1
|
Wu N, Gao Y, Wu J, Ke H, Zhang Y, Wang G, Wu L, Zhang G, Wang X, Ma Z. Overexpression of myo-inositol oxygenase gene GbMIOX8 promotes fiber cell elongation by altering cell wall composition in cotton. Gene 2025; 951:149387. [PMID: 40043924 DOI: 10.1016/j.gene.2025.149387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/27/2025] [Accepted: 03/02/2025] [Indexed: 03/24/2025]
Abstract
Cell elongation is an important process during cotton fiber development, ultimately determining the length of mature fibers. Myo-inositol oxygenase (MIOX) pathway provides pivotal precursors for the synthesis of non-cellulosic polysaccharides in plant cell walls. However, the role of MIOX gene in cotton fiber development has not been reported. Here, we hypothesized that Gossypium barbadense MIOX gene GbMIOX8 (GbM_D05G1480.1) could regulate fiber length by modulating cell wall composition. To test this hypothesis, we characterized the functional properties of GbMIOX8. GbMIOX8 preferentially expressed during fiber initiation and elongation in cotton and encodes non-secretory protein targeted to the cytoplasm. Overexpression of GbMIOX8 afforded transgenic A. thaliana significantly longer leaf trichomes, as well as longer hypocotyl cells compared to the wild type, with increases of at least 11 % and up to 23 %. We further overexpressed GbMIOX8 in cotton and found that transgenic cotton displayed fiber length that was increased by an average of 1.61 mm in the T1 generation and 1.93 mm in the T2 generation, respectively. Similar to Arabidopsis, transgenic cotton exhibited at least a threefold increase in myo-inositol oxygenase activity and content, boosting glucuronic acid production and reducing inositol. Furthermore, pectin and cellulose contents rose in transgenic cottons, with average rises of 19 % and 38 % respectively, indicating enhanced biosynthesis of these two cell wall components. These results revealed that GbMIOX8 played an important role in the elongation of plant cells by altering cell wall components and could be valuable for cotton fiber quality improvement.
Collapse
Affiliation(s)
- Nan Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China; Hebei Medicinal Plant Technology Innovation Center, Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China.
| | - Yu Gao
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Jinhua Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Huifeng Ke
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Yan Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Guoning Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Liqiang Wu
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Guiyin Zhang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Xingfen Wang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| | - Zhiying Ma
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Collaborative Innovation Center of Cotton Industry in Hebei, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
2
|
Jiao J, Zheng H, Zhou X, Huang Y, Niu Q, Ke L, Tang S, Liu H, Sun Y. The functions of laccase gene GhLAC15 in fiber colouration and development in brown-colored cotton. PHYSIOLOGIA PLANTARUM 2024; 176:e14415. [PMID: 38962818 DOI: 10.1111/ppl.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
The monotonicity of color type in naturally colored cottons (NCCs) has become the main limiting factor to their widespread use, simultaneously coexisting with poor fiber quality. The synchronous improvement of fiber quality and color become more urgent and crucial as the demand for sustainable development increases. The homologous gene of wild cotton Gossypium stocksii LAC15 in G. hirsutum, GhLAC15, was also dominantly expressed in the developing fibers of brown cotton XC20 from 5 DPA (day post anthesis) to 25 DPA, especially at the secondary cell wall thickening stage (20 DPA and 25 DPA). In XC20 plants with downregulated GhLAC15 (GhLAC15i), a remarkable reduction in proanthocyanidins (PAs) and lignin contents was observed. Some of the key genes in the phenylpropane and flavonoid biosynthesis pathway were down-regulated in GhLAC15i plants. Notably, the fiber length of GhLAC15i plants showed an obvious increase and the fiber color was lightened. Moreover, we found that the thickness of cotton fiber cell wall was decreased in GhLAC15i plants and the fiber surface became smoother compared to that of WT. Taken together, this study revealed that GhLAC15 played an important role in PAs and lignin biosynthesis in naturally colored cotton fibers. It might mediate fiber color and fiber quality by catalyzing PAs oxidation and lignin polymerization, ultimately regulating fiber colouration and development.
Collapse
Affiliation(s)
- Junye Jiao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Xinping Zhou
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Yinshuai Huang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Qingqing Niu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Shouwu Tang
- China Colored-cotton (Group) Co., Ltd., China
| | - Haifeng Liu
- China Colored-cotton (Group) Co., Ltd., China
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
3
|
Yang Y, Lai W, Long L, Gao W, Xu F, Li P, Zhou S, Ding Y, Hu H. Comparative proteomic analysis identified proteins and the phenylpropanoid biosynthesis pathway involved in the response to ABA treatment in cotton fiber development. Sci Rep 2023; 13:1488. [PMID: 36707547 PMCID: PMC9883468 DOI: 10.1038/s41598-023-28084-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Abscisic acid (ABA) is a plant hormone that plays an important role in cotton fiber development. In this study, the physiological changes and proteomic profiles of cotton (Gossypium hirsutum) ovules were analyzed after 20 days of ABA or ABA inhibitor (ABAI) treatment. The results showed that compared to the control (CK), the fiber length was significantly decreased under ABA treatment and increased under ABAI treatment. Using a tandem mass tags-based quantitative technique, the proteomes of cotton ovules were comprehensively analyzed. A total of 7321 proteins were identified, of which 365 and 69 differentially accumulated proteins (DAPs) were identified in ABA versus CK and ABAI versus CK, respectively. Specifically, 345 and 20 DAPs were up- and down-regulated in the ABA group, and 65 and 4 DAPs were up- and down-regulated in the ABAI group, respectively. The DAPs in the ABA group were mainly enriched in the biosynthesis of secondary metabolites, phenylpropanoid biosynthesis and flavonoid secondary metabolism, whereas the DAPs in the ABAI group were mainly enriched in the indole alkaloid biosynthesis and phenylpropanoid biosynthesis pathways. Moreover, 9 proteins involved in phenylpropanoid biosynthesis were upregulated after ABA treatment, suggesting that this pathway might play important roles in the response to ABA, and 3 auxin-related proteins were upregulated, indicating that auxin might participate in the regulation of fiber development under ABAI treatment.
Collapse
Affiliation(s)
- Yong Yang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Wenjie Lai
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Lu Long
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Wei Gao
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Fuchun Xu
- State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Ping Li
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Shihan Zhou
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China
| | - Yuanhao Ding
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China. .,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China.
| | - Haiyan Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, 570228, China. .,Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya, China.
| |
Collapse
|
4
|
Zhang J, Mei H, Lu H, Chen R, Hu Y, Zhang T. Transcriptome Time-Course Analysis in the Whole Period of Cotton Fiber Development. FRONTIERS IN PLANT SCIENCE 2022; 13:864529. [PMID: 35463423 PMCID: PMC9022538 DOI: 10.3389/fpls.2022.864529] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Gossypium hirsutum and Gossypium barbadense are the widely cultivated tetraploid cottons around the world, which evolved great differences in the fiber yield and quality due to the independent domestication process. To reveal the genetic basis of the difference, we integrated 90 samples from ten time points during the fiber developmental period for investigating the dynamics of gene expression changes associated with fiber in G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124 and acc. 3-79. Globally, 44,484 genes expressed in all three cultivars account for 61.14% of the total genes. About 61.39% (N = 3,412) of the cotton transcription factors were involved in fiber development, which consisted of 58 cotton TF families. The differential analysis of intra- and interspecies showed that 3 DPA had more expression changes. To discover the genes with temporally changed expression profiles during the whole fiber development, 1,850 genes predominantly expressed in G. hirsutum and 1,050 in G. barbadense were identified, respectively. Based on the weighted gene co-expression network and time-course analysis, several candidate genes, mainly involved in the secondary cell wall synthesis and phytohormones, were identified in this study, underlying possibly the transcriptional regulation and molecular mechanisms of the fiber quality differences between G. barbadense and G. hirsutum. The quantitative real-time PCR validation of the candidate genes was consistent with the RNA-seq data. Our study provides a strong rationale for the analysis of gene function and breeding of high-quality cotton.
Collapse
|
5
|
Zang Y, Hu Y, Dai F, Zhang T. Comparative transcriptome analysis reveals the regulation network for fiber strength in cotton. Biotechnol Lett 2022; 44:547-560. [PMID: 35194701 DOI: 10.1007/s10529-022-03236-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 02/11/2022] [Indexed: 01/27/2023]
Abstract
OBJECTIVE Determine the effect of secondary cell wall (SCW) thickness and microcrystalline cellulose content (MCC) on mature fiber strength (FS) and reveal through comparative transcriptome analysis the molecular regulation network governing FS in cotton. RESULTS Transmission electron microscope (TEM) analysis of two parent varieties, Prema with elite FS and 86-1 with weak fiber, revealed significant difference in the SCW but not in MCC. Transcriptome analysis revealed that genes differentially expressed during SCW thickening (20 DPA) are highly related to FS; in particular, up-regulated genes such as UDPG, CESA2, and NAC83 were important in SCW thickening, likely contributing to higher FS. GO and KEGG enrichment analysis revealed the common up-regulated genes to be enriched in carbon metabolism and terms relating to the cell wall. CONCLUSIONS We developed two recombinant inbred lines with elite FS, selected from the filial generation of Prema and 86-1. By comparing transcriptomic data, we revealed the gene expression network governing SCW thickness in mature fiber. Our results provide solid insights into the relationship of the SCW and FS.
Collapse
Affiliation(s)
- Yihao Zang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Plant Precision Breeding Academy, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China.,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China
| | - Yan Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Plant Precision Breeding Academy, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Fan Dai
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Plant Precision Breeding Academy, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China
| | - Tianzhen Zhang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, College of Agriculture and Biotechnology, Plant Precision Breeding Academy, Zhejiang University, Hangzhou, 310058, Zhejiang, People's Republic of China. .,State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, People's Republic of China.
| |
Collapse
|
6
|
Wu C, Zuo D, Xiao S, Wang Q, Cheng H, Lv L, Zhang Y, Li P, Song G. Genome-Wide Identification and Characterization of GhCOMT Gene Family during Fiber Development and Verticillium Wilt Resistance in Cotton. PLANTS 2021; 10:plants10122756. [PMID: 34961226 PMCID: PMC8706182 DOI: 10.3390/plants10122756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 11/16/2022]
Abstract
Caffeic acid O-methyltransferases (COMTs) play an essential role in lignin synthesis procession, especially in the plant’s phenylalanine metabolic pathway. The content of COMT genes in cotton and the relationship between their expression patterns have not been studied clearly in cotton. In this study, we have identified 190 COMT genes in cotton, which were classified into three groups (I, II and III), and mapped on the cotton chromosomes. In addition, we found that 135 of the 190 COMT genes result from dispersed duplication (DSD) and whole-genome duplication (WGD), indicating that DSD and WGD were the main forces driving COMT gene expansion. The Ka/Ks analysis showed that GhCOMT43 and GhCOMT41 evolved from GaCOMT27 and GrCOMT14 through positive selection. The results of qRT-PCR showed that GhCOMT13, GhCOMT28, GhCOMT39 and GhCOMT55 were related to lignin content during the cotton fiber development. GhCOMT28, GhCOMT39, GhCOMT55, GhCOMT56 and GhCOMT57 responded to Verticillium Wilt (VW) and maybe related to VW resistance through lignin synthesis. Conclusively, this study found that GhCOMTs were highly expressed in the secondary wall thickening stage and VW. These results provide a clue for studying the functions of GhCOMTs in the development of cotton fiber and VW resistance and could lay a foundation for breeding cotton cultivates with higher quantity and high resistance to VW.
Collapse
Affiliation(s)
- Cuicui Wu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
| | - Shuiping Xiao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
- Cotton Research Institute of Jiangxi Province, Jiujiang 332105, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
| | - Limin Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
| | - Pengbo Li
- Cotton Research Institute, Shanxi Agricultural University, Yuncheng 044000, China
- Correspondence: (P.L.); (G.S.); Tel.: +86-372-2562377 (P.L. & G.S.)
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (C.W.); (D.Z.); (S.X.); (Q.W.); (H.C.); (L.L.); (Y.Z.)
- Correspondence: (P.L.); (G.S.); Tel.: +86-372-2562377 (P.L. & G.S.)
| |
Collapse
|
7
|
Liu W, Lv Y, Li X, Feng Z, Wang L. Comparative transcriptome analysis uncovers cell wall reorganization and repressed cell division during cotton fiber initiation. BMC DEVELOPMENTAL BIOLOGY 2021; 21:15. [PMID: 34715791 PMCID: PMC8556910 DOI: 10.1186/s12861-021-00247-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/19/2021] [Indexed: 11/17/2022]
Abstract
Background Tetraploid cotton plants serve as prime natural fiber source for the textile industry. Although various omics studies have revealed molecular basis for fiber development, a better understanding of transcriptional regulation mechanism regulating lint fiber initiation is necessary to meet global natural fiber demand. Results Here, we aimed to perform transcriptome sequencing to identify DEGs (differentially expressed genes) in ovules of the cotton variety Xu142 and its fibreless mutant Xu142fl during early lint fiber initiation period. Totally, 5516 DEGs including 1840 upregulated and 3676 downregulated were identified. GO enrichment analysis revealed that the downregulated DEGs were mainly associated with biological processes such as transcription related biosynthesis and metabolism, organic cyclic compound biosynthesis and metabolism, photosynthesis, and plant cell wall organization, with molecular functions involving transcription related binding, organic cyclic compound binding, and dioxygenase activity, while the upregulated DEGs were associated with DNA replication and phospholipid biosynthetic related processes. Among the 490 DEGs annotated as transcription factor genes, 86.5% were downregulated in the mutant including the Malvaceae-specific MMLs, expression patterns of which were confirmed during the central period of lint fiber initiation. Investigation of the 16 genes enriched in the cell wall organization revealed that 15 were EXPA coding genes. Conclusions Overall, our data indicate that lint fiber initiation is a complicated process involving cooperation of multiple transcription factor families, which might ultimately lead to the reorganization of the cell wall and terminated cell division of the differentiating fiber initials. Supplementary Information The online version contains supplementary material available at 10.1186/s12861-021-00247-3.
Collapse
Affiliation(s)
- Wenyuan Liu
- College of Life Science, Linyi University, Linyi, 276000, Shandong, China
| | - Yanjia Lv
- College of Life Science, Linyi University, Linyi, 276000, Shandong, China
| | - Xiaoyue Li
- College of Life Science, Linyi University, Linyi, 276000, Shandong, China
| | - Zongqin Feng
- College of Life Science, Linyi University, Linyi, 276000, Shandong, China
| | - Lichen Wang
- College of Life Science, Linyi University, Linyi, 276000, Shandong, China.
| |
Collapse
|
8
|
Hafeez A, Gě Q, Zhāng Q, Lǐ J, Gōng J, Liú R, Shí Y, Shāng H, Liú À, Iqbal MS, Dèng X, Razzaq A, Ali M, Yuán Y, Gǒng W. Multi-responses of O-methyltransferase genes to salt stress and fiber development of Gossypium species. BMC PLANT BIOLOGY 2021; 21:37. [PMID: 33430775 PMCID: PMC7798291 DOI: 10.1186/s12870-020-02786-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND O-methyltransferases (OMTs) are an important group of enzymes that catalyze the transfer of a methyl group from S-adenosyl-L-methionine to their acceptor substrates. OMTs are divided into several groups according to their structural features. In Gossypium species, they are involved in phenolics and flavonoid pathways. Phenolics defend the cellulose fiber from dreadful external conditions of biotic and abiotic stresses, promoting strength and growth of plant cell wall. RESULTS An OMT gene family, containing a total of 192 members, has been identified and characterized in three main Gossypium species, G. hirsutum, G. arboreum and G. raimondii. Cis-regulatory elements analysis suggested important roles of OMT genes in growth, development, and defense against stresses. Transcriptome data of different fiber developmental stages in Chromosome Substitution Segment Lines (CSSLs), Recombination Inbred Lines (RILs) with excellent fiber quality, and standard genetic cotton cultivar TM-1 demonstrate that up-regulation of OMT genes at different fiber developmental stages, and abiotic stress treatments have some significant correlations with fiber quality formation, and with salt stress response. Quantitative RT-PCR results revealed that GhOMT10_Dt and GhOMT70_At genes had a specific expression in response to salt stress while GhOMT49_At, GhOMT49_Dt, and GhOMT48_At in fiber elongation and secondary cell wall stages. CONCLUSIONS Our results indicate that O-methyltransferase genes have multi-responses to salt stress and fiber development in Gossypium species and that they may contribute to salt tolerance or fiber quality formation in Gossypium.
Collapse
Affiliation(s)
- Abdul Hafeez
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Sindh Agriculture University Tandojam, Hyderabad, Sindh, 70060, Pakistan
| | - Qún Gě
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Qí Zhāng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jùnwén Lǐ
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jǔwǔ Gōng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ruìxián Liú
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Yùzhēn Shí
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hǎihóng Shāng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Àiyīng Liú
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Muhammad S Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiǎoyīng Dèng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Abdul Razzaq
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Muharam Ali
- Sindh Agriculture University Tandojam, Hyderabad, Sindh, 70060, Pakistan.
| | - Yǒulù Yuán
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Wànkuí Gǒng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
9
|
Galinousky D, Mokshina N, Padvitski T, Ageeva M, Bogdan V, Kilchevsky A, Gorshkova T. The Toolbox for Fiber Flax Breeding: A Pipeline From Gene Expression to Fiber Quality. Front Genet 2020; 11:589881. [PMID: 33281880 PMCID: PMC7690631 DOI: 10.3389/fgene.2020.589881] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/22/2020] [Indexed: 01/22/2023] Open
Abstract
The goal of any plant breeding program is to improve quality of a target crop. Crop quality is a comprehensive feature largely determined by biological background. To improve the quality parameters of crops grown for the production of fiber, a functional approach was used to search for genes suitable for the effective manipulation of technical fiber quality. A key step was to identify genes with tissue and stage-specific pattern of expression in the developing fibers. In the current study, we investigated the relationship between gene expression evaluated in bast fibers of developing flax plants and the quality parameters of technical fibers measured after plant harvesting. Based on previously published transcriptomic data, two sets of genes that are upregulated in fibers during intrusive growth and tertiary cell wall deposition were selected. The expression level of the selected genes and fiber quality parameters were measured in fiber flax, linseed (oil flax) cultivars, and wild species that differ in type of yield and fiber quality parameters. Based on gene expression data, linear regression models for technical stem length, fiber tensile strength, and fiber flexibility were constructed, resulting in the identification of genes that have high potential for manipulating fiber quality. Chromosomal localization and single nucleotide polymorphism distribution in the selected genes were characterized for the efficacy of their use in conventional breeding and genome editing programs. Transcriptome-based selection is a highly targeted functional approach that could be used during the development of new cultivars of various crops.
Collapse
Affiliation(s)
- Dmitry Galinousky
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
- Laboratory of Ecological Genetics and Biotechnology, Institute of Genetics and Cytology, The National Academy of Sciences of Belarus, Minsk, Belarus
| | - Natalia Mokshina
- Laboratory of Plant Glycobiology, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Tsimafei Padvitski
- Cellular Network and Systems Biology Group, University of Cologne, CECAD, Cologne, Germany
| | - Marina Ageeva
- Laboratory of Microscopy, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| | - Victor Bogdan
- Laboratory of Fiber Flax Breeding, Institute of Flax, Ustie, Belarus
| | - Alexander Kilchevsky
- Laboratory of Ecological Genetics and Biotechnology, Institute of Genetics and Cytology, The National Academy of Sciences of Belarus, Minsk, Belarus
| | - Tatyana Gorshkova
- Laboratory of Plant Cell Growth Mechanisms, Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Center of RAS, Kazan, Russia
| |
Collapse
|
10
|
Zhang L, Wan X, Xu Y, Niyitanga S, Qi J, Zhang L. De novo assembly of transcriptome and genome-wide identification reveal GA 3 stress-responsive WRKY transcription factors involved in fiber formation in jute (Corchorus capsularis). BMC PLANT BIOLOGY 2020; 20:403. [PMID: 32867682 PMCID: PMC7460746 DOI: 10.1186/s12870-020-02617-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 08/23/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND WRKY is a group of transcription factors (TFs) that play a vital role in plant growth, development, and stress tolerance. To date, none of jute WRKY (CcWRKY) genes have been identified, even if jute (Corchorus capsularis) is one of the most important natural fiber crops in the world. Little information about the WRKY genes in jute is far from sufficient to understand the molecular mechanism of bast fiber biosynthesis. RESULTS A total of 244,489,479 clean reads were generated using Illumina paired-end sequencing. De novo assembly yielded 90,982 unigenes with an average length of 714 bp. By sequence similarity searching for known proteins, 48,896 (53.74%) unigenes were annotated. To mine the CcWRKY TFs and identify their potential function, the search for CcWRKYs against the transcriptome data of jute was performed, and a total of 43 CcWRKYs were identified in this study. The gene structure, phylogeny, conserved domain and three-dimensional structure of protein were analyzed by bioinformatics tools of GSDS2.0, MEGA7.0, DNAMAN5.0, WebLogo 3 and SWISS-MODEL respectively. Phylogenetic analysis showed that 43 CcWRKYs were divided into three groups: I, II and III, containing 9, 28, and 6 members respectively, according to the WRKY conserved domain features and the evolution analysis with Arabidopsis thaliana. Gene structure analysis indicated that the number of exons of these CcWRKYs varied from 3 to 11. Among the 43 CcWRKYs, 10, 2, 2, and 14 genes showed higher expression in leaves, stem sticks, stem barks, and roots at the vigorous vegetative growth stage, respectively. Moreover, the expression of 21 of 43 CcWRKYs was regulated significantly with secondary cell wall biosynthesis genes using FPKM and RT-qPCR by GA3 stress to a typical GA3 sensitive dwarf germplasm in comparison to an elite cultivar in jute. The Cis-element analysis showed that promoters of these 21 CcWRKYs had 1 to 4 cis-elements involved in gibberellin-responsiveness, suggesting that they might regulate the development of bast fiber in response to GA3 stress. CONCLUSIONS A total of 43 CcWRKYs were identified in jute for the first time. Analysis of phylogenetic relationship and gene structure revealed that these CcWRKYs might have a functional diversity. Expression analysis showed 21 TFs as GA3 stress responsive genes. The identification of these CcWRKYs and the characterization of their expression pattern will provide a basis for future clarification of their functions in bast fiber development in jute.
Collapse
Affiliation(s)
- Lilan Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China / Fujian Public Platform for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xuebei Wan
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China / Fujian Public Platform for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
| | - Yi Xu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China / Fujian Public Platform for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Sylvain Niyitanga
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jianmin Qi
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Liwu Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops / Fujian Key Laboratory for Crop Breeding by Design / College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
- Experiment Station of Ministry of Agriculture and Rural Affairs for Jute and Kenaf in Southeast China / Fujian Public Platform for Germplasm Resources of Bast Fiber Crops / Fujian International Science and Technology Cooperation Base for Genetics, Breeding and Multiple Utilization Development of Southern Economic Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002 Fujian China
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
11
|
Yang Z, Qanmber G, Wang Z, Yang Z, Li F. Gossypium Genomics: Trends, Scope, and Utilization for Cotton Improvement. TRENDS IN PLANT SCIENCE 2020; 25:488-500. [PMID: 31980282 DOI: 10.1016/j.tplants.2019.12.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/19/2019] [Accepted: 12/09/2019] [Indexed: 05/23/2023]
Abstract
Cotton (Gossypium spp.) is the most important natural fiber crop worldwide. The diversity of Gossypium species also provides an ideal model for investigating evolution and domestication of polyploids. However, the huge and complex cotton genome hinders genomic research. Technical advances in high-throughput sequencing and bioinformatics analysis have now largely overcome these obstacles, bringing about a new era of cotton genomics. Here, we review recent progress in Gossypium genomics based on whole genome sequencing, resequencing, and comparative genomics, which have provided insights about the genomic basis of fiber biogenesis and the landscape of cotton functional genomics. We address current challenges and present multidisciplinary genomics-enabled breeding strategies covering the breadth of high fiber yield, quality, and environmental resilience for future cotton breeding programs.
Collapse
Affiliation(s)
- Zuoren Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Ghulam Qanmber
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, 450001, Henan, China; State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| |
Collapse
|
12
|
Ali M, Cheng H, Soomro M, Shuyan L, Bilal Tufail M, Nazir MF, Feng X, Zhang Y, Dongyun Z, Limin L, Wang Q, Song G. Comparative Transcriptomic Analysis to Identify the Genes Related to Delayed Gland Morphogenesis in Gossypium bickii. Genes (Basel) 2020; 11:genes11050472. [PMID: 32357512 PMCID: PMC7290383 DOI: 10.3390/genes11050472] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
Cotton is one of the major industrial crops that supply natural fibers and oil for industries. This study was conducted to understand the mechanism of delayed gland morphogenesis in seeds of Gossypium bickii. In this study, we compared glandless seeds of G. bickii with glanded seeds of Gossypium arboreum. High-throughput sequencing technology was used to explore and classify the expression patterns of gland-related genes in seeds and seedlings of cotton plants. Approximately 131.33 Gigabases of raw data from 12 RNA sequencing samples with three biological replicates were generated. A total of 7196 differentially-expressed genes (DEGs) were identified in all transcriptome data. Among them, 3396 genes were found up-regulated and 3480 genes were down-regulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) annotations were performed to identify different functions between genes unique to glandless imbibed seeds and glanded seedlings. Co-expression network analysis revealed four modules that were identified as highly associated with the development of glandless seeds. Here the hub genes in each module were identified by weighted gene co-expression network analysis (WGCNA). In total, we have selected 13 genes involved in transcription factors, protein and MYB-related functions, that were differentially expressed in transcriptomic data and validated by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). These selected genes may play an important role for delayed gland morphogenesis. Our study provides comprehensive insight into the key genes related to glandless traits of seeds and plants, and can be further exploited by functional and molecular studies.
Collapse
Affiliation(s)
- Mushtaque Ali
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Hailiang Cheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Mahtab Soomro
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Li Shuyan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Muhammad Bilal Tufail
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Mian Faisal Nazir
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Xiaoxu Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
- Plant Genetics, Gambloux Agro Bio Tech, University of Liege, 5030 Gambloux, Belgium
| | - Youping Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Zuo Dongyun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Lv Limin
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (M.A.); (H.C.); (M.S.); (L.S.); (M.B.T.); (M.F.N.); (X.F.); (Y.Z.); (Z.D.); (L.L.); (Q.W.)
- Correspondence: ; Tel.: +86-3722562377
| |
Collapse
|
13
|
Genetic Analysis of the Transition from Wild to Domesticated Cotton ( Gossypium hirsutum L.). G3-GENES GENOMES GENETICS 2020; 10:731-754. [PMID: 31843806 PMCID: PMC7003101 DOI: 10.1534/g3.119.400909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evolution and domestication of cotton is of great interest from both economic and evolutionary standpoints. Although many genetic and genomic resources have been generated for cotton, the genetic underpinnings of the transition from wild to domesticated cotton remain poorly known. Here we generated an intraspecific QTL mapping population specifically targeting domesticated cotton phenotypes. We used 466 F2 individuals derived from an intraspecific cross between the wild Gossypium hirsutum var. yucatanense (TX2094) and the elite cultivar G. hirsutum cv. Acala Maxxa, in two environments, to identify 120 QTL associated with phenotypic changes under domestication. While the number of QTL recovered in each subpopulation was similar, only 22 QTL were considered coincident (i.e., shared) between the two locations, eight of which shared peak markers. Although approximately half of QTL were located in the A-subgenome, many key fiber QTL were detected in the D-subgenome, which was derived from a species with unspinnable fiber. We found that many QTL are environment-specific, with few shared between the two environments, indicating that QTL associated with G. hirsutum domestication are genomically clustered but environmentally labile. Possible candidate genes were recovered and are discussed in the context of the phenotype. We conclude that the evolutionary forces that shape intraspecific divergence and domestication in cotton are complex, and that phenotypic transformations likely involved multiple interacting and environmentally responsive factors.
Collapse
|
14
|
Genome-Wide Study of the GATL Gene Family in Gossypium hirsutum L. Reveals that GhGATL Genes Act on Pectin Synthesis to Regulate Plant Growth and Fiber Elongation. Genes (Basel) 2020; 11:genes11010064. [PMID: 31935825 PMCID: PMC7016653 DOI: 10.3390/genes11010064] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/03/2020] [Indexed: 01/07/2023] Open
Abstract
Pectin is a major polysaccharide component that promotes plant growth and fiber elongation in cotton. In previous studies, the galacturonosyltransferase-like (GATL) gene family has been shown to be involved in pectin synthesis. However, few studies have been performed on cotton GATL genes. Here, a total of 33, 17, and 16 GATL genes were respectively identified in Gossypium hirsutum, Gossypium raimondii, and Gossypium arboreum. In multiple plant species, phylogenetic analysis divided GATL genes into five groups named GATL-a to GATL-e, and the number of groups was found to gradually change over evolution. Whole genome duplication (WGD) and segmental duplication played a significant role in the expansion of the GATL gene family in G. hirsutum. Selection pressure analyses revealed that GATL-a and GATL-b groups underwent a great positive selection pressure during evolution. Moreover, the expression patterns revealed that most of highly expressed GhGATL genes belong to GATL-a and GATL-b groups, which have more segmental duplications and larger positive selection value, suggesting that these genes may play an important role in the evolution of cotton plants. We overexpressed GhGATL2, GhGATL9, GhGATL12, and GhGATL15 in Arabidopsis and silenced the GhGATL15 gene in cotton through a virus induced gene silencing assay (VIGS). The transgenic and VIGS lines showed significant differences in stem diameter, epidermal hair length, stamen length, seed size, and fiber length than the control plant. In addition, the pectin content test proved that the pectin was significantly increased in the transgenic lines and reduced in VIGS plants, demonstrating that GhGATL genes have similar functions and act on the pectin synthesis to regulate plant growth and fiber elongation. In summary, we performed a comprehensive analysis of GhGATL genes in G. hirsutum including evolution, structure and function, in order to better understand GhGATL genes in cotton for further studies.
Collapse
|
15
|
Guo X, Hansen BØ, Moeller SR, Harholt J, Mravec J, Willats W, Petersen BL, Ulvskov P. Extensin arabinoside chain length is modulated in elongating cotton fibre. Cell Surf 2019; 5:100033. [PMID: 32743148 PMCID: PMC7388976 DOI: 10.1016/j.tcsw.2019.100033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/18/2019] [Accepted: 10/23/2019] [Indexed: 01/02/2023] Open
Abstract
Cotton fibre provides a unicellular model system for studying cell expansion and secondary cell wall deposition. Mature cotton fibres are mainly composed of cellulose while the walls of developing fibre cells contain a variety of polysaccharides and proteoglycans required for cell expansion. This includes hydroxyproline-rich glycoproteins (HRGPs) comprising the subgroup, extensins. In this study, extensin occurrence in cotton fibres was assessed using carbohydrate immunomicroarrays, mass spectrometry and monosaccharide profiling. Extensin amounts in three species appeared to correlate with fibre quality. Fibre cell expression profiling of the four cotton cultivars, combined with extensin arabinoside chain length measurements during fibre development, demonstrated that arabinoside side-chain length is modulated during development. Implications and mechanisms of extensin side-chain length dynamics during development are discussed.
Collapse
Key Words
- AGPs, arabinogalactan proteins
- CoMPP
- CoMPP, comprehensive microarray polymer profiling
- Cotton fibre
- Cotton fibre quality
- CrRLK1L, Catharanthus roseus receptor-like1-like kinase
- DPA, days post anthesis
- EXTs, extensins
- ExAD, arabinosyltransferase named after the mutant Extensin Arabinose Deficient
- Extensin arabinoside metabolism
- GH, glycoside hydrolase
- HPAT, hydroxyproline arabinosyltransferase
- HRGP
- HRGPs, hydroxyproline-rich glycoproteins
- Hyp-Aran, extensin side-chain of length n
- LRX, leucine-rich repeat extensins
- PCW, primary cell wall
- RRA, arabinosyltransferase named after the mutant Reduced Residual Arabinose
- SCW, secondary cell wall
- SGT, serine galactosyltransferase
- Transcriptomics
- XEG113, arabinosyltransferase named after the mutant Xyloglucan Endo-Glucanase resistant mutant 113
Collapse
Affiliation(s)
- Xiaoyuan Guo
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bjørn Øst Hansen
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, Potsdam 14476, Germany
| | - Svenning Rune Moeller
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jesper Harholt
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - William Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Bent Larsen Petersen
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
16
|
Khan AQ, Li Z, Ahmed MM, Wang P, Zhang X, Tu L. Eriodictyol can modulate cellular auxin gradients to efficiently promote in vitro cotton fibre development. BMC PLANT BIOLOGY 2019; 19:443. [PMID: 31651240 PMCID: PMC6814110 DOI: 10.1186/s12870-019-2054-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/25/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Flavonoids have essential roles in flower pigmentation, fibre development and disease resistance in cotton. Previous studies show that accumulation of naringenin in developing cotton fibres significantly affects fibre growth. This study focused on determining the effects of the flavonoids naringenin, dihydrokaempferol, dihydroquerectin and eriodictyol on fibre development in an in vitro system. RESULTS 20 μM eriodictyol treatment produced a maximum fibre growth, in terms of fibre length and total fibre units. To gain insight into the associated transcriptional regulatory networks, RNA-seq analysis was performed on eriodictyol-treated elongated fibres, and computational analysis of differentially expressed genes revealed that carbohydrate metabolism and phytohormone signaling pathways were differentially modulated. Eriodictyol treatment also promoted the biosynthesis of quercetin and dihydroquerectin in ovules and elongating fibres through enhanced expression of genes encoding chalcone isomerase, chalcone synthase and flavanone 3-hydroxylase. In addition, auxin biosynthesis and signaling pathway genes were differentially expressed in eriodictyol-driven in vitro fibre elongation. In absence of auxin, eriodictyol predominantly enhanced fibre growth when the localized auxin gradient was disrupted by the auxin transport inhibitor, triiodobenzoic acid. CONCLUSION Eriodictyol was found to significantly enhance fibre development through accumulating and maintaining the temporal auxin gradient in developing unicellular cotton fibres.
Collapse
Affiliation(s)
- Anam Qadir Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| | - Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| | - Muhammad Mahmood Ahmed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
- Institute of Plant Breeding & Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| |
Collapse
|
17
|
Gao Z, Sun W, Wang J, Zhao C, Zuo K. GhbHLH18 negatively regulates fiber strength and length by enhancing lignin biosynthesis in cotton fibers. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:7-16. [PMID: 31300144 DOI: 10.1016/j.plantsci.2019.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/06/2019] [Accepted: 05/25/2019] [Indexed: 05/08/2023]
Abstract
Cotton fibers are developed epidermal cells of the seed coat and contain large amounts of cellulose and minor lignin-like components. Lignin in the cell walls of cotton fibers effectively provides mechanical strength and is also presumed to restrict fiber elongation and secondary cell wall synthesis. To analyze the effect of lignin and lignin-like phenolics on fiber quality and the transcriptional regulation of lignin synthesis in cotton fibers, we characterized the function of a bHLH transcription factor, GhbHLH18, during fiber elongation stage. GhbHLH18 knock-down plants have longer and stronger fibers, and accumulate less lignin-like phenolics in mature cotton fibers than control plants. By mining public transcriptomic data for developing fibers, we discovered that GhbHLH18 is coexpressed with most lignin synthesis pathway genes. Furthermore, we showed that GhbHLH18 strongly binds to the E-box in the promoter region of GhPER8 and activates its expression. Transient over expression of GhPER8 protein in tobacco leaves significantly decreased the content of coniferyl alcohol and sinapic alcohol-the substrate respectively for G-lignin and S-lignin biosynthesis. These results suggest that GhbHLH18 is negatively associated with fiber quality by activating peroxidase-mediated lignin metabolism, thus the paper represents an alternative strategy to improve fiber quality.
Collapse
Affiliation(s)
- Zhengyin Gao
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wenjie Sun
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun Wang
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyan Zhao
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kaijing Zuo
- Plant Biotechnology Research Center, SJTU-Cornell Institute of Sustainable Agriculture and Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
18
|
Lantican DV, Strickler SR, Canama AO, Gardoce RR, Mueller LA, Galvez HF. De Novo Genome Sequence Assembly of Dwarf Coconut ( Cocos nucifera L. 'Catigan Green Dwarf') Provides Insights into Genomic Variation Between Coconut Types and Related Palm Species. G3 (BETHESDA, MD.) 2019; 9:2377-2393. [PMID: 31167834 PMCID: PMC6686914 DOI: 10.1534/g3.119.400215] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 05/31/2019] [Indexed: 11/23/2022]
Abstract
We report the first whole genome sequence (WGS) assembly and annotation of a dwarf coconut variety, 'Catigan Green Dwarf' (CATD). The genome sequence was generated using the PacBio SMRT sequencing platform at 15X coverage of the expected genome size of 2.15 Gbp, which was corrected with assembled 50X Illumina paired-end MiSeq reads of the same genome. The draft genome was improved through Chicago sequencing to generate a scaffold assembly that results in a total genome size of 2.1 Gbp consisting of 7,998 scaffolds with N50 of 570,487 bp. The final assembly covers around 97.6% of the estimated genome size of coconut 'CATD' based on homozygous k-mer peak analysis. A total of 34,958 high-confidence gene models were predicted and functionally associated to various economically important traits, such as pest/disease resistance, drought tolerance, coconut oil biosynthesis, and putative transcription factors. The assembled genome was used to infer the evolutionary relationship within the palm family based on genomic variations and synteny of coding gene sequences. Data show that at least three (3) rounds of whole genome duplication occurred and are commonly shared by these members of the Arecaceae family. A total of 7,139 unique SSR markers were designed to be used as a resource in marker-based breeding. In addition, we discovered 58,503 variants in coconut by aligning the Hainan Tall (HAT) WGS reads to the non-repetitive regions of the assembled CATD genome. The gene markers and genome-wide SSR markers established here will facilitate the development of varieties with resilience to climate change, resistance to pests and diseases, and improved oil yield and quality.
Collapse
Affiliation(s)
- Darlon V Lantican
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
- Philippine Genome Center, University of the Philippines System, Diliman, Quezon City, Philippines
| | | | - Alma O Canama
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
| | - Roanne R Gardoce
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
| | | | - Hayde F Galvez
- Genetics Laboratory, Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
- Institute of Crop Science, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031
| |
Collapse
|
19
|
Feng H, Li X, Chen H, Deng J, Zhang C, Liu J, Wang T, Zhang X, Dong J. GhHUB2, a ubiquitin ligase, is involved in cotton fiber development via the ubiquitin-26S proteasome pathway. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:5059-5075. [PMID: 30053051 PMCID: PMC6184758 DOI: 10.1093/jxb/ery269] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 07/12/2018] [Indexed: 05/02/2023]
Abstract
Cotton fibers, which are extremely elongated single cells of epidermal seed trichomes and have highly thickened cell walls, constitute the most important natural textile material worldwide. However, the regulation of fiber development is not well understood. Here, we report that GhHUB2, a functional homolog of AtHUB2, controls fiber elongation and secondary cell wall (SCW) deposition. GhHUB2 is ubiquitously expressed, including within fibers. Overexpression of GhHUB2 in cotton increased fiber length and SCW thickness, while RNAi knockdown of GhHUB2 resulted in shortened fibers and thinner cell walls. We found that GhHUB2 interacted with GhKNL1, a transcriptional repressor predominantly expressed in developing fibers, and that GhHUB2 ubiquitinated and degraded GhKNL1 via the ubiquitin-26S proteasome pathway. GhHUB2 negatively regulated GhKNL1 protein levels and lead to the disinhibition of genes such as GhXTH1, Gh1,3-β-G, GhCesA4, GhAGP4, GhCTL1, and GhCOBL4, thus promoting fiber elongation and enhancing SCW biosynthesis. We found that GhREV-08, a transcription factor that participates in SCW deposition and auxin signaling pathway, was a direct target of GhKNL1. In conclusion, our study uncovers a novel function of HUB2 in plants in addition to its monoubiquitination of H2B. Moreover, we provide evidence for control of the fiber development by the ubiquitin-26S proteasome pathway.
Collapse
Affiliation(s)
- Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jie Deng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ji Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Zheng K, Ni Z, Qu Y, Cai Y, Yang Z, Sun G, Chen Q. Genome-wide identification and expression analyses of TCP transcription factor genes in Gossypium barbadense. Sci Rep 2018; 8:14526. [PMID: 30266918 PMCID: PMC6162280 DOI: 10.1038/s41598-018-32626-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/11/2018] [Indexed: 01/24/2023] Open
Abstract
Sea-island cotton (Gossypium barbadense) has drawn great attention in the textile industry for its comprehensive resistance and superior fiber properties. However, the mechanisms involved in fiber growth and development are unclear. As TCP transcription factors play important roles in plant growth and development, this study investigated the TCP family genes in G. barbadense (GbTCP). We identified 75 GbTCP genes, of which 68 had no introns. Phylogenetic analyses categorized the GbTCP transcription factors into 11 groups. Genomic analyses showed that 66 genes are located on 21 chromosomes. Phylogenetic analyses of G. arboreum, G. raimondii, G. hirsutum, G. barbadense, Theobroma cacao, Arabidopsis thaliana, Oryza sativa, Sorghum bicolor, and Zea mays, Picea abies, Sphagnum fallax and Physcomitrella patens, categorized 373 TCP genes into two classes (Classes I and II). By studying the structures of TCP genes in sea-island cotton, we identified genes from the same evolutionary branches that showed similar motif patterns. qRT-PCR results suggested that the GbTCPs had different expression patterns in fibers at various developmental stages of cotton, with several showing specific expression patterns during development. This report helps lay the foundation for future investigations of TCP functions and molecular mechanisms in sea-island cotton fiber development.
Collapse
Affiliation(s)
- Kai Zheng
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Zhiyong Ni
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Yanying Qu
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Yongsheng Cai
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Zhaoen Yang
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, P. R. China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
| | - Quanjia Chen
- College of Agronomy, Xinjiang Agricultural University, Urumqi, 830052, P. R. China.
| |
Collapse
|
21
|
Long Q, Yue F, Liu R, Song S, Li X, Ding B, Yan X, Pei Y. The phosphatidylinositol synthase gene (GhPIS) contributes to longer, stronger, and finer fibers in cotton. Mol Genet Genomics 2018; 293:1139-1149. [PMID: 29752547 DOI: 10.1007/s00438-018-1445-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/03/2018] [Indexed: 11/25/2022]
Abstract
Cotton fibers are the most important natural raw material used in textile industries world-wide. Fiber length, strength, and fineness are the three major traits which determine the quality and economic value of cotton. It is known that exogenous application of phosphatidylinositols (PtdIns), important structural phospholipids, can promote cotton fiber elongation. Here, we sought to increase the in planta production of PtdIns to improve fiber traits. Transgenic cotton plants were generated in which the expression of a cotton phosphatidylinositol synthase gene (i.e., GhPIS) was controlled by the fiber-specific SCFP promoter element, resulting in the specific up-regulation of GhPIS during cotton fiber development. We demonstrate that PtdIns content was significantly enhanced in transgenic cotton fibers and the elevated level of PtdIns stimulated the expression of genes involved in PtdIns phosphorylation as well as promoting lignin/lignin-like phenolic biosynthesis. Fiber length, strength and fineness were also improved in the transgenic plants as compared to the wild-type cotton, with no loss in overall fiber yield. Our data indicate that fiber-specific up-regulation of PtdIns synthesis is a promising strategy for cotton fiber quality improvement.
Collapse
Affiliation(s)
- Qin Long
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Fang Yue
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Ruochen Liu
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Shuiqing Song
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Xianbi Li
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Bo Ding
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Xingying Yan
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China
| | - Yan Pei
- Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops; Biotechnology Research Center, Southwest University, No. 2 Tiansheng Road, Beibei, Chongqing, 400715, People's Republic of China.
| |
Collapse
|
22
|
Chandnani R, Kim C, Guo H, Shehzad T, Wallace JG, He D, Zhang Z, Patel JD, Adhikari J, Khanal S, Paterson AH. Genetic Analysis of Gossypium Fiber Quality Traits in Reciprocal Advanced Backcross Populations. THE PLANT GENOME 2018; 11:170057. [PMID: 29505644 DOI: 10.3835/plantgenome2017.06.0057] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In mapping populations segregating for many loci, the large amount of variation among genotypes often masks small-effect quantitative trait loci (QTL). This problem can be reduced by development of populations with fewer chromosome segments segregating. Here, we report early QTL detection in reciprocal advanced backcross populations from crosses between elite Gossypium hirsutum L. 'Acala Maxxa' (GH) and G. barbadense L. 'Pima S6' (GB). A total of 297 BCF and BCF progeny rows-127 segregating for GB chromosome segments in GH background and 170 segregating for GH chromosome segments in GB background-were evaluated in three environments. Totals of 3186 and 3026 polymorphic single-nucleotide polymorphisms (SNPs) in GH and GB backgrounds, respectively, were identified and used for trait mapping. Small-effect QTL (<10% variance explained) made up 87 and 100% of QTL in GH and GB backgrounds, respectively. In both species, favorable alleles were found with effects being masked or neutralized by unfavorable alleles, with greater scope for improvement of GH than GB by introgressive breeding. A total of three stable QTL-two in GH background for fiber elongation (ELO) and micronaire (MIC) and one in GB background for upper-half mean length (UHM)-were identified in two out of three environments. Curiously, only four QTL-three for UHM and one for ELO-showed the expected opposite effects in reciprocal backgrounds, perhaps reflecting the combined consequences of epistasis, small phenotypic effects, and low coverage of some genomic regions. Along with new information for marker-assisted breeding, this study adds to knowledge that can be used to unravel complex genetic networks governing fiber quality traits.
Collapse
|
23
|
Sable A, Rai KM, Choudhary A, Yadav VK, Agarwal SK, Sawant SV. Inhibition of Heat Shock proteins HSP90 and HSP70 induce oxidative stress, suppressing cotton fiber development. Sci Rep 2018; 8:3620. [PMID: 29483524 PMCID: PMC5827756 DOI: 10.1038/s41598-018-21866-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/12/2018] [Indexed: 12/20/2022] Open
Abstract
Cotton fiber is a specialized unicellular structure useful for the study of cellular differentiation and development. Heat shock proteins (HSPs) have been shown to be involved in various developmental processes. Microarray data analysis of five Gossypium hirsutum genotypes revealed high transcript levels of GhHSP90 and GhHSP70 genes at different stages of fiber development, indicating their importance in the process. Further, we identified 26 and 55 members of HSP90 and HSP70 gene families in G. hirsutum. The treatment of specific inhibitors novobiocin (Nov; HSP90) and pifithrin/2-phenylethynesulfonamide (Pif; HSP70) in in-vitro cultured ovules resulted in a fewer number of fiber initials and retardation in fiber elongation. The molecular chaperone assay using bacterially expressed recombinant GhHSP90-7 and GhHSP70-8 proteins further confirmed the specificity of inhibitors. HSP inhibition disturbs the H2O2 balance that leads to the generation of oxidative stress, which consequently results in autophagy in the epidermal layer of the cotton ovule. Transmission electron microscopy (TEM) of inhibitor-treated ovule also corroborates autophagosome formation along with disrupted mitochondrial cristae. The perturbations in transcript profile of HSP inhibited ovules show differential regulation of different stress and fiber development-related genes and pathways. Altogether, our results indicate that HSP90 and HSP70 families play a crucial role in cotton fiber differentiation and development by maintaining cellular homeostasis.
Collapse
Affiliation(s)
- Anshulika Sable
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Krishan M Rai
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Fiber and Biopolymer Research Institute (FBRI), Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79409, USA
| | - Amit Choudhary
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India
| | - Vikash K Yadav
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.,Department of Plant Biology, Uppsala Biocenter, Swedish University of Agricultural Sciences, Uppsala, 75007, Sweden
| | - Sudhir K Agarwal
- Department of Biochemistry, University of Lucknow, Lucknow, 226007, India
| | - Samir V Sawant
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Rana Pratap Marg, Lucknow, 226001, India.
| |
Collapse
|
24
|
Hu R, Xu Y, Yu C, He K, Tang Q, Jia C, He G, Wang X, Kong Y, Zhou G. Transcriptome analysis of genes involved in secondary cell wall biosynthesis in developing internodes of Miscanthus lutarioriparius. Sci Rep 2017; 7:9034. [PMID: 28831170 PMCID: PMC5567372 DOI: 10.1038/s41598-017-08690-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 07/12/2017] [Indexed: 11/08/2022] Open
Abstract
Miscanthus is a promising lignocellulosic bioenergy crop for bioethanol production. To identify candidate genes and regulation networks involved in secondary cell wall (SCW) development in Miscanthus, we performed de novo transcriptome analysis of a developing internode. According to the histological and in-situ histochemical analysis, an elongating internode of M. lutarioriparius can be divided into three distinct segments, the upper internode (UI), middle internode (MI) and basal internode (BI), each representing a different stage of SCW development. The transcriptome analysis generated approximately 300 million clean reads, which were de novo assembled into 79,705 unigenes. Nearly 65% of unigenes was annotated in seven public databases. Comparative profiling among the UI, MI and BI revealed four distinct clusters. Moreover, detailed expression profiling was analyzed for gene families and transcription factors (TFs) involved in SCW biosynthesis, assembly and modification. Based on the co-expression patterns, putative regulatory networks between TFs and SCW-associated genes were constructed. The work provided the first transcriptome analysis of SCW development in M. lutarioriparius. The results obtained provide novel insights into the biosynthesis and regulation of SCW in Miscanthus. In addition, the genes identified represent good candidates for further functional studies to unravel their roles in SCW biosynthesis and modification.
Collapse
Affiliation(s)
- Ruibo Hu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Yan Xu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Changjiang Yu
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Kang He
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Qi Tang
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Chunlin Jia
- Shandong Institute of Agricultural Sustainable Development, Jinan, 250100, P. R. China
| | - Guo He
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Xiaoyu Wang
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China
| | - Yingzhen Kong
- Key laboratory of Tobacco Genetic Improvement and Biotechnology, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, P. R. China
| | - Gongke Zhou
- Key Laboratory of Biofuels, Qingdao Engineering Research Center of Biomass Resources and Environment, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P. R. China.
| |
Collapse
|
25
|
Identification of candidate genes for fiber length quantitative trait loci through RNA-Seq and linkage and physical mapping in cotton. BMC Genomics 2017; 18:427. [PMID: 28569138 PMCID: PMC5452627 DOI: 10.1186/s12864-017-3812-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 05/23/2017] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Cotton (Gossypium spp.) fibers are single-celled elongated trichomes, the molecular aspects of genetic variation in fiber length (FL) among genotypes are currently unknown. In this study, two backcross inbred lines (BILs), i.e., NMGA-062 ("Long") and NMGA-105 ("Short") with 32.1 vs. 27.2 mm in FL, respectively, were chosen to perform RNA-Seq on developing fibers at 10 days post anthesis (DPA). The two BILs differed in 4 quantitative trait loci (QTL) for FL and were developed from backcrosses between G. hirsutum as the recurrent parent and G. barbadense. RESULTS In total, 51.7 and 54.3 million reads were obtained and assembled to 49,508 and 49,448 transcripts in the two genotypes, respectively. Of 1551 differentially expressed genes (DEGs) between the two BILs, 678 were up-regulated and 873 down-regulated in "Long"; and 703 SNPs were identified in 339 DEGs. Further physical mapping showed that 8 DEGs were co-localized with the 4 FL QTL identified in the BIL population containing the two BILs. Four SNP markers in 3 DEGs that showed significant correlations with FL were developed. Among the three candidate genes encoding for proline-rich protein, D-cysteine desulfhydrase, and thaumatin-like protein, a SNP of thaumatin-like protein gene showed consistent correlations with FL across all testing environments. CONCLUSIONS This study represents one of the first investigations of positional candidate gene approach of QTL in cotton in integrating transcriptome and SNP identification based on RNA-Seq with linkage and physical mapping of QTL and genes, which will facilitate eventual cloning and identification of genes responsible for FL QTL. The candidate genes may serve as the foundation for further in-depth studies of the molecular mechanism of natural variation in fiber elongation.
Collapse
|
26
|
Wang H, Huang C, Zhao W, Dai B, Shen C, Zhang B, Li D, Lin Z. Identification of QTL for Fiber Quality and Yield Traits Using Two Immortalized Backcross Populations in Upland Cotton. PLoS One 2016; 11:e0166970. [PMID: 27907098 PMCID: PMC5131980 DOI: 10.1371/journal.pone.0166970] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Two immortalized backcross populations (DHBCF1s and JMBCF1s) were developed using a recombinant inbred line (RIL) population crossed with the two parents DH962 and Jimian5 (as the males), respectively. The fiber quality and yield component traits of the two backcross populations were phenotyped at four environments (two locations, two years). One hundred seventy-eight quantitative trait loci (QTL) were detected including 76 for fiber qualities and 102 for yield components, explaining 4.08–17.79% of the phenotypic variation (PV). Among the 178 QTL, 22 stable QTL were detected in more than one environment or population. A stable QTL, qFL-c10-1, was detected in the previous F2 population, a RIL population in 3 environments and the current two BCF1 populations in this study, explaining 5.79–37.09% of the PV. Additionally, 117 and 110 main-effect QTL (M-QTL) and 47 and 191 digenic epistatic QTL (E-QTL) were detected in the DHBCF1s and JMBCF1s populations, respectively. The effect of digenic epistasis played a more important role on lint percentage, fiber length and fiber strength. These results obtained in the present study provided more resources to obtain stable QTL, confirming the authenticity and reliability of the QTL for molecular marker-assisted selection breeding and QTL cloning.
Collapse
Affiliation(s)
- Hantao Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, Henan, China
| | - Cong Huang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenxia Zhao
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Baosheng Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Shen
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Beibei Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Dingguo Li
- Institute of Crop Genetic and Breeding, College of Agriculture, Yangtze University, Jingzhou, Hubei, China
- * E-mail: (ZXL); (DGL)
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail: (ZXL); (DGL)
| |
Collapse
|
27
|
Zhang B, Du SJ, Hu J, Miao D, Liu JY. Comparative proteomic analyses of Asian cotton ovules with attached fibers in the early stages of fiber elongation process. Proteome Sci 2016; 14:13. [PMID: 27610046 PMCID: PMC5015342 DOI: 10.1186/s12953-016-0101-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 09/01/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Plenty of proteomic studies were performed to characterize the allotetraploid upland cotton fiber elongation process, whereas little is known about the elongating diploid cotton fiber proteome. METHODS In this study, we used a two-dimensional electrophoresis-based comparative proteomic approach to profile dynamic proteomes of diploid Asian cotton ovules with attached fibers in the early stages of fiber elongation process. One-way ANOVA and Student-Newman-Keuls test were used to find the differentially displayed protein (DDP) spots. RESULTS A total of 55 protein spots were found having different abundance ranging from 1 to 9 days post-anthesis (DPA) in a two-day interval. These 55 DDP spots were all successfully identified using high-resolution mass spectrometric analyses. Gene ontology analyses revealed that proteoforms involved in energy/carbohydrate metabolism, redox homeostasis, and protein metabolism are the most abundant. In addition, orthologues of the 13 DDP spots were also found in differential proteome of allotetraploid elongating cotton fibers, suggesting their possible essential roles in fiber elongation process. CONCLUSIONS Our results not only revealed the dynamic proteome change of diploid Asian cotton fiber and ovule during early stages of fiber elongation process but also provided valuable resource for future studies on the molecular mechanism how the polyploidization improves the trait of fiber length.
Collapse
Affiliation(s)
- Bing Zhang
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People's Republic of China
| | - Shao-Jun Du
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People's Republic of China
| | - Jue Hu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People's Republic of China
| | - Di Miao
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People's Republic of China
| | - Jin-Yuan Liu
- Laboratory of Plant Molecular Biology, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084 People's Republic of China
| |
Collapse
|
28
|
Liu F, Guo DD, Tu YH, Xue YR, Gao Y, Guo ML. Identification of reference genes for gene expression normalization in safflower (Carthamus tinctorius). REVISTA BRASILEIRA DE FARMACOGNOSIA-BRAZILIAN JOURNAL OF PHARMACOGNOSY 2016. [DOI: 10.1016/j.bjp.2016.05.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Sharma N, Chauhan RS, Sood H. Discerning picroside-I biosynthesis via molecular dissection of in vitro shoot regeneration in Picrorhiza kurroa. PLANT CELL REPORTS 2016; 35:1601-1615. [PMID: 27038441 DOI: 10.1007/s00299-016-1976-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 03/28/2016] [Indexed: 06/05/2023]
Abstract
Expression analysis of primary and secondary metabolic pathways genes vis-à-vis shoot regeneration revealed developmental regulation of picroside-I biosynthesis in Picrorhiza kurroa. Picroside-I (P-I) is an important iridoid glycoside used in several herbal formulations for treatment of various disorders. P-I is synthesized in shoots of Picrorhiza kurroa and Picrorhiza scrophulariiflora. Current study reports on understanding P-I biosynthesis in different morphogenetic stages, viz. plant segment (PS), callus initiation (CI), callus mass (CM), shoot primordia (SP), multiple shoots (MS) and fully developed (FD) stages of P. kurroa. Expression analysis of genes involved in primary and secondary metabolism revealed that genes encoding HMGR, PMK, DXPS, ISPE, GS, G10H, DAHPS and PAL enzymes of MVA, MEP, iridoid and shikimate/phenylpropanoid pathways showed significant modulation of expression in SP, MS and FD stages in congruence with P-I content compared to CM stage. While HK, PK, ICDH, MDH and G6PDH showed high expression in MS and FD stages of P. kurroa, RBA, HisK and CytO showed high expression with progress in regeneration of shoots. Quantitative expression analysis of secondary metabolism genes at two temperatures revealed that 7 genes HMGR, PMK, DXPS, GS, G10H, DAHPS and PAL showed high transcript abundance (32-87-folds) in FD stage derived from leaf and root segments at 15 °C compared to 25 °C in P. kurroa. Further screening of these genes at species level showed high expression pattern in P. kurroa (6-19-folds) vis-à-vis P. scrophulariiflora that was in corroboration with P-I content. Therefore, current study revealed developmental regulation of P-I biosynthesis in P. kurroa which would be useful in designing a suitable genetic intervention study by targeting these genes for enhancing P-I production.
Collapse
Affiliation(s)
- Neha Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, HP, India
| | - Rajinder Singh Chauhan
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, HP, India
| | - Hemant Sood
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, 173234, HP, India.
| |
Collapse
|
30
|
Guo W, Jin L, Miao Y, He X, Hu Q, Guo K, Zhu L, Zhang X. An ethylene response-related factor, GbERF1-like, from Gossypium barbadense improves resistance to Verticillium dahliae via activating lignin synthesis. PLANT MOLECULAR BIOLOGY 2016; 91:305-18. [PMID: 26971283 DOI: 10.1007/s11103-016-0467-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 03/03/2016] [Indexed: 05/18/2023]
Abstract
An ethylene response-related factor, GbERF1-like, from Gossypium barbadense cv. '7124' involved in the defence response to Verticillium dahliae was characterized. GbERF1-like transcripts present ubiquitously in various tissues, with higher accumulation in flower organs. GbERF1-like was also responsive to defence-related phytohormones and V. dahliae infection. The downregulation of GbERF1-like increased the susceptibility of cotton plants to V. dahliae infection, while overexpression of this gene improved disease resistance in both cotton and Arabidopsis, coupled with activation of the pathogenesis-related proteins. Further analysis revealed that genes involved in lignin synthesis, such as PAL, C4H, C3H, HCT, CCoAOMT, CCR and F5H, showed higher expression levels in the overexpressing cotton and Arabidopsis lines and lower expression levels in the RNAi cotton lines. The expression levels of these genes increased obviously when the GbERF1-like-overexpressing plants were inoculated with V. dahliae. Meanwhile, significant differences in the content of whole lignin could be found in the stems of transgenic and wild-type plants after inoculation with V. dahliae, as revealed by metabolic and histochemical analysis. More lignin could be detected in GbERF1-like-overexpressing cotton and Arabidopsis but less in GbERF1-like-silencing cotton compared with wild-type plants. The ratio of S and G monomers in GbERF1-like-overexpressing cotton and Arabidopsis increased significantly after infection by V. dahliae. Moreover, our results showed that the promoters of GhHCT1 and AtPAL3 could be transactivated by GbERF1-like in vivo based on yeast one-hybrid assays and dual-luciferase reporter assays. Knockdown of GhHCT1 in GbERF1-like over-expressing cotton decreases resistance to V. dahliae. Collectively, our results suggest that GbERF1-like acts as a positive regulator in lignin synthesis and contributes substantially to resistance to V. dahliae in plants.
Collapse
Affiliation(s)
- Weifeng Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
- College of Plant Science, Tarim University, Alar, 843300, Xinjiang, People's Republic of China
| | - Li Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Yuhuan Miao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Xin He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China.
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, Hubei, People's Republic of China
| |
Collapse
|
31
|
Liu D, Zhang J, Liu X, Wang W, Liu D, Teng Z, Fang X, Tan Z, Tang S, Yang J, Zhong J, Zhang Z. Fine mapping and RNA-Seq unravels candidate genes for a major QTL controlling multiple fiber quality traits at the T1 region in upland cotton. BMC Genomics 2016; 17:295. [PMID: 27094760 PMCID: PMC4837631 DOI: 10.1186/s12864-016-2605-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 03/28/2016] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Improving fiber quality is a major challenge in cotton breeding, since the molecular basis of fiber quality traits is poorly understood. Fine mapping and candidate gene prediction of quantitative trait loci (QTL) controlling cotton fiber quality traits can help to elucidate the molecular basis of fiber quality. In our previous studies, one major QTL controlling multiple fiber quality traits was identified near the T1 locus on chromosome 6 in Upland cotton. RESULTS To finely map this major QTL, the F2 population with 6975 individuals was established from a cross between Yumian 1 and a recombinant inbred line (RIL118) selected from a recombinant inbred line population (T586 × Yumian 1). The QTL was mapped to a 0.28-cM interval between markers HAU2119 and SWU2302. The QTL explained 54.7 % (LOD = 222.3), 40.5 % (LOD = 145.0), 50.0 % (LOD = 194.3) and 30.1 % (LOD = 100.4) of phenotypic variation with additive effects of 2.78, -0.43, 2.92 and 1.90 units for fiber length, micronaire, strength and uniformity, respectively. The QTL region corresponded to a 2.7-Mb interval on chromosome 10 in the G. raimondii genome sequence and a 5.3-Mb interval on chromosome A06 in G. hirsutum. The fiber of Yumian 1 was much longer than that of RIL118 from 3 DPA to 7 DPA. RNA-Seq of ovules at 0 DPA and fibers at 5 DPA from Yumian 1 and RIL118 showed four genes in the QTL region of the G. raimondii genome to be extremely differentially expressed. RT-PCR analysis showed three genes in the QTL region of the G. hirsutum genome to behave similarly. CONCLUSIONS This study mapped a major QTL influencing four fiber quality traits to a 0.28-cM interval and identified three candidate genes by RNA-Seq and RT-PCR analysis. Integration of fine mapping and RNA-Seq is a powerful strategy to uncover candidates for QTL in large genomes.
Collapse
Affiliation(s)
- Dexin Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Jian Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Xueying Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Wenwen Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Dajun Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Zhonghua Teng
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Xiaomei Fang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Zhaoyun Tan
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Shiyi Tang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Jinghong Yang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Jianwei Zhong
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China
| | - Zhengsheng Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, 400716, Chongqing, People's Republic of China.
| |
Collapse
|
32
|
Mujahid H, Pendarvis K, Reddy JS, Nallamilli BRR, Reddy KR, Nanduri B, Peng Z. Comparative Proteomic Analysis of Cotton Fiber Development and Protein Extraction Method Comparison in Late Stage Fibers. Proteomes 2016; 4:proteomes4010007. [PMID: 28248216 PMCID: PMC5217364 DOI: 10.3390/proteomes4010007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/19/2016] [Accepted: 01/28/2016] [Indexed: 12/21/2022] Open
Abstract
The distinct stages of cotton fiber development and maturation serve as a single-celled model for studying the molecular mechanisms of plant cell elongation, cell wall development and cellulose biosynthesis. However, this model system of plant cell development is compromised for proteomic studies due to a lack of an efficient protein extraction method during the later stages of fiber development, because of a recalcitrant cell wall and the presence of abundant phenolic compounds. Here, we compared the quality and quantities of proteins extracted from 25 dpa (days post anthesis) fiber with multiple protein extraction methods and present a comprehensive quantitative proteomic study of fiber development from 10 dpa to 25 dpa. Comparative analysis using a label-free quantification method revealed 287 differentially-expressed proteins in the 10 dpa to 25 dpa fiber developmental period. Proteins involved in cell wall metabolism and regulation, cytoskeleton development and carbohydrate metabolism among other functional categories in four fiber developmental stages were identified. Our studies provide protocols for protein extraction from maturing fiber tissues for mass spectrometry analysis and expand knowledge of the proteomic profile of cotton fiber development.
Collapse
Affiliation(s)
- Hana Mujahid
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Ken Pendarvis
- Institute for Genomics, Biocomputing and Biotechnology, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Joseph S Reddy
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Babi Ramesh Reddy Nallamilli
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
| | - K R Reddy
- Department of Plant and Soil Sciences, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Bindu Nanduri
- College of Veterinary Medicine, Mississippi State University, Mississippi State, MS 39762, USA.
| | - Zhaohua Peng
- Department of Biochemistry, Molecular Biology, Entomology, and Plant Pathology, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
33
|
Modi A, Kumar N, Narayanan S. Transcript Quantification of Genes Involved in Steviol Glycoside Biosynthesis in Stevia rebaudiana Bertoni by Real-Time Polymerase Chain Reaction (RT-PCR). Methods Mol Biol 2016; 1391:289-301. [PMID: 27108325 DOI: 10.1007/978-1-4939-3332-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Stevia (Stevia rebaudiana Bertoni) is a medicinal plant having sweet, diterpenoid glycosides known as steviol glycosides which are 200-300 times sweeter than sucrose (0.4 % solution). They are synthesized mainly in the leaves via plastid localized 2-C-methyl-D-erythrose-4-phosphate pathway (MEP pathway). Fifteen genes are involved in the formation of these glycosides. In the present protocol, a method for the quantification of transcripts of these genes is shown. The work involves RNA extraction and cDNA preparation, and therefore, procedures for the confirmation of DNA-free cDNA preparation have also been illustrated. Moreover, details of plant treatments are not mentioned as this protocol may apply to relative gene expression profile in any medicinal plant with any treatment. The treatments are numbered as T0 (Control), T1, T2, T3, and T4.
Collapse
Affiliation(s)
- Arpan Modi
- Department of Agricultural Biotechnology, Plant Tissue Culture Lab, Anand Agricultural University, Anand, 388110, Gujarat, India.
| | - Nitish Kumar
- Centre of Biological Sciences (Biotechnology), School of Earth, Biological and Environmental Science, Central University of Bihar, Patna, 800014, India
| | - Subhash Narayanan
- Department of Agricultural Biotechnology, Anand Agricultural University, Anand, 388110, India
| |
Collapse
|
34
|
Su J, Fan S, Li L, Wei H, Wang C, Wang H, Song M, Zhang C, Gu L, Zhao S, Mao G, Wang C, Pang C, Yu S. Detection of Favorable QTL Alleles and Candidate Genes for Lint Percentage by GWAS in Chinese Upland Cotton. FRONTIERS IN PLANT SCIENCE 2016; 7:1576. [PMID: 27818672 PMCID: PMC5073211 DOI: 10.3389/fpls.2016.01576] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/06/2016] [Indexed: 05/18/2023]
Abstract
Improving cotton yield is a major breeding goal for Chinese upland cotton. Lint percentage is an important yield component and a critical economic index for cotton cultivars, and raising the lint percentage has a close relationship to improving cotton lint yield. To investigate the genetic architecture of lint percentage, a diversity panel consisting of 355 upland cotton accessions was grown, and the lint percentage was measured in four different environments. Genotyping was performed with specific-locus amplified fragment sequencing (SLAF-seq). Twelve single-nucleotide polymorphisms (SNPs) associated with lint percentage were detected via a genome-wide association study (GWAS), in which five SNP loci distributed on chromosomes At3 (A02) and At4 (A08) and contained two major-effect QTLs, which were detected in the best linear unbiased predictions (BLUPs) and in more than three environments simultaneously. Furthermore, favorable haplotypes (FHs) of two major-effect QTLs and 47 putative candidate genes in the two linkage disequilibrium (LD) blocks of these associated loci were identified. The expression levels of these putative candidate genes were estimated using RNA-seq data from ten upland cotton tissues. We found that Gh_A02G1268 was very highly expressed during the early fiber development stage, whereas the gene was poorly expressed in the seed. These results implied that Gh_A02G1268 may determine the lint percentage by regulating seed and fiber development. The favorable QTL alleles and candidate genes for lint percentage identified in this study will have high potential for improving lint yield in future Chinese cotton breeding programs.
Collapse
Affiliation(s)
- Junji Su
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
- Department of Plant Sciences, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
| | - Libei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
| | - Caixiang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
| | - Hantao Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
| | - Chi Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
| | - Lijiao Gu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
| | - Shuqi Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
| | - Guangzhi Mao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
| | - Chengshe Wang
- Department of Plant Sciences, College of Agronomy, Northwest A&F UniversityYangling, China
| | - Chaoyou Pang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
- *Correspondence: Chaoyou Pang
| | - Shuxun Yu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAASAnyang, China
- Department of Plant Sciences, College of Agronomy, Northwest A&F UniversityYangling, China
- Shuxun Yu
| |
Collapse
|
35
|
Microarray-based large scale detection of single feature polymorphism in Gossypium hirsutum L. J Genet 2015; 94:669-76. [PMID: 26690522 DOI: 10.1007/s12041-015-0584-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Microarrays offer an opportunity to explore the functional sequence polymorphism among different cultivars of many crop plants. The Affymetrix microarray expression data of five genotypes of Gossypium hirsutum L. at six different fibre developmental stages was used to identify single feature polymorphisms (SFPs). The background corrected and quantile-normalized log2 intensity values of all probes of triplicate data of each cotton variety were subjected to SFPs call by using SAM procedure in R language software. We detected a total of 37,473 SFPs among six pair genotype combinations of two superior (JKC777 and JKC725) and three inferior (JKC703, JKC737 and JKC783) using the expression data. The 224 SFPs covering 51 genes were randomly selected from the dataset of all six fibre developmental stages of JKC777 and JKC703 for validation by sequencing on a capillary sequencer. Of these 224 SFPs, 132 were found to be polymorphic and 92 monomorphic which indicate that the SFP prediction from the expression data in the present study confirmed a ~58.92% of true SFPs. We further identified that most of the SFPs are associated with genes involved in fatty acid, flavonoid, auxin biosynthesis etc. indicating that these pathways significantly involved in fibre development.
Collapse
|
36
|
Liu Q, Wang Z, Xu X, Zhang H, Li C. Genome-Wide Analysis of C2H2 Zinc-Finger Family Transcription Factors and Their Responses to Abiotic Stresses in Poplar (Populus trichocarpa). PLoS One 2015; 10:e0134753. [PMID: 26237514 PMCID: PMC4523194 DOI: 10.1371/journal.pone.0134753] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 07/13/2015] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND C2H2 zinc-finger (C2H2-ZF) proteins are a large gene family in plants that participate in various aspects of normal plant growth and development, as well as in biotic and abiotic stress responses. To date, no overall analysis incorporating evolutionary history and expression profiling of the C2H2-ZF gene family in model tree species poplar (Populus trichocarpa) has been reported. PRINCIPAL FINDINGS Here, we identified 109 full-length C2H2-ZF genes in P. trichocarpa, and classified them into four groups, based on phylogenetic analysis. The 109 C2H2-ZF genes were distributed unequally on 19 P. trichocarpa linkage groups (LGs), with 39 segmental duplication events, indicating that segmental duplication has been important in the expansion of the C2H2-ZF gene family. Promoter cis-element analysis indicated that most of the C2H2-ZF genes contain phytohormone or abiotic stress-related cis-elements. The expression patterns of C2H2-ZF genes, based on heatmap analysis, suggested that C2H2-ZF genes are involved in tissue and organ development, especially root and floral development. Expression analysis based on quantitative real-time reverse transcription polymerase chain reaction indicated that C2H2-ZF genes are significantly involved in drought, heat and salt response, possibly via different mechanisms. CONCLUSIONS This study provides a thorough overview of the P. trichocarpa C2H2-ZF gene family and presents a new perspective on the evolution of this gene family. In particular, some C2H2-ZF genes may be involved in environmental stress tolerance regulation. PtrZFP2, 19 and 95 showed high expression levels in leaves and/or roots under environmental stresses. Additionally, this study provided a solid foundation for studying the biological roles of C2H2-ZF genes in Populus growth and development. These results form the basis for further investigation of the roles of these candidate genes and for future genetic engineering and gene functional studies in Populus.
Collapse
Affiliation(s)
- Quangang Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Zhanchao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Xuemei Xu
- Library of Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Haizhen Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| | - Chenghao Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, Heilongjiang, People’s Republic of China
| |
Collapse
|
37
|
Sun X, Gong SY, Nie XY, Li Y, Li W, Huang GQ, Li XB. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2015; 154:420-32. [PMID: 25534543 DOI: 10.1111/ppl.12317] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/30/2014] [Accepted: 12/12/2014] [Indexed: 05/22/2023]
Abstract
Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers.
Collapse
Affiliation(s)
- Xiang Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Si-Ying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiao-Ying Nie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Geng-Qing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
38
|
Tuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, Haigler CH. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics 2015; 16:477. [PMID: 26116072 PMCID: PMC4482290 DOI: 10.1186/s12864-015-1708-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/19/2015] [Indexed: 11/20/2022] Open
Abstract
Background The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber. Results Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA. Conclusions The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1708-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John R Tuttle
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Gyoungju Nah
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Mary V Duke
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | | | - Xueying Guan
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Qingxin Song
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Z Jeffrey Chen
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Brian E Scheffler
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | - Candace H Haigler
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
39
|
Huang Y, Wei X, Zhou S, Liu M, Tu Y, Li A, Chen P, Wang Y, Zhang X, Tai H, Peng L, Xia T. Steam explosion distinctively enhances biomass enzymatic saccharification of cotton stalks by largely reducing cellulose polymerization degree in G. barbadense and G. hirsutum. BIORESOURCE TECHNOLOGY 2015; 181:224-30. [PMID: 25656866 DOI: 10.1016/j.biortech.2015.01.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 01/04/2015] [Accepted: 01/06/2015] [Indexed: 05/05/2023]
Abstract
In this study, steam explosion pretreatment was performed in cotton stalks, leading to 5-6 folds enhancements on biomass enzymatic saccharification distinctive in Gossypium barbadense and Gossypium hirsutum species. Sequential 1% H2SO4 pretreatment could further increase biomass digestibility of the steam-exploded stalks, and also cause the highest sugar-ethanol conversion rates probably by releasing less inhibitor to yeast fermentation. By comparison, extremely high concentration alkali (16% NaOH) pretreatment with raw stalks resulted in the highest hexoses yields, but it had the lowest sugar-ethanol conversion rates. Characterization of wall polymer features indicated that biomass saccharification was enhanced with steam explosion by largely reducing cellulose DP and extracting hemicelluloses. It also showed that cellulose crystallinity and arabinose substitution degree of xylans were the major factors on biomass digestibility in cotton stalks. Hence, this study has provided the insights into cell wall modification and biomass process technology in cotton stalks and beyond.
Collapse
Affiliation(s)
- Yu Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaoyang Wei
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Shiguang Zhou
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China
| | - Mingyong Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuanyuan Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ao Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Peng Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanting Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuewen Zhang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Hongzhong Tai
- Institute of Agricultural Sciences and Technology, Agricultural Production Division, Xinjiang Production and Construction Corps, Alar Xinjiang 843300, China
| | - Liangcai Peng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tao Xia
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
40
|
Xu Z, Yu J, Kohel RJ, Percy RG, Beavis WD, Main D, Yu JZ. Distribution and evolution of cotton fiber development genes in the fibreless Gossypium raimondii genome. Genomics 2015; 106:61-9. [PMID: 25796538 DOI: 10.1016/j.ygeno.2015.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 02/05/2015] [Accepted: 03/11/2015] [Indexed: 01/15/2023]
Abstract
Cotton fiber represents the largest single cell in plants and they serve as models to study cell development. This study investigated the distribution and evolution of fiber Unigenes anchored to recombination hotspots between tetraploid cotton (Gossypium hirsutum) At and Dt subgenomes, and within a parental diploid cotton (Gossypium raimondii) D genome. Comparative analysis of At vs D and Dt vs D showed that 1) the D genome provides many fiber genes after its merger with another parental diploid cotton (Gossypium arboreum) A genome although the D genome itself does not produce any spinnable fiber; 2) similarity of fiber genes is higher between At vs D than between Dt vs D genomic hotspots. This is the first report that fiber genes have higher similarity between At and D than between Dt and D. The finding provides new insights into cotton genomic regions that would facilitate genetic improvement of natural fiber properties.
Collapse
Affiliation(s)
- Zhanyou Xu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA; Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Jing Yu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA; Department of Horticulture, Washington State University, Pullman, WA, USA
| | - Russell J Kohel
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - Richard G Percy
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA
| | - William D Beavis
- Bioinformatics and Computational Biology, Iowa State University, Ames, IA, USA
| | - Dorrie Main
- Department of Horticulture, Washington State University, Pullman, WA, USA
| | - John Z Yu
- USDA-ARS, Southern Plains Agricultural Research Center, College Station, TX, USA.
| |
Collapse
|
41
|
Hu G, Koh J, Yoo MJ, Pathak D, Chen S, Wendel JF. Proteomics profiling of fiber development and domestication in upland cotton (Gossypium hirsutum L.). PLANTA 2014; 240:1237-1251. [PMID: 25156487 DOI: 10.1007/s00425-014-2146-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Comparative proteomic analyses were performed to detail the evolutionary consequences of strong directional selection for enhanced fiber traits in modern upland cotton (Gossypium hirsutum L.). Using two complementary proteomic approaches, 2-DE and iTRAQ LC-MS/MS, fiber proteomes were examined for four representative stages of fiber development. Approximately 1,000 protein features were characterized using each strategy, collectively resulting in the identification and functional categorization of 1,223 proteins. Unequal contributions of homoeologous proteins were detected for over a third of the fiber proteome, but overall expression was balanced with respect to the genome-of-origin in the allopolyploid G. hirsutum. About 30% of the proteins were differentially expressed during fiber development within wild and domesticated cotton. Notably, domestication was accompanied by a doubling of protein developmental dynamics for the period between 10 and 20 days following pollination. Expression levels of 240 iTRAQ proteins and 293 2-DE spots were altered by domestication, collectively representing multiple cellular and metabolic processes, including metabolism, energy, protein synthesis and destination, defense and stress response. Analyses of homoeolog-specific expression indicate that duplicated gene products in cotton fibers can be differently regulated in response to selection. These results demonstrate the power of proteomics for the analysis of crop domestication and phenotypic evolution.
Collapse
Affiliation(s)
- Guanjing Hu
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | | | |
Collapse
|
42
|
Rajasundaram D, Runavot JL, Guo X, Willats WGT, Meulewaeter F, Selbig J. Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides. PLoS One 2014; 9:e112168. [PMID: 25383868 PMCID: PMC4226482 DOI: 10.1371/journal.pone.0112168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/06/2014] [Indexed: 12/03/2022] Open
Abstract
A detailed knowledge of cell wall heterogeneity and complexity is crucial for understanding plant growth and development. One key challenge is to establish links between polysaccharide-rich cell walls and their phenotypic characteristics. It is of particular interest for some plant material, like cotton fibers, which are of both biological and industrial importance. To this end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches. Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength, elongation and micronaire were measured. The relationship between the two datasets was established in an integrative manner using linear regression methods. In the conducted analysis, we demonstrated the usefulness of regression based approaches in establishing a relationship between glycan measurements and phenotypic traits. In addition, the analysis also identified specific polysaccharides which may play a major role during fiber development for the final fiber characteristics. Three different regression methods identified a negative correlation between micronaire and the xyloglucan and homogalacturonan probes. Moreover, homogalacturonan and callose were shown to be significant predictors for fiber length. The role of these polysaccharides was already pointed out in previous cell wall elongation studies. Additional relationships were predicted for fiber strength and elongation which will need further experimental validation.
Collapse
Affiliation(s)
- Dhivyaa Rajasundaram
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jean-Luc Runavot
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej, 40 1.1871, Fredriksberg C, Denmark
| | - William G. T. Willats
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej, 40 1.1871, Fredriksberg C, Denmark
| | - Frank Meulewaeter
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Joachim Selbig
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- * E-mail:
| |
Collapse
|
43
|
Fang L, Tian R, Li X, Chen J, Wang S, Wang P, Zhang T. Cotton fiber elongation network revealed by expression profiling of longer fiber lines introgressed with different Gossypium barbadense chromosome segments. BMC Genomics 2014; 15:838. [PMID: 25273845 PMCID: PMC4190578 DOI: 10.1186/1471-2164-15-838] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 09/24/2014] [Indexed: 12/24/2022] Open
Abstract
Background Cotton fiber, a highly elongated, thickened single cell of the seed epidermis, is a powerful cell wall research model. Fiber length, largely determined during the elongation stage, is a key property of fiber quality. Several studies using expressed sequence tags and microarray analysis have identified transcripts that accumulate preferentially during fiber elongation. To further show the mechanism of fiber elongation, we used Digital Gene Expression Tag Profiling to compare transcriptome data from longer fiber chromosome introgressed lines (CSILs) containing segments of various Gossypium barbadense chromosomes with data from its recurrent parent TM-1 during fiber elongation (from 5 DPA to 20 DPA). Results A large number of differentially expressed genes (DEGs) involved in carbohydrate, fatty acid and secondary metabolism, particularly cell wall biosynthesis, were highly upregulated during the fiber elongation stage, as determined by functional enrichment and pathway analysis. Furthermore, DEGs related to hormone responses and transcription factors showed upregulated expression levels in the CSILs. Moreover, metabolic and regulatory network analysis indicated that the same pathways were differentially altered, and distinct pathways exhibited altered gene expression, in the CSILs. Interestingly, mining of upregulated DEGs in the introgressed segments of these CSILs based on D-genome sequence data showed that these lines were enriched in glucuronosyltransferase, inositol-1, 4, 5-trisphosphate 3-kinase and desulfoglucosinolate sulfotransferase activity. These results were similar to the results of transcriptome analysis. Conclusions This report provides an integrative network about the molecular mechanisms controlling fiber length, which are mainly tied to carbohydrate metabolism, cell wall biosynthesis, fatty acid metabolism, secondary metabolism, hormone responses and Transcription factors. The results of this study provide new insights into the critical factors associated with cell elongation and will facilitate further research aimed at understanding the mechanisms underlying cotton fiber elongation. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-838) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
44
|
Li L, Huang J, Qin L, Huang Y, Zeng W, Rao Y, Li J, Li X, Xu W. Two cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynthesis during plant development. PHYSIOLOGIA PLANTARUM 2014; 152:367-79. [PMID: 24641584 DOI: 10.1111/ppl.12190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 05/02/2023]
Abstract
Xylan is the major hemicellulosic constituent in dicot secondary cell walls. Cell wall composition of cotton fiber changes dynamically throughout development. Not only the amounts but also the molecular sizes of the hemicellulosic polysaccharides show substantial changes during cotton fiber development. However, none of the genes encoding glycosyltransferases (GTs) responsible for synthesizing xylan have been isolated and characterized in cotton fiber. In this study, we applied a bioinformatics approach and identified two putative GTs from cotton, designated GhGT43A1 and GhGT43C1, which belong to the CAZy GT43 family and are closely related to Arabidopsis IRX9 and IRX14, respectively. We show that GhGT43A1 is highly and preferentially expressed in 15 and 20 days post-anthesis (dpa) cotton fiber, whereas GhGT43C1 is ubiquitously expressed in most organs, with especially high expression in 15 dpa fiber and hypocotyl. Complementation analysis demonstrates that GhG43A1 and GhGT43C1 are orthologs of Arabidopsis IRX9 and IRX14, respectively. Furthermore, we show that overexpression of GhGT43A1 or GhGT43C1 in Arabidopsis results in increased xylan content. We also show that overexpression of GhGT43A1 or GhGT43C1 leads to more cellulose deposition. These findings suggest that GhGT43A1 and GhGT43C1 likely participate in xylan synthesis during fiber development.
Collapse
Affiliation(s)
- Long Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Characterization of the global transcriptome for cotton (Gossypium hirsutum L.) anther and development of SSR marker. Gene 2014; 551:206-13. [PMID: 25178523 DOI: 10.1016/j.gene.2014.08.058] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/26/2014] [Accepted: 08/29/2014] [Indexed: 11/20/2022]
Abstract
Cotton is an important fiber plant, and it's attractive to elucidate the molecular mechanism of anther development due to the close relationship between the anther fertility and boll-setting, and also fiber yield. In the present paper, 47.2 million paired-end reads with average length of 82.87 bp from the anthers of TM-1 (Gossypium hirsutum L.), a genetic standard line, were generated through transcriptome sequencing, and 210,965 unigenes of more than 100 bp were obtained. BLAST, KEGG, COG, and GO analyses showed that the genes were enriched in the processes of transcription, translation, and post-translation as well as hormone signal transduction, the transcription factor families, and cell wall-related genes mainly participating in cell expansion and carbohydrate metabolism. Further analysis identified 11,153 potential SSRs. A suit of 5122 primer pair sequences were designed, and 82 of 300 randomly selected primer pairs produced reproducible amplicons that were polymorphic among 22 cotton accessions from G. hirsutum, Gossypium barbadense and Gossypium arboreum. The UPGMA clustering analysis further confirmed high quality and effectiveness of these novel SSR markers. The present study provided insights into the transcriptome profile of the cotton and established a public information platform for functional genomics and molecular breeding.
Collapse
|
46
|
Modi A, Litoriya N, Prajapati V, Rafalia R, Narayanan S. Transcriptional profiling of genes involved in steviol glycoside biosynthesis inStevia rebaudianabertoni during plant hardening. Dev Dyn 2014; 243:1067-73. [DOI: 10.1002/dvdy.24157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 06/11/2014] [Accepted: 06/16/2014] [Indexed: 11/07/2022] Open
Affiliation(s)
- Arpan Modi
- Plant Tissue Culture Laboratory; Anand Agricultural University; Anand Gujarat India
| | - Nitesh Litoriya
- Food Quality Testing Laboratory; Navsari Agricultural University; Navsari Gujarat India
| | - Vijay Prajapati
- Department of Biochemistry; Anand Agricultural University; Anand Gujarat India
| | - Rutul Rafalia
- Plant Tissue Culture Laboratory; Anand Agricultural University; Anand Gujarat India
| | - Subhash Narayanan
- Plant Tissue Culture Laboratory; Anand Agricultural University; Anand Gujarat India
| |
Collapse
|
47
|
Fang L, Tian R, Chen J, Wang S, Li X, Wang P, Zhang T. Transcriptomic analysis of fiber strength in upland cotton chromosome introgression lines carrying different Gossypium barbadense chromosomal segments. PLoS One 2014; 9:e94642. [PMID: 24762562 PMCID: PMC3998979 DOI: 10.1371/journal.pone.0094642] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/17/2014] [Indexed: 01/09/2023] Open
Abstract
Fiber strength is the key trait that determines fiber quality in cotton, and it is closely related to secondary cell wall synthesis. To understand the mechanism underlying fiber strength, we compared fiber transcriptomes from different G. barbadense chromosome introgression lines (CSILs) that had higher fiber strengths than their recipient, G. hirsutum acc. TM-1. A total of 18,288 differentially expressed genes (DEGs) were detected between CSIL-35431 and CSIL-31010, two CSILs with stronger fiber and TM-1 during secondary cell wall synthesis. Functional classification and enrichment analysis revealed that these DEGs were enriched for secondary cell wall biogenesis, glucuronoxylan biosynthesis, cellulose biosynthesis, sugar-mediated signaling pathways, and fatty acid biosynthesis. Pathway analysis showed that these DEGs participated in starch and sucrose metabolism (328 genes), glycolysis/gluconeogenesis (122 genes), phenylpropanoid biosynthesis (101 genes), and oxidative phosphorylation (87 genes), etc. Moreover, the expression of MYB- and NAC-type transcription factor genes were also dramatically different between the CSILs and TM-1. Being different to those of CSIL-31134, CSIL-35431 and CSIL-31010, there were many genes for fatty acid degradation and biosynthesis, and also for carbohydrate metabolism that were down-regulated in CSIL-35368. Metabolic pathway analysis in the CSILs showed that different pathways were changed, and some changes at the same developmental stage in some pathways. Our results extended our understanding that carbonhydrate metabolic pathway and secondary cell wall biosynthesis can affect the fiber strength and suggested more genes and/or pathways be related to complex fiber strength formation process.
Collapse
Affiliation(s)
- Lei Fang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Ruiping Tian
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Jiedan Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Sen Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Xinghe Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Peng Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
| | - Tianzhen Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Cotton Hybrid R & D Engineering Center (the Ministry of Education), Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
48
|
Nigam D, Kavita P, Tripathi RK, Ranjan A, Goel R, Asif M, Shukla A, Singh G, Rana D, Sawant SV. Transcriptome dynamics during fibre development in contrasting genotypes of Gossypium hirsutum L. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:204-218. [PMID: 24119257 DOI: 10.1111/pbi.12129] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/29/2013] [Accepted: 09/03/2013] [Indexed: 06/02/2023]
Abstract
Understanding the contribution of genetic background in fibre quality traits is important for the development of future cotton varieties with superior fibre quality. We used Affymetrix microarray (Santa Clara, CA) and Roche 454 GSFLX (Branford, CT) for comparative transcriptome analysis between two superior and three inferior genotypes at six fibre developmental stages. Microarray-based analysis of variance (ANOVA) for 89 microarrays encompassing five contrasting genotypes and six developmental stages suggests that the stages of the fibre development have a more pronounced effect on the differentially expressed genes (DEGs) than the genetic background of genotypes. Superior genotypes showed enriched activity of cell wall enzymes, such as pectin methyl esterase, at early elongation stage, enriched metabolic activities such as lipid, amino acid and ribosomal protein subunits at peak elongation, and prolonged combinatorial regulation of brassinosteroid and auxin at later stages. Our efforts on transcriptome sequencing were focused on changes in gene expression at 25 DPA. Transcriptome sequencing resulted in the generation of 475 658 and 429 408 high-quality reads from superior and inferior genotypes, respectively. A total of 24 609 novel transcripts were identified manually for Gossypium hirsutum with no hits in NCBI 'nr' database. Gene ontology analyses showed that the genes for ribosome biogenesis, protein transport and fatty acid biosynthesis were over-represented in superior genotype, whereas salt stress, abscisic acid stimuli and water deprivation leading to the increased proteolytic activity were more pronounced in inferior genotype.
Collapse
Affiliation(s)
- Deepti Nigam
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Wang C, Lv Y, Xu W, Zhang T, Guo W. Aberrant phenotype and transcriptome expression during fiber cell wall thickening caused by the mutation of the Im gene in immature fiber (im) mutant in Gossypium hirsutum L. BMC Genomics 2014; 15:94. [PMID: 24483163 PMCID: PMC3925256 DOI: 10.1186/1471-2164-15-94] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 01/31/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The immature fiber (im) mutant of Gossypium hirsutum L. is a special cotton fiber mutant with non-fluffy fibers. It has low dry weight and fineness of fibers due to developmental defects in fiber secondary cell wall (SCW). RESULTS We compared the cellulose content in fibers, thickness of fiber cell wall and fiber transcriptional profiling during SCW development in im mutant and its near-isogenic wild-type line (NIL) TM-1. The im mutant had lower cellulose content and thinner cell walls than TM-1 at same fiber developmental stage. During 25 ~ 35 day post-anthesis (DPA), sucrose content, an important carbon source for cellulose synthesis, was also significantly lower in im mutant than in TM-1. Comparative analysis of fiber transcriptional profiling from 13 ~ 25 DPA indicated that the largest transcriptional variations between the two lines occurred at the onset of SCW development. TM-1 began SCW biosynthesis approximately at 16 DPA, whereas the same fiber developmental program in im mutant was delayed until 19 DPA, suggesting an asynchronous fiber developmental program between TM-1 and im mutant. Functional classification and enrichment analysis of differentially expressed genes (DEGs) between the two NILs indicated that genes associated with biological processes related to cellulose synthesis, secondary cell wall biogenesis, cell wall thickening and sucrose metabolism, respectively, were significantly up-regulated in TM-1. Twelve genes related to carbohydrate metabolism were validated by quantitative reverse transcription PCR (qRT-PCR) and confirmed a temporal difference at the earlier transition and SCW biosynthesis stages of fiber development between TM-1 and im mutant. CONCLUSIONS We propose that Im is an important regulatory gene influencing temporal differences in expression of genes related to fiber SCW biosynthesis. This study lays a foundation for cloning the Im gene, elucidating molecular mechanism of fiber SCW development and further genetic manipulation for the improvement of fiber fineness and maturity.
Collapse
Affiliation(s)
- Cheng Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanda Lv
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Wentin Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Hybrid Cotton R & D Engineering Research Center, MOE, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
50
|
Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber. PLoS One 2014; 9:e86344. [PMID: 24466041 PMCID: PMC3897678 DOI: 10.1371/journal.pone.0086344] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/10/2013] [Indexed: 02/02/2023] Open
Abstract
Brown cotton fiber is the major raw material for colored cotton industry. Previous studies have showed that the brown pigments in cotton fiber belong to proanthocyanidins (PAs). To clarify the details of PA biosynthesis pathway in brown cotton fiber, gene expression profiles in developing brown and white fibers were compared via digital gene expression profiling and qRT-PCR. Compared to white cotton fiber, all steps from phenylalanine to PA monomers (flavan-3-ols) were significantly up-regulated in brown fiber. Liquid chromatography mass spectrometry analyses showed that most of free flavan-3-ols in brown fiber were in 2, 3-trans form (gallocatechin and catechin), and the main units of polymeric PAs were trihydroxylated on B ring. Consistent with monomeric composition, the transcript levels of flavonoid 3′, 5′-hydroxylase and leucoanthocyanidin reductase in cotton fiber were much higher than their competing enzymes acting on the same substrates (dihydroflavonol 4-reductase and anthocyanidin synthase, respectively). Taken together, our data revealed a detailed PA biosynthesis pathway wholly activated in brown cotton fiber, and demonstrated that flavonoid 3′, 5′-hydroxylase and leucoanthocyanidin reductase represented the primary flow of PA biosynthesis in cotton fiber.
Collapse
|