1
|
Liu N, Li JX, Yuan DY, Su YN, Zhang P, Wang Q, Su XM, Li L, Li H, Chen S, He XJ. Essential angiosperm-specific subunits of HDA19 histone deacetylase complexes in Arabidopsis. EMBO J 2025:10.1038/s44318-025-00445-w. [PMID: 40295864 DOI: 10.1038/s44318-025-00445-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 02/14/2025] [Accepted: 03/31/2025] [Indexed: 04/30/2025] Open
Abstract
Although the Arabidopsis thaliana RPD3-type histone deacetylase HDA19 and its close homolog HDA6 participate in SIN3-type histone deacetylase complexes, they display distinct biological roles, with the reason for these differences being poorly understood. This study identifies three angiosperm-specific HDA19-interacting homologous proteins, termed HDIP1, HDIP2, and HDIP3 (HDIP1/2/3). These proteins interact with HDA19 and other conserved histone deacetylase complex components, leading to the formation of HDA19-containing SIN3-type complexes, while they are not involved in the formation of HDA6-containing complexes. While mutants of conserved SIN3-type complex components show phenotypes divergent from the hda19 mutant, the hdip1/2/3 mutant closely phenocopies the hda19 mutant with respect to development, abscisic acid response, and drought stress tolerance. Genomic and transcriptomic analyses indicate that HDIP1/2/3 and HDA19 co-occupy chromatin and jointly repress gene transcription, especially for stress-related genes. An α-helix motif within HDIP1 has the capacity to bind to nucleosomes and architectural DNA, and is required for its function in Arabidopsis plants. These findings suggest that the angiosperm SIN3-type complexes have evolved to include additional subunits for the precise regulation of histone deacetylation and gene transcription.
Collapse
Affiliation(s)
- Na Liu
- College of Life Sciences, Beijing Normal University, Beijing, China
- National Institute of Biological Sciences, Beijing, China
| | - Jia-Xin Li
- National Institute of Biological Sciences, Beijing, China
| | - Dan-Yang Yuan
- National Institute of Biological Sciences, Beijing, China
| | - Yin-Na Su
- National Institute of Biological Sciences, Beijing, China
| | - Pei Zhang
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Qi Wang
- National Institute of Biological Sciences, Beijing, China
| | - Xiao-Min Su
- National Institute of Biological Sciences, Beijing, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, China
| | - Haitao Li
- School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, China
| | - Xin-Jian He
- National Institute of Biological Sciences, Beijing, China.
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Yin Q, Xiang L, Han X, Zhang Y, Lyu R, Yuan L, Chen S. The evolutionary advantage of artemisinin production by Artemisia annua. TRENDS IN PLANT SCIENCE 2025; 30:213-226. [PMID: 39362811 DOI: 10.1016/j.tplants.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 08/27/2024] [Accepted: 09/12/2024] [Indexed: 10/05/2024]
Abstract
Artemisinin, a potent antimalarial compound, is predominantly derived from Artemisia annua. The uniqueness of artemisinin production in A. annua lies in its complex biochemical pathways and genetic composition, distinguishing it from other plant species, even within the Asteraceae family. In this review, we investigate the potential of A. annua for artemisinin production, drawing evidence from natural populations and mutants. Leveraging high-quality whole-genome sequence analyses, we offer insights into the evolution of artemisinin biosynthesis. We also highlight current understanding of the protective functions of artemisinin in A. annua in response to both biotic and abiotic stresses. In addition, we explore the mechanisms used by A. annua to mitigate the phytotoxicity generated by artemisinin catabolism.
Collapse
Affiliation(s)
- Qinggang Yin
- Artemisinin Research Center, Institute of Chinese Materia Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China; Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Li Xiang
- Artemisinin Research Center, Institute of Chinese Materia Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Xiaoyan Han
- China National Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yujun Zhang
- Artemisinin Research Center, Institute of Chinese Materia Medica, State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Ruiqing Lyu
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA
| | - Ling Yuan
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546, USA; The Kentucky Tobacco Research and Development Center, University of Kentucky, Lexington, KY 40546, USA.
| | - Shilin Chen
- Institute of Herbgenomics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Sha A, Liu B, Liu C, Sun Q, Chen M, Peng L, Zou L, Zhao C, Li Q. Highland barley ELNs and physiological responses to different concentrations of Cr (VI) stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117379. [PMID: 39586204 DOI: 10.1016/j.ecoenv.2024.117379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/24/2024] [Accepted: 11/18/2024] [Indexed: 11/27/2024]
Abstract
This study is the first to use highland barley (HB) to study the toxic effects of Cr (VI) on seedlings and the response mechanism of HELNs to Cr (VI) stress. The outcomes indicated that the germination rate of HB seeds, plant height, root length, water content, and levels of proline (PRO) and soluble sugar in both leaves and roots were all impacted by varying concentrations of Cr (VI) treatments. Differential changes in the activities of antioxidant enzymes (SOD, POD, CAT) were observed in leaves and roots of HB. We also extracted HB-derived ELNs (HELNs) and characterized and sequenced HELNs. The average particle size of CK-HELNs was 79.0 nm, and the concentration of HELNs was 4.56 E+10 (particles/mL). As the concentration of Cr (VI) increased, the particle size of HELNs in HB seedlings also increased, while the concentration decreased. A total of 29 miRNA species were identified in CK-HELNs, Cr10-HELNs, and Cr40-HELNs. Out of these, 25 were newly predicted miRNAs, and the remaining four were known miRNAs. A total of 2 known miRNAs and 11 novel miRNAs were upregulated under different concentrations of Cr (VI) stress. 1 known and 5 novel miRNAs were downregulated under different concentrations of Cr (VI) stress. Enrichment of the GO and KEGG pathways revealed that the differential gene functions were mainly focused on binding and catalytic activities. This study reveals for the first time the changes of HELNs under different concentrations of Cr (VI) stress and the toxic effects of Cr (VI) on HB seedlings. This study provides a new perspective to explore the function and utilisation of ELNs.
Collapse
Affiliation(s)
- Ajia Sha
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Bingliang Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Changying Liu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; School of Public Health, Chengdu Medical College, Chengdu 610500, China
| | - Qizhong Sun
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Mingxing Chen
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lianxin Peng
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Changsong Zhao
- School of Public Health, Chengdu Medical College, Chengdu 610500, China.
| | - Qiang Li
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industrialization, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
4
|
Yu P, Shinde H, Dudhate A, Kamiya T, Gupta SK, Liu S, Takano T, Tsugama D. A pearl millet plasma membrane protein, PgPM19, facilitates seed germination through the negative regulation of abscisic acid-associated genes under salinity stress in Arabidopsis thaliana. PLANTA 2024; 260:131. [PMID: 39488664 DOI: 10.1007/s00425-024-04564-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/23/2024] [Indexed: 11/04/2024]
Abstract
MAIN CONCLUSION The pearl millet gene PgPM19 inhibits seed dormancy by negatively regulating the ABA biosynthesis and ABA signaling pathways in response to salinity stress in Arabidopsis. Abscisic acid (ABA) plays a pivotal role in orchestrating plant stress responses and development. However, how the ABA signal is transmitted in response to stresses remains primarily uncertain, particularly in monocotyledonous plants. In this study, PgPM19, a gene whose expression is induced by drought, salinity, heat, and ABA in both leaf and root tissues, was isolated from pearl millet. The expression of PgPM19 in yeast cells did not influence their growth when subjected to mannitol, sorbitol, or NaCl stress. However, Arabidopsis plants overexpressing PgPM19 (PgPM19_OE plants) exhibited increased germination rates, greater fresh weights and longer roots under salinity stress during germination, compared to wild-type (WT) plants. Conversely, the pm19L1 (SALK_075435) mutant, featuring a transfer DNA insertion in a closely related PgPM19 homolog (AT1G04560) in Arabidopsis, demonstrated reduced germination rates and smaller fresh weights under salinity-stressed condition than did WT and PgPM19_OE plants. A pivotal ABA biosynthesis gene, NCED3, ABA signaling pathway genes, such as PYL6 and SnRK2.7, alongside downstream ABI genes and stress-responsive genes RAB28 and RD29, were downregulated in PgPM19_OE plants, as evidenced by both transcriptome analysis and quantitative reverse transcription-PCR. These findings raise the possibility that PgPM19 is involved in regulating seed germination by mediating ABA biosynthesis and signaling pathway in response to salinity stress in Arabidopsis. This study contributes to a better understanding of PgPM19 in response to salinity stress and establishes a foundation for unraveling the crosstalk of stress responses and ABA in Arabidopsis and other plant species.
Collapse
Affiliation(s)
- Pei Yu
- SDU-ANU Joint Science College, Shandong University, Weihai, China.
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), The University of Tokyo, Nishitokyo, Japan.
| | - Harshraj Shinde
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ambika Dudhate
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Takehiro Kamiya
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shashi Kumar Gupta
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, Telangana, India
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Tetsuo Takano
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), The University of Tokyo, Nishitokyo, Japan
| | - Daisuke Tsugama
- Asian Research Center for Bioresource and Environmental Sciences (ARC-BRES), The University of Tokyo, Nishitokyo, Japan
| |
Collapse
|
5
|
Ben Saad R, Ben Romdhane W, Čmiková N, Baazaoui N, Bouteraa MT, Ben Akacha B, Chouaibi Y, Maisto M, Ben Hsouna A, Garzoli S, Wiszniewska A, Kačániová M. Research progress on plant stress-associated protein (SAP) family: Master regulators to deal with environmental stresses. Bioessays 2024; 46:e2400097. [PMID: 39248672 DOI: 10.1002/bies.202400097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/15/2024] [Accepted: 08/19/2024] [Indexed: 09/10/2024]
Abstract
Every year, unfavorable environmental factors significantly affect crop productivity and threaten food security. Plants are sessile; they cannot move to escape unfavorable environmental conditions, and therefore, they activate a variety of defense pathways. Among them are processes regulated by stress-associated proteins (SAPs). SAPs have a specific zinc finger domain (A20) at the N-terminus and either AN1 or C2H2 at the C-terminus. SAP proteins are involved in many biological processes and in response to various abiotic or biotic constraints. Most SAPs play a role in conferring transgenic stress resistance and are stress-inducible. The emerging field of SAPs in abiotic or biotic stress response regulation has attracted the attention of researchers. Although SAPs interact with various proteins to perform their functions, the exact mechanisms of these interactions remain incompletely understood. This review aims to provide a comprehensive understanding of SAPs, covering their diversity, structure, expression, and subcellular localization. SAPs play a pivotal role in enabling crosstalk between abiotic and biotic stress signaling pathways, making them essential for developing stress-tolerant crops without yield penalties. Collectively, understanding the complex regulation of SAPs in stress responses can contribute to enhancing tolerance against various environmental stresses through several techniques such as transgenesis, classical breeding, or gene editing.
Collapse
Affiliation(s)
- Rania Ben Saad
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Natália Čmiková
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
| | - Narjes Baazaoui
- Biology department, College of Sciences and Arts Muhayil Assir, King Khalid University, Abha, Saudi Arabia
| | - Mohamed Taieb Bouteraa
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Bouthaina Ben Akacha
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Yosra Chouaibi
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
| | - Maria Maisto
- Department of Pharmacy, University of Naples Federico II, Naples, Italy
| | - Anis Ben Hsouna
- Center of Biotechnology of Sfax, Biotechnology and Plant Improvement Laboratory, University of Sfax, Sfax, Tunisia
- Department of Environmental Sciences and Nutrition, Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, Mahdia, Tunisia
| | - Stefania Garzoli
- Department of Chemistry and Technologies of Drug, Sapienza University, Rome, Italy
| | - Alina Wiszniewska
- Department of Botany, Physiology and Plant Protection, University of Agriculture in Kraków, Kraków, Poland
| | - Miroslava Kačániová
- Institute of Horticulture, Faculty of Horticulture and Landscape Engineering, Slovak University of Agriculture, Nitra, Slovakia
- School of Medical & Health Sciences, University of Economics and Human Sciences in Warsaw, Warszawa, Poland
| |
Collapse
|
6
|
Lee K, Kang H. Recent Insights into the Physio-Biochemical and Molecular Mechanisms of Low Temperature Stress in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:2715. [PMID: 39409585 PMCID: PMC11478575 DOI: 10.3390/plants13192715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
Climate change has emerged as a crucial global issue that significantly threatens the survival of plants. In particular, low temperature (LT) is one of the critical environmental factors that influence plant morphological, physiological, and biochemical changes during both the vegetative and reproductive growth stages. LT, including abrupt drops in temperature, as well as winter conditions, can cause detrimental effects on the growth and development of tomato plants, ranging from sowing, transplanting, truss appearance, flowering, fertilization, flowering, fruit ripening, and yields. Therefore, it is imperative to understand the comprehensive mechanisms underlying the adaptation and acclimation of tomato plants to LT, from the morphological changes to the molecular levels. In this review, we discuss the previous and current knowledge of morphological, physiological, and biochemical changes, which contain vegetative and reproductive parameters involving the leaf length (LL), plant height (PH) stem diameter (SD), fruit set (FS), fruit ripening (FS), and fruit yield (FY), as well as photosynthetic parameters, cell membrane stability, osmolytes, and ROS homeostasis via antioxidants scavenging systems during LT stress in tomato plants. Moreover, we highlight recent advances in the understanding of molecular mechanisms, including LT perception, signaling transduction, gene regulation, and fruit ripening and epigenetic regulation. The comprehensive understanding of LT response provides a solid basis to develop the LT-resistant varieties for sustainable tomato production under the ever-changing temperature fluctuations.
Collapse
Affiliation(s)
- Kwanuk Lee
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| | - Hunseung Kang
- Department of Applied Biology, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| |
Collapse
|
7
|
Aizaz M, Lubna, Jan R, Asaf S, Bilal S, Kim KM, Al-Harrasi A. Regulatory Dynamics of Plant Hormones and Transcription Factors under Salt Stress. BIOLOGY 2024; 13:673. [PMID: 39336100 PMCID: PMC11429359 DOI: 10.3390/biology13090673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024]
Abstract
The negative impacts of soil salinization on ion homeostasis provide a significant global barrier to agricultural production and development. Plant physiology and biochemistry are severely affected by primary and secondary NaCl stress impacts, which damage cellular integrity, impair water uptake, and trigger physiological drought. Determining how transcriptional factors (TFs) and hormone networks are regulated in plants in response to salt stress is necessary for developing crops that tolerate salt. This study investigates the complex mechanisms of several significant TF families that influence plant responses to salt stress, involving AP2/ERF, bZIP, NAC, MYB, and WRKY. It demonstrates how these transcription factors (TFs) help plants respond to the detrimental effects of salinity by modulating gene expression through mechanisms including hormone signaling, osmotic stress pathway activation, and ion homeostasis. Additionally, it explores the hormonal imbalances triggered by salt stress, which entail complex interactions among phytohormones like jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA) within the hormonal regulatory networks. This review highlights the regulatory role of key transcription factors in salt-stress response, and their interaction with plant hormones is crucial for developing genome-edited crops that can enhance agricultural sustainability and address global food security challenges.
Collapse
Affiliation(s)
- Muhammad Aizaz
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Lubna
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Rahmatullah Jan
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sajjad Asaf
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Saqib Bilal
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| | - Kyung-Min Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Ahmed Al-Harrasi
- Natural and Medical Science Research Center, University of Nizwa, Nizwa 616, Oman
| |
Collapse
|
8
|
Yu Z, Chen X, Chen Z, Wang H, Shah SHA, Bai A, Liu T, Xiao D, Hou X, Li Y. BcSRC2 interacts with BcAPX4 to increase ascorbic acid content for responding ABA signaling and drought stress in pak choi. HORTICULTURE RESEARCH 2024; 11:uhae165. [PMID: 39896045 PMCID: PMC11784589 DOI: 10.1093/hr/uhae165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 02/04/2025]
Abstract
As a reducing substance, ascorbic acid functioned well in abiotic and biotic stress. However, the regulatory mechanism of drought resistance is rarely known in pak choi. Here we found a gene BcSRC2 containing a C2 domain that responds to ABA signal and drought regulation in pak choi. Silencing of BcSRC2 reduces ascorbic acid content and drought resistance of pak choi. In Arabidopsis, BcSRC2 overexpression promotes ascorbic acid accumulation and increases drought tolerance. Meanwhile, transcriptome analysis between WT and BcSRC2-overexpressing pak choi suggests that ascorbic acid-related genes are regulated. BcSRC2 interacts with BcAPX4 and inhibit APX activity in vitro and in vivo, increasing the ascorbic acid content. We also found that drought stress increases ABA content, which reduces the expression of BcMYB30. BcMYB30 bound to the promoter of BcSRC2 and reduced its expression. Overall, our results suggest that a regulatory module, BcMYB30-BcSRC2-BcAPX4, plays a central role in increasing ascorbic acid content for responding ABA-mediated drought regulation in pak choi.
Collapse
Affiliation(s)
- Zhanghong Yu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoshan Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongwen Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Haibin Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Sayyed Hamad Ahmad Shah
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Aimei Bai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Tongkun Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Dong Xiao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Xilin Hou
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Crop Physiology Ecology and Production Management, Ministry of Agriculture and Rural Affairs, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
9
|
Divya D, Robin AHK, Cho LH, Kim D, Lee DJ, Kim CK, Chung MY. Genome-wide characterization and expression profiling of E2F/DP gene family members in response to abiotic stress in tomato (Solanum lycopersicum L.). BMC PLANT BIOLOGY 2024; 24:436. [PMID: 38773361 PMCID: PMC11110339 DOI: 10.1186/s12870-024-05107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/05/2024] [Indexed: 05/23/2024]
Abstract
BACKGROUND E2F/DP (Eukaryotic 2 transcription factor/dimerization partner) family proteins play an essential function in the cell cycle development of higher organisms. E2F/DP family genes have been reported only in a few plant species. However, comprehensive genome-wide characterization analysis of the E2F/DP gene family of Solanum lycopersicum has not been reported so far. RESULTS This study identified eight nonredundant SlE2F/DP genes that were classified into seven groups in the phylogenetic analysis. All eight genes had a single E2F-TDP domain and few genes had additional domains. Two segmental duplication gene pairs were observed within tomato, in addition to cis-regulatory elements, miRNA target sites and phosphorylation sites which play an important role in plant development and stress response in tomato. To explore the three-dimensional (3D) models and gene ontology (GO) annotations of SlE2F/DP proteins, we pointed to their putative transporter activity and their interaction with several putative ligands. The localization of SlE2F/DP-GFP fused proteins in the nucleus and endoplasmic reticulum suggested that they may act in other biological functions. Expression studies revealed the differential expression pattern of most of the SlE2F/DP genes in various organs. Moreover, the expression of E2F/DP genes against abiotic stress, particularly SlE2F/DP2 and/or SlE2F/DP7, was upregulated in response to heat, salt, cold and ABA treatment. Furthermore, the co-expression analysis of SlE2F/DP genes with multiple metabolic pathways was co-expressed with defence genes, transcription factors and so on, suggested their crucial role in various biological processes. CONCLUSIONS Overall, our findings provide a way to understand the structure and function of SlE2F/DP genes; it might be helpful to improve fruit development and tolerance against abiotic stress through marker-assisted selection or transgenic approaches.
Collapse
Affiliation(s)
- Dhanasekar Divya
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea
| | - Arif Hasan Khan Robin
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do, 50463, Republic of Korea
| | - Dohyeon Kim
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do, 50463, Republic of Korea
| | - Do-Jin Lee
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, 41566, Republic of Korea.
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam, 540-950, Republic of Korea.
| |
Collapse
|
10
|
Lang S, Dong B, Liu X, Gu Y, Kim K, Xie Q, Wang Z, Song X. The key pathways for drought tolerance in Cerasus humilis were unveiled through transcriptome analysis. PHYSIOLOGIA PLANTARUM 2024; 176:e14350. [PMID: 38818576 DOI: 10.1111/ppl.14350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 05/02/2024] [Indexed: 06/01/2024]
Abstract
Drought stress exerts a significant impact on the growth, development, and yield of fruit trees. Cerasus humilis is an endemic drought-resistant fruit tree in northern China. To elucidate the underlying mechanism of drought resistance in C. humilis, comprehensive physiological measurements and transcriptome analysis were conducted on the leaves of C. humilis subjected to 15- or 22-days of drought stress. We identified multiple GO terms and KEGG pathways associated with the drought stress response by performing GO and KEGG analysis on DEGs. Furthermore, through the prediction of transcription factors (TFs) and analysis of their expression levels, we observed differential expression patterns among most members of stress-responsive TF families as the duration of drought stress increased. WGCNA analysis was performed on the transcriptome to identify gene cluster modules that exhibited a strong correlation with the durations of drought. Subsequently, these modules underwent GO and KEGG enrichment analyses. The study revealed that the TF-mediated lignin biosynthesis pathway, along with the plant hormone signal transduction pathway, played a prominent role in responding to drought stress of C. humilis. Gene profiling analysis, qRT-PCR, and determination of phytohormone and lignin contents further supported this hypothesis. The hierarchical gene regulatory network was finally constructed based on DEGs from the aforementioned key enriched pathways to predict the gene regulatory mechanisms in response to stress for C. humilis. The findings from this study provide valuable insights into how C. humilis copes with drought stress while analyzing crucial gene pathways associated with its resistance from a TF perspective. This research is significant for the genetic breeding of economic forests.
Collapse
Affiliation(s)
- Shaoyu Lang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Buming Dong
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Xin Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Yongmei Gu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Kukhon Kim
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
- Branch of Biotechnology, State Academy of Sciences, Pyongyang, the Democratic People's, Republic of Korea
| | - Qingjun Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Zhibo Wang
- College of Life Science, Northeast Forestry University, Harbin, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Xingshun Song
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (Northeast Forestry University), Ministry of Education, Harbin, China
- College of Life Science, Northeast Forestry University, Harbin, China
| |
Collapse
|
11
|
Yan Z, Zhang F, Mu C, Ma C, Yao G, Sun Y, Hou J, Leng B, Liu X. The ZmbHLH47-ZmSnRK2.9 Module Promotes Drought Tolerance in Maize. Int J Mol Sci 2024; 25:4957. [PMID: 38732175 PMCID: PMC11084430 DOI: 10.3390/ijms25094957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Drought stress globally poses a significant threat to maize (Zea mays L.) productivity and the underlying molecular mechanisms of drought tolerance remain elusive. In this study, we characterized ZmbHLH47, a basic helix-loop-helix (bHLH) transcription factor, as a positive regulator of drought tolerance in maize. ZmbHLH47 expression was notably induced by both drought stress and abscisic acid (ABA). Transgenic plants overexpressing ZmbHLH47 displayed elevated drought tolerance and ABA responsiveness, while the zmbhlh47 mutant exhibited increased drought sensitivity and reduced ABA sensitivity. Mechanistically, it was revealed that ZmbHLH47 could directly bind to the promoter of ZmSnRK2.9 gene, a member of the subgroup III SnRK2 kinases, activating its expression. Furthermore, ZmSnRK2.9-overexpressing plants exhibited enhanced ABA sensitivity and drought tolerance, whereas the zmsnrk2.9 mutant displayed a decreased sensitivity to both. Notably, overexpressing ZmbHLH47 in the zmsnrk2.9 mutant closely resembled the zmsnrk2.9 mutant, indicating the importance of the ZmbHLH47-ZmSnRK2.9 module in ABA response and drought tolerance. These findings provided valuable insights and a potential genetic resource for enhancing the environmental adaptability of maize.
Collapse
Affiliation(s)
- Zhenwei Yan
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Fajun Zhang
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Chunhua Mu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Changle Ma
- College of Life Sciences, Shandong Normal University, Jinan 250300, China;
| | - Guoqi Yao
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Yue Sun
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China;
| | - Jing Hou
- School of Agriculture, Ludong University, Yantai 264001, China;
| | - Bingying Leng
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| | - Xia Liu
- Maize Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (Z.Y.); (F.Z.); (C.M.); (G.Y.)
| |
Collapse
|
12
|
Uzilday B, Takahashi K, Kobayashi A, Uzilday RO, Fujii N, Takahashi H, Turkan I. Role of Abscisic Acid, Reactive Oxygen Species, and Ca 2+ Signaling in Hydrotropism-Drought Avoidance-Associated Response of Roots. PLANTS (BASEL, SWITZERLAND) 2024; 13:1220. [PMID: 38732435 PMCID: PMC11085316 DOI: 10.3390/plants13091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024]
Abstract
Plant roots exert hydrotropism in response to moisture gradients to avoid drought stress. The regulatory mechanism underlying hydrotropism involves novel regulators such as MIZ1 and GNOM/MIZ2 as well as abscisic acid (ABA), reactive oxygen species (ROS), and Ca2+ signaling. ABA, ROS, and Ca2+ signaling are also involved in plant responses to drought stress. Although the mechanism of moisture gradient perception remains largely unknown, the sensory apparatus has been reported to reside in the root elongation zone rather than in the root cap. In Arabidopsis roots, hydrotropism is mediated by the action of MIZ1 and ABA in the cortex of the elongation zone, the accumulation of ROS at the root curvature, and the variation in the cytosolic Ca2+ concentration in the entire root tip including the root cap and stele of the elongation zone. Moreover, root exposure to moisture gradients has been proposed to cause asymmetric ABA distribution or Ca2+ signaling, leading to the induction of the hydrotropic response. A comprehensive and detailed analysis of hydrotropism regulators and their signaling network in relation to the tissues required for their function is apparently crucial for understanding the mechanisms unique to root hydrotropism. Here, referring to studies on plant responses to drought stress, we summarize the recent findings relating to the role of ABA, ROS, and Ca2+ signaling in hydrotropism, discuss their functional sites and plausible networks, and raise some questions that need to be answered in future studies.
Collapse
Affiliation(s)
- Baris Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova 35100, Izmir, Turkey
| | - Kaori Takahashi
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Akie Kobayashi
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Rengin Ozgur Uzilday
- Department of Biology, Faculty of Science, Ege University, Bornova 35100, Izmir, Turkey
| | - Nobuharu Fujii
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
| | - Hideyuki Takahashi
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
- Research Center for Space Agriculture and Horticulture, Graduate School of Horticulture, Chiba University, Matsudo, Chiba 271-8510, Japan
| | - Ismail Turkan
- Department of Biology, Faculty of Science, Ege University, Bornova 35100, Izmir, Turkey
- Graduate School of Life Sciences, Tohoku University, Katahira, Sendai 980-8577, Japan
- Faculty of Agricultural Sciences and Technologies, Yasar University, University Street, No. 37-39, Bornova 35100, Izmir, Turkey
| |
Collapse
|
13
|
Yang X, Wang M, Zhou Q, Xu X, Li Y, Hou X, Xiao D, Liu T. BcABF1 Plays a Role in the Feedback Regulation of Abscisic Acid Signaling via the Direct Activation of BcPYL4 Expression in Pakchoi. Int J Mol Sci 2024; 25:3877. [PMID: 38612692 PMCID: PMC11011251 DOI: 10.3390/ijms25073877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
Abscisic acid-responsive element-binding factor 1 (ABF1), a key transcription factor in the ABA signal transduction process, regulates the expression of downstream ABA-responsive genes and is involved in modulating plant responses to abiotic stress and developmental processes. However, there is currently limited research on the feedback regulation of ABF1 in ABA signaling. This study delves into the function of BcABF1 in Pakchoi. We observed a marked increase in BcABF1 expression in leaves upon ABA induction. The overexpression of BcABF1 not only spurred Arabidopsis growth but also augmented the levels of endogenous IAA. Furthermore, BcABF1 overexpression in Arabidopsis significantly decreased leaf water loss and enhanced the expression of genes associated with drought tolerance in the ABA pathway. Intriguingly, we found that BcABF1 can directly activate BcPYL4 expression, a critical receptor in the ABA pathway. Similar to BcABF1, the overexpression of BcPYL4 in Arabidopsis also reduces leaf water loss and promotes the expression of drought and other ABA-responsive genes. Finally, our findings suggested a novel feedback regulation mechanism within the ABA signaling pathway, wherein BcABF1 positively amplifies the ABA signal by directly binding to and activating the BcPYL4 promoter.
Collapse
Affiliation(s)
- Xiaoxue Yang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Meiyun Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Qian Zhou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Xinfeng Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Ying Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Xilin Hou
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Dong Xiao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
| | - Tongkun Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), State Key Laboratory of Crop Genetics & Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of China, Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of China, Nanjing Agricultural University, Nanjing 210095, China; (X.Y.); (M.W.); (Q.Z.); (X.X.); (Y.L.); (X.H.)
- Sanya Research Institute, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
14
|
Meher PK, Sahu TK, Gupta A, Kumar A, Rustgi S. ASRpro: A machine-learning computational model for identifying proteins associated with multiple abiotic stress in plants. THE PLANT GENOME 2024; 17:e20259. [PMID: 36098562 DOI: 10.1002/tpg2.20259] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
One of the thrust areas of research in plant breeding is to develop crop cultivars with enhanced tolerance to abiotic stresses. Thus, identifying abiotic stress-responsive genes (SRGs) and proteins is important for plant breeding research. However, identifying such genes via established genetic approaches is laborious and resource intensive. Although transcriptome profiling has remained a reliable method of SRG identification, it is species specific. Additionally, identifying multistress responsive genes using gene expression studies is cumbersome. Thus, endorsing the need to develop a computational method for identifying the genes associated with different abiotic stresses. In this work, we aimed to develop a computational model for identifying genes responsive to six abiotic stresses: cold, drought, heat, light, oxidative, and salt. The predictions were performed using support vector machine (SVM), random forest, adaptive boosting (ADB), and extreme gradient boosting (XGB), where the autocross covariance (ACC) and K-mer compositional features were used as input. With ACC, K-mer, and ACC + K-mer compositional features, the overall accuracy of ∼60-77, ∼75-86, and ∼61-78% were respectively obtained using the SVM algorithm with fivefold cross-validation. The SVM also achieved higher accuracy than the other three algorithms. The proposed model was also assessed with an independent dataset and obtained an accuracy consistent with cross-validation. The proposed model is the first of its kind and is expected to serve the requirement of experimental biologists; however, the prediction accuracy was modest. Given its importance for the research community, the online prediction application, ASRpro, is made freely available (https://iasri-sg.icar.gov.in/asrpro/) for predicting abiotic SRGs and proteins.
Collapse
Affiliation(s)
| | | | - Ajit Gupta
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anuj Kumar
- Dep. of Microbiology and Immunology, Dalhousie Univ., Halifax, Nova Scotia, Canada
- Laboratory of Immunity, Shantou Univ. Medical College, Shantou, PRC
| | - Sachin Rustgi
- Dep. of Plant and Environmental Sciences, Pee Dee Research and Education Centre, Clemson Univ., Florence, SC, USA
| |
Collapse
|
15
|
Azab O, Ben Romdhane W, El-Hendawy S, Ghazy A, Zakri AM, Abd-ElGawad AM, Al-Doss A. Ectopic Expression of a Wheat R2R3-Type MYB Gene in Transgenic Tobacco Enhances Osmotic Stress Tolerance via Maintaining ROS Balance and Improving Root System Architecture. BIOLOGY 2024; 13:128. [PMID: 38392346 PMCID: PMC10886976 DOI: 10.3390/biology13020128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/29/2024] [Accepted: 02/14/2024] [Indexed: 02/24/2024]
Abstract
Water scarcity is a critical cause of plant yield loss and decreased quality. Manipulation of root system architecture to minimize the impact of water scarcity stresses may greatly contribute towards an improved distribution of roots in the soil and enhanced water and nutrient uptake abilities. In this study, we explored the potential of TaMYB20 gene, a wheat gene belonging to the R2R3-MYB transcription factor family, to improve root system architecture in transgenic tobacco plants. The full-length TaMYB20 gene was isolated from Triticum aestivum.cv. Sakha94 and used to produce genetically engineered tobacco plants. The transgenic plants exhibited enhanced tolerance to extended osmotic stress and were able to maintain their root system architecture traits, including total root length (TRL), lateral root number (LRN), root surface area (RSa), and root volume (RV), while the wild-type plants failed to maintain the same traits. The transgenic lines presented greater relative water content in their roots associated with decreased ion leakage. The oxidative stress resulted in the loss of mitochondrial membrane integrity in the wild-type (WT) plants due to the overproduction of reactive oxygen species (ROS) in the root cells, while the transgenic lines were able to scavenge the excess ROS under stressful conditions through the activation of the redox system. Finally, we found that the steady-state levels of three PIN gene transcripts were greater in the TaMYB20-transgenic lines compared to the wild-type tobacco. Taken together, these findings confirm that TaMYB20 is a potentially useful gene candidate for engineering drought tolerance in cultivated plants.
Collapse
Affiliation(s)
- Omar Azab
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Walid Ben Romdhane
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Salah El-Hendawy
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdelhalim Ghazy
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Adel M Zakri
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Ahmed M Abd-ElGawad
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Abdullah Al-Doss
- Plant Production Department, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| |
Collapse
|
16
|
Bao H, Cui Y, Ge L, Li Y, Xu X, Tang M, Yi Y, Chen L. OsGEX3 affects anther development and improves osmotic stress tolerance in rice. PLANTA 2024; 259:68. [PMID: 38337086 DOI: 10.1007/s00425-024-04342-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024]
Abstract
MAIN CONCLUSION Overexpression and loss of function of OsGEX3 reduce seed setting rates and affect pollen fertility in rice. OsGEX3 positively regulates osmotic stress response by regulating ROS scavenging. GEX3 proteins are conserved in plants. AtGEX3 encodes a plasma membrane protein that plays a crucial role in pollen tube guidance. However, the function of its homolog in rice, OsGEX3, has not been determined. Our results demonstrate that OsGEX3 is localized in the plasma membrane and the nucleus as shown by a transiently transformed assay using Nicotiana benthamiana leaves. The up-regulation of OsGEX3 was detected in response to treatments with polyethylene glycol (PEG) 4000, hydrogen peroxide, and abscisic acid (ABA) via RT-qPCR analysis. Interestingly, we observed a significant decline in the seed setting rates of OsGEX3-OE lines and mutants, compared to the wild type. Further investigations reveal that overexpression and loss of function of OsGEX3 affect pollen maturation. TEM observation revealed a significant decrease in the fertile pollen rates of OsGEX3-OE transgenic lines and Osgex3 mutants due to a delay in pollen development at the late vacuolated stage. Overexpression of OsGEX3 improved osmotic stress and oxidative stress tolerance by enhancing reactive oxygen species (ROS) scavenging in rice seedlings, whereas Osgex3 mutants exhibited an opposite phenotype in osmotic stress. These findings highlight the multifunctional roles of OsGEX3 in pollen development and the response to abiotic stress. The functional characterization of OsGEX3 provides a fundamental basis for rice molecular breeding and can facilitate efforts to cultivate drought resistance and yield-related varieties.
Collapse
Affiliation(s)
- Han Bao
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
- School of Life Sciences, Ningxia University, Yinchuan, 750021, China
| | - Yuchao Cui
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Li Ge
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Yan Li
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Xiaorong Xu
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Ming Tang
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Yin Yi
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Liang Chen
- Xiamen Key Laboratory for Plant Genetics, School of Life Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
17
|
Yang J, Chen R, Liu W, Xiang X, Fan C. Genome-Wide Characterization and Phylogenetic and Stress Response Expression Analysis of the MADS-Box Gene Family in Litchi ( Litchi chinensis Sonn.). Int J Mol Sci 2024; 25:1754. [PMID: 38339030 PMCID: PMC10855657 DOI: 10.3390/ijms25031754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/26/2024] [Accepted: 01/27/2024] [Indexed: 02/12/2024] Open
Abstract
The MADS-box protein is an important transcription factor in plants and plays an important role in regulating the plant abiotic stress response. In this study, a total of 94 MADS-box genes were predicted in the litchi genome, and these genes were widely distributed on all the chromosomes. The LcMADS-box gene family was divided into six subgroups (Mα, Mβ, Mγ, Mδ, MIKC, and UN) based on their phylogenetical relationships with Arabidopsis, and the closely linked subgroups exhibited more similarity in terms of motif distribution and intron/exon numbers. Transcriptome analysis indicated that LcMADS-box gene expression varied in different tissues, which can be divided into universal expression and specific expression. Furthermore, we further validated that LcMADS-box genes can exhibit different responses to various stresses using quantitative real-time PCR (qRT-PCR). Moreover, physicochemical properties, subcellular localization, collinearity, and cis-acting elements were also analyzed. The findings of this study provide valuable insights into the MADS-box gene family in litchi, specifically in relation to stress response. The identification of hormone-related and stress-responsive cis-acting elements in the MADS-box gene promoters suggests their involvement in stress signaling pathways. This study contributes to the understanding of stress tolerance mechanisms in litchi and highlights potential regulatory mechanisms underlying stress responses.
Collapse
Affiliation(s)
| | | | | | | | - Chao Fan
- Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Ministry of Agriculture and Rural Affairs, Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.Y.)
| |
Collapse
|
18
|
Chaudhary MT, Majeed S, Rana IA, Ali Z, Jia Y, Du X, Hinze L, Azhar MT. Impact of salinity stress on cotton and opportunities for improvement through conventional and biotechnological approaches. BMC PLANT BIOLOGY 2024; 24:20. [PMID: 38166652 PMCID: PMC10759391 DOI: 10.1186/s12870-023-04558-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 10/24/2023] [Indexed: 01/05/2024]
Abstract
Excess salinity can affect the growth and development of all plants. Salinization jeopardizes agroecosystems, induces oxidative reactions in most cultivated plants and reduces biomass which affects crop yield. Some plants are affected more than others, depending upon their ability to endure the effects of salt stress. Cotton is moderately tolerant to salt stress among cultivated crops. The fundamental tenet of plant breeding is genetic heterogeneity in available germplasm for acquired characteristics. Variation for salinity tolerance enhancing parameters (morphological, physiological and biochemical) is a pre-requisite for the development of salt tolerant cotton germplasm followed by indirect selection or hybridization programs. There has been a limited success in the development of salt tolerant genotypes because this trait depends on several factors, and these factors as well as their interactions are not completely understood. However, advances in biochemical and molecular techniques have made it possible to explore the complexity of salt tolerance through transcriptomic profiling. The focus of this article is to discuss the issue of salt stress in crop plants, how it alters the physiology and morphology of the cotton crop, and breeding strategies for the development of salinity tolerance in cotton germplasm.
Collapse
Affiliation(s)
| | - Sajid Majeed
- Federal Seed Certification and Registration Department, Ministry of National Food Security and Research, Islamabad, 44090, Pakistan
| | - Iqrar Ahmad Rana
- Center of Agricultural Biochemistry and Biotechnology/Centre of Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Zulfiqar Ali
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research Chinese Academy of Agricultural Science, Anyang, 455000, China
| | - Lori Hinze
- US Department of Agriculture, Southern Plains Agricultural Research Center, College Station, TX, 77845, USA
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, 38040, Pakistan.
- School of Agriculture Sciences, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
19
|
Zaman S, Shen J, Wang S, Song D, Wang H, Ding S, Pang X, Wang M, Wang Y, Ding Z. Effect of Shading on Physiological Attributes and Proteomic Analysis of Tea during Low Temperatures. PLANTS (BASEL, SWITZERLAND) 2023; 13:63. [PMID: 38202371 PMCID: PMC10780538 DOI: 10.3390/plants13010063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/21/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024]
Abstract
Shading is an important technique to protect tea plantations under abiotic stresses. In this study, we analyzed the effect of shading (SD60% shade vs. SD0% no-shade) on the physiological attributes and proteomic analysis of tea leaves in November and December during low temperatures. The results revealed that shading protected the tea plants, including their soil plant analysis development (SPAD), photochemical efficiency (Fv/Fm), and nitrogen content (N), in November and December. The proteomics analysis of tea leaves was determined using tandem mass tags (TMT) technology and a total of 7263 proteins were accumulated. Further, statistical analysis and the fold change of significant proteins (FC < 0.67 and FC > 1.5 p < 0.05) revealed 14 DAPs, 11 increased and 3 decreased, in November (nCK_vs_nSD60), 20 DAPs, 7 increased and 13 decreased, in December (dCK_vs_dSD60), and 12 DAPs, 3 increased and 9 decreased, in both November and December (nCK_vs_nSD60). These differentially accumulated proteins (DAPs) were dehydrins (DHNs), late-embryogenesis abundant (LEA), thaumatin-like proteins (TLPs), glutathione S-transferase (GSTs), gibberellin-regulated proteins (GAs), proline-rich proteins (PRPs), cold and drought proteins (CORA-like), and early light-induced protein 1, which were found in the cytoplasm, nucleus, chloroplast, extra cell, and plasma membrane, and functioned in catalytic, cellular, stimulus-response, and metabolic pathways. In conclusion, the proliferation of key proteins was triggered by translation and posttranslational modifications, which might sustain membrane permeability in tea cellular compartments and could be responsible for tea protection under shading during low temperatures. This study aimed to investigate the impact of the conventional breeding technique (shading) and modern molecular technologies (proteomics) on tea plants, for the development and protection of new tea cultivars.
Collapse
Affiliation(s)
- Shah Zaman
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Z.); (J.S.); (S.W.)
- School of Tea and Coffee & School of Bioinformatics and Engineering, Pu’er University, 6 Xueyuan Road, Pu’er 665000, China
- International Joint Laboratory of Digital Protection and Germplasm Innovation and Application of China-Laos Tea Tree Resources in Yunnan Province, Pu’er University, 6 Xueyuan Road, Pu’er 665000, China
| | - Jiazhi Shen
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Z.); (J.S.); (S.W.)
| | - Shuangshuang Wang
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Z.); (J.S.); (S.W.)
| | - Dapeng Song
- Rizhao Tea Research Institute, Rizhao 276800, China; (D.S.); (H.W.); (S.D.); (X.P.); (M.W.)
| | - Hui Wang
- Rizhao Tea Research Institute, Rizhao 276800, China; (D.S.); (H.W.); (S.D.); (X.P.); (M.W.)
| | - Shibo Ding
- Rizhao Tea Research Institute, Rizhao 276800, China; (D.S.); (H.W.); (S.D.); (X.P.); (M.W.)
| | - Xu Pang
- Rizhao Tea Research Institute, Rizhao 276800, China; (D.S.); (H.W.); (S.D.); (X.P.); (M.W.)
| | - Mengqi Wang
- Rizhao Tea Research Institute, Rizhao 276800, China; (D.S.); (H.W.); (S.D.); (X.P.); (M.W.)
| | - Yu Wang
- Tea Research Institute, Qingdao Agricultural University, Qingdao 266109, China;
| | - Zhaotang Ding
- Tea Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (S.Z.); (J.S.); (S.W.)
| |
Collapse
|
20
|
Izadi-Darbandi A, Alameldin H, Namjoo N, Ahmad K. Introducing sorghum DREB2 gene in maize (Zea mays L.) to improve drought and salinity tolerance. Biotechnol Appl Biochem 2023; 70:1480-1488. [PMID: 36916234 DOI: 10.1002/bab.2458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 03/04/2023] [Indexed: 03/16/2023]
Abstract
Salinity and drought are significant abiotic stresses causing a considerable loss of seed and biomass yield in most commercial crops. Some of the most critical players in the abscisic acid pathway are drought responsive element binding (DREB) proteins that are a part of AP2/ethylene response factor transcription factors that bind to promoters of some family genes needed to be expressed under abiotic stresses. In this study, salt- and drought-tolerant maize plants were produced from immature maize embryos bombarded by the sorghum (Sorghum bicolor L.) DREB2 gene that is linked to hygromycin resistance (hpt) genes. The putative transgenic calli were transferred to an N6 medium containing 1 mg/L benzylaminopurine and 50 mg/L hygromycin. Regeneration was completed after 4 weeks on selective media under a 16/8 h light/dark condition at 25°C. Polymerase chain reaction (PCR) and reverse transcription-PCR approved the existence of upstream promoter (rd29a), hpt gene, and the expression of the DREB2 in transgenes up to the third generation (T2). It was found that the K+/Na+ ratio and the amount of proline as a screening indicator were higher in transgenic plants compared to their wild types. This result is a promising model to enhance maize tolerance to abiotic stressors.
Collapse
Affiliation(s)
- Ali Izadi-Darbandi
- Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Tehran, Iran
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
| | - Hussien Alameldin
- DOE-Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Nima Namjoo
- Department of Agronomy and Plant Breeding Sciences, College of Aburaihan, University of Tehran, Tehran, Iran
| | - Khalil Ahmad
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, Michigan, USA
- College of Agriculture, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
21
|
Wang N, Zhang W, Wang X, Zheng Z, Bai D, Li K, Zhao X, Xiang J, Liang Z, Qian Y, Wang W, Shi Y. Genome-Wide Association Study of Xian Rice Grain Shape and Weight in Different Environments. PLANTS (BASEL, SWITZERLAND) 2023; 12:2549. [PMID: 37447110 PMCID: PMC10347298 DOI: 10.3390/plants12132549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023]
Abstract
Drought is one of the key environmental factors affecting the growth and yield potential of rice. Grain shape, on the other hand, is an important factor determining the appearance, quality, and yield of rice grains. Here, we re-sequenced 275 Xian accessions and then conducted a genome-wide association study (GWAS) on six agronomic traits with the 404,411 single nucleotide polymorphisms (SNPs) derived by the best linear unbiased prediction (BLUP) for each trait. Under two years of drought stress (DS) and normal water (NW) treatments, a total of 16 QTLs associated with rice grain shape and grain weight were detected on chromosomes 1, 2, 3, 4, 5, 7, 8, 11, and 12. In addition, these QTLs were analyzed by haplotype analysis and functional annotation, and one clone (GSN1) and five new candidate genes were identified in the candidate interval. The findings provide important genetic information for the molecular improvement of grain shape and weight in rice.
Collapse
Affiliation(s)
- Nansheng Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China; (N.W.); (W.Z.); (X.W.); (Z.Z.); (D.B.); (K.L.); (X.Z.); (J.X.); (Z.L.); (Y.Q.)
| | - Wanyang Zhang
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China; (N.W.); (W.Z.); (X.W.); (Z.Z.); (D.B.); (K.L.); (X.Z.); (J.X.); (Z.L.); (Y.Q.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xinchen Wang
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China; (N.W.); (W.Z.); (X.W.); (Z.Z.); (D.B.); (K.L.); (X.Z.); (J.X.); (Z.L.); (Y.Q.)
| | - Zhenzhen Zheng
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China; (N.W.); (W.Z.); (X.W.); (Z.Z.); (D.B.); (K.L.); (X.Z.); (J.X.); (Z.L.); (Y.Q.)
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Di Bai
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China; (N.W.); (W.Z.); (X.W.); (Z.Z.); (D.B.); (K.L.); (X.Z.); (J.X.); (Z.L.); (Y.Q.)
| | - Keyang Li
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China; (N.W.); (W.Z.); (X.W.); (Z.Z.); (D.B.); (K.L.); (X.Z.); (J.X.); (Z.L.); (Y.Q.)
| | - Xueyu Zhao
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China; (N.W.); (W.Z.); (X.W.); (Z.Z.); (D.B.); (K.L.); (X.Z.); (J.X.); (Z.L.); (Y.Q.)
| | - Jun Xiang
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China; (N.W.); (W.Z.); (X.W.); (Z.Z.); (D.B.); (K.L.); (X.Z.); (J.X.); (Z.L.); (Y.Q.)
| | - Zhaojie Liang
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China; (N.W.); (W.Z.); (X.W.); (Z.Z.); (D.B.); (K.L.); (X.Z.); (J.X.); (Z.L.); (Y.Q.)
| | - Yingzhi Qian
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China; (N.W.); (W.Z.); (X.W.); (Z.Z.); (D.B.); (K.L.); (X.Z.); (J.X.); (Z.L.); (Y.Q.)
| | - Wensheng Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingyao Shi
- College of Agronomy, Anhui Agricultural University, Hefei 230000, China; (N.W.); (W.Z.); (X.W.); (Z.Z.); (D.B.); (K.L.); (X.Z.); (J.X.); (Z.L.); (Y.Q.)
| |
Collapse
|
22
|
Han Y, Haouel A, Georgii E, Priego-Cubero S, Wurm CJ, Hemmler D, Schmitt-Kopplin P, Becker C, Durner J, Lindermayr C. Histone Deacetylases HD2A and HD2B Undergo Feedback Regulation by ABA and Modulate Drought Tolerance via Mediating ABA-Induced Transcriptional Repression. Genes (Basel) 2023; 14:1199. [PMID: 37372378 DOI: 10.3390/genes14061199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Histone deacetylation catalyzed by histone deacetylase plays a critical role in gene silencing and subsequently controls many important biological processes. It was reported that the expression of the plant-specific histone deacetylase subfamily HD2s is repressed by ABA in Arabidopsis. However, little is known about the molecular relationship between HD2A/HD2B and ABA during the vegetative phase. Here, we describe that the hd2ahd2b mutant shows hypersensitivity to exogenous ABA during the germination and post-germination period. Additionally, transcriptome analyses revealed that the transcription of ABA-responsive genes was reprogrammed and the global H4K5ac level is specifically up-regulated in hd2ahd2b plants. ChIP-Seq and ChIP-qPCR results further verified that both HD2A and HD2B could directly and specifically bind to certain ABA-responsive genes. As a consequence, Arabidopsis hd2ahd2b plants displayed enhanced drought resistance in comparison to WT, which is consistent with increased ROS content, reduced stomatal aperture, and up-regulated drought-resistance-related genes. Moreover, HD2A and HD2B repressed ABA biosynthesis via the deacetylation of H4K5ac at NCED9. Taken together, our results indicate that HD2A and HD2B partly function through ABA signaling and act as negative regulators during the drought resistance response via the regulation of ABA biosynthesis and response genes.
Collapse
Affiliation(s)
- Yongtao Han
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | - Amira Haouel
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | - Elisabeth Georgii
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | | | - Christoph J Wurm
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | - Daniel Hemmler
- Research Unit Analytical Biogeochemistry, Helmholtz Munich, 85764 Oberschleißheim, Germany
| | | | - Claude Becker
- Genetics, LMU Biocenter, Ludwig-Maximilians-Universität München, 80539 München, Germany
| | - Jörg Durner
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
- Chair of Biochemical Plant Pathology, Technische Universität München, 85354 Freising, Germany
| | - Christian Lindermayr
- Institute of Biochemical Plant Pathology, Helmholtz Munich, 85764 Oberschleißheim, Germany
- Institute of Lung Health and Immunity, Comprehensive Pneumology Center, Helmholtz Munich, 85764 Oberschleißheim, Germany
| |
Collapse
|
23
|
Jin D, Li S, Li Z, Yang L, Han X, Hu Y, Jiang Y. Arabidopsis ABRE-binding factors modulate salinity-induced inhibition of root hair growth by interacting with and suppressing RHD6. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111728. [PMID: 37160206 DOI: 10.1016/j.plantsci.2023.111728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 05/11/2023]
Abstract
Soil salinity causes crop losses worldwide. Root hairs are the primary targets of salt stress, however, the signaling networks involved in the precise regulation of root hair growth and development by salinity are poorly understood. Here, we confirmed that salt stress inhibits the number and length of root hairs in Arabidopsis. We found that the master regulator of root hair development and growth, the RHD6 transcription factor, is involved in this process, as salt treatment largely compromised root hair overaccumulation in RHD6-overexpressing plants. Yeast-two-hybrid and co-immunoprecipitation analyses revealed that RHD6 physically interacts with ABF proteins, the master transcription factors in abscisic acid signaling, which is involved in tolerance to several stresses including salinity. Phenotypic analyses showed that ABF proteins, which function upstream of RHD6, positively modulate the salinity-induced inhibition of root hair development. Further analyses showed that ABF3 suppresses the transcriptional activation activity of RHD6, thereby regulating the expression of genes related to root hair development. Overexpression of ABF3 reduced the root hair-overgrowing phenotype of RHD6-overexpressing plants. Collectively, our results demonstrate an essential signaling module in which ABF proteins directly suppress the transcriptional activation activity of RHD6 to reduce the length and number of root hairs under salt stress conditions.
Collapse
Affiliation(s)
- Dongjie Jin
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shaoqin Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Zhipeng Li
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingmin Yang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanjuan Jiang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China; State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Yunnan University, Kunming, China.
| |
Collapse
|
24
|
Lin C, Huang Q, Liu Z, Brown SE, Chen Q, Li Y, Dong Y, Wu H, Mao Z. AoSAP8-P encoding A20 and/or AN1 type zinc finger protein in asparagus officinalis L. Improving stress tolerance in transgenic Nicotiana sylvestris. Gene 2023; 862:147284. [PMID: 36781027 DOI: 10.1016/j.gene.2023.147284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 01/04/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
The full length CDS of an A20 and AN1 type zinc finger gene (named AoSAP8-P), located nearby the male specific Y chromosome (MSY) region of Asparagus officinalis (garden asparagus) was amplified by RT-PCR from purple passion. This gene, predicted as the stress associated protein (SAPs) gene families, encodes 172 amino acids with multiple cis elements including light, stress response box, MYB and ERF binding sites on its promoter. To analyze its function, the gene expression of different organs in different asparagus gender were analyzed and the overexpressed transgenic Nicotiana sylvestris lines were generated. The results showed the gene was highly expressed in both flower and root of male garden asparagus; the germination rate of seeds of the T2 transgenic lines (T2-5-4 and T2-7-1) under the stress conditions of 125 mM NaCl and 150 mM mannitol were significantly higher than the wild type (WT) respectively. When the potted T2-5-4, T2-7-1 lines and WT were subjected to drought stress for 24 days and the leaf discs immerged into 20 % PEG6000 and 300 mM NaCl solution for 48 h respectively, the T2-5-4 and T2-7-1 with AoSAP8-P expression showed stronger drought, salt and osmotic stress tolerance. When compared, the effects of AoSAP8-P overexpression on productive development showed that the flowering time of transgenic lines, were ∼ 9 day earlier with larger but fewer pollens than its WT counterparts. However, there were no significant differences in anthers, stigmas and pollen viability between the transgenic lines and WT. Our results suggested that, the AoSAP8-P gene plays a role in improving the stress resistance and shortening seeds generation time for perianal survival during the growth and development of garden asparagus.
Collapse
Affiliation(s)
- Chun Lin
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Qiuqiu Huang
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Zhengjie Liu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China
| | - Sylvia E Brown
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Qing Chen
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Yuping Li
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Yumei Dong
- Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China
| | - He Wu
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China
| | - Zichao Mao
- College of Agronomy and Biotechnology, Yunnan Agricultural University (YNAU), Kunming, Yunnan 650201, China; Institute of Improvement and Utilization of Characteristic Resource Plants (YNAU), Kunming, China; The Laboratory for Crop Production and Intelligent Agriculture of Yunnan Province, Kunming, China.
| |
Collapse
|
25
|
Zhang X, Xie Q, Xiang L, Lei Z, Huang Q, Zhang J, Cai M, Chen T. AtSIEK, an EXD1-like protein with KH domain, involves in salt stress response by interacting with FRY2/CPL1. Int J Biol Macromol 2023; 233:123369. [PMID: 36693612 DOI: 10.1016/j.ijbiomac.2023.123369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Abiotic stress has great impacts on plant germination, growth and development and crop yield. Therefore, it is important to understand the molecular mechanism of plants response to abiotic stress. In this study, we identified a plant specific protein AtSIEK (stress-induced protein with EXD1-like domain and KH domain) response to salt stress. AtSIEK encodes a hnRNP K homology (KH) protein localized in nucleus. Amino acid sequences analysis found that SIEK protein is specific in plants, containing two domains with EXD1-like domain and KH domain, while SIEK homolog in animals only had EXD1-like domain without KH domain. Physiology experiments revealed that AtSIEK was significantly induced under salt stress and the siek mutant shows sensitive to salt stress, indicating that AtSIEK was a positive regulator in stress response. Further, molecular, biochemical, and genetic assays suggested that AtSIEK interacts with FRY2/CPL1, a known regulator in response to abiotic stress, and they function synergistically in response to salt stress. Taken together, these results shed new light on the regulation of plant adaption to abiotic stress, which deepen our understanding of the molecular mechanisms of abiotic stress regulation in plants.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Qinyu Xie
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Lijun Xiang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Zhonghua Lei
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Qixiu Huang
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830000, China
| | - Juncheng Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China
| | - Maohong Cai
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China.
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
26
|
Tyagi S, Kabade PG, Gnanapragasam N, Singh UM, Gurjar AKS, Rai A, Sinha P, Kumar A, Singh VK. Codon Usage Provide Insights into the Adaptation of Rice Genes under Stress Condition. Int J Mol Sci 2023; 24:ijms24021098. [PMID: 36674611 PMCID: PMC9861248 DOI: 10.3390/ijms24021098] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 01/09/2023] Open
Abstract
Plants experience different stresses, i.e., abiotic, or biotic, and to combat them, plants re-program the expression of growth-, metabolism-, and resistance-related genes. These genes differ in their synonymous codon usage frequency and show codon usage bias. Here, we investigated the correlation among codon usage bias, gene expression, and underlying mechanisms in rice under abiotic and biotic stress conditions. The results indicated that genes with higher expression (up- or downregulated) levels had high GC content (≥60%), a low effective number of codon usage (≤40), and exhibited strong biases towards the codons with C/G at the third nucleotide position, irrespective of stress received. TTC, ATC, and CTC were the most preferred codons, while TAC, CAC, AAC, GAC, and TGC were moderately preferred under any stress (abiotic or biotic) condition. Additionally, downregulated genes are under mutational pressure (R2 ≥ 0.5) while upregulated genes are under natural selection pressure (R2 ≤ 0.5). Based on these results, we also identified the possible target codons that can be used to design an optimized set of genes with specific codons to develop climate-resilient varieties. Conclusively, under stress, rice has a bias towards codon usage which is correlated with GC content, gene expression level, and gene length.
Collapse
Affiliation(s)
- Swati Tyagi
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
| | | | - Niranjani Gnanapragasam
- International Rice Research Institute (IRRI)-South-Asia Hub, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Uma Maheshwar Singh
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
| | | | - Ashutosh Rai
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
| | - Pallavi Sinha
- International Rice Research Institute (IRRI)-South-Asia Hub, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
| | - Arvind Kumar
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
| | - Vikas Kumar Singh
- International Rice Research Institute-South Asia Regional Centre (ISARC), Varanasi 221106, India
- International Rice Research Institute (IRRI)-South-Asia Hub, International Crops Research Institute for the Semi-Arid Tropics, Hyderabad 502324, India
- Correspondence:
| |
Collapse
|
27
|
Rui L, Zhu ZQ, Yang YY, Wang DR, Liu HF, Zheng PF, Li HL, Liu GD, Liu RX, Wang X, Zhang S, You CX. Functional characterization of MdERF113 in apple. PHYSIOLOGIA PLANTARUM 2023; 175:e13853. [PMID: 36628625 DOI: 10.1111/ppl.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 12/10/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
The AP2/ERF family is an important class of transcription factors involved in plant growth and various biological processes. One of the AP2/ERF transcription factors, RAP2.6L, participates in various stresses responses. However, the function of RAP2.6L is largely unknown in apples (Malus domestica). In this study, an apple gene homologous to Arabidopsis AtRAP2.6L, MdERF113, was analyzed by bioinformatic characterization, gene expression analysis and subcellular localization assessment. MdERF113 was highly expressed in the sarcocarp and was responsive to hormonal signals and abiotic stresses. MdERF113-overexpression apple calli were less sensitive to low temperature, drought, salinity, and abscisic acid than wild-type. Subcellular localization revealed that MdERF113 was a nuclear-localized transcription factor, and yeast experiments confirmed that MdERF113 has no autonomous activation activity. Overall, this study indicated that MdERF113 plays a role in regulating plant growth under abiotic conditions.
Collapse
Affiliation(s)
- Lin Rui
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Zi-Qi Zhu
- Shandong Provincial Research Center of Demonstration Engineering Technology for Urban and Rural Landscape, College of Forestry, Shandong Agricultural University, Tai'an, Shandong, China
| | - Yu-Ying Yang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Da-Ru Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hao-Feng Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Peng-Fei Zheng
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Hong-Liang Li
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Guo-Dong Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ran-Xin Liu
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiaofei Wang
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Shuai Zhang
- Key Laboratory of Agricultural Film Application of Ministry of Agriculture and Rural Affairs, College of Chemistry and Material Science, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| |
Collapse
|
28
|
Teper‐Bamnolker P, Roitman M, Katar O, Peleg N, Aruchamy K, Suher S, Doron‐Faigenboim A, Leibman D, Omid A, Belausov E, Andersson M, Olsson N, Fält A, Volpin H, Hofvander P, Gal‐On A, Eshel D. An alternative pathway to plant cold tolerance in the absence of vacuolar invertase activity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:327-341. [PMID: 36448213 PMCID: PMC10107833 DOI: 10.1111/tpj.16049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 11/10/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
To cope with cold stress, plants have developed antioxidation strategies combined with osmoprotection by sugars. In potato (Solanum tuberosum) tubers, which are swollen stems, exposure to cold stress induces starch degradation and sucrose synthesis. Vacuolar acid invertase (VInv) activity is a significant part of the cold-induced sweetening (CIS) response, by rapidly cleaving sucrose into hexoses and increasing osmoprotection. To discover alternative plant tissue pathways for coping with cold stress, we produced VInv-knockout lines in two cultivars. Genome editing of VInv in 'Désirée' and 'Brooke' was done using stable and transient expression of CRISPR/Cas9 components, respectively. After storage at 4°C, sugar analysis indicated that the knockout lines showed low levels of CIS and maintained low acid invertase activity in storage. Surprisingly, the tuber parenchyma of vinv lines exhibited significantly reduced lipid peroxidation and reduced H2 O2 levels. Furthermore, whole plants of vinv lines exposed to cold stress without irrigation showed normal vigor, in contrast to WT plants, which wilted. Transcriptome analysis of vinv lines revealed upregulation of an osmoprotectant pathway and ethylene-related genes during cold temperature exposure. Accordingly, higher expression of antioxidant-related genes was detected after exposure to short and long cold storage. Sugar measurements showed an elevation of an alternative pathway in the absence of VInv activity, raising the raffinose pathway with increasing levels of myo-inositol content as a cold tolerance response.
Collapse
Affiliation(s)
- Paula Teper‐Bamnolker
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| | - Marina Roitman
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovot76100Israel
| | - Omri Katar
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovot76100Israel
| | - Noam Peleg
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovot76100Israel
| | - Kalaivani Aruchamy
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| | - Shlomit Suher
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
- The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Plant Sciences and Genetics in AgricultureThe Hebrew University of JerusalemRehovot76100Israel
| | - Adi Doron‐Faigenboim
- Institute of Plant Sciences, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| | - Diana Leibman
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| | - Ayelet Omid
- Danziger Innovations LimitedMishmar HashivaIsrael
| | - Eduard Belausov
- Department of Ornamental Horticulture, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| | - Mariette Andersson
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Niklas Olsson
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Ann‐Sofie Fält
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Hanne Volpin
- Danziger Innovations LimitedMishmar HashivaIsrael
| | - Per Hofvander
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Amit Gal‐On
- Department of Plant Pathology and Weed Research, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| | - Dani Eshel
- Department of Postharvest Science, Agricultural Research Organization (ARO)The Volcani InstituteRishon LeZionIsrael
| |
Collapse
|
29
|
Xie J, Deng B, Wang W, Zhang H. Changes in sugar, organic acid and free amino acid levels and the expression of genes involved in the primary metabolism of oleocellosis in citrus peels. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153877. [PMID: 36436240 DOI: 10.1016/j.jplph.2022.153877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Oleocellosis is a physiological disorder in citrus fruit and causes extensive economic damage due to the surface blemishes it creates. It was reported that oleocellosis always occurs during preharvest maturation and postharvest storage. In the present study, the oleocellosis incidence of Jincheng orange, Navel orange and Ponkan were found to be different during preharvest maturation, however, no differences were found during postharvest storage. Additionally, it was interesting that the outbreak period of oleocellosis incidence was 0-12 d during postharvest storage. Climate change has been reported as a factor promoting oleocellosis development. However, little information is available regarding how primary metabolites and the expression of genes involved in sugar, organic acid and free amino acid metabolism in citrus change to adjust to new environments. Metabolic profiling obtained by gas chromatography-mass spectrometry (GC‒MS) and amino acid analysis showed that the accumulations of fructose, glucose, sucrose, maltose, mannose, citric acid, α-ketoglutarate, 2-keto-d-gluconic acid, glutamate, valine, glycine and threonine might play major roles in adaptation to changes in oleocellosis peels for three types of citrus fruit. However, decreased contents of malic acid, gluconic acid and proline were observed, possibly due to consumption in energy metabolism or reflecting a unique characteristic in this disorder. Regarding gene expression in primary metabolism pathways obtained by high-throughput mRNA sequencing (RNA-Seq) technology, upregulated genes encoding alpha-glucosidase, beta-glucosidase, beta-fructofuranosidase, alpha-amylase, beta-amylase, malate dehydrogenase, CTP synthase (glutamine hydrolysing), serine-glyoxylate transaminase, serine/glycine hydroxymethyltransferase and proline dehydrogenase were the main changes in this disorder.
Collapse
Affiliation(s)
- Jiao Xie
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, PR China; College of Food Science, Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China.
| | - Bing Deng
- College of Food Science, Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China
| | - Wenjun Wang
- College of Food Science, Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China.
| | - Hongyan Zhang
- College of Food Science, Food Storage and Logistics Research Center, Southwest University, Chongqing, 400715, PR China
| |
Collapse
|
30
|
Shukla PS, Nivetha N, Nori SS, Bose D, Kumar S, Khandelwal S, Critchley A, Suryanarayan S. Understanding the mode of action of AgroGain ®, a biostimulant derived from the red seaweed Kappaphycus alvarezii in the stimulation of cotyledon expansion and growth of Cucumis sativa (cucumber). FRONTIERS IN PLANT SCIENCE 2023; 14:1136563. [PMID: 37089639 PMCID: PMC10118050 DOI: 10.3389/fpls.2023.1136563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/16/2023] [Indexed: 05/03/2023]
Abstract
Seaweed-based biostimulants are sustainable agriculture inputs that are known to have a multitude of beneficial effects on plant growth and productivity. This study demonstrates that Agrogain® (Product code: LBS6), a Kappaphycus alvarezii-derived biostimulant induced the expansion of cucumber cotyledons. Seven days treatment of LBS6-supplementation showed a 29.2% increase in area of expanded cotyledons, as compared to the control. LBS6-treated cotyledons also showed higher amylase activity, suggesting starch to sucrose conversion was used efficiently as an energy source during expansion. To understand the mechanisms of LBS6-induced expansion, real time gene expression analysis was carried out. This revealed that LBS6-treated cotyledons differentially modulated the expression of genes involved in cell division, cell number, cell expansion and cell size. LBS6 treatment also differentially regulated the expression of those genes involved in auxin and cytokinin metabolism. Further, foliar application of LBS6 on cucumber plants being grown under hydroponic conditions showed improved plant growth as compared to the control. The total leaf area of LBS6-sprayed plants increased by 19.1%, as compared to control. LBS6-sprayed plants efficiently regulated photosynthetic quenching by reducing loss via non-photochemical and non-regulatory quenching. LBS6 applications also modulated changes in the steady-state photosynthetic parameters of the cucumber leaves. It was demonstrated that LBS6 treatment modulated the electron and proton transport related pathways which help plants to efficiently utilize the photosynthetic radiation for optimal growth. These results provide clear evidence that bioactive compounds present in LBS6 improved the growth of cucumber plants by regulating the physiological as well as developmental pathways.
Collapse
Affiliation(s)
- Pushp Sheel Shukla
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
- *Correspondence: Pushp Sheel Shukla, ; Sri Sailaja Nori,
| | - Nagarajan Nivetha
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Sri Sailaja Nori
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
- *Correspondence: Pushp Sheel Shukla, ; Sri Sailaja Nori,
| | - Debayan Bose
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Sawan Kumar
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Sachin Khandelwal
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| | - Alan Critchley
- Verschuren Centre for Sustainability in Energy and the Environment, Sydney, NS, Canada
| | - Shrikumar Suryanarayan
- Research and Development Division, Sea6 Energy Private Limited, Centre for Cellular and Molecular Platforms, National Centre for Biological Sciences-Tata Institute of Fundamental Research, Bengaluru, Karnataka, India
| |
Collapse
|
31
|
Li M, Li H, Sun A, Wang L, Ren C, Liu J, Gao X. Transcriptome analysis reveals key drought-stress-responsive genes in soybean. Front Genet 2022; 13:1060529. [PMID: 36518213 PMCID: PMC9742610 DOI: 10.3389/fgene.2022.1060529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 11/14/2022] [Indexed: 08/21/2023] Open
Abstract
Drought is the most common environmental stress and has had dramatic impacts on soybean (Glycine max L.) growth and yield worldwide. Therefore, to investigate the response mechanism underlying soybean resistance to drought stress, the drought-sensitive cultivar "Liaodou 15" was exposed to 7 (mild drought stress, LD), 17 (moderate drought stress, MD) and 27 (severe drought stress, SD) days of drought stress at the flowering stage followed by rehydration until harvest. A total of 2214, 3684 and 2985 differentially expressed genes (DEGs) in LD/CK1, MD/CK2, and SD/CK3, respectively, were identified by RNA-seq. Weighted gene co-expression network analysis (WGCNA) revealed the drought-response TFs such as WRKY (Glyma.15G021900, Glyma.15G006800), MYB (Glyma.15G190100, Glyma.15G237900), and bZIP (Glyma.15G114800), which may be regulated soybean drought resistance. Second, Glyma.08G176300 (NCED1), Glyma.03G222600 (SDR), Glyma.02G048400 (F3H), Glyma.14G221200 (CAD), Glyma.14G205200 (C4H), Glyma.19G105100 (CHS), Glyma.07G266200 (VTC) and Glyma.15G251500 (GST), which are involved in ABA and flavonoid biosynthesis and ascorbic acid and glutathione metabolism, were identified, suggesting that these metabolic pathways play key roles in the soybean response to drought. Finally, the soybean yield after rehydration was reduced by 50% under severe drought stress. Collectively, our study deepens the understanding of soybean drought resistance mechanisms and provides a theoretical basis for the soybean drought resistance molecular breeding and effectively adjusts water-saving irrigation for soybean under field production.
Collapse
Affiliation(s)
- Mingqian Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Hainan Li
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Anni Sun
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Liwei Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Chuanyou Ren
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jiang Liu
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Xining Gao
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Liaoning Key Laboratory of Agrometeorological Disasters, Shenyang, China
| |
Collapse
|
32
|
Wai AH, Rahman MM, Waseem M, Cho LH, Naing AH, Jeon JS, Lee DJ, Kim CK, Chung MY. Comprehensive Genome-Wide Analysis and Expression Pattern Profiling of PLATZ Gene Family Members in Solanum Lycopersicum L. under Multiple Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3112. [PMID: 36432841 PMCID: PMC9697139 DOI: 10.3390/plants11223112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 05/29/2023]
Abstract
PLATZ (plant AT-rich sequence and zinc-binding) family proteins with two conserved zinc-dependent DNA-binding motifs are transcription factors specific to the plant kingdom. The functions of PLATZ proteins in growth, development, and adaptation to multiple abiotic stresses have been investigated in various plant species, but their role in tomato has not been explored yet. In the present work, 20 non-redundant Solanum lycopersicum PLATZ (SlPLATZ) genes with three segmentally duplicated gene pairs and four tandemly duplicated gene pairs were identified on eight tomato chromosomes. The comparative modeling and gene ontology (GO) annotations of tomato PLATZ proteins indicated their probable roles in defense response, transcriptional regulation, and protein metabolic processes as well as their binding affinity for various ligands, including nucleic acids, peptides, and zinc. SlPLATZ10 and SlPLATZ17 were only expressed in 1 cm fruits and flowers, respectively, indicating their preferential involvement in the development of these organs. The expression of SlPLATZ1, SlPLATZ12, and SlPLATZ19 was up- or down-regulated following exposure to various abiotic stresses, whereas that of SlPLATZ11 was induced under temperature stresses (i.e., cold and heat stress), revealing their probable function in the abiotic stress tolerance of tomato. Weighted gene co-expression network analysis corroborated the aforementioned findings by spotlighting the co-expression of several stress-associated genes with SlPLATZ genes. Confocal fluorescence microscopy revealed the localization of SlPLATZ−GFP fusion proteins in the nucleus, hinting at their functions as transcription factors. These findings provide a foundation for a better understanding of the structure and function of PLATZ genes and should assist in the selection of potential candidate genes involved in the development and abiotic stress adaptation in tomato.
Collapse
Affiliation(s)
- Antt Htet Wai
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon 57922, Republic of Korea
- Department of Biology, Yangon University of Education, Kamayut Township 11041, Yangon Region, Myanmar
| | - Md Mustafizur Rahman
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Muhammad Waseem
- Department of Botany, University of Narowal, Narowal 51600, Pakistan
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si 50463, Gyeongsangnam-do, Republic of Korea
| | - Aung Htay Naing
- Department of Horticulture, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Jong-Seong Jeon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Do-jin Lee
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon 57922, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon 57922, Republic of Korea
| |
Collapse
|
33
|
Tang Y, Wang M, Cao L, Dang Z, Ruan N, Wang Y, Huang Y, Wu J, Zhang M, Xu Z, Chen W, Li F, Xu Q. OsUGE3-mediated cell wall polysaccharides accumulation improves biomass production, mechanical strength, and salt tolerance. PLANT, CELL & ENVIRONMENT 2022; 45:2492-2507. [PMID: 35592911 DOI: 10.1111/pce.14359] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 03/07/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Cell walls constitute the majority of plant biomass and are essential for plant resistance to environmental stresses. It is promising to improve both plant biomass production and stress resistance simultaneously by genetic modification of cell walls. Here, we report the functions of a UDP-galactose/glucose epimerase 3 (OsUGE3) in rice growth and salt tolerance by characterizing its overexpressing plants (OsUGE3-OX) and loss-of-function mutants (uge3). The OsUGE3-OX plants showed improvements in biomass production and mechanical strength, whereas uge3 mutants displayed growth defects. The OsUGE3 exhibits UDP-galactose/glucose epimerase activity that provides substrates for polysaccharides polymerization, consistent with the increased biosynthesis of cellulose and hemicelluloses and strengthened walls in OsUGE3-OX plants. Notably, the OsUGE3 is ubiquitously expressed and induced by salt treatment. The uge3 mutants were hypersensitive to salt and osmotic stresses, whereas the OsUGE3-OX plants showed improved tolerance to salt and osmotic stresses. Moreover, OsUGE3 overexpression improves the homeostasis of Na+ and K+ and induces a higher accumulation of hemicelluloses and soluble sugars during salt stress. Our results suggest that OsUGE3 improves biomass production, mechanical strength, and salt stress tolerance by reinforcement of cell walls with polysaccharides and it could be targeted for genetic modification to improve rice growth under salt stress.
Collapse
Affiliation(s)
- Yijun Tang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Meihan Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Liyu Cao
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Zhengjun Dang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Nan Ruan
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Ye Wang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Yingni Huang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Jiayi Wu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Mingfei Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Zhengjin Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Fengcheng Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
34
|
Reboledo G, Agorio A, Ponce De León I. Moss transcription factors regulating development and defense responses to stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4546-4561. [PMID: 35167679 DOI: 10.1093/jxb/erac055] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Transcription factors control gene expression, leading to regulation of biological processes that determine plant development and adaptation to the environment. Land colonization by plants occurred 450-470 million years ago and was accompanied by an increase in the complexity of transcriptional regulation associated to transcription factor gene expansions. AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY transcription factor families increased in land plants compared with algae. In angiosperms, they play crucial roles in regulating plant growth and responses to environmental stressors. However, less information is available in bryophytes and only in a few cases is the functional role of moss transcription factors in stress mechanisms known. In this review, we discuss current knowledge of the transcription factor families involved in development and defense responses to stress in mosses and other bryophytes. By exploring and analysing the Physcomitrium patens public database and published transcriptional profiles, we show that a high number of AP2/ERF, bHLH, MYB, NAC, GRAS, and WRKY genes are differentially expressed in response to abiotic stresses and during biotic interactions. Expression profiles together with a comprehensive analysis provide insights into relevant transcription factors involved in moss defenses, and hint at distinct and conserved biological roles between bryophytes and angiosperms.
Collapse
Affiliation(s)
- Guillermo Reboledo
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Astrid Agorio
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Inés Ponce De León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| |
Collapse
|
35
|
Nai G, Liang G, Ma W, Lu S, Li Y, Gou H, Guo L, Chen B, Mao J. Overexpression VaPYL9 improves cold tolerance in tomato by regulating key genes in hormone signaling and antioxidant enzyme. BMC PLANT BIOLOGY 2022; 22:344. [PMID: 35840891 PMCID: PMC9284830 DOI: 10.1186/s12870-022-03704-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Accepted: 06/17/2022] [Indexed: 06/02/2023]
Abstract
BACKGROUND Abscisic acid (ABA) has been reported in controlling plant growth and development, and particularly dominates a role in resistance to abiotic stress. The Pyrabactin Resistance1/PYR1-Like /Regulatory Components of ABA receptors (PYR1/PYL/RCAR) gene family, of which the PYL9 is a positive regulator related to stress response in ABA signaling transduction. Although the family has been identified in grape, detailed VaPYL9 function in cold stress remains unknown. RESULTS In order to explore the cold tolerance mechanism in grape, VaPYL9 was cloned from Vitis amurensis. The subcellular localization showed that VaPYL9 was mainly expressed in the plasma membrane. Yeast two-hybrid (Y2H) showed VaPCMT might be a potential interaction protein of VaPYL9. Through the overexpression of VaPYL9 in tomatoes, results indicated transgenic plants had higher antioxidant enzyme activities and proline content, lower malondialdehyde (MDA) and H2O2 content, and improving the ability to scavenge reactive oxygen species than wild-type (WT). Additionally, ABA content and the ratio of ABA/IAA kept a higher level than WT. Quantitative real-time PCR (qRT-PCR) showed that VaPYL9, SlNCED3, SlABI5, and antioxidant enzyme genes (POD, SOD, CAT) were up-regulated in transgenic tomatoes. Transcriptome sequencing (RNA-seq) found that VaPYL9 overexpression caused the upregulation of key genes PYR/PYL, PYL4, MAPK17/18, and WRKY in transgenic tomatoes under cold stress. CONCLUSION Overexpression VaPYL9 enhances cold resistance of transgenic tomatoes mediated by improving antioxidant enzymes activity, reducing membrane damages, and regulating key genes in plant hormones signaling and antioxidant enzymes.
Collapse
Affiliation(s)
- Guojie Nai
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Guoping Liang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, People's Republic of China.
| |
Collapse
|
36
|
Coolen S, van der Molen MR, Welte CU. The secret life of insect-associated microbes and how they shape insect-plant interactions. FEMS Microbiol Ecol 2022; 98:6643329. [PMID: 35830517 PMCID: PMC9409087 DOI: 10.1093/femsec/fiac083] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/14/2022] [Accepted: 07/11/2022] [Indexed: 12/04/2022] Open
Abstract
Insects are associated with a plethora of different microbes of which we are only starting to understand their role in shaping insect–plant interactions. Besides directly benefitting from symbiotic microbial metabolism, insects obtain and transmit microbes within their environment, making them ideal vectors and potential beneficiaries of plant diseases and microbes that alter plant defenses. To prevent damage, plants elicit stress-specific defenses to ward off insects and their microbiota. However, both insects and microbes harbor a wealth of adaptations that allow them to circumvent effective plant defense activation. In the past decades, it has become apparent that the enormous diversity and metabolic potential of insect-associated microbes may play a far more important role in shaping insect–plant interactions than previously anticipated. The latter may have implications for the development of sustainable pest control strategies. Therefore, this review sheds light on the current knowledge on multitrophic insect–microbe–plant interactions in a rapidly expanding field of research.
Collapse
Affiliation(s)
- Silvia Coolen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Magda Rogowska- van der Molen
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences (RIBES), Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Xu Y, Wang L, Liu H, He W, Jiang N, Wu M, Xiang Y. Identification of TCP family in moso bamboo (Phyllostachys edulis) and salt tolerance analysis of PheTCP9 in transgenic Arabidopsis. PLANTA 2022; 256:5. [PMID: 35670871 DOI: 10.1007/s00425-022-03917-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Bioinformatic analysis of moso bamboo TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) transcription factors reveals their conservation and variation as well as the probable biological functions in abiotic stress response. Overexpressing PheTCP9 in Arabidopsis thaliana illustrates it may exhibit a new vision in different aspects of response to salt stress. Plant specific TCPs play important roles in plant growth, development and stress response, but studies of TCP in moso bamboo are limited. Therefore, in this study, a total of 40 TCP genes (PheTCP1 ~ 40) were identified and characterized from moso bamboo genome and divided into three different subfamilies, namely, 7 in TEOSINTE BRANCHED 1 / CYCLOIDEA (TB1/CYC), 14 in CINCINNATA (CIN) and 19 in PROLIFERATING CELL FACTOR (PCF). Subsequently, we analyzed the gene structures and conserved domain of these genes and found that the members from the same subfamilies exhibited similar exon/intron distribution patterns. Selection pressure and gene duplication analysis results indicated that PheTCP genes underwent strong purification selection during evolution. There were many cis-elements related to phytohermone and stress responsive existing in the upstream promoter regions of PheTCP genes, such as ABRE, CGTCA-motif and ARE. Subcellular localization experiments showed that PheTCP9 was a nuclear localized protein. As shown by β-glucuronidase (GUS) activity, the promoter of PheTCP9 was significantly indicated by salt stress. PheTCP9 was significantly induced in the roots, stems and leaves of moso bamboo. It was also significantly induced by NaCl solution. Overexpressing PheTCP9 increased the salt tolerance of transgenic Arabidopsis. Meanwhile, H2O2 and malondialdehyde (MDA) contents were significantly lower in PheTCP9 over expression (OE) transgenic Arabidopsis than WT. Catalase (CAT) activity, K+/Na+ ratio as well as CAT2 expression level was also much improved in transgenic Arabidopsis than WT under salt conditions. In addition, PheTCP9 OE transgenic Arabidopsis held higher survival rates of seedlings than WT under NaCl conditions. These results showed the positive regulation functions of PheTCP9 in plants under salt conditions.
Collapse
Affiliation(s)
- Yuzeng Xu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Linna Wang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Hongxia Liu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Wei He
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Nianqin Jiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Min Wu
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Laboratory of Modern Biotechnology, School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
38
|
Sheoran S, Gupta M, Kumari S, Kumar S, Rakshit S. Meta-QTL analysis and candidate genes identification for various abiotic stresses in maize ( Zea mays L.) and their implications in breeding programs. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:26. [PMID: 37309532 PMCID: PMC10248626 DOI: 10.1007/s11032-022-01294-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
Global climate change leads to the concurrence of a number of abiotic stresses including moisture stress (drought, waterlogging), temperature stress (heat, cold), and salinity stress, which are the major factors affecting maize production. To develop abiotic stress tolerance in maize, many quantitative trait loci (QTL) have been identified, but very few of them have been utilized successfully in breeding programs. In this context, the meta-QTL analysis of the reported QTL will enable the identification of stable/real QTL which will pave a reliable way to introgress these QTL into elite cultivars through marker-assisted selection. In this study, a total of 542 QTL were summarized from 33 published studies for tolerance to different abiotic stresses in maize to conduct meta-QTL analysis using BiomercatorV4.2.3. Among those, only 244 major QTL with more than 10% phenotypic variance were preferably utilised to carry out meta-QTL analysis. In total, 32 meta-QTL possessing 1907 candidate genes were detected for different abiotic stresses over diverse genetic and environmental backgrounds. The MQTL2.1, 5.1, 5.2, 5.6, 7.1, 9.1, and 9.2 control different stress-related traits for combined abiotic stress tolerance. The candidate genes for important transcription factor families such as ERF, MYB, bZIP, bHLH, NAC, LRR, ZF, MAPK, HSP, peroxidase, and WRKY have been detected for different stress tolerances. The identified meta-QTL are valuable for future climate-resilient maize breeding programs and functional validation of candidate genes studies, which will help to deepen our understanding of the complexity of these abiotic stresses. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01294-9.
Collapse
Affiliation(s)
- Seema Sheoran
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
- Present Address: ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, 132001 India
| | - Mamta Gupta
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
| | - Shweta Kumari
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012 India
| | - Sandeep Kumar
- Present Address: ICAR-Indian Agricultural Research Institute, Regional Station, Karnal, 132001 India
- ICAR-Indian Institute of Pulses Research, Regional Station, Phanda, Bhopal, 462030 India
| | - Sujay Rakshit
- ICAR-Indian Institute of Maize Research, PAU Campus, Ludhiana, 141004 India
| |
Collapse
|
39
|
Sebastian A, Nugroho IC, Putra HSD, Susanto FA, Wijayanti P, Yamaguchi N, Nuringtyas TR, Purwestri YA. Identification and characterization of drought-tolerant local pigmented rice from Indonesia. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1061-1075. [PMID: 35722514 PMCID: PMC9203631 DOI: 10.1007/s12298-022-01185-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 05/03/2023]
Abstract
Water is essential to support life. Because limited water availability may affect their life cycles, plants have developed multiple responses to drought stress. Plant physiological and metabolic changes during drought may reflect changes that occur at the level of gene expression. In this study, we investigated the variation in drought-mitigating strategies employed by pigmented rice (Oryza sativa) varieties and the genes involved in their possible drought tolerance. We screened 21 local pigmented rice cultivars from Indonesia for increased drought tolerance using the fraction transpirable soil water method to exert precise control of the drought stress imposed on plants. We then determined the expression of OsDREB1A, OsNAC6, OsNHX1, OsCuZnSOD2, OsOSCAT2, and OsCAT3 in plants grown under well-watered conditions and under moderate or severe drought stress. Among the pigmented rice cultivars, Merah Pari Eja had the greatest drought tolerance, while the red rice Inpari 24 had the highest mortality rate (60%). We also included the white rice cultivar Putih Payo, which is fully sensitive to drought (with 100% mortality under the conditions used) as a negative control. Gene expression profiling revealed a general upregulation of drought-related genes in Merah Pari Eja and a downregulation of such genes in the other two cultivars. Measurements of antioxidant enzyme activity, leaf damage, free radicals, chlorophyll, and anthocyanin contents provided further evidence that Merah Pari Eja is more drought tolerant than the other two cultivars. We conclude that OsDREB1A, OsNAC6, OsNHX1, OsCuZnSOD2, OsOSCAT2 and OsCAT3 expression patterns can reveal plants that have increased drought tolerance.
Collapse
Affiliation(s)
- Alfino Sebastian
- Biochemistry Laboratory, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281 Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Jl. Teknika Utara, Sleman, Yogyakarta, 55281 Indonesia
| | - Ilham Cahyo Nugroho
- Biochemistry Laboratory, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281 Indonesia
| | - Herdin Surya Dwi Putra
- Biochemistry Laboratory, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281 Indonesia
| | - Febri Adi Susanto
- Research Center for Biotechnology, Universitas Gadjah Mada, Jl. Teknika Utara, Sleman, Yogyakarta, 55281 Indonesia
| | - Putri Wijayanti
- Research Center for Biotechnology, Universitas Gadjah Mada, Jl. Teknika Utara, Sleman, Yogyakarta, 55281 Indonesia
| | - Nobutoshi Yamaguchi
- Plant Stem Cell Regulation and Floral Patterning Laboratory, Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Japan
| | - Tri Rini Nuringtyas
- Biochemistry Laboratory, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281 Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Jl. Teknika Utara, Sleman, Yogyakarta, 55281 Indonesia
| | - Yekti Asih Purwestri
- Biochemistry Laboratory, Department of Tropical Biology, Faculty of Biology, Universitas Gadjah Mada, Jl. Teknika Selatan, Sekip Utara, Yogyakarta, 55281 Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Jl. Teknika Utara, Sleman, Yogyakarta, 55281 Indonesia
| |
Collapse
|
40
|
Jacomassi LM, Viveiros JDO, Oliveira MP, Momesso L, de Siqueira GF, Crusciol CAC. A Seaweed Extract-Based Biostimulant Mitigates Drought Stress in Sugarcane. FRONTIERS IN PLANT SCIENCE 2022; 13:865291. [PMID: 35574093 PMCID: PMC9096543 DOI: 10.3389/fpls.2022.865291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/12/2022] [Indexed: 05/27/2023]
Abstract
Drought is one of the most important abiotic stresses responsible for reduced crop yields. Drought stress induces morphological and physiological changes in plants and severely impacts plant metabolism due to cellular oxidative stress, even in C4 crops, such as sugarcane. Seaweed extract-based biostimulants can mitigate negative plant responses caused by drought stress. However, the effects of foliar application of such biostimulants on sugarcane exposed to drought stress, particularly on plant metabolism, stalk and sugar yields, juice purity, and sugarcane technological quality, have received little attention. Accordingly, this study aimed to evaluate the effects of foliar application of a seaweed extract-based biostimulant on late-harvest sugarcane during the driest period of the year. Three experiments were implemented in commercial sugarcane fields in Brazil in the 2018 (site 1), 2019 (site 2), and 2020 (site 3) harvest seasons. The treatments consisted of the application and no application of seaweed extract (SWE) as a foliar biostimulant in June (sites 2 and 3) or July (site 1). The treatments were applied to the fourth ratoon of sugarcane variety RB855536 at site 1 and the fifth and third ratoons of sugarcane variety SP803290 at sites 2 and 3, respectively. SWE was applied at a dose of 500 ml a.i. ha-1 in a water volume of 100 L ha-1. SWE mitigated the negative effects of drought stress and increased stalk yield per hectare by up to 3.08 Mg ha-1. In addition, SWE increased stalk sucrose accumulation, resulting in an increase in sugar yield of 3.4 kg Mg-1 per hectare and higher industrial quality of the raw material. In SWE-treated plants, Trolox-equivalent antioxidant capacity and antioxidant enzyme activity increased, while malondialdehyde (MDA) levels decreased. Leaf analysis showed that SWE application efficiently improved metabolic activity, as evidenced by a decrease in carbohydrate reserve levels in leaves and an increase in total sugars. By positively stabilizing the plant's cellular redox balance, SWE increased biomass production, resulting in an increase in energy generation. Thus, foliar SWE application can alleviate drought stress while enhancing sugarcane development, stalk yield, sugar production, and plant physiological and enzymatic processes.
Collapse
|
41
|
Jamil F, Mukhtar H, Fouillaud M, Dufossé L. Rhizosphere Signaling: Insights into Plant-Rhizomicrobiome Interactions for Sustainable Agronomy. Microorganisms 2022; 10:microorganisms10050899. [PMID: 35630345 PMCID: PMC9147336 DOI: 10.3390/microorganisms10050899] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Rhizospheric plant-microbe interactions have dynamic importance in sustainable agriculture systems that have a reduced reliance on agrochemicals. Rhizosphere signaling focuses on the interactions between plants and the surrounding symbiotic microorganisms that facilitate the development of rhizobiome diversity, which is beneficial for plant productivity. Plant-microbe communication comprises intricate systems that modulate local and systemic defense mechanisms to mitigate environmental stresses. This review deciphers insights into how the exudation of plant secondary metabolites can shape the functions and diversity of the root microbiome. It also elaborates on how rhizosphere interactions influence plant growth, regulate plant immunity against phytopathogens, and prime the plant for protection against biotic and abiotic stresses, along with some recent well-reported examples. A holistic understanding of these interactions can help in the development of tailored microbial inoculants for enhanced plant growth and targeted disease suppression.
Collapse
Affiliation(s)
- Fatima Jamil
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
| | - Hamid Mukhtar
- Institute of Industrial Biotechnology, Government College University, Lahore 54000, Pakistan;
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Mireille Fouillaud
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, Faculté des Sciences et Technologies, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France
- Correspondence: (H.M.); (M.F.); Tel.: +92-333-424-5581 (H.M.); +262-262-483-363 (M.F.)
| | - Laurent Dufossé
- CHEMBIOPRO Chimie et Biotechnologie des Produits Naturels, ESIROI Département Agroalimentaire, Université de la Réunion, F-97490 Sainte-Clotilde, Ile de La Réunion, France;
| |
Collapse
|
42
|
Ansari MA, Bano N, Kumar A, Dubey AK, Asif MH, Sanyal I, Pande V, Pandey V. Comparative transcriptomic analysis and antioxidant defense mechanisms in clusterbean (Cyamopsis tetragonoloba (L.) Taub.) genotypes with contrasting drought tolerance. Funct Integr Genomics 2022; 22:625-642. [PMID: 35426545 DOI: 10.1007/s10142-022-00860-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/07/2022] [Accepted: 04/07/2022] [Indexed: 01/16/2023]
Abstract
To understand drought tolerance mechanism(s) in clusterbean (Cyamopsis tetragonoloba), we conducted physiological, biochemical, and de novo comparative transcriptome analysis of drought-tolerant (RGC-1002) and drought-sensitive (RGC-1066) genotypes subjected to 30 days of drought stress. Relative water content (RWC) was maintained in tolerant genotype but was reduced in sensitive genotype. Leaf pigment concentrations were higher in tolerant genotype. Net photosynthesis was significantly decreased in sensitive genotype but insignificant reduction was found in tolerant genotype. Enzymatic antioxidant (GR, APX, DHAR) activities were enhanced in tolerant genotype, while there were insignificant changes in these enzymes in sensitive genotype. The ratios of antioxidant molecules (ASC/DHA and GSH/GSSG) were higher in tolerant genotype as compared to sensitive genotype. In sensitive genotype, 6625 differentially expressed genes (DEGs) were upregulated and 5365 genes were downregulated. In tolerant genotype, 5206 genes were upregulated and 2793 genes were downregulated. In tolerant genotype, transketolase family protein, phosphoenolpyruvate carboxylase 3, temperature-induced lipocalin, and cytochrome oxidase were highly upregulated. Moreover, according to Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, the drought tolerance may be attributed to upregulated starch and sucrose metabolism-related genes in tolerant genotype. Finally, quantitative real-time PCR confirmed the reproducibility of the RNA-seq data.
Collapse
Affiliation(s)
- Mohd Akram Ansari
- Plant Ecology and Climate Change Science Division, CSIR-NBRI, Lucknow, India. .,Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India.
| | - Nasreen Bano
- Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Anil Kumar
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India.,Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Arvind Kumar Dubey
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India.,Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Mehar Hasan Asif
- Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Indraneel Sanyal
- Plant Molecular Biology and Biotechnology Division, CSIR-NBRI, Lucknow, India
| | - Veena Pande
- Department of Biotechnology, Bhimtal Campus, Kumaun University, Nainital, India
| | - Vivek Pandey
- Plant Ecology and Climate Change Science Division, CSIR-NBRI, Lucknow, India.
| |
Collapse
|
43
|
Wang G, Qi K, Gao X, Guo L, Cao P, Li Q, Qiao X, Gu C, Zhang S. Genome-wide identification and comparative analysis of the PYL gene family in eight Rosaceae species and expression analysis of seeds germination in pear. BMC Genomics 2022; 23:233. [PMID: 35337257 PMCID: PMC8957196 DOI: 10.1186/s12864-022-08456-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Abscisic acid (ABA) is a phytohormone that plays important roles in the regulation of plant growth, seed germination, and stress responses. The pyrabactin resistance 1-like (PYR/PYL) protein, an ABA receptor, was involved in the initial step in ABA signal transduction. However, the evolutionary history and characteristics of PYL genes expression remain unclear in Chinese white pear (Pyrus bretschneideri) or other Rosaceae species. In this study, 67 PYL genes were identified in eight Rosaceae species, and have been classified into three subgroups based on specific motifs and phylogenetic analysis. Intriguingly, we observed that whole-genome duplication (WGD) and dispersed duplication (DSD) have a major contribution to PYL family expansion. Purifying selection was the major force in PYL genes evolution. Expression analysis finds that PYL genes may function in multiple pear tissues. qRT-PCR validation of 11 PbrPYL genes indicates their roles in seed germination and abiotic stress responses. Our study provides a basis for further elucidation of the function of PYL genes and analysis of their expansion, evolution and expression patterns, which helps to understand the molecular mechanism of pear response to seed germination and seedling abiotic stress.
Collapse
Affiliation(s)
- Guoming Wang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Kaijie Qi
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xin Gao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lei Guo
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Peng Cao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Qionghou Li
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Xin Qiao
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China
| | - Chao Gu
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Shaoling Zhang
- Centre of Pear Engineering Technology Research, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, 210095, Nanjing, China.
| |
Collapse
|
44
|
Bashir SS, Hussain A, Hussain SJ, Wani OA, Zahid Nabi S, Dar NA, Baloch FS, Mansoor S. Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2020161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Sheikh Shanawaz Bashir
- Department of Botany, School of Chemical and Life Science, Jamia Hamdard University, New Delhi, India
| | - Anjuman Hussain
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Sofi Javed Hussain
- Department of Botany, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Owais Ali Wani
- Department of Soil Science, FoA, Wadura, Sopore, Sher-e-Kashmir University of Agricultural Sciences & Technology Shalimar Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sheikh Zahid Nabi
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| | - Niyaz A. Dar
- ARSSSS Pampore, Sher-e-Kashmir University of Agricultural Sciences and Technology, Shalimar Kashmir, Srinagar, Jammu and Kashmir, India
| | - Faheem Shehzad Baloch
- Department of Plant Protection, Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Turkey
| | - Sheikh Mansoor
- Division of Biochemistry, Faculty of Basic Sciences, Sher-e-Kashmir University of Agricultural Sciences and Technology, Jammu, India
| |
Collapse
|
45
|
Budhlakoti N, Kushwaha AK, Rai A, Chaturvedi KK, Kumar A, Pradhan AK, Kumar U, Kumar RR, Juliana P, Mishra DC, Kumar S. Genomic Selection: A Tool for Accelerating the Efficiency of Molecular Breeding for Development of Climate-Resilient Crops. Front Genet 2022; 13:832153. [PMID: 35222548 PMCID: PMC8864149 DOI: 10.3389/fgene.2022.832153] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 01/10/2022] [Indexed: 12/17/2022] Open
Abstract
Since the inception of the theory and conceptual framework of genomic selection (GS), extensive research has been done on evaluating its efficiency for utilization in crop improvement. Though, the marker-assisted selection has proven its potential for improvement of qualitative traits controlled by one to few genes with large effects. Its role in improving quantitative traits controlled by several genes with small effects is limited. In this regard, GS that utilizes genomic-estimated breeding values of individuals obtained from genome-wide markers to choose candidates for the next breeding cycle is a powerful approach to improve quantitative traits. In the last two decades, GS has been widely adopted in animal breeding programs globally because of its potential to improve selection accuracy, minimize phenotyping, reduce cycle time, and increase genetic gains. In addition, given the promising initial evaluation outcomes of GS for the improvement of yield, biotic and abiotic stress tolerance, and quality in cereal crops like wheat, maize, and rice, prospects of integrating it in breeding crops are also being explored. Improved statistical models that leverage the genomic information to increase the prediction accuracies are critical for the effectiveness of GS-enabled breeding programs. Study on genetic architecture under drought and heat stress helps in developing production markers that can significantly accelerate the development of stress-resilient crop varieties through GS. This review focuses on the transition from traditional selection methods to GS, underlying statistical methods and tools used for this purpose, current status of GS studies in crop plants, and perspectives for its successful implementation in the development of climate-resilient crops.
Collapse
Affiliation(s)
- Neeraj Budhlakoti
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Anil Rai
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - K K Chaturvedi
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anuj Kumar
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | | | | | - D C Mishra
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Sundeep Kumar
- ICAR- National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
46
|
Islam MJ, Uddin MJ, Hossain MA, Henry R, Begum MK, Sohel MAT, Mou MA, Ahn J, Cheong EJ, Lim YS. Exogenous putrescine attenuates the negative impact of drought stress by modulating physio-biochemical traits and gene expression in sugar beet (Beta vulgaris L.). PLoS One 2022; 17:e0262099. [PMID: 34995297 PMCID: PMC8741020 DOI: 10.1371/journal.pone.0262099] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/17/2021] [Indexed: 11/19/2022] Open
Abstract
Drought tolerance is a complex trait controlled by many metabolic pathways and genes and identifying a solution to increase the resilience of plants to drought stress is one of the grand challenges in plant biology. This study provided compelling evidence of increased drought stress tolerance in two sugar beet genotypes when treated with exogenous putrescine (Put) at the seedling stage. Morpho-physiological and biochemical traits and gene expression were assessed in thirty-day-old sugar beet seedlings subjected to drought stress with or without Put (0.3, 0.6, and 0.9 mM) application. Sugar beet plants exposed to drought stress exhibited a significant decline in growth and development as evidenced by root and shoot growth characteristics, photosynthetic pigments, antioxidant enzyme activities, and gene expression. Drought stress resulted in a sharp increase in hydrogen peroxide (H2O2) (89.4 and 118% in SBT-010 and BSRI Sugar beet 2, respectively) and malondialdehyde (MDA) (35.6 and 27.1% in SBT-010 and BSRI Sugar beet 2, respectively). These changes were strongly linked to growth retardation as evidenced by principal component analysis (PCA) and heatmap clustering. Importantly, Put-sprayed plants suffered from less oxidative stress as indicated by lower H2O2 and MDA accumulation. They better regulated the physiological processes supporting growth, dry matter accumulation, photosynthetic pigmentation and gas exchange, relative water content; modulated biochemical changes including proline, total soluble carbohydrate, total soluble sugar, and ascorbic acid; and enhanced the activities of antioxidant enzymes and gene expression. PCA results strongly suggested that Put conferred drought tolerance mostly by enhancing antioxidant enzymes activities that regulated homeostasis of reactive oxygen species. These findings collectively provide an important illustration of the use of Put in modulating drought tolerance in sugar beet plants.
Collapse
Affiliation(s)
- Md Jahirul Islam
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Physiology and Sugar Chemistry Division, Bangladesh Sugarcrop Research institute, Ishurdi, Pabna, Bangladesh
| | - Md Jalal Uddin
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
- Research Group for Host-Microbe Interactions, Department of Medical Biology and Centre for New Antibacterial Strategies (CANS), UiT—The Arctic University of Norway, Tromsø, Norway
| | - Mohammad Anwar Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Robert Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, Qld, Australia
| | - Mst. Kohinoor Begum
- Physiology and Sugar Chemistry Division, Bangladesh Sugarcrop Research institute, Ishurdi, Pabna, Bangladesh
| | - Md. Abu Taher Sohel
- Agronomy and Farming System Division, Bangladesh Sugarcrop Research Institute, Ishurdi, Pabna, Bangladesh
| | - Masuma Akter Mou
- Department of Agronomy, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Juhee Ahn
- Department of Medical Biomaterials Engineering, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| | - Eun Ju Cheong
- Division of Forest Science, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon, Korea
| | - Young-Seok Lim
- Department of Bio-Health Convergence, College of Biomedical Science, Kangwon National University, Chuncheon, Republic of Korea
| |
Collapse
|
47
|
Gangireddygari VSR, Chung BN, Cho IS, Yoon JY. Inhibitory Effect of Chitosan and Phosphate Cross-linked Chitosan against Cucumber Mosaic Virus and Pepper Mild Mottle Virus. THE PLANT PATHOLOGY JOURNAL 2021; 37:632-640. [PMID: 34897254 PMCID: PMC8666249 DOI: 10.5423/ppj.oa.10.2021.0155] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 06/13/2023]
Abstract
Cucumber mosaic virus (CMV) and Pepper mild mottle virus (PMMoV) causes severe economic loss in crop productivity of both agriculture and horticulture crops in Korea. The previous surveys showed that naturally available biopolymer material - chitosan (CS), which is from shrimp cells, reduced CMV accumulation on pepper. To improve the antiviral activity of CS, it was synthesized to form phosphate cross-linked chitosan (PCS) and compared with the original CS. Initially, the activity of CS and PCS (0.01%, 0.05%, and 0.1% concentration) compound against PMMoV infection and replication was tested using a half-leaf assay on Nicotiana glutinosa leaves. The total number of local lesions represented on a leaf of N. glutinosa were counted and analyzed with phosphate buffer treated leaves as a negative control. The leaves treated with a 0.1% concentration of CS or PCS compounds exhibited an inhibition effect by 40-75% compared with the control leaves. The same treatment significantly reduced about 40% CMV accumulation measured by double antibody sandwich enzyme-linked immunosorbent assay and increased the relative expression levels of the NPR1, PR-1, cysteine protease inhibitor gene, LOX, PAL, SRC2, CRF3 and ERF4 genes analyzed by quantitative reverse transcriptase-polymerase chain reaction, in chili pepper plants.
Collapse
Affiliation(s)
- Venkata Subba Reddy Gangireddygari
- Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Bong Nam Chung
- Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - In-Sook Cho
- Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
| | - Ju-Yeon Yoon
- Virology Unit, Horticulture and Herbal Crop Environment Division, National Institute of Horticulture and Herbal Science, Rural Development Administration, Wanju 55365,
Korea
- Graduate School on Plant Protection and Quarantine, Jeonbuk National University, Jeonju 54896,
Korea
| |
Collapse
|
48
|
Wai AH, Cho LH, Peng X, Waseem M, Lee DJ, Lee JM, Kim CK, Chung MY. Genome-wide identification and expression profiling of Alba gene family members in response to abiotic stress in tomato (Solanum lycopersicum L.). BMC PLANT BIOLOGY 2021; 21:530. [PMID: 34772358 PMCID: PMC8588595 DOI: 10.1186/s12870-021-03310-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 11/02/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Alba (Acetylation lowers binding affinity) proteins are an ancient family of nucleic acid-binding proteins that function in gene regulation, RNA metabolism, mRNA translatability, developmental processes, and stress adaptation. However, comprehensive bioinformatics analysis on the Alba gene family of Solanum lycopersicum has not been reported previously. RESULTS In the present study, we undertook the first comprehensive genome-wide characterization of the Alba gene family in tomato (Solanum lycopersicum L.). We identified eight tomato Alba genes, which were classified into two groups: genes containing a single Alba domain and genes with a generic Alba domain and RGG/RG repeat motifs. Cis-regulatory elements and target sites for miRNAs, which function in plant development and stress responses, were prevalent in SlAlba genes. To explore the structure-function relationships of tomato Alba proteins, we predicted their 3D structures, highlighting their likely interactions with several putative ligands. Confocal microscopy revealed that SlAlba-GFP fusion proteins were localized to the nucleus and cytoplasm, consistent with putative roles in various signalling cascades. Expression profiling revealed the differential expression patterns of most SlAlba genes across diverse organs. SlAlba1 and SlAlba2 were predominantly expressed in flowers, whereas SlAlba5 expression peaked in 1 cm-diameter fruits. The SlAlba genes were differentially expressed (up- or downregulated) in response to different abiotic stresses. All but one of these genes were induced by abscisic acid treatment, pointing to their possible regulatory roles in stress tolerance via an abscisic acid-dependent pathway. Furthermore, co-expression of SlAlba genes with multiple genes related to several metabolic pathways spotlighted their crucial roles in various biological processes and signalling. CONCLUSIONS Our characterization of SlAlba genes should facilitate the discovery of additional genes associated with organ and fruit development as well as abiotic stress adaptation in tomato.
Collapse
Affiliation(s)
- Antt Htet Wai
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950 Republic of Korea
- Department of Biology, Yangon University of Education, Kamayut Township, Yangon Region 11041 Myanmar
| | - Lae-Hyeon Cho
- Department of Plant Bioscience, College of Natural Resources and Life Science, Pusan National University, Miryang-si, Gyeongsangnam-do 50463 Republic of Korea
| | - Xin Peng
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou, China
| | - Muhammad Waseem
- College of horticulture, South China Agricultural University, Guangzhou, China
| | - Do-jin Lee
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950 Republic of Korea
| | - Je-Min Lee
- Department of Horticulture, Kyungpook National University, Daegu, Republic of Korea
| | - Chang-Kil Kim
- Department of Horticulture, Kyungpook National University, Daegu, Republic of Korea
| | - Mi-Young Chung
- Department of Agricultural Education, Sunchon National University, 413 Jungangno, Suncheon, Jeonnam 540-950 Republic of Korea
| |
Collapse
|
49
|
Zhang L, Song Y, Liu K, Gong F. The tomato Mediator subunit MED8 positively regulates plant response to Botrytis cinerea. JOURNAL OF PLANT PHYSIOLOGY 2021; 266:153533. [PMID: 34601339 DOI: 10.1016/j.jplph.2021.153533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/21/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The Mediator complex acts as a bridge between specific transcription factors and the RNA polymerase II transcriptional machinery and plays a central role in plant immunity. Biological induction of plant resistance against pathogens requires endogenous hormone jasmonic acid (JA) and involves profound transcriptional changes controlled by the key transcription factor MYC2. Arabidopsis thaliana Mediator subunit 25 (AtMED25) regulates JA-dependent defense response through interacting with MYC2. Here, we report that the tomato (Solanum lycopersicum, Sl) Mediator subunit 8 (SlMED8) is another essential component in JA-dependent defense response. The transcript levels of SlMED8 could not be affected by treatment with MeJA, SA, ABA, and mechanical wounding. Yeast two-hybrid assays showed that SlMED8 could interact with itself, SlMYC2, and SlMED25, respectively. In addition, ectopic overexpression of SlMED8 complemented the late flowering and pathogen hypersensitivity phenotypes of Arabidopsis med8 mutant. Overexpression of SlMED8 rendered transgenic plants higher tolerance to necrotrophic pathogen Botrytis cinerea. Meanwhile, SlMED8 antisense plants displayed compromised resistance to Botrytis cinerea. Consistent with this, differential expression levels of several JA-responsive genes were detected within the transgenic plants. Overall, our results identified an important control point in the regulation of the JA signaling pathway within the transcriptional machinery.
Collapse
Affiliation(s)
- Lili Zhang
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Yunpeng Song
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Kaige Liu
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| | - Fanrong Gong
- Shanghai Key Lab of Protected Horticultural Technology; Horticultural Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai, 201106, PR China.
| |
Collapse
|
50
|
Influence of Silicon on Biocontrol Strategies to Manage Biotic Stress for Crop Protection, Performance, and Improvement. PLANTS 2021; 10:plants10102163. [PMID: 34685972 PMCID: PMC8537781 DOI: 10.3390/plants10102163] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/03/2021] [Accepted: 10/08/2021] [Indexed: 11/17/2022]
Abstract
Silicon (Si) has never been acknowledged as a vital nutrient though it confers a crucial role in a variety of plants. Si may usually be expressed more clearly in Si-accumulating plants subjected to biotic stress. It safeguards several plant species from disease. It is considered as a common element in the lithosphere of up to 30% of soils, with most minerals and rocks containing silicon, and is classified as a "significant non-essential" element for plants. Plant roots absorb Si, which is subsequently transferred to the aboveground parts through transpiration stream. The soluble Si in cytosol activates metabolic processes that create jasmonic acid and herbivore-induced organic compounds in plants to extend their defense against biotic stressors. The soluble Si in the plant tissues also attracts natural predators and parasitoids during pest infestation to boost biological control, and it acts as a natural insect repellent. However, so far scientists, policymakers, and farmers have paid little attention to its usage as a pesticide. The recent developments in the era of genomics and metabolomics have opened a new window of knowledge in designing molecular strategies integrated with the role of Si in stress mitigation in plants. Accordingly, the present review summarizes the current status of Si-mediated plant defense against insect, fungal, and bacterial attacks. It was noted that the Si-application quenches biotic stress on a long-term basis, which could be beneficial for ecologically integrated strategy instead of using pesticides in the near future for crop improvement and to enhance productivity.
Collapse
|