miR2119b acted as a negative regulator of male fertility in plants by regulating ADH1, HT-induced and ROS scavenging genes expression.
Collapse
Affiliation(s)
- Xianlong Ding
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Linfeng Chen
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinfeng Guo
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junyi Gai
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shouping Yang
- Soybean Research Institute, National Center for Soybean Improvement, Key Laboratory of Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), State Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
25
|
Heat Stress Responses and Thermotolerance in Maize. Int J Mol Sci 2021; 22:ijms22020948. [PMID: 33477941 PMCID: PMC7833377 DOI: 10.3390/ijms22020948] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/11/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
High temperatures causing heat stress disturb cellular homeostasis and impede growth and development in plants. Extensive agricultural losses are attributed to heat stress, often in combination with other stresses. Plants have evolved a variety of responses to heat stress to minimize damage and to protect themselves from further stress. A narrow temperature window separates growth from heat stress, and the range of temperatures conferring optimal growth often overlap with those producing heat stress. Heat stress induces a cytoplasmic heat stress response (HSR) in which heat shock transcription factors (HSFs) activate a constellation of genes encoding heat shock proteins (HSPs). Heat stress also induces the endoplasmic reticulum (ER)-localized unfolded protein response (UPR), which activates transcription factors that upregulate a different family of stress response genes. Heat stress also activates hormone responses and alternative RNA splicing, all of which may contribute to thermotolerance. Heat stress is often studied by subjecting plants to step increases in temperatures; however, more recent studies have demonstrated that heat shock responses occur under simulated field conditions in which temperatures are slowly ramped up to more moderate temperatures. Heat stress responses, assessed at a molecular level, could be used as traits for plant breeders to select for thermotolerance.
Collapse
|
26
|
Zinsmeister J, Berriri S, Basso DP, Ly-Vu B, Dang TT, Lalanne D, da Silva EAA, Leprince O, Buitink J. The seed-specific heat shock factor A9 regulates the depth of dormancy in Medicago truncatula seeds via ABA signalling. PLANT, CELL & ENVIRONMENT 2020; 43:2508-2522. [PMID: 32683703 DOI: 10.1111/pce.13853] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 05/15/2023]
Abstract
During the later stages of seed maturation, two key adaptive traits are acquired that contribute to seed lifespan and dispersal, longevity and dormancy. The seed-specific heat shock transcription factor A9 is an important hub gene in the transcriptional network of late seed maturation. Here, we demonstrate that HSFA9 plays a role in thermotolerance rather than in ex situ seed conservation. Storage of hsfa9 seeds of Medicago truncatula and Arabidopsis had comparable lifespan at moderate storage relative humidity (RH), whereas at high RH, hsfa9 seeds lost their viability much faster than wild type seeds. Furthermore, we show that in M. truncatula, Mthsfa9 seeds acquired more dormancy during late maturation than wild type. Transient expression of MtHSFA9 in hairy roots and transcriptome analysis of Mthsfa9 Tnt1 insertion mutants identified a deregulation of genes involved in ABA biosynthesis, catabolism and signalling. Consistent with these results, Mthsfa9 seeds exhibited increased ABA levels and higher sensitivity to ABA. These data suggest that in legumes, HSFA9 acts as a negative regulator of the depth of seed dormancy during seed development via the modulation of hormonal balance.
Collapse
Affiliation(s)
- Julia Zinsmeister
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Souha Berriri
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Denise Puntel Basso
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
- Departamento de Produção Vegetal, Faculdade de Ciências Agronômicas, Universidade Estadual Paulista, Botucatu, Brazil
| | - Benoit Ly-Vu
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Thi-Thu Dang
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - David Lalanne
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | | | - Olivier Leprince
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| | - Julia Buitink
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, Beaucouzé, France
| |
Collapse
|
27
|
Tiwari LD, Khungar L, Grover A. AtHsc70-1 negatively regulates the basal heat tolerance in Arabidopsis thaliana through affecting the activity of HsfAs and Hsp101. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2069-2083. [PMID: 32573848 DOI: 10.1111/tpj.14883] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/18/2020] [Accepted: 06/05/2020] [Indexed: 05/04/2023]
Abstract
Heat shock protein 70 (Hsp70) chaperones are highly conserved and essential proteins with diverse cellular functions, including plant abiotic stress tolerance. Hsp70 proteins have been linked with basal heat tolerance in plants. Hsp101 likewise is an important chaperone protein that plays a critical role in heat tolerance in plants. We observed that Arabidopsis hsc70-1 mutant seedlings show elevated basal heat tolerance compared with wild-type. Over-expression of Hsc70-1 resulted in increased heat sensitivity. Hsp101 transcript and protein levels were increased during non-heat stress (HS) and post-HS conditions in hsc70-1 mutant seedlings. In contrast, Hsp101 was repressed in Hsc70-1 over-expressing plants after post-HS conditions. Hsc70-1 showed physical interaction with HsfA1d and HsfA1e protein in the cytosol under non-HS conditions. In transient reporter gene analysis, HsfA1d, HsfA1e and HsfA2 showed transcriptional response on the Hsp101 promoter. HsfA1d and HsfA2 transcripts were at higher levels in hsc70-1 mutant compared with wild-type. We provide genetic evidence that Hsc70-1 is a negative regulator affecting HsfA1d/A1e/A2 activators, which in turn regulate Hsp101 expression and basal thermotolerance.
Collapse
Affiliation(s)
- Lalit D Tiwari
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| | - Lisha Khungar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| | - Anil Grover
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi,, 110021, India
| |
Collapse
|
28
|
Zhang H, Li G, Fu C, Duan S, Hu D, Guo X. Genome-wide identification, transcriptome analysis and alternative splicing events of Hsf family genes in maize. Sci Rep 2020; 10:8073. [PMID: 32415117 PMCID: PMC7229205 DOI: 10.1038/s41598-020-65068-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/26/2020] [Indexed: 12/13/2022] Open
Abstract
Heat shock transcription factor (Hsf) plays a transcriptional regulatory role in plants during heat stress and other abiotic stresses. 31 non-redundant ZmHsf genes from maize were identified and clustered in the reference genome sequenced by Single Molecule Real Time (SMRT). The amino acid length, chromosome location, and presence of functional domains and motifs of all ZmHsfs sequences were analyzed and determined. Phylogenetics and collinearity analyses reveal gene duplication events in Hsf family and collinearity blocks shared by maize, rice and sorghum. The results of RNA-Seq analysis of anthesis and post-anthesis periods in maize show different expression patterns of ZmHsf family members. Specially, ZmHsf26 of A2 subclass and ZmHsf23 of A6 subclass were distinctly up-regulated after heat shock (HS) at post-anthesis stage. Nanopore transcriptome sequencing of maize seedlings showed that alternative splicing (AS) events occur in ZmHsf04 and ZmHsf17 which belong to subclass A2 after heat shock. Through sequence alignment, semi-quantitative and quantitative RT-PCR, we found that intron retention events occur in response to heat shock, and newly splice isoforms, ZmHsf04-II and ZmHsf17-II, were transcribed. Both new isoforms contain several premature termination codons in their introns which may lead to early termination of translation. The ZmHsf04 expression was highly increased than that of ZmHsf17, and the up-regulation of ZmHsf04-I transcription level were significantly higher than that of ZmHsf04-II after HS.
Collapse
Affiliation(s)
- Huaning Zhang
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Guoliang Li
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Cai Fu
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Shuonan Duan
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China
| | - Dong Hu
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China.
| | - Xiulin Guo
- Plant Genetic Engineering Center of Hebei Province/Institute of Genetics and Physiology, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050051, P.R. China.
| |
Collapse
|
29
|
Zhang H, Xiang Y, He N, Liu X, Liu H, Fang L, Zhang F, Sun X, Zhang D, Li X, Terzaghi W, Yan J, Dai M. Enhanced Vitamin C Production Mediated by an ABA-Induced PTP-like Nucleotidase Improves Plant Drought Tolerance in Arabidopsis and Maize. MOLECULAR PLANT 2020; 13:760-776. [PMID: 32068157 DOI: 10.1016/j.molp.2020.02.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 05/26/2023]
Abstract
Abscisic acid (ABA) is a key phytohormone that mediates environmental stress responses. Vitamin C, or L-ascorbic acid (AsA), is the most abundant antioxidant protecting against stress damage in plants. How the ABA and AsA signaling pathways interact in stress responses remains elusive. In this study, we characterized the role of a previously unidentified gene, PTPN (PTP-like Nucleotidase) in plant drought tolerance. In Arabidopsis, (AtPTPN was expressed in multiple tissues and upregulated by ABA and drought treatments. Loss-of-function mutants of AtPTPN were hyposensitive to ABA but hypersensitive to drought stresses, whereas plants with enhanced expression of AtPTPN showed opposite phenotypes to . Overexpression of maize PTPN (ZmPTPN) promoted, while knockdown of ZmPTPN inhibited plant drought tolerance, indicating conserved and positive roles of PTPN in plant drought tolerance. We found that both AtPTPN and ZmPTPN release Pi by hydrolyzing GDP/GMP/dGMP/IMP/dIMP, and that AtPTPN positively regulated AsA production via endogenous Pi content control. Consistently, overexpression of VTC2, the rate-limiting synthetic enzyme in AsA biosynthesis, promoted AsA production and plant drought tolerance, and these effects were largely dependent on AtPTPN activity. Furthermore, we demonstrated that the heat shock transcription factor HSFA6a directly binds the AtPTPN promoter and activates AtPTPN expression. Genetic analyses showed that AtPTPN is required for HSFA6a to regulate ABA and drought responses. Taken together, our data indicate that PTPN-mediated crosstalk between the ABA signaling and AsA biosynthesis pathways positively controls plant drought tolerance.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Xiang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Neng He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangguo Liu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Institute, Jilin Academy of Agricultural Sciences, Changchun 130124, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Liping Fang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Fei Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaopeng Sun
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Xingwang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - William Terzaghi
- Department of Biology, Wilkes University, Wilkes-Barre, PA 18766, USA
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingqiu Dai
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
30
|
Zhao P, Javed S, Shi X, Wu B, Zhang D, Xu S, Wang X. Varying Architecture of Heat Shock Elements Contributes to Distinct Magnitudes of Target Gene Expression and Diverged Biological Pathways in Heat Stress Response of Bread Wheat. Front Genet 2020; 11:30. [PMID: 32117446 PMCID: PMC7010933 DOI: 10.3389/fgene.2020.00030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 01/09/2020] [Indexed: 12/26/2022] Open
Abstract
The heat shock transcription factor (HSF) binds to cis-regulatory motifs known as heat shock elements (HSEs) to mediate the transcriptional response of HSF target genes. However, the HSF-HSEs interaction is not clearly understood. Using the newly released genome reference sequence of bread wheat, we identified 39,478 HSEs (95.6% of which were non-canonical HSEs) and collapsed them into 30,604 wheat genes, accounting for 27.6% wheat genes. Using the intensively heat-responsive transcriptomes of wheat, we demonstrated that canonical HSEs have a higher propensity to induce a response in the closest downstream genes than non-canonical HSEs. However, the response magnitude induced by non-canonical HSEs was comparable to that induced by canonical HSEs. Significantly, some non-canonical HSEs that contain mismatched nucleotides at specific positions within HSEs had a larger response magnitude than that of canonical HSEs. Consistently, most of the HSEs identified in the promoter regions of heat shock proteins were non-canonical HSEs, suggesting an important role for these non-canonical HSEs. Lastly, distinct diverged biological processes were observed between genes containing different HSE types, suggesting that sequence variation in HSEs plays a key role in the evolution of heat responses and adaptation. Our results provide a new perspective to understand the regulatory network underlying heat responses.
Collapse
Affiliation(s)
- Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Sidra Javed
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xue Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Bingjin Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Dongzhi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shengbao Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Xiaoming Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
31
|
Functional diversification of tomato HsfA1 factors is based on DNA binding domain properties. Gene 2019; 714:143985. [PMID: 31330236 DOI: 10.1016/j.gene.2019.143985] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 07/13/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022]
Abstract
In all eukaryotes, the response to heat stress (HS) is dependent on the activity of HS transcription factors (Hsfs). Plants contain a large number of Hsfs, however, only members of the HsfA1 subfamily are considered as master regulators of stress response and thermotolerance. In Solanum lycopersicum, among the four HsfA1 members, only HsfA1a has been proposed to possess a master regulator function. We performed a comparative analysis of HsfA1a, HsfA1b, HsfA1c and HsfA1e at different levels of regulation and function. HsfA1a is constitutively expressed under control and stress conditions, while the other members are induced in specific tissues and stages of HS response. Despite that all members are localized in the nucleus when expressed in protoplasts, only HsfA1a shows a wide range of basal activity on several HS-induced genes. In contrast, HsfA1b, HsfA1c, and HsfA1e show only high activity for specific subsets of genes. Domain swapping mutants between HsfA1a and HsfA1c revealed that the variation in that transcriptional transactivation activity is due to differences in the DNA binding domain (DBD). Specifically, we identified a conserved arginine (R107) residue in the turn of β3 and β4 sheet in the C-terminus of the DBD of HsfA1a that is highly conserved in plant HsfA1 proteins, but is replaced by leucine and cysteine in tomato HsfA1c and HsfA1e, respectively. Although not directly involved in DNA interaction, R107 contributes to DNA binding and consequently the activity of HsfA1a. Thus, we demonstrate that this variation in DBD in part explains the functional diversification of tomato HsfA1 members.
Collapse
|
32
|
Takahashi N, Ogita N, Takahashi T, Taniguchi S, Tanaka M, Seki M, Umeda M. A regulatory module controlling stress-induced cell cycle arrest in Arabidopsis. eLife 2019; 8:43944. [PMID: 30944065 PMCID: PMC6449083 DOI: 10.7554/elife.43944] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/10/2019] [Indexed: 11/13/2022] Open
Abstract
Cell cycle arrest is an active response to stresses that enables organisms to survive under fluctuating environmental conditions. While signalling pathways that inhibit cell cycle progression have been elucidated, the putative core module orchestrating cell cycle arrest in response to various stresses is still elusive. Here we report that in Arabidopsis, the NAC-type transcription factors ANAC044 and ANAC085 are required for DNA damage-induced G2 arrest. Under genotoxic stress conditions, ANAC044 and ANAC085 enhance protein accumulation of the R1R2R3-type Myb transcription factor (Rep-MYB), which represses G2/M-specific genes. ANAC044/ANAC085-dependent accumulation of Rep-MYB and cell cycle arrest are also observed in the response to heat stress that causes G2 arrest, but not to osmotic stress that retards G1 progression. These results suggest that plants deploy the ANAC044/ANAC085-mediated signalling module as a hub which perceives distinct stress signals and leads to G2 arrest. During environmental stresses, such as high light or a drought, plants do not have the opportunity to up and leave. Instead, they need to buy time and energy by pausing their growth, which means stopping their cells from dividing. In this case, the cell cycle, a series of stages during which a cell prepares itself for division, must be halted. If the genetic information in cells is damaged, often under the influence of the environment, plants stop their cell cycle in the step just before division. However, it is still unclear how this process takes place, and which proteins participate in it. Researchers also do not know whether environmental stresses can directly trigger this mechanism. To investigate, Takahashi et al. conducted a series of genetic experiments on a common plant known as Arabidopsis thaliana, and they identified two proteins, ANAC044 and ANAC085, which could stop the cell cycle when the genetic information is damaged. In particular, ANAC044 and ANAC085 worked by stabilizing other proteins that turn off certain genes that the cell needed to divide. Additional experiments showed that other types of stresses, such as heat, halted the cell cycle using the ANAC044 and ANAC085 pathway. This suggests that this mechanism may be a central ‘hub’ that responds to various stress signals from the environment to prevent cells from dividing. In the field, environmental stresses stop plants from growing, which reduces crop yields; ultimately, manipulating ANAC044 or ANAC085 might help to boost plant productivity even when external conditions fluctuate.
Collapse
Affiliation(s)
- Naoki Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Nobuo Ogita
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Tomonobu Takahashi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Shoji Taniguchi
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Maho Tanaka
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan.,RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Motoaki Seki
- RIKEN Cluster for Pioneering Research, Wako, Japan
| | - Masaaki Umeda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
33
|
Albihlal WS, Obomighie I, Blein T, Persad R, Chernukhin I, Crespi M, Bechtold U, Mullineaux PM. Arabidopsis HEAT SHOCK TRANSCRIPTION FACTORA1b regulates multiple developmental genes under benign and stress conditions. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2847-2862. [PMID: 29697803 PMCID: PMC5961379 DOI: 10.1093/jxb/ery142] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/05/2018] [Indexed: 05/22/2023]
Abstract
In Arabidopsis thaliana, HEAT SHOCK TRANSCRIPTION FACTORA1b (HSFA1b) controls resistance to environmental stress and is a determinant of reproductive fitness by influencing seed yield. To understand how HSFA1b achieves this, we surveyed its genome-wide targets (ChIP-seq) and its impact on the transcriptome (RNA-seq) under non-stress (NS), heat stress (HS) in the wild type, and in HSFA1b-overexpressing plants under NS. A total of 952 differentially expressed HSFA1b-targeted genes were identified, of which at least 85 are development associated and were bound predominantly under NS. A further 1780 genes were differentially expressed but not bound by HSFA1b, of which 281 were classified as having development-associated functions. These genes are indirectly regulated through a hierarchical network of 27 transcription factors (TFs). Furthermore, we identified 480 natural antisense non-coding RNA (cisNAT) genes bound by HSFA1b, defining a further mode of indirect regulation. Finally, HSFA1b-targeted genomic features not only harboured heat shock elements, but also MADS box, LEAFY, and G-Box promoter motifs. This revealed that HSFA1b is one of eight TFs that target a common group of stress defence and developmental genes. We propose that HSFA1b transduces environmental cues to many stress tolerance and developmental genes to allow plants to adjust their growth and development continually in a varying environment.
Collapse
Affiliation(s)
- Waleed S Albihlal
- Department of Microbial & Cellular Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Irabonosi Obomighie
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Thomas Blein
- Institute of Plant Sciences-Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Ramona Persad
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Igor Chernukhin
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Martin Crespi
- Institute of Plant Sciences-Paris-Saclay, Gif-sur-Yvette Cedex, France
| | - Ulrike Bechtold
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
| | - Philip M Mullineaux
- School of Biological Sciences, University of Essex, Wivenhoe Park, Colchester, Essex, UK
- Correspondence:
| |
Collapse
|
34
|
Xie Y, Liu Y, Wang H, Ma X, Wang B, Wu G, Wang H. Phytochrome-interacting factors directly suppress MIR156 expression to enhance shade-avoidance syndrome in Arabidopsis. Nat Commun 2017; 8:348. [PMID: 28839125 PMCID: PMC5570905 DOI: 10.1038/s41467-017-00404-y] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 06/24/2017] [Indexed: 12/22/2022] Open
Abstract
Plants have evolved a repertoire of strategies collectively termed the shade-avoidance syndrome to avoid shade from canopy and compete for light with their neighbors. However, the signaling mechanism governing the adaptive changes of adult plant architecture to shade is not well understood. Here, we show that in Arabidopsis, compared with the wild type, several PHYTOCHROME-INTERACTING FACTORS (PIFS) overexpressors all display constitutive shade-avoidance syndrome under normal high red to far-red light ratio conditions but are less sensitive to the simulated shade, whereas the MIR156 overexpressors exhibit an opposite phenotype. The simulated shade induces rapid accumulation of PIF proteins, reduced expression of multiple MIR156 genes, and concomitant elevated expression of the SQUAMOSA-PROMOTER BINDING PROTEIN-LIKE (SPL) family genes. Moreover, in vivo and in vitro assays indicate that PIFs bind to the promoters of several MIR156 genes directly and repress their expression. Our results establish a direct functional link between the phytochrome-PIFs and miR156-SPL regulatory modules in mediating shade-avoidance syndrome.Plants employ developmental strategies to avoid shade and compete with neighbors for light. Here, Xie et al. show that phytochrome-interacting factors, which are regulated in a light-dependent manner, directly repress MIR156 genes and promote the expression of SPL genes to enhance shade-avoidance responses.
Collapse
Affiliation(s)
- Yurong Xie
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yang Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hai Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaojing Ma
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Baobao Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Guangxia Wu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiyang Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
35
|
Wen F, Wu X, Li T, Jia M, Liu X, Li P, Zhou X, Ji X, Yue X. Genome-wide survey of heat shock factors and heat shock protein 70s and their regulatory network under abiotic stresses in Brachypodium distachyon. PLoS One 2017; 12:e0180352. [PMID: 28683139 PMCID: PMC5500289 DOI: 10.1371/journal.pone.0180352] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 06/14/2017] [Indexed: 11/18/2022] Open
Abstract
The heat shock protein 70s (Hsp70s) and heat shock factors (Hsfs) play key roles in protecting plant cells or tissues from various abiotic stresses. Brachypodium distachyon, recently developed an excellent model organism for functional genomics research, is related to the major cereal grain species. Although B. distachyon genome has been fully sequenced, the information of Hsf and Hsp70 genes and especially the regulatory network between Hsfs and Hsp70s remains incomplete. Here, a total of 24 BdHsfs and 29 BdHsp70s were identified in the genome by bioinformatics analysis and the regulatory network between Hsfs and Hsp70s were performed in this study. Based on highly conserved domain and motif analysis, BdHsfs were grouped into three classes, and BdHsp70s divided into six groups, respectively. Most of Hsf proteins contain five conserved domains: DBD, HR-A/B region, NLS and NES motifs and AHA domain, while Hsp70 proteins have three conserved domains: N-terminal nucleotide binding domain, peptide binding domain and a variable C-terminal lid region. Expression data revealed a large number of BdHsfs and BdHsp70s were induced by HS challenge, and a previous heat acclimation could induce the acquired thermotolerance to help seedling suffer the severe HS challenge, suggesting that the BdHsfs and BdHsp70s played a role in alleviating the damage by HS. The comparison revealed that, most BdHsfs and BdHsp70s genes responded to multiple abiotic stresses in an overlapping relationship, while some of them were stress specific response genes. Moreover, co-expression relationships and predicted protein-protein interaction network implied that class A and B Hsfs played as activator and repressors, respectively, suggesting that BdHsp70s might be regulated by both the activation and the repression mechanisms under stress condition. Our genomics analysis of BdHsfs and BdHsp70s provides important evolutionary and functional characterization for further investigation of the accurate regulatory mechanisms among Hsfs and Hsp70s in herbaceous plants.
Collapse
Affiliation(s)
- Feng Wen
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
- * E-mail:
| | - Xiaozhu Wu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Tongjian Li
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Mingliang Jia
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinshen Liu
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Peng Li
- Shanghai Chenshan Plant Science Research Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences (CAS). Shanghai Chenshan Botanic Garden, Songjiang, Shanghai, China
| | - Xiaojian Zhou
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xinxin Ji
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| | - Xiaomin Yue
- School of Pharmacy and Life Science, Jiujiang University, Jiujiang, China
| |
Collapse
|
36
|
Zhu X, Huang C, Zhang L, Liu H, Yu J, Hu Z, Hua W. Systematic Analysis of Hsf Family Genes in the Brassica napus Genome Reveals Novel Responses to Heat, Drought and High CO 2 Stresses. FRONTIERS IN PLANT SCIENCE 2017; 8:1174. [PMID: 28729874 PMCID: PMC5498556 DOI: 10.3389/fpls.2017.01174] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/19/2017] [Indexed: 05/19/2023]
Abstract
Drought and heat stress are major causes of lost plant crop yield. In the future, high levels of CO2, in combination of other abiotic stress factors, will become a novel source of stress. Little is known of the mechanisms involved in the acclimation responses of plants to this combination of abiotic stress factors, though it has been demonstrated that heat shock transcription factors (Hsfs) are involved in plant response to various abiotic stresses. In this study, we performed a genome-wide identification and a systematic analysis of genes in the Hsf gene family in Brassica napus. A total of 64 genes encoding Hsf proteins were identified and classified into 3 major classes: A, B and C. We found that, unlike in other eudicots, the A9 subclass is absent in rapeseed. Further gene structure analysis revealed a loss of the only intron in the DBD domain for BnaHsf63 and -64 within class C, which is evolutionarily conserved in all Hsf genes. Transcription profile results demonstrated that most BnaHsf family genes are upregulated by both drought and heat conditions, while some are responded to a high CO2 treatment. According to the combined RNA-seq and qRT-PCR analysis, the A1E/A4A/A7 subclasses were upregulated by both drought and heat treatments. Members in class C seemed to be predominantly induced only by drought. Among BnaHsf genes, the A2/A3/B2 subclasses were regulated by all three abiotic stresses. Members in A2/B2 subclasses were upregulated by drought and heat treatments, but were downregulated under high CO2 conditions. While the A3 subclass was upregulated by all the three abiotic stresses. Various stress-related cis-acting elements, enriched in promoter regions, were correlated with the transcriptional response of BnaHsfs to these abiotic stresses. Further study of these novel groups of multifunctional BnaHsf genes will improve our understanding of plant acclimation response to abiotic stresses, and may be useful for improving the abiotic stress resistance of crop varieties.
Collapse
|
37
|
Giuntoli B, Licausi F, van Veen H, Perata P. Functional Balancing of the Hypoxia Regulators RAP2.12 and HRA1 Takes Place in vivo in Arabidopsis thaliana Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:591. [PMID: 28487707 PMCID: PMC5403939 DOI: 10.3389/fpls.2017.00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 03/31/2017] [Indexed: 05/21/2023]
Abstract
Plants are known to respond to variations in cellular oxygen availability and distribution by quickly adapting the transcription rate of a number of genes, generally associated to improved energy usage pathways, oxygen homeostasis and protection from harmful products of anaerobic metabolism. In terrestrial plants, such coordinated gene expression program is promoted by a conserved subfamily of ethylene responsive transcription factors called ERF-VII, which act as master activators of hypoxic gene transcription. Their abundance is directly regulated by oxygen through a mechanism of targeted proteolysis present under aerobic conditions, which is triggered by ERF-VII protein oxidation. Beside this, in Arabidopsis thaliana, the activity of the ERF-VII factor RAP2.12 has been shown to be restrained and made transient by the hypoxia-inducible transcription factor HRA1. This feedback mechanism has been proposed to modulate ERF-VII activity in the plant under fluctuating hypoxia, thereby enhancing the flexibility of the response. So far, functional balancing between RAP2.12 and HRA1 has been assessed in isolated leaf protoplasts, resulting in an inverse relationship between HRA1 amount and activation of RAP2.12 target promoters. In the present work, we showed that HRA1 is effective in balancing RAP2.12 activity in whole arabidopsis plants. Examination of a segregating population, generated from RAP2.12 and HRA1 over-expressing plants, led to the first quantitative proof that, over a range of either transgene expression levels, HRA1 counteracts the phenotypic and transcriptional effects of RAP2.12. This report supports the occurrence of fine-tuned regulation of the hypoxic response under physiological growth conditions.
Collapse
Affiliation(s)
- Beatrice Giuntoli
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Francesco Licausi
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
- Biology Department, University of PisaPisa, Italy
| | - Hans van Veen
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
| | - Pierdomenico Perata
- Plant Lab, Institute of Life Sciences, Scuola Superiore Sant'AnnaPisa, Italy
- *Correspondence: Pierdomenico Perata
| |
Collapse
|
38
|
Zhang Y, Zou B, Lu S, Ding Y, Liu H, Hua J. Expression and promoter analysis of the OsHSP16.9C gene in rice. Biochem Biophys Res Commun 2016; 479:260-265. [DOI: 10.1016/j.bbrc.2016.09.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 09/12/2016] [Indexed: 11/26/2022]
|
39
|
Song C, Chung WS, Lim CO. Overexpression of Heat Shock Factor Gene HsfA3 Increases Galactinol Levels and Oxidative Stress Tolerance in Arabidopsis. Mol Cells 2016; 39:477-83. [PMID: 27109422 PMCID: PMC4916399 DOI: 10.14348/molcells.2016.0027] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/21/2016] [Accepted: 03/23/2016] [Indexed: 11/27/2022] Open
Abstract
Heat shock factors (Hsfs) are central regulators of abiotic stress responses, especially heat stress responses, in plants. In the current study, we characterized the activity of the Hsf gene HsfA3 in Arabidopsis under oxidative stress conditions. HsfA3 transcription in seedlings was induced by reactive oxygen species (ROS), exogenous hydrogen peroxide (H2O2), and an endogenous H2O2 propagator, 2,5-dibromo-3-methyl-6-isopropyl-p-benzoquinone (DBMIB). HsfA3-overexpressing transgenic plants exhibited increased oxidative stress tolerance compared to untransformed wild-type plants (WT), as revealed by changes in fresh weight, chlorophyll fluorescence, and ion leakage under light conditions. The expression of several genes encoding galactinol synthase (GolS), a key enzyme in the biosynthesis of raffinose family oligosaccharides (RFOs), which function as antioxidants in plant cells, was induced in HsfA3 overexpressors. In addition, galactinol levels were higher in HsfA3 overexpressors than in WT under unstressed conditions. In transient transactivation assays using Arabidopsis leaf protoplasts, HsfA3 activated the transcription of a reporter gene driven by the GolS1 or GolS2 promoter. Electrophoretic mobility shift assays showed that GolS1 and GolS2 are directly regulated by HsfA3. Taken together, these findings provide evidence that GolS1 and GolS2 are directly regulated by HsfA3 and that GolS enzymes play an important role in improving oxidative stress tolerance by increasing galactinol biosynthesis in Arabidopsis.
Collapse
Affiliation(s)
- Chieun Song
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 660-701,
Korea
| | - Woo Sik Chung
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 660-701,
Korea
- Division of Life Science, Gyeongsang National University, Jinju 660-701,
Korea
| | - Chae Oh Lim
- Systems and Synthetic Agrobiotech Center and PMBBRC, Gyeongsang National University, Jinju 660-701,
Korea
- Division of Life Science, Gyeongsang National University, Jinju 660-701,
Korea
| |
Collapse
|
40
|
Song T, Ma Z, Shen D, Li Q, Li W, Su L, Ye T, Zhang M, Wang Y, Dou D. An Oomycete CRN Effector Reprograms Expression of Plant HSP Genes by Targeting their Promoters. PLoS Pathog 2015; 11:e1005348. [PMID: 26714171 PMCID: PMC4695088 DOI: 10.1371/journal.ppat.1005348] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 11/29/2015] [Indexed: 01/03/2023] Open
Abstract
Oomycete pathogens produce a large number of CRN effectors to manipulate plant immune responses and promote infection. However, their functional mechanisms are largely unknown. Here, we identified a Phytophthora sojae CRN effector PsCRN108 which contains a putative DNA-binding helix-hairpin-helix (HhH) motif and acts in the plant cell nucleus. Silencing of the PsCRN108 gene reduced P. sojae virulence to soybean, while expression of the gene in Nicotiana benthamiana and Arabidopsis thaliana enhanced plant susceptibility to P. capsici. Moreover, PsCRN108 could inhibit expression of HSP genes in A. thaliana, N. benthamiana and soybean. Both the HhH motif and nuclear localization signal of this effector were required for its contribution to virulence and its suppression of HSP gene expression. Furthermore, we found that PsCRN108 targeted HSP promoters in an HSE- and HhH motif-dependent manner. PsCRN108 could inhibit the association of the HSE with the plant heat shock transcription factor AtHsfA1a, which initializes HSP gene expression in response to stress. Therefore, our data support a role for PsCRN108 as a nucleomodulin in down-regulating the expression of plant defense-related genes by directly targeting specific plant promoters.
Collapse
Affiliation(s)
- Tianqiao Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Zhenchuan Ma
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Qi Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Wanlin Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Liming Su
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tingyue Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Meixiang Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu, China
- * E-mail:
| |
Collapse
|
41
|
Ma X, Xu L, Alberobello AT, Gavrilova O, Bagattin A, Skarulis M, Liu J, Finkel T, Mueller E. Celastrol Protects against Obesity and Metabolic Dysfunction through Activation of a HSF1-PGC1α Transcriptional Axis. Cell Metab 2015; 22:695-708. [PMID: 26344102 DOI: 10.1016/j.cmet.2015.08.005] [Citation(s) in RCA: 243] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 05/10/2015] [Accepted: 08/05/2015] [Indexed: 12/21/2022]
Abstract
Altering the balance between energy intake and expenditure is a potential strategy for treating obesity and metabolic syndrome. Nonetheless, despite years of progress in identifying diverse molecular targets, biological-based therapies are limited. Here we demonstrate that heat shock factor 1 (HSF1) regulates energy expenditure through activation of a PGC1α-dependent metabolic program in adipose tissues and muscle. Genetic modulation of HSF1 levels altered white fat remodeling and thermogenesis, and pharmacological activation of HSF1 via celastrol was associated with enhanced energy expenditure, increased mitochondrial function in fat and muscle and protection against obesity, insulin resistance, and hepatic steatosis during high-fat diet regimens. The beneficial metabolic changes elicited by celastrol were abrogated in HSF1 knockout mice. Overall, our findings identify the temperature sensor HSF1 as a regulator of energy metabolism and demonstrate that augmenting HSF1 via celastrol represents a possible therapeutic strategy to treat obesity and its myriad metabolic consequences.
Collapse
Affiliation(s)
- Xinran Ma
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Lingyan Xu
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Anna Teresa Alberobello
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Oksana Gavrilova
- Mouse Metabolism Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Alessia Bagattin
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Monica Skarulis
- Clinical Endocrine Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jie Liu
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Toren Finkel
- Center for Molecular Medicine, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Elisabetta Mueller
- Genetics of Development and Disease Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
42
|
Fragkostefanakis S, Röth S, Schleiff E, Scharf KD. Prospects of engineering thermotolerance in crops through modulation of heat stress transcription factor and heat shock protein networks. PLANT, CELL & ENVIRONMENT 2015; 38:1881-95. [PMID: 24995670 DOI: 10.1111/pce.12396] [Citation(s) in RCA: 148] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Revised: 06/17/2014] [Accepted: 06/23/2014] [Indexed: 05/21/2023]
Abstract
Cell survival under high temperature conditions involves the activation of heat stress response (HSR), which in principle is highly conserved among different organisms, but shows remarkable complexity and unique features in plant systems. The transcriptional reprogramming at higher temperatures is controlled by the activity of the heat stress transcription factors (Hsfs). Hsfs allow the transcriptional activation of HSR genes, among which heat shock proteins (Hsps) are best characterized. Hsps belong to multigene families encoding for molecular chaperones involved in various processes including maintenance of protein homeostasis as a requisite for optimal development and survival under stress conditions. Hsfs form complex networks to activate downstream responses, but are concomitantly subjected to cell-type-dependent feedback regulation through factor-specific physical and functional interactions with chaperones belonging to Hsp90, Hsp70 and small Hsp families. There is increasing evidence that the originally assumed specialized function of Hsf/chaperone networks in the HSR turns out to be a complex central stress response system that is involved in the regulation of a broad variety of other stress responses and may also have substantial impact on various developmental processes. Understanding in detail the function of such regulatory networks is prerequisite for sustained improvement of thermotolerance in important agricultural crops.
Collapse
Affiliation(s)
- Sotirios Fragkostefanakis
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Cluster of Excellence Frankfurt, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
- Center of Membrane Proteomics, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| | - Klaus-Dieter Scharf
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, Max-von-Laue-Str. 9, Frankfurt/Main, 60438, Germany
| |
Collapse
|
43
|
Zhang J, Liu B, Li J, Zhang L, Wang Y, Zheng H, Lu M, Chen J. Hsf and Hsp gene families in Populus: genome-wide identification, organization and correlated expression during development and in stress responses. BMC Genomics 2015; 16:181. [PMID: 25887520 PMCID: PMC4373061 DOI: 10.1186/s12864-015-1398-3] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Accepted: 02/24/2015] [Indexed: 11/21/2022] Open
Abstract
Background Heat shock proteins (Hsps) are molecular chaperones that are involved in many normal cellular processes and stress responses, and heat shock factors (Hsfs) are the transcriptional activators of Hsps. Hsfs and Hsps are widely coordinated in various biological processes. Although the roles of Hsfs and Hsps in stress responses have been well characterized in Arabidopsis, their roles in perennial woody species undergoing various environmental stresses remain unclear. Results Here, a comprehensive identification and analysis of Hsf and Hsp families in poplars is presented. In Populus trichocarpa, we identified 42 paralogous pairs, 66.7% resulting from a whole genome duplication. The gene structure and motif composition are relatively conserved in each subfamily. Microarray and quantitative real-time RT-PCR analyses showed that most of the Populus Hsf and Hsp genes are differentially expressed upon exposure to various stresses. A coexpression network between Populus Hsf and Hsp genes was generated based on their expression. Coordinated relationships were validated by transient overexpression and subsequent qPCR analyses. Conclusions The comprehensive analysis indicates that different sets of PtHsps are downstream of particular PtHsfs and provides a basis for functional studies aimed at revealing the roles of these families in poplar development and stress responses. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1398-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Bobin Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. .,College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Jianbo Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Li Zhang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| | - Yan Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Huanquan Zheng
- Department of Biology, McGill University, 1205 Dr Penfield Avenue, Montreal, Quebec, H3A 1B1, Canada.
| | - Mengzhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China. .,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Jun Chen
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China.
| |
Collapse
|
44
|
Xue GP, Drenth J, McIntyre CL. TaHsfA6f is a transcriptional activator that regulates a suite of heat stress protection genes in wheat (Triticum aestivum L.) including previously unknown Hsf targets. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1025-39. [PMID: 25428996 PMCID: PMC4321556 DOI: 10.1093/jxb/eru462] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Heat stress is a significant environmental factor adversely affecting crop yield. Crop adaptation to high-temperature environments requires transcriptional reprogramming of a suite of genes involved in heat stress protection. This study investigated the role of TaHsfA6f, a member of the A6 subclass of heat shock transcription factors, in the regulation of heat stress protection genes in Triticum aestivum (bread wheat), a poorly understood phenomenon in this crop species. Expression analysis showed that TaHsfA6f was expressed constitutively in green organs but was markedly up-regulated during heat stress. Overexpression of TaHsfA6f in transgenic wheat using a drought-inducible promoter resulted in up-regulation of heat shock proteins (HSPs) and a number of other heat stress protection genes that included some previously unknown Hsf target genes such as Golgi anti-apoptotic protein (GAAP) and the large isoform of Rubisco activase. Transgenic wheat plants overexpressing TaHsfA6f showed improved thermotolerance. Transactivation assays showed that TaHsfA6f activated the expression of reporter genes driven by the promoters of several HSP genes (TaHSP16.8, TaHSP17, TaHSP17.3, and TaHSP90.1-A1) as well as TaGAAP and TaRof1 (a co-chaperone) under non-stress conditions. DNA binding analysis revealed the presence of high-affinity TaHsfA6f-binding heat shock element-like motifs in the promoters of these six genes. Promoter truncation and mutagenesis analyses identified TaHsfA6f-binding elements that were responsible for transactivation of TaHSP90.1-A1 and TaGAAP by TaHsfA6f. These data suggest that TaHsfA6f is a transcriptional activator that directly regulates TaHSP, TaGAAP, and TaRof1 genes in wheat and its gene regulatory network has a positive impact on thermotolerance.
Collapse
Affiliation(s)
- Gang-Ping Xue
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, Qld 4067, Australia
| | - Janneke Drenth
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, Qld 4067, Australia
| | - C Lynne McIntyre
- CSIRO Plant Industry, 306 Carmody Road, St Lucia, Qld 4067, Australia
| |
Collapse
|
45
|
Li PS, Yu TF, He GH, Chen M, Zhou YB, Chai SC, Xu ZS, Ma YZ. Genome-wide analysis of the Hsf family in soybean and functional identification of GmHsf-34 involvement in drought and heat stresses. BMC Genomics 2014; 15:1009. [PMID: 25416131 PMCID: PMC4253008 DOI: 10.1186/1471-2164-15-1009] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Accepted: 10/08/2014] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND High temperature affects organism growth and metabolic activity. Heat shock transcription factors (Hsfs) are key regulators in heat shock response in eukaryotes and prokaryotes. Under high temperature conditions, Hsfs activate heat shock proteins (Hsps) by combining with heat stress elements (HSEs) in their promoters, leading to defense of heat stress. Since the first plant Hsf gene was identified in tomato, several plant Hsf family genes have been thoroughly characterized. Although soybean (Glycine max), an important oilseed crops, genome sequences have been available, the Hsf family genes in soybean have not been characterized accurately. RESULT We analyzed the Hsf genetic structures and protein function domains using the GSDS, Pfam, SMART, PredictNLS, and NetNES online tools. The genome scanning of dicots (soybean and Arabidopsis) and monocots (rice and maize) revealed that the whole-genome replication occurred twice in soybean evolution. The plant Hsfs were classified into 3 classes and 16 subclasses according to protein structure domains. The A8 and B3 subclasses existed only in dicots and the A9 and C2 occurred only in monocots. Thirty eight soybean Hsfs were systematically identified and grouped into 3 classes and 12 subclasses, and located on 15 soybean chromosomes. The promoter regions of the soybean Hsfs contained cis-elements that likely participate in drought, low temperature, and ABA stress responses. There were large differences among Hsfs based on transcriptional levels under the stress conditions. The transcriptional levels of the A1 and A2 subclass genes were extraordinarily high. In addition, differences in the expression levels occurred for each gene in the different organs and at the different developmental stages. Several genes were chosen to determine their subcellular localizations and functions. The subcellular localization results revealed that GmHsf-04, GmHsf-33, and GmHsf-34 were located in the nucleus. Overexpression of the GmHsf-34 gene improved the tolerances to drought and heat stresses in Arabidopsis plants. CONCLUSIONS This present investigation of the quantity, structural features, expression characteristics, subcellular localizations, and functional roles provides a scientific basis for further research on soybean Hsf functions.
Collapse
Affiliation(s)
- Pan-Song Li
- />College of Agronomy, Northwest A & F University, Yangling, 712100 China
- />Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Beijing, 100081 China
| | - Tai-Fei Yu
- />Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Beijing, 100081 China
| | - Guan-Hua He
- />Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Beijing, 100081 China
| | - Ming Chen
- />Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Beijing, 100081 China
| | - Yong-Bin Zhou
- />Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Beijing, 100081 China
| | - Shou-Cheng Chai
- />College of Agronomy, Northwest A & F University, Yangling, 712100 China
| | - Zhao-Shi Xu
- />Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Beijing, 100081 China
| | - You-Zhi Ma
- />Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Institute of Crop Science, Beijing, 100081 China
| |
Collapse
|
46
|
Fujiwara K, Cabanos C, Toyota K, Kobayashi Y, Maruyama N. Differential expression and elution behavior of basic 7S globulin among cultivars under hot water treatment of soybean seeds. J Biosci Bioeng 2014; 117:742-8. [PMID: 24331980 DOI: 10.1016/j.jbiosc.2013.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/28/2013] [Accepted: 11/03/2013] [Indexed: 01/19/2023]
Abstract
Basic 7S globulin (Bg7S), which accumulates in mature soybean (Glycine max) seeds, is an extracellular matrix protein. A large amount of Bg7S is synthesized de novo and is eluted from soybean seeds when immersed in 50-60°C water (hot water treatment, HWT). However, the Bg7S elution mechanism remains unclear. Under HWT, the seeds probably undergo heat stress and flooding stress. To obtain fundamental knowledge related to how Bg7S is eluted from hot-water-treated seeds, this study compared Bg7S elution among soybean cultivars having different flooding tolerance during pre-germination. The amounts of Bg7S eluted from seeds varied significantly among cultivars. Elution was suppressed by seed coats regarded as preventing the leakage of seed contents by rapid water imbibition. Furthermore, Bg7S expression levels differed among cultivars, although the difference did not result from any variation in Bg7S promoter sequences. However, the expression levels of Bg7S under HWT were not associated with the flooding tolerance level. Immunoelectron microscopy revealed that the Bg7S accumulated in the intercellular space of hot-water-treated seeds. Plasma membrane shrinkage was observed. The main proteins eluted from seeds under HWT were located in the extracellular space. This study clarified the mechanism of Bg7S elution from seeds under HWT.
Collapse
Affiliation(s)
- Keigo Fujiwara
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Cerrone Cabanos
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kenji Toyota
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasunori Kobayashi
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Nobuyuki Maruyama
- Laboratory of Food Quality Design and Development, Graduate School of Agriculture, Kyoto University, Uji, Kyoto 611-0011, Japan.
| |
Collapse
|
47
|
Analysis of the Regulation of Target Genes by anArabidopsisHeat Shock Transcription Factor, HsfA2. Biosci Biotechnol Biochem 2014; 73:890-5. [DOI: 10.1271/bbb.80809] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
48
|
Li S, Liu J, Liu Z, Li X, Wu F, He Y. HEAT-INDUCED TAS1 TARGET1 Mediates Thermotolerance via HEAT STRESS TRANSCRIPTION FACTOR A1a-Directed Pathways in Arabidopsis. THE PLANT CELL 2014; 26:1764-1780. [PMID: 24728648 PMCID: PMC4036584 DOI: 10.1105/tpc.114.124883] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Many heat stress transcription factors (Hsfs) and heat shock proteins (Hsps) have been identified to play important roles in the heat tolerance of plants. However, many of the key factors mediating the heat response pathways remain unknown. Here, we report that two genes, which are targets of TAS1 (trans-acting siRNA precursor 1)-derived small interfering RNAs that we named HEAT-INDUCED TAS1 TARGET1 (HTT1) and HTT2, are involved in thermotolerance. Microarray analysis revealed that the HTT1 and HTT2 genes were highly upregulated in Arabidopsis thaliana seedlings in response to heat shock. Overexpression of TAS1a, whose trans-acting small interfering RNAs target the HTT genes, elevated accumulation of TAS1-siRNAs and reduced expression levels of the HTT genes, causing weaker thermotolerance. By contrast, overexpression of HTT1 and HTT2 upregulated several Hsf genes, leading to stronger thermotolerance. In heat-tolerant plants overexpressing HsfA1a, the HTT genes were upregulated, especially at high temperatures. Meanwhile, HsfA1a directly activated HTT1 and HTT2 through binding to their promoters. HTT1 interacted with the heat shock proteins Hsp70-14 and Hsp40 and NUCLEAR FACTOR Y, SUBUNIT C2. Taken together, these results suggest that HTT1 mediates thermotolerance pathways because it is targeted by TAS1a, mainly activated by HsfA1a, and acts as cofactor of Hsp70-14 complexes.
Collapse
Affiliation(s)
- Shuxia Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jinxin Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhongyuan Liu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaorong Li
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Feijie Wu
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yuke He
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
49
|
Xue GP, Sadat S, Drenth J, McIntyre CL. The heat shock factor family from Triticum aestivum in response to heat and other major abiotic stresses and their role in regulation of heat shock protein genes. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:539-57. [PMID: 24323502 PMCID: PMC3904712 DOI: 10.1093/jxb/ert399] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Heat shock factors (Hsfs) play a central regulatory role in acquired thermotolerance. To understand the role of the major molecular players in wheat adaptation to heat stress, the Hsf family was investigated in Triticum aestivum. Bioinformatic and phylogenetic analyses identified 56 TaHsf members, which are classified into A, B, and C classes. Many TaHsfs were constitutively expressed. Subclass A6 members were predominantly expressed in the endosperm under non-stress conditions. Upon heat stress, the transcript levels of A2 and A6 members became the dominant Hsfs, suggesting an important regulatory role during heat stress. Many TaHsfA members as well as B1, C1, and C2 members were also up-regulated during drought and salt stresses. The heat-induced expression profiles of many heat shock protein (Hsp) genes were paralleled by those of A2 and A6 members. Transactivation analysis revealed that in addition to TaHsfA members (A2b and A4e), overexpression of TaHsfC2a activated expression of TaHsp promoter-driven reporter genes under non-stress conditions, while TaHsfB1b and TaHsfC1b did not. Functional heat shock elements (HSEs) interacting with TaHsfA2b were identified in four TaHsp promoters. Promoter mutagenesis analysis demonstrated that an atypical HSE (GAACATTTTGGAA) in the TaHsp17 promoter is functional for heat-inducible expression and transactivation by Hsf proteins. The transactivation of Hsp promoter-driven reporter genes by TaHsfC2a also relied on the presence of HSE. An activation motif in the C-terminal domain of TaHsfC2a was identified by amino residue substitution analysis. These data demonstrate the role of HsfA and HsfC2 in regulation of Hsp genes in wheat.
Collapse
Affiliation(s)
- Gang-Ping Xue
- CSIRO Plant Industry, 306 Carmody Rd, St Lucia, Qld 4067, Australia
| | - Shahab Sadat
- Department of Plant Breeding, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Janneke Drenth
- CSIRO Plant Industry, 306 Carmody Rd, St Lucia, Qld 4067, Australia
| | | |
Collapse
|
50
|
A seed preferential heat shock transcription factor from wheat provides abiotic stress tolerance and yield enhancement in transgenic Arabidopsis under heat stress environment. PLoS One 2013; 8:e79577. [PMID: 24265778 PMCID: PMC3827158 DOI: 10.1371/journal.pone.0079577] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/25/2013] [Indexed: 12/19/2022] Open
Abstract
Reduction in crop yield and quality due to various abiotic stresses is a worldwide phenomenon. In the present investigation, a heat shock factor (HSF) gene expressing preferentially in developing seed tissues of wheat grown under high temperatures was cloned. This newly identified heat shock factor possesses the characteristic domains of class A type plant HSFs and shows high similarity to rice OsHsfA2d, hence named as TaHsfA2d. The transcription factor activity of TaHsfA2d was confirmed through transactivation assay in yeast. Transgenic Arabidopsis plants overexpressing TaHsfA2d not only possess higher tolerance towards high temperature but also showed considerable tolerance to salinity and drought stresses, they also showed higher yield and biomass accumulation under constant heat stress conditions. Analysis of putative target genes of AtHSFA2 through quantitative RT-PCR showed higher and constitutive expression of several abiotic stress responsive genes in transgenic Arabidopsis plants over-expressing TaHsfA2d. Under stress conditions, TaHsfA2d can also functionally complement the T-DNA insertion mutants of AtHsfA2, although partially. These observations suggest that TaHsfA2d may be useful in molecular breeding of crop plants, especially wheat, to improve yield under abiotic stress conditions.
Collapse
|