1
|
Trofimov K, Mankotia S, Ngigi M, Baby D, Satbhai SB, Bauer P. Shedding light on iron nutrition: exploring intersections of transcription factor cascades in light and iron deficiency signaling. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:787-802. [PMID: 39115876 PMCID: PMC11805591 DOI: 10.1093/jxb/erae324] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/07/2024] [Indexed: 02/09/2025]
Abstract
In the dynamic environment of plants, the interplay between light-dependent growth and iron nutrition is a recurring challenge. Plants respond to low iron levels by adjusting growth and physiology through enhanced iron acquisition from the rhizosphere and internal iron pool reallocation. Iron deficiency response assays and gene co-expression networks aid in documenting physiological reactions and unraveling gene-regulatory cascades, offering insight into the interplay between hormonal and external signaling pathways. However, research directly exploring the significance of light in iron nutrition remains limited. This review provides an overview on iron deficiency regulation and its cross-connection with distinct light signals, focusing on transcription factor cascades and long-distance signaling. The circadian clock and retrograde signaling influence iron uptake and allocation. The light-activated shoot-to-root mobile transcription factor ELONGATED HYPOCOTYL5 (HY5) affects iron homeostasis responses in roots. Blue light triggers the formation of biomolecular condensates containing iron deficiency-induced protein complexes. The potential of exploiting the connection between light and iron signaling remains underutilized. With climate change and soil alkalinity on the rise, there is a need to develop crops with improved nutrient use efficiency and modified light dependencies. More research is needed to understand and leverage the interplay between light signaling and iron nutrition.
Collapse
Affiliation(s)
- Ksenia Trofimov
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Samriti Mankotia
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Punjab 140406, India
| | - Mary Ngigi
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Dibin Baby
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Santosh B Satbhai
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Mohali, SAS Nagar, Punjab 140406, India
| | - Petra Bauer
- Institute of Botany, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| |
Collapse
|
2
|
Bosch G, Fuentes M, Erro J, Zamarreño ÁM, García-Mina JM. Hydrolysis of riboflavins in root exudates under iron deficiency and alkaline stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108573. [PMID: 38569423 DOI: 10.1016/j.plaphy.2024.108573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/06/2024] [Accepted: 03/26/2024] [Indexed: 04/05/2024]
Abstract
Riboflavins are secreted under iron deficiency as a part of the iron acquisition Strategy I, mainly when the external pH is acidic. In plants growing under Fe-deficiency and alkaline conditions, riboflavins have been reported to accumulate inside the roots, with very low or negligible secretion. However, the fact that riboflavins may undergo hydrolysis under alkaline conditions has been so far disregarded. In this paper, we report the presence of riboflavin derivatives and products of their alkaline hydrolysis (lumichrome, lumiflavin and carboxymethylflavin) in nutrient solutions of Cucumis sativus plants grown under different iron regimes (soluble Fe-EDDHA in the nutrient solution, total absence of iron in the nutrient solution, or two different doses of FeSO4 supplied as a foliar spray), either cultivated in slightly acidic (pH 6) or alkaline (pH 8.8, 10 mM bicarbonate) nutrient solutions. The results show that root synthesis and exudation of riboflavins is controlled by shoot iron status, and that exuded riboflavins undergo hydrolysis, especially at alkaline pH, with lumichrome being the main product of hydrolysis.
Collapse
Affiliation(s)
- Germán Bosch
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008, Pamplona, Spain; Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Grupo Química y Biología Agrícola, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Marta Fuentes
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008, Pamplona, Spain; Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Grupo Química y Biología Agrícola, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Javier Erro
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008, Pamplona, Spain; Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Grupo Química y Biología Agrícola, Irunlarrea 1, 31008, Pamplona, Spain.
| | - Ángel M Zamarreño
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008, Pamplona, Spain; Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Grupo Química y Biología Agrícola, Irunlarrea 1, 31008, Pamplona, Spain.
| | - José M García-Mina
- Universidad de Navarra, Instituto de Biodiversidad y Medioambiente BIOMA, Irunlarrea 1, 31008, Pamplona, Spain; Universidad de Navarra, Facultad de Ciencias, Departamento de Biología Ambiental, Grupo Química y Biología Agrícola, Irunlarrea 1, 31008, Pamplona, Spain.
| |
Collapse
|
3
|
Roriz M, Pereira SI, Castro PM, Carvalho SM, Vasconcelos MW. Impact of soybean-associated plant growth-promoting bacteria on plant growth modulation under alkaline soil conditions. Heliyon 2023; 9:e14620. [PMID: 37180927 PMCID: PMC10172870 DOI: 10.1016/j.heliyon.2023.e14620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 05/16/2023] Open
Abstract
Conventional strategies to manage iron (Fe) deficiency still present drawbacks, and more eco-sustainable solutions are needed. Knowledge on soybean-specific diversity and functional traits of their plant growth-promoting bacteria (PGPB) potentiates their applicability as bioinoculants to foster soybean performance under calcareous soil conditions. This work aimed to assess the efficacy of PGPB, retrieved from soybean tissues/rhizosphere, in enhancing plant growth and development as well as crop yield under alkaline soil conditions. Seventy-six bacterial strains were isolated from shoots (18%), roots (53%), and rhizosphere (29%) of soybean. Twenty-nine genera were identified, with Bacillus and Microbacterium being the most predominant. Based on distinct plant growth-promoting traits, the endophyte Bacillus licheniformis P2.3 and the rhizobacteria Bacillus aerius S2.14 were selected as bioinoculants. In vivo tests showed that soybean photosynthetic parameters, chlorophyll content, total fresh weight, and Fe concentrations were not significantly affected by bioinoculation. However, inoculation with B. licheniformis P2.3 increased pod number (33%) and the expression of Fe-related genes (FRO2, IRT1, F6'H1, bHLH38, and FER4), and decreased FC-R activity (45%). Moreover, bioinoculation significantly affected Mn, Zn, and Ca accumulation in plant tissues. Soybean harbors several bacterial strains in their tissues and in the rhizosphere with capacities related to Fe nutrition and plant growth promotion. The strain B. licheniformis P2.3 showed the best potential to be incorporated in bioinoculant formulations for enhancing soybean performance under alkaline soil conditions.
Collapse
Affiliation(s)
- Mariana Roriz
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
- Corresponding author.
| | - Sofia I.A. Pereira
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Paula M.L. Castro
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| | - Susana M.P. Carvalho
- GreenUPorto – Research Centre on Sustainable Agrifood Production / Inov4Agro & DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, Rua da Agrária 747, 4485-646, Vairão, Portugal
| | - Marta W. Vasconcelos
- Universidade Católica Portuguesa, CBQF – Centro de Biotecnologia e Química Fina – Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005, Porto, Portugal
| |
Collapse
|
4
|
Sharma I, Kashyap S, Agarwala N. Biotic stress-induced changes in root exudation confer plant stress tolerance by altering rhizospheric microbial community. FRONTIERS IN PLANT SCIENCE 2023; 14:1132824. [PMID: 36968415 PMCID: PMC10036841 DOI: 10.3389/fpls.2023.1132824] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Every organism on the earth maintains some kind of interaction with its neighbours. As plants are sessile, they sense the varied above-ground and below-ground environmental stimuli and decipher these dialogues to the below-ground microbes and neighbouring plants via root exudates as chemical signals resulting in the modulation of the rhizospheric microbial community. The composition of root exudates depends upon the host genotype, environmental cues, and interaction of plants with other biotic factors. Crosstalk of plants with biotic agents such as herbivores, microbes, and neighbouring plants can change host plant root exudate composition, which may permit either positive or negative interactions to generate a battlefield in the rhizosphere. Compatible microbes utilize the plant carbon sources as their organic nutrients and show robust co-evolutionary changes in changing circumstances. In this review, we have mainly focused on the different biotic factors responsible for the synthesis of alternative root exudate composition leading to the modulation of rhizosphere microbiota. Understanding the stress-induced root exudate composition and resulting change in microbial community can help us to devise strategies in engineering plant microbiomes to enhance plant adaptive capabilities in a stressful environment.
Collapse
|
5
|
Wang T, Wang J, Zhang D, Chen L, Liu M, Zhang X, Schmidt W, Zhang WH. Protein kinase MtCIPK12 modulates iron reduction in Medicago truncatula by regulating riboflavin biosynthesis. PLANT, CELL & ENVIRONMENT 2023; 46:991-1003. [PMID: 36578264 DOI: 10.1111/pce.14527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 12/23/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Iron (Fe) is an essential micronutrient, and deficiency in available Fe is one of the most important limiting factors for plant growth. In some species including Medicago truncatula, Fe deficiency results in accumulation of riboflavin, a response associated with Fe acquisition. However, how the plant's Fe status is integrated to tune riboflavin biosynthesis and how riboflavin levels affect Fe acquisition and utilization remains largely unexplored. We report that protein kinase CIPK12 regulates ferric reduction by accumulation of riboflavin and its derivatives in roots of M. truncatula via physiological and molecular characterization of its mutants and over-expressing materials. Mutations in CIPK12 enhance Fe accumulation and improve photosynthetic efficiency, whereas overexpression of CIPK12 shows the opposite phenotypes. The Calcineurin B-like proteins CBL3 and CBL8 interact with CIPK12, which negatively regulates the expression of genes encoding key enzymes in the riboflavin biosynthesis pathway. CIPK12 negatively regulates Fe acquisition by suppressing accumulation of riboflavin and its derivatives in roots, which in turn influences ferric reduction activity by riboflavin-dependent electron transport under Fe deficiency. Our findings uncover a new regulatory mechanism by which CIPK12 regulates riboflavin biosynthesis and Fe-deficiency responses in plants.
Collapse
Affiliation(s)
- Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, The Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, The Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Di Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, The Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Li Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, The Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Min Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xinxin Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
- College of Resources and Environment, The Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
6
|
Nikolić D, Bosnić D, Samardžić J. Silicon in action: Between iron scarcity and excess copper. FRONTIERS IN PLANT SCIENCE 2023; 14:1039053. [PMID: 36818840 PMCID: PMC9935840 DOI: 10.3389/fpls.2023.1039053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Essential micronutrients belonging to the transition metals, such as Fe and Cu, are indispensable for plant growth and stress tolerance; however, when present in excess, they can become potentially dangerous producers of reactive oxygen species. Therefore, their homeostases must be strictly regulated. Both microelement deficiencies and elevated concentrations of heavy metals in the soil are global problems that reduce the nutritional value of crops and seriously affect human health. Silicon, a beneficial element known for its protective properties, has been reported to alleviate the symptoms of Cu toxicity and Fe deficiency stress in plants; however, we are still far from a comprehensive understanding of the underlying molecular mechanisms. Although Si-mediated mitigation of these stresses has been clearly demonstrated for some species, the effects of Si vary depending on plant species, growing conditions and experimental design. In this review, the proposed mechanistic models explaining the effect of Si are summarized and discussed. Iron and copper compete for the common metal transporters and share the same transport routes, hence, inadequate concentration of one element leads to disturbances of another. Silicon is reported to beneficially influence not only the distribution of the element supplied below or above the optimal concentration, but also the distribution of other microelements, as well as their molar ratios. The influence of Si on Cu immobilization and retention in the root, as well as Si-induced Fe remobilization from the source to the sink organs are of vital importance. The changes in cellular Cu and Fe localization are considered to play a crucial role in restoring homeostasis of these microelements. Silicon has been shown to stimulate the accumulation of metal chelators involved in both the mobilization of deficient elements and scavenging excess heavy metals. Research into the mechanisms of the ameliorative effects of Si is valuable for reducing mineral stress in plants and improving the nutritional value of crops. This review aims to provide a thorough and critical overview of the current state of knowledge in this field and to discuss discrepancies in the observed effects of Si and different views on its mode of action.
Collapse
|
7
|
Hsieh EJ, Lin WD, Schmidt W. Genomically Hardwired Regulation of Gene Activity Orchestrates Cellular Iron Homeostasis in Arabidopsis. RNA Biol 2021; 19:143-161. [PMID: 35067184 PMCID: PMC8786333 DOI: 10.1080/15476286.2021.2024024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/26/2021] [Indexed: 10/26/2022] Open
Abstract
Iron (Fe) is an essential micronutrient which plays pivotal roles as electron donor and catalyst across organisms. In plants, variable, often insufficient Fe supply necessitates mechanisms that constantly attune Fe uptake rates and recalibrate cellular Fe homoeostasis. Here, we show that short-term (0.5, 6, and 12 h) exposure of Arabidopsis thaliana plants to Fe deficiency triggered massive changes in gene activity governed by transcription and alternative splicing (AS), regulatory layers that were to a large extent mutually exclusive. Such preclusion was not observed for genes that are directly involved in the acquisition of Fe, which appears to be concordantly regulated by both expression and AS. Generally, genes with lower splice site strengths and higher intron numbers were more likely to be regulated by AS, no dependence on gene architecture was observed for transcriptionally controlled genes. Conspicuously, specific processes were associated with particular genomic features and biased towards either regulatory mode, suggesting that genomic hardwiring is functionally biased. Early changes in splicing patterns were, in many cases, congruent with later changes in transcript or protein abundance, thus contributing to the pronounced transcriptome-proteome discordance observed in plants.
Collapse
Affiliation(s)
- En-Jung Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
8
|
Li J, Cao X, Jia X, Liu L, Cao H, Qin W, Li M. Iron Deficiency Leads to Chlorosis Through Impacting Chlorophyll Synthesis and Nitrogen Metabolism in Areca catechu L. FRONTIERS IN PLANT SCIENCE 2021; 12:710093. [PMID: 34408765 PMCID: PMC8365612 DOI: 10.3389/fpls.2021.710093] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 07/06/2021] [Indexed: 05/25/2023]
Abstract
Deficiency of certain elements can cause leaf chlorosis in Areca catechu L. trees, which causes considerable production loss. The linkage between nutrient deficiency and chlorosis phenomenon and physiological defect in A. catechu remains unclear. Here, we found that low iron supply is a determinant for chlorosis of A. catechu seedling, and excessive iron supply resulted in dark green leaves. We also observed morphological characters of A. catechu seedlings under different iron levels and compared their fresh weight, chlorophyll contents, chloroplast structures and photosynthetic activities. Results showed that iron deficiency directly caused chloroplast degeneration and reduced chlorophyll synthesis in chlorosis leaves, while excessive iron treatment can increase chlorophyll contents, chloroplasts sizes, and inflated starch granules. However, both excessive and deficient of iron decreases fresh weight and photosynthetic rate in A. catechu seedlings. Therefore, we applied transcriptomic and metabolomic approaches to understand the effect of different iron supply to A. catechu seedlings. The genes involved in nitrogen assimilation pathway, such as NR (nitrate reductase) and GOGAT (glutamate synthase), were significantly down-regulated under both iron deficiency and excessive iron. Moreover, the accumulation of organic acids and flavonoids indicated a potential way for A. catechu to endure iron deficiency. On the other hand, the up-regulation of POD-related genes was assumed to be a defense strategy against the excessive iron toxicity. Our data demonstrated that A. catechu is an iron-sensitive species, therefore the precise control of iron level is believed to be the key point for A. catechu cultivation.
Collapse
Affiliation(s)
- Jia Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Xianmei Cao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Xiaocheng Jia
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Liyun Liu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Haowei Cao
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Tropical Crops, Hainan University, Haikou, China
| | - Weiquan Qin
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
| | - Meng Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wenchang, China
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| |
Collapse
|
9
|
Gheshlaghi Z, Luis-Villarroya A, Álvarez-Fernández A, Khorassani R, Abadía J. Iron deficient Medicago scutellata grown in nutrient solution at high pH accumulates and secretes large amounts of flavins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110664. [PMID: 33487332 DOI: 10.1016/j.plantsci.2020.110664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 06/12/2023]
Abstract
Flavin synthesis and secretion is an integral part of the toolbox of root-borne Fe facilitators used by Strategy I species upon Fe deficiency. The Fe-deficiency responses of the wild legume Medicago scutellata grown in nutrient solution have been studied at two different pH values (5.5 and 7.5). Parameters studied include leaf chlorophyll, nutrient solution pH, concentrations and contents of micronutrients, flavin accumulation in roots, flavin export to the medium, and root ferric chelate reductase and acidification activities. Results show that M. scutellata behaves upon Fe deficiency as a Strategy I species, with a marked capacity for synthesizing flavins (riboflavin and three hydroxylated riboflavin derivatives), which becomes more intense at high pH. Results also show that this species is capable of exporting a large amount of flavins to the external medium, both at pH 5.5 and 7.5. This is the first report of a species having a major flavin secretion at pH 7.5, in contrast with the very low flavin secretion found in other flavin-producing species such as Beta vulgaris and M. truncatula. These results provide further support to the hypothesis that flavin secretion is relevant for Fe acquisition at high pH, and open the possibility to improve the Fe-efficiency responses in legumes of agronomic interest.
Collapse
Affiliation(s)
- Zahra Gheshlaghi
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Adrián Luis-Villarroya
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Av. Montañana 1005, E-50059, Zaragoza, Spain.
| | - Ana Álvarez-Fernández
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Av. Montañana 1005, E-50059, Zaragoza, Spain.
| | - Reza Khorassani
- Department of Soil Science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, 9177948974, Iran.
| | - Javier Abadía
- Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas (EEAD-CSIC), Av. Montañana 1005, E-50059, Zaragoza, Spain.
| |
Collapse
|
10
|
Poschenrieder C, Busoms S, Barceló J. How Plants Handle Trivalent (+3) Elements. Int J Mol Sci 2019; 20:E3984. [PMID: 31426275 PMCID: PMC6719099 DOI: 10.3390/ijms20163984] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/31/2022] Open
Abstract
Plant development and fitness largely depend on the adequate availability of mineral elements in the soil. Most essential nutrients are available and can be membrane transported either as mono or divalent cations or as mono- or divalent anions. Trivalent cations are highly toxic to membranes, and plants have evolved different mechanisms to handle +3 elements in a safe way. The essential functional role of a few metal ions, with the possibility to gain a trivalent state, mainly resides in the ion's redox activity; examples are iron (Fe) and manganese. Among the required nutrients, the only element with +3 as a unique oxidation state is the non-metal, boron. However, plants also can take up non-essential trivalent elements that occur in biologically relevant concentrations in soils. Examples are, among others, aluminum (Al), chromium (Cr), arsenic (As), and antimony (Sb). Plants have evolved different mechanisms to take up and tolerate these potentially toxic elements. This review considers recent studies describing the transporters, and specific and unspecific channels in different cell compartments and tissues, thereby providing a global vision of trivalent element homeostasis in plants.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Silvia Busoms
- Plant Sciences, Future Food Beacon of Excellence and the School of Biosciences, University of Nottingham, Leicestershire LE12 5RD, UK
| | - Juan Barceló
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Lefèvre F, Fourmeau J, Pottier M, Baijot A, Cornet T, Abadía J, Álvarez-Fernández A, Boutry M. The Nicotiana tabacum ABC transporter NtPDR3 secretes O-methylated coumarins in response to iron deficiency. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4419-4431. [PMID: 29893871 PMCID: PMC6093371 DOI: 10.1093/jxb/ery221] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Accepted: 06/04/2018] [Indexed: 05/18/2023]
Abstract
Although iron is present in large amounts in the soil, its poor solubility means that plants have to use various strategies to facilitate its uptake. In this study, we show that expression of NtPDR3/NtABCG3, a Nicotiana tabacum plasma-membrane ABC transporter in the pleiotropic drug resistance (PDR) subfamily, is strongly induced in the root epidermis under iron deficiency conditions. Prevention of NtPDR3 expression resulted in N. tabacum plants that were less tolerant to iron-deficient conditions, displaying stronger chlorosis and slower growth than those of the wild-type when not supplied with iron. Metabolic profiling of roots and root exudates revealed that, upon iron deficiency, secretion of catechol-bearing O-methylated coumarins such as fraxetin, hydroxyfraxetin, and methoxyfraxetin to the rhizosphere was compromised in NtPDR3-silenced plants. However, exudation of flavins such as riboflavin was not markedly affected by NtPDR3-silencing. Expression of NtPDR3 in N. tabacum Bright Yellow-2 (BY-2) cells resulted in altered intra- and extracellular coumarin pools, supporting coumarin transport by this transporter. The results demonstrate that N. tabacum secretes both coumarins and flavins in response to iron deficiency and that NtPDR3 plays an essential role in the plant response to iron deficiency by mediating secretion of O-methylated coumarins to the rhizosphere.
Collapse
Affiliation(s)
- François Lefèvre
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| | - Justine Fourmeau
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| | - Mathieu Pottier
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| | - Amandine Baijot
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| | - Thomas Cornet
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| | - Javier Abadía
- Department of Plant Nutrition, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Ana Álvarez-Fernández
- Department of Plant Nutrition, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas (CSIC), Zaragoza, Spain
| | - Marc Boutry
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, Croix du Sud, Louvain-la-Neuve, Belgium
| |
Collapse
|
12
|
Chen H, Zhang Q, Cai H, Zhou W, Xu F. H 2 O 2 mediates nitrate-induced iron chlorosis by regulating iron homeostasis in rice. PLANT, CELL & ENVIRONMENT 2018; 41:767-781. [PMID: 29336033 DOI: 10.1111/pce.13145] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 12/27/2017] [Accepted: 12/31/2017] [Indexed: 06/07/2023]
Abstract
The uptake of nitrate by plant roots causes a pH increment in rhizosphere and leads to iron (Fe) deficiency in rice. However, little is known about the mechanism how the nitrate uptake-induced high rhizosphere pH causes Fe deficiency. Here, we found that rice showed severe leaf chlorosis and large amounts of Fe plaque were aggregated on the root surface and intercellular space outside the exodermis in a form of ferrihydrite under alkaline conditions. In this case, there was significantly decreased Fe concentration in shoots, and the Fe deficiency responsive genes were strongly induced in the roots. The high rhizosphere pH induced excess hydrogen peroxide (H2 O2 ) production in the epidermis due to the increasing expression of NADPH-oxidase respiratory burst oxidase homolog 1, which enhanced root oxidation ability and improved the Fe plaque formation in rhizosphere. Further, the concentrated H2 O2 regulated the phenylpropanoid metabolism with increased lignin biosynthesis and decreased phenolics secretion, which blocked apoplast Fe mobilization efficiency. These factors coordinately repressed the Fe utilization in rhizosphere and led to Fe deficiency in rice under high pH. In conclusion, our results demonstrate that nitrate uptake-induced rhizosphere alkalization led to Fe deficiency in rice, through H2 O2 -dependent manners of root oxidation ability and phenylpropanoid metabolism.
Collapse
Affiliation(s)
- Haifei Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
| | - Quan Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
| | - Hongmei Cai
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
| | - Wei Zhou
- Institute of Agricultural Resource and Regional Planning, CAAS, Beijing, 10081, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan, 430070, China
| |
Collapse
|
13
|
Waters BM, Amundsen K, Graef G. Gene Expression Profiling of Iron Deficiency Chlorosis Sensitive and Tolerant Soybean Indicates Key Roles for Phenylpropanoids under Alkalinity Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:10. [PMID: 29403520 PMCID: PMC5780454 DOI: 10.3389/fpls.2018.00010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 01/03/2018] [Indexed: 05/04/2023]
Abstract
Alkaline soils comprise 30% of the earth and have low plant-available iron (Fe) concentration, and can cause iron deficiency chlorosis (IDC). IDC causes soybean yield losses of $260 million annually. However, it is not known whether molecular responses to IDC are equivalent to responses to low iron supply. IDC tolerant and sensitive soybean lines provide a contrast to identify specific factors associated with IDC. We used RNA-seq to compare gene expression under combinations of normal pH (5.7) or alkaline pH (7.7, imposed by 2.5 mM bicarbonate, or pH 8.2 imposed by 5 mM bicarbonate) and normal (25 μM) or low (1 μM) iron conditions from roots of these lines. Thus, we were able to treat pH and Fe supply as separate variables. We also noted differential gene expression between IDC sensitive and tolerant genotypes in each condition. Classical iron uptake genes, including ferric-chelate reductase (FCR) and ferrous transporters, were upregulated by both Fe deficiency and alkaline stress, however, their gene products did not function well at alkaline pH. In addition, genes in the phenylpropanoid synthesis pathway were upregulated in both alkaline and low Fe conditions. These genes lead to the production of fluorescent root exudate (FluRE) compounds, such as coumarins. Fluorescence of nutrient solution increased with alkaline treatment, and was higher in the IDC tolerant line. Some of these genes also localized to previously identified QTL regions associated with IDC. We hypothesize that FluRE become essential at alkaline pH where the classical iron uptake system does not function well. This work could result in new strategies to screen for IDC tolerance, and provide breeding targets to improve crop alkaline stress tolerance.
Collapse
Affiliation(s)
- Brian M. Waters
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | | |
Collapse
|
14
|
Grillet L, Schmidt W. The multiple facets of root iron reduction. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5021-5027. [PMID: 29036459 DOI: 10.1093/jxb/erx320] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The biological significance of iron (Fe) is based on its propensity to oscillate between the ferric and ferrous forms, a transition that also affects its phyto-availability in soils. With the exception of grasses, Fe3+ is unavailable to plants. Most angiosperms employ a reduction-based Fe uptake mechanism, which relies on enzymatic reduction of ferric iron as an obligatory, rate-limiting step prior to uptake. This system functions optimally in acidic soils. Calcicole plants are, however, exposed to environments that are alkaline and/or have suboptimal availability of phosphorous, conditions under which the enzymatic reduction mechanism ceases to work effectively. We propose that auxiliary, non-enzymatic Fe reduction can be of critical importance for conferring fitness to plants thriving in alkaline soils with low bioavailability of Fe and/or phosphorus.
Collapse
Affiliation(s)
- Louis Grillet
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
15
|
Chen YT, Wang Y, Yeh KC. Role of root exudates in metal acquisition and tolerance. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:66-72. [PMID: 28654805 DOI: 10.1016/j.pbi.2017.06.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 05/18/2023]
Abstract
Plants acquire mineral nutrients mostly through the rhizosphere; they secrete a large number of metabolites into the rhizosphere to regulate nutrient availability and to detoxify undesirable metal pollutants in soils. The secreted metabolites are inorganic ions, gaseous molecules, and mainly carbon-based compounds. This review focuses on the mechanisms and regulation of low-molecular-weight organic-compound exudation in terms of metal acquisition. We summarize findings on riboflavin/phenolic-facilitated and phytosiderophore-facilitated iron acquisition and discuss recent studies of the functions and secretion mechanisms of low-molecular-weight organic acids in heavy-metal detoxification.
Collapse
Affiliation(s)
- Yi-Tze Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ying Wang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
16
|
Hsieh EJ, Waters BM. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5671-5685. [PMID: 27605716 PMCID: PMC5066488 DOI: 10.1093/jxb/erw328] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Iron (Fe) is an essential mineral that has low solubility in alkaline soils, where its deficiency results in chlorosis. Whether low Fe supply and alkaline pH stress are equivalent is unclear, as they have not been treated as separate variables in molecular physiological studies. Additionally, molecular responses to these stresses have not been studied in leaf and root tissues simultaneously. We tested how plants with the Strategy I Fe uptake system respond to Fe deficiency at mildly acidic and alkaline pH by measuring root ferric chelate reductase (FCR) activity and expression of selected Fe uptake genes and riboflavin synthesis genes. Alkaline pH increased cucumber (Cucumis sativus L.) root FCR activity at full Fe supply, but alkaline stress abolished FCR response to low Fe supply. Alkaline pH or low Fe supply resulted in increased expression of Fe uptake genes, but riboflavin synthesis genes responded to Fe deficiency but not alkalinity. Iron deficiency increased expression of some common genes in roots and leaves, but alkaline stress blocked up-regulation of these genes in Fe-deficient leaves. In roots of the melon (Cucumis melo L.) fefe mutant, in which Fe uptake responses are blocked upstream of Fe uptake genes, alkaline stress or Fe deficiency up-regulation of certain Fe uptake and riboflavin synthesis genes was inhibited, indicating a central role for the FeFe protein. These results suggest a model implicating shoot-to-root signaling of Fe status to induce Fe uptake gene expression in roots.
Collapse
Affiliation(s)
- En-Jung Hsieh
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, USA
| | - Brian M Waters
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, USA
| |
Collapse
|
17
|
Gutierrez-Carbonell E, Takahashi D, Lüthje S, González-Reyes JA, Mongrand S, Contreras-Moreira B, Abadía A, Uemura M, Abadía J, López-Millán AF. A Shotgun Proteomic Approach Reveals That Fe Deficiency Causes Marked Changes in the Protein Profiles of Plasma Membrane and Detergent-Resistant Microdomain Preparations from Beta vulgaris Roots. J Proteome Res 2016; 15:2510-24. [PMID: 27321140 DOI: 10.1021/acs.jproteome.6b00026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study we have used label-free shotgun proteomic analysis to examine the effects of Fe deficiency on the protein profiles of highly pure sugar beet root plasma membrane (PM) preparations and detergent-resistant membranes (DRMs), the latter as an approach to study microdomains. Altogether, 545 proteins were detected, with 52 and 68 of them changing significantly with Fe deficiency in PM and DRM, respectively. Functional categorization of these proteins showed that signaling and general and vesicle-related transport accounted for approximately 50% of the differences in both PM and DRM, indicating that from a qualitative point of view changes induced by Fe deficiency are similar in both preparations. Results indicate that Fe deficiency has an impact in phosphorylation processes at the PM level and highlight the involvement of signaling proteins, especially those from the 14-3-3 family. Lipid profiling revealed Fe-deficiency-induced decreases in phosphatidic acid derivatives, which may impair vesicle formation, in agreement with the decreases measured in proteins related to intracellular trafficking and secretion. The modifications induced by Fe deficiency in the relative enrichment of proteins in DRMs revealed the existence of a group of cytoplasmic proteins that appears to be more attached to the PM in conditions of Fe deficiency.
Collapse
Affiliation(s)
| | | | - Sabine Lüthje
- University of Hamburg , Biocenter Klein Flottbek, Ohnhorststrasse 18, 22609 Hamburg, Germany
| | - José Antonio González-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba , Campus de Rabanales, Edificio Severo Ochoa, Córdoba 14014, Spain
| | - Sébastien Mongrand
- Laboratoire de Biogenèse Membranaire, UMR 5200 CNRS-Université Bordeaux Segalen, Bâtiment A3, INRA Bordeaux Aquitaine , 71 Rue Edouard Borlaux, CS 20032, F-33140 Villenave d'Ornon, France
| | | | | | | | | | - Ana Flor López-Millán
- USDA-ARS Chindren's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine , 1100 Bates Street, Houston, Texas 77030, United States
| |
Collapse
|
18
|
Lo JC, Tsednee M, Lo YC, Yang SC, Hu JM, Ishizaki K, Kohchi T, Lee DC, Yeh KC. Evolutionary analysis of iron (Fe) acquisition system in Marchantia polymorpha. THE NEW PHYTOLOGIST 2016; 211:569-83. [PMID: 26948158 DOI: 10.1111/nph.13922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 02/02/2016] [Indexed: 05/18/2023]
Abstract
To acquire appropriate iron (Fe), vascular plants have developed two unique strategies, the reduction-based strategy I of nongraminaceous plants for Fe(2+) and the chelation-based strategy II of graminaceous plants for Fe(3+) . However, the mechanism of Fe uptake in bryophytes, the earliest diverging branch of land plants and dominant in gametophyte generation is less clear. Fe isotope fractionation analysis demonstrated that the liverwort Marchantia polymorpha uses reduction-based Fe acquisition. Enhanced activities of ferric chelate reductase and proton ATPase were detected under Fe-deficient conditions. However, M. polymorpha did not show mugineic acid family phytosiderophores, the key components of strategy II, or the precursor nicotianamine. Five ZIP (ZRT/IRT-like protein) homologs were identified and speculated to be involved in Fe uptake in M. polymorpha. MpZIP3 knockdown conferred reduced growth under Fe-deficient conditions, and MpZIP3 overexpression increased Fe content under excess Fe. Thus, a nonvascular liverwort, M. polymorpha, uses strategy I for Fe acquisition. This system may have been acquired in the common ancestor of land plants and coopted from the gametophyte to sporophyte generation in the evolution of land plants.
Collapse
Affiliation(s)
- Jing-Chi Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Munkhtsetseg Tsednee
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Ying-Chu Lo
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Shun-Chung Yang
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Jer-Ming Hu
- Institute of Ecology and Evolutionary Biology, National Taiwan University, Taipei, 10617, Taiwan
| | - Kimitsune Ishizaki
- Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, 657-8501, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8502, Japan
| | - Der-Chuen Lee
- Institute of Earth Sciences, Academia Sinica, Taipei, 11529, Taiwan
| | - Kuo-Chen Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, 11529, Taiwan
| |
Collapse
|
19
|
Rodríguez-Celma J, Lattanzio G, Villarroya D, Gutierrez-Carbonell E, Ceballos-Laita L, Rencoret J, Gutiérrez A, Del Río JC, Grusak MA, Abadía A, Abadía J, López-Millán AF. Effects of Fe deficiency on the protein profiles and lignin composition of stem tissues from Medicago truncatula in absence or presence of calcium carbonate. J Proteomics 2016; 140:1-12. [PMID: 27045941 DOI: 10.1016/j.jprot.2016.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/07/2016] [Accepted: 03/10/2016] [Indexed: 12/26/2022]
Abstract
UNLABELLED Iron deficiency is a yield-limiting factor with major implications for crop production, especially in soils with high CaCO3. Because stems are essential for the delivery of nutrients to the shoots, the aim of this work was to study the effects of Fe deficiency on the stem proteome of Medicago truncatula. Two-dimensional electrophoresis separation of stem protein extracts resolved 276 consistent spots in the whole experiment. Iron deficiency in absence or presence of CaCO3 caused significant changes in relative abundance in 10 and 31 spots, respectively, and 80% of them were identified by mass spectrometry. Overall results indicate that Fe deficiency by itself has a mild effect on the stem proteome, whereas Fe deficiency in the presence of CaCO3 has a stronger impact and causes changes in a larger number of proteins, including increases in stress and protein metabolism related proteins not observed in the absence of CaCO3. Both treatments resulted in increases in cell wall related proteins, which were more intense in the presence of CaCO3. The increases induced by Fe-deficiency in the lignin per protein ratio and changes in the lignin monomer composition, assessed by pyrolysis-gas chromatography-mass spectrometry and microscopy, respectively, further support the existence of cell wall alterations. BIOLOGICAL SIGNIFICANCE In spite of being essential for the delivery of nutrients to the shoots, our knowledge of stem responses to nutrient deficiencies is very limited. The present work applies 2-DE techniques to unravel the response of this understudied tissue to Fe deficiency. Proteomics data, complemented with mineral, lignin and microscopy analyses, indicate that stems respond to Fe deficiency by increasing stress and defense related proteins, probably in response of mineral and osmotic unbalances, and eliciting significant changes in cell wall composition. The changes observed are likely to ultimately affect solute transport and distribution to the leaves.
Collapse
Affiliation(s)
- Jorge Rodríguez-Celma
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Giuseppe Lattanzio
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Dido Villarroya
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Elain Gutierrez-Carbonell
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Laura Ceballos-Laita
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Jorge Rencoret
- Instituto de Recursos Naturales y Agrobiología de Sevilla (CSIC), Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Ana Gutiérrez
- Instituto de Recursos Naturales y Agrobiología de Sevilla (CSIC), Reina Mercedes 10, E-41012 Sevilla, Spain
| | - José C Del Río
- Instituto de Recursos Naturales y Agrobiología de Sevilla (CSIC), Reina Mercedes 10, E-41012 Sevilla, Spain
| | - Michael A Grusak
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA
| | - Anunciación Abadía
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Javier Abadía
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC), P.O. Box 13034, E-50080, Zaragoza, Spain
| | - Ana-Flor López-Millán
- USDA-ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, 1100 Bates Street, Houston, TX 77030, USA.
| |
Collapse
|
20
|
Satoh J, Koshino H, Sekino K, Ito S, Katsuta R, Takeda K, Yoshimura E, Shinmachi F, Kawasaki S, Niimura Y, Nukada T. Cucumis sativus secretes 4′-ketoriboflavin under iron-deficient conditions. Biosci Biotechnol Biochem 2016; 80:363-7. [DOI: 10.1080/09168451.2015.1095070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
A new compound in cucumber, Cucumis sativus, nutrient solution that appears under iron-deficient conditions, but not under ordinary culture conditions, has been revealed by HPLC analysis. The chemical structure of this compound was identified using LC-MS and NMR techniques as that of 4′-ketoriboflavin. This is the first report to show that 4′-ketoriboflavin can be found in metabolites from organisms.
Collapse
Affiliation(s)
- Junichi Satoh
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | | | - Kouta Sekino
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Shinsaku Ito
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Ryo Katsuta
- Department of Fermentation Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Kouji Takeda
- Education Course, Tokyo University of Agriculture, Tokyo, Japan
| | - Etsuro Yoshimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Fumie Shinmachi
- Department of Bioresource Science, Junior College, Nihon University, Fujisawa, Japan
| | - Shinji Kawasaki
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Youichi Niimura
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Tomoo Nukada
- Department of Fermentation Science, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
21
|
Sisó-Terraza P, Rios JJ, Abadía J, Abadía A, Álvarez-Fernández A. Flavins secreted by roots of iron-deficient Beta vulgaris enable mining of ferric oxide via reductive mechanisms. THE NEW PHYTOLOGIST 2016; 209:733-45. [PMID: 26351005 DOI: 10.1111/nph.13633] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 08/03/2015] [Indexed: 05/07/2023]
Abstract
Iron (Fe) is abundant in soils but generally poorly soluble. Plants, with the exception of Graminaceae, take up Fe using an Fe(III)-chelate reductase coupled to an Fe(II) transporter. Whether or not nongraminaceous species can convert scarcely soluble Fe(III) forms into soluble Fe forms has deserved little attention so far. We have used Beta vulgaris, one among the many species whose roots secrete flavins upon Fe deficiency, to study whether or not flavins are involved in Fe acquisition. Flavins secreted by Fe-deficient plants were removed from the nutrient solution, and plants were compared with Fe-sufficient plants and Fe-deficient plants without flavin removal. Solubilization of a scarcely soluble Fe(III)-oxide was assessed in the presence or absence of flavins, NADH (nicotinamide adenine dinucleotide, reduced form) or plant roots, and an Fe(II) trapping agent. The removal of flavins from the nutrient solution aggravated the Fe deficiency-induced leaf chlorosis. Flavins were able to dissolve an Fe(III)-oxide in the presence of NADH. The addition of extracellular flavins enabled roots of Fe-deficient plants to reductively dissolve an Fe(III)-oxide. We concluded that root-secretion of flavins improves Fe nutrition in B. vulgaris. Flavins allow B. vulgaris roots to mine Fe from Fe(III)-oxides via reductive mechanisms.
Collapse
Affiliation(s)
- Patricia Sisó-Terraza
- Department of Plant Nutrition, Estación Experimental de Aula Dei (CSIC), Av. Montañana 1005, E-50080, Zaragoza, Spain
| | - Juan J Rios
- Department of Plant Nutrition, Estación Experimental de Aula Dei (CSIC), Av. Montañana 1005, E-50080, Zaragoza, Spain
| | - Javier Abadía
- Department of Plant Nutrition, Estación Experimental de Aula Dei (CSIC), Av. Montañana 1005, E-50080, Zaragoza, Spain
| | - Anunciación Abadía
- Department of Plant Nutrition, Estación Experimental de Aula Dei (CSIC), Av. Montañana 1005, E-50080, Zaragoza, Spain
| | - Ana Álvarez-Fernández
- Department of Plant Nutrition, Estación Experimental de Aula Dei (CSIC), Av. Montañana 1005, E-50080, Zaragoza, Spain
| |
Collapse
|
22
|
Brumbarova T, Bauer P, Ivanov R. Molecular mechanisms governing Arabidopsis iron uptake. TRENDS IN PLANT SCIENCE 2015; 20:124-33. [PMID: 25499025 DOI: 10.1016/j.tplants.2014.11.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 05/18/2023]
Abstract
Plants are the principal source of dietary iron (Fe) for most of Earth's population and Fe deficiency can lead to major health problems. Developing strategies to improve plant Fe content is a challenge because Fe is essential and toxic and therefore regulating Fe uptake is crucial for plant survival. Acquiring soil Fe relies on complex regulatory events that occur in root epidermal cells. We review recent advances in elucidating many aspects of the regulation of Fe acquisition. These include the expanding protein network involved in FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR (FIT)-dependent gene regulation and novel findings on the intracellular trafficking of the Fe transporter IRON-REGULATED TRANSPORTER 1 (IRT1). We outline future challenges and propose strategies, such as exploiting natural variation, to further expand our knowledge.
Collapse
Affiliation(s)
- Tzvetina Brumbarova
- Institute of Botany, Heinrich-Heine University, Universitätstrasse 1, D-40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich-Heine University, Universitätstrasse 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, Universitätstrasse 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
23
|
Gayomba SR, Zhai Z, Jung HI, Vatamaniuk OK. Local and systemic signaling of iron status and its interactions with homeostasis of other essential elements. FRONTIERS IN PLANT SCIENCE 2015; 6:716. [PMID: 26442030 PMCID: PMC4568396 DOI: 10.3389/fpls.2015.00716] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 08/27/2015] [Indexed: 05/03/2023]
Abstract
Iron (Fe) is essential for plant growth and development. However, alkaline soils, which occupy approximately 30% of the world's arable lands, are considered Fe-limiting for plant growth because insoluble Fe (III) chelates prevail under these conditions. In contrast, high bioavailability of Fe in acidic soils can be toxic to plants due to the ability of Fe ions to promote oxidative stress. Therefore, plants have evolved sophisticated mechanisms to sense and respond to the fluctuation of Fe availability in the immediate environment and to the needs of developing shoot tissues to preclude deficiency while avoiding toxicity. In this review, we focus on recent advances in our understanding of local and systemic signaling of Fe status with emphasis on the contribution of Fe, its interaction with other metals and metal ligands in triggering molecular responses that regulate Fe uptake and partitioning in the plant body.
Collapse
Affiliation(s)
| | | | | | - Olena K. Vatamaniuk
- *Correspondence: Olena K. Vatamaniuk, Soil and Crop Sciences Section, School of Integrative Plant Sciences, Cornell University, 360 Tower Road, 608 Bradfield Hall, Ithaca, NY 14853, USA,
| |
Collapse
|
24
|
Fourcroy P, Sisó-Terraza P, Sudre D, Savirón M, Reyt G, Gaymard F, Abadía A, Abadia J, Álvarez-Fernández A, Briat JF. Involvement of the ABCG37 transporter in secretion of scopoletin and derivatives by Arabidopsis roots in response to iron deficiency. THE NEW PHYTOLOGIST 2014; 201:155-167. [PMID: 24015802 DOI: 10.1111/nph.12471] [Citation(s) in RCA: 230] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 07/26/2013] [Indexed: 05/17/2023]
Abstract
Studies of Iron (Fe) uptake mechanisms by plant roots have focussed on Fe(III)-siderophores or Fe(II) transport systems. Iron deficency also enhances root secretion of flavins and phenolics. However, the nature of these compounds, their transport outside the roots and their role in Fe nutrition are largely unknown. We used HPLC/ESI-MS (TOF) and HPLC/ESI-MS/MS (ion trap) to characterize fluorescent phenolic-type compounds accumulated in roots or exported to the culture medium of Arabidopsis plants in response to Fe deficiency. Wild-type and mutant plants altered either in phenylpropanoid biosynthesis or in the ABCG37 (PDR9) ABC transporter were grown under standard or Fe-deficient nutrition conditions and compared. Fe deficiency upregulates the expression of genes encoding enzymes of the phenylpropanoid pathway and leads to the synthesis and secretion of phenolic compounds belonging to the coumarin family. The ABCG37 gene is also upregulated in response to Fe deficiency and coumarin export is impaired in pdr9 mutant plants. Therefore it can be concluded that: Fe deficiency induces the secretion of coumarin compounds by Arabidopsis roots; the ABCG37 ABC transporter is required for this secretion to take place; and these compounds improved plant Fe nutrition.
Collapse
Affiliation(s)
- Pierre Fourcroy
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2, SupAgro. Bat 7, 2 place Viala, 34060, Montpellier Cedex 1, France
| | - Patricia Sisó-Terraza
- Department of Plant Nutrition, Estación Experimental de Aula Dei (CSIC), Av. Montañana 1005, E-50080, Zaragoza, Spain
| | - Damien Sudre
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2, SupAgro. Bat 7, 2 place Viala, 34060, Montpellier Cedex 1, France
| | - María Savirón
- New Organic Materials Unit, Institute of Materials Science of Aragón, CSIC-University of Zaragoza, c/Pedro Cerbuna 12, E-50009, Zaragoza, Spain
| | - Guilhem Reyt
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2, SupAgro. Bat 7, 2 place Viala, 34060, Montpellier Cedex 1, France
| | - Frédéric Gaymard
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2, SupAgro. Bat 7, 2 place Viala, 34060, Montpellier Cedex 1, France
| | - Anunciación Abadía
- Department of Plant Nutrition, Estación Experimental de Aula Dei (CSIC), Av. Montañana 1005, E-50080, Zaragoza, Spain
| | - Javier Abadia
- Department of Plant Nutrition, Estación Experimental de Aula Dei (CSIC), Av. Montañana 1005, E-50080, Zaragoza, Spain
| | - Ana Álvarez-Fernández
- Department of Plant Nutrition, Estación Experimental de Aula Dei (CSIC), Av. Montañana 1005, E-50080, Zaragoza, Spain
| | - Jean-François Briat
- Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier 2, SupAgro. Bat 7, 2 place Viala, 34060, Montpellier Cedex 1, France
| |
Collapse
|
25
|
Sainz M, Pérez-Rontomé C, Ramos J, Mulet JM, James EK, Bhattacharjee U, Petrich JW, Becana M. Plant hemoglobins may be maintained in functional form by reduced flavins in the nuclei, and confer differential tolerance to nitro-oxidative stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:875-87. [PMID: 24118423 DOI: 10.1111/tpj.12340] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/09/2013] [Accepted: 09/27/2013] [Indexed: 05/09/2023]
Abstract
The heme of bacteria, plant and animal hemoglobins (Hbs) must be in the ferrous state to bind O(2) and other physiological ligands. Here we have characterized the full set of non-symbiotic (class 1 and 2) and 'truncated' (class 3) Hbs of Lotus japonicus. Class 1 Hbs are hexacoordinate, but class 2 and 3 Hbs are pentacoordinate. Three of the globins, Glb1-1, Glb2 and Glb3-1, are nodule-enhanced proteins. The O(2) affinity of Glb1-1 (50 pm) was the highest known for any Hb, and the protein may function as an O(2) scavenger. The five globins were reduced by free flavins, which transfer electrons from NAD(P)H to the heme iron under aerobic and anaerobic conditions. Class 1 Hbs were reduced at very fast rates by FAD, class 2 Hbs at slower rates by both FMN and FAD, and class 3 Hbs at intermediate rates by FMN. The members of the three globin classes were immunolocalized predominantly in the nuclei. Flavins were quantified in legume nodules and nuclei, and their concentrations were sufficient to maintain Hbs in their functional state. All Hbs, except Glb1-1, were expressed in a flavohemoglobin-deficient yeast mutant and found to confer tolerance to oxidative stress induced by methyl viologen, copper or low temperature, indicating an anti-oxidative role for the hemes. However, only Glb1-2 and Glb2 afforded protection against nitrosative stress induced by S-nitrosoglutathione. Because this compound is specifically involved in transnitrosylation reactions with thiol groups, our results suggest a contribution of the single cysteine residues of both proteins in the stress response.
Collapse
Affiliation(s)
- Martha Sainz
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080, Zaragoza, Spain
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Rodríguez-Celma J, Schmidt W. Reduction-based iron uptake revisited: on the role of secreted iron-binding compounds. PLANT SIGNALING & BEHAVIOR 2013; 8:e26116. [PMID: 23989491 PMCID: PMC4091243 DOI: 10.4161/psb.26116] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 05/19/2023]
Abstract
With the exception of the grasses, plants rely on a reduction-based iron (Fe) uptake system that is compromised by high soil pH, leading to severe chlorosis and reduced yield in crop plants. We recently reported that iron deficiency triggers the production of secondary metabolites that are beneficial for Fe uptake in particular at high external pH when iron is present but not readily available. The exact function of these metabolites, however, remains enigmatic. Here, we speculate on the mechanism by which secondary metabolites secreted by roots from Fe-deficient plants improve Fe acquisition. We suggest that the production and excretion of Iron Binding Compounds (IBCs) constitute an integrative, pH-insensitive component of the reduction-based iron uptake strategy in plants.
Collapse
|
27
|
Santos CS, Silva AI, Serrão I, Carvalho AL, Vasconcelos MW. Transcriptomic analysis of iron deficiency related genes in the legumes. Food Res Int 2013. [DOI: 10.1016/j.foodres.2013.06.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Khandakar J, Haraguchi I, Yamaguchi K, Kitamura Y. A small-scale proteomic approach reveals a survival strategy, including a reduction in alkaloid biosynthesis, in Hyoscyamus albus roots subjected to iron deficiency. FRONTIERS IN PLANT SCIENCE 2013; 4:331. [PMID: 24009619 PMCID: PMC3755260 DOI: 10.3389/fpls.2013.00331] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/06/2013] [Indexed: 05/22/2023]
Abstract
Hyoscyamus albus is a well-known source of the tropane alkaloids, hyoscyamine and scopolamine, which are biosynthesized in the roots. To assess the major biochemical adaptations that occur in the roots of this plant in response to iron deficiency, we used a small-scale proteomic approach in which 100 mg of root tips were treated with and without Fe, respectively, for 5 days. Two-dimensional mini gels showed that 48 spots were differentially accumulated between the two conditions of Fe availability and a further 36 proteins were identified from these spots using MALDI-QIT-TOF mass spectrometry. The proteins that showed elevated levels in the roots lacking Fe were found to be associated variously with carbohydrate metabolism, cell differentiation, secondary metabolism, and oxidative defense. Most of the proteins involved in carbohydrate metabolism were increased in abundance, but mitochondrial NAD-dependent malate dehydrogenase was decreased, possibly resulting in malate secretion. Otherwise, all the proteins showing diminished levels in the roots were identified as either Fe-containing or ATP-requiring. For example, a significant decrease was observed in the levels of hyoscyamine 6β-hydroxylase (H6H), which requires Fe and is involved in the conversion of hyoscyamine to scopolamine. To investigate the effects of Fe deficiency on alkaloid biosynthesis, gene expression studies were undertaken both for H6H and for another Fe-dependent protein, Cyp80F1, which is involved in the final stage of hyoscyamine biosynthesis. In addition, tropane alkaloid contents were determined. Reduced gene expression was observed in the case of both of these proteins and was accompanied by a decrease in the content of both hyoscyamine and scopolamine. Finally, we have discussed energetic and Fe-conservation strategies that might be adopted by the roots of H. albus to maintain iron homeostasis under Fe-limiting conditions.
Collapse
Affiliation(s)
| | - Izumi Haraguchi
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki UniversityNagasaki, Japan
| | - Kenichi Yamaguchi
- Graduate School of Science and Technology, Nagasaki UniversityNagasaki, Japan
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki UniversityNagasaki, Japan
- Division of Biochemistry, Faculty of Fisheries, Nagasaki UniversityNagasaki, Japan
| | - Yoshie Kitamura
- Graduate School of Science and Technology, Nagasaki UniversityNagasaki, Japan
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki UniversityNagasaki, Japan
| |
Collapse
|
29
|
Pavlovic J, Samardzic J, Maksimović V, Timotijevic G, Stevic N, Laursen KH, Hansen TH, Husted S, Schjoerring JK, Liang Y, Nikolic M. Silicon alleviates iron deficiency in cucumber by promoting mobilization of iron in the root apoplast. THE NEW PHYTOLOGIST 2013; 198:1096-1107. [PMID: 23496257 DOI: 10.1111/nph.12213] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 02/04/2013] [Indexed: 05/06/2023]
Abstract
· Root responses to lack of iron (Fe) have mainly been studied in nutrient solution experiments devoid of silicon (Si). Here we investigated how Si ameliorates Fe deficiency in cucumber (Cucumis sativus) with focus on the storage and utilization of Fe in the root apoplast. · A combined approach was performed including analyses of apoplastic Fe, reduction-based Fe acquisition and Fe-mobilizing compounds in roots along with the expression of related genes. · Si-treated plants accumulated higher concentrations of root apoplastic Fe, which rapidly decreased when Fe was withheld from the nutrient solution. Under Fe-deficient conditions, Si also increased the accumulation of Fe-mobilizing compounds in roots. Si supply stimulated root activity of Fe acquisition at the early stage of Fe deficiency stress through regulation of gene expression levels of proteins involved in Fe acquisition. However, when the period of Fe deprivation was extended, these reactions further decreased as a consequence of Si-induced enhancement of the Fe status of the plants. · This work provides new evidence for the beneficial role of Si in plant nutrition and clearly indicates that Si-mediated alleviation of Fe deficiency includes an increase of the apoplastic Fe pool in roots and an enhancement of Fe acquisition.
Collapse
Affiliation(s)
- Jelena Pavlovic
- Institute for Multidisciplinary Research - IMSI, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| | - Jelena Samardzic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444-A, 11010, Belgrade, Serbia
| | - Vuk Maksimović
- Institute for Multidisciplinary Research - IMSI, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| | - Gordana Timotijevic
- Institute for Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444-A, 11010, Belgrade, Serbia
| | - Nenad Stevic
- Institute for Multidisciplinary Research - IMSI, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| | - Kristian H Laursen
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Copenhagen, Denmark
| | - Thomas H Hansen
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Copenhagen, Denmark
| | - Søren Husted
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Copenhagen, Denmark
| | - Jan K Schjoerring
- Plant and Soil Science Section, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C, DK-1871, Copenhagen, Denmark
| | - Yongchao Liang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Miroslav Nikolic
- Institute for Multidisciplinary Research - IMSI, University of Belgrade, Kneza Viseslava 1, 11030, Belgrade, Serbia
| |
Collapse
|
30
|
López-Millán AF, Grusak MA, Abadía A, Abadía J. Iron deficiency in plants: an insight from proteomic approaches. FRONTIERS IN PLANT SCIENCE 2013; 4:254. [PMID: 23898336 PMCID: PMC3722493 DOI: 10.3389/fpls.2013.00254] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/23/2013] [Indexed: 05/05/2023]
Abstract
Iron (Fe) deficiency chlorosis is a major nutritional disorder for crops growing in calcareous soils, and causes decreases in vegetative growth as well as marked yield and quality losses. With the advances in mass spectrometry techniques, a substantial body of knowledge has arisen on the changes in the protein profiles of different plant parts and compartments as a result of Fe deficiency. Changes in the protein profile of thylakoids from several species have been investigated using gel-based two-dimensional electrophoresis approaches, and the same techniques have been used to investigate changes in the root proteome profiles of tomato (Solanum lycopersicum), sugar beet (Beta vulgaris), cucumber (Cucumis sativus), Medicago truncatula and a Prunus rootstock. High throughput proteomic studies have also been published using Fe-deficient Arabidopsis thaliana roots and thylakoids. This review summarizes the major conclusions derived from these "-omic" approaches with respect to metabolic changes occurring with Fe deficiency, and highlights future research directions in this field. A better understanding of the mechanisms involved in root Fe homeostasis from a holistic point of view may strengthen our ability to enhance Fe-deficiency tolerance responses in plants of agronomic interest.
Collapse
Affiliation(s)
- Ana-Flor López-Millán
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC)Zaragoza, Spain
- *Correspondence: Ana-Flor López-Millán, Plant Nutrition Department, Aula Dei Experimental Station (CSIC), Avenida Montañana 1005, E-50059, Zaragoza, Spain e-mail:
| | - Michael A. Grusak
- Department of Pediatrics, USDA-ARS Children's Nutrition Research Center, Baylor College of MedicineHouston, TX, USA
| | - Anunciación Abadía
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC)Zaragoza, Spain
| | - Javier Abadía
- Plant Nutrition Department, Aula Dei Experimental Station (CSIC)Zaragoza, Spain
| |
Collapse
|
31
|
Higa A, Khandakar J, Mori Y, Kitamura Y. Increased de novo riboflavin synthesis and hydrolysis of FMN are involved in riboflavin secretion from Hyoscyamus albus hairy roots under iron deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2012; 58:166-73. [PMID: 22819862 DOI: 10.1016/j.plaphy.2012.07.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 07/02/2012] [Indexed: 05/08/2023]
Abstract
Riboflavin secretion by Hyoscyamus albus hairy roots under Fe deficiency was examined to determine where riboflavin is produced and whether production occurs via an enhancement of riboflavin biosynthesis or a stimulation of flavin mononucleotide (FMN) hydrolysis. Confocal fluorescent microscopy showed that riboflavin was mainly localized in the epidermis and cortex of the root tip and, at the cellular level, in the apoplast. The expressions of three genes involved in the de novo biosynthesis of riboflavin (GTP cyclohydrolase II/3,4-dihydroxy-2-butanone 4-phosphate synthase; 6,7-dimethyl-8-ribityllumazine synthase; riboflavin synthase) were compared between Fe-starved and Fe-replete roots over a time-course of 7 days, using RT-PCR. All three genes were found to be highly expressed over the period 1-7 days in the roots cultured under Fe deficiency. Since riboflavin secretion began to be detected only from 3 days, there was a lag phase observed between the increased transcript accumulations and riboflavin secretion. To determine whether FMN hydrolysis might contribute to the riboflavin secretion in Fe-deficient root cultures, FMN hydrolase activity was determined and was found to be substantially increased after 3 days, when riboflavin secretion became detectable. These results suggested that not only de novo riboflavin synthesis but also the hydrolysis of FMN contributes to riboflavin secretion under conditions of Fe deficiency. Respiration activity was assayed during the time-course, and was also found to be enhanced after 3 days under Fe deficiency, suggesting a possible link with riboflavin secretion. On the other hand, several respiratory inhibitors were found not to affect riboflavin synthase transcript accumulation.
Collapse
Affiliation(s)
- Ataru Higa
- Graduate School of Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | | | | | | |
Collapse
|
32
|
Geothrix fermentans secretes two different redox-active compounds to utilize electron acceptors across a wide range of redox potentials. Appl Environ Microbiol 2012; 78:6987-95. [PMID: 22843516 DOI: 10.1128/aem.01460-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
The current understanding of dissimilatory metal reduction is based primarily on isolates from the proteobacterial genera Geobacter and Shewanella. However, environments undergoing active Fe(III) reduction often harbor less-well-studied phyla that are equally abundant. In this work, electrochemical techniques were used to analyze respiratory electron transfer by the only known Fe(III)-reducing representative of the Acidobacteria, Geothrix fermentans. In contrast to previously characterized metal-reducing bacteria, which typically reach maximal rates of respiration at electron acceptor potentials of 0 V versus standard hydrogen electrode (SHE), G. fermentans required potentials as high as 0.55 V to respire at its maximum rate. In addition, G. fermentans secreted two different soluble redox-active electron shuttles with separate redox potentials (-0.2 V and 0.3 V). The compound with the lower midpoint potential, responsible for 20 to 30% of electron transfer activity, was riboflavin. The behavior of the higher-potential compound was consistent with hydrophilic UV-fluorescent molecules previously found in G. fermentans supernatants. Both electron shuttles were also produced when cultures were grown with Fe(III), but not when fumarate was the electron acceptor. This study reveals that Geothrix is able to take advantage of higher-redox-potential environments, demonstrates that secretion of flavin-based shuttles is not confined to Shewanella, and points to the existence of high-potential-redox-active compounds involved in extracellular electron transfer. Based on differences between the respiratory strategies of Geothrix and Geobacter, these two groups of bacteria could exist in distinctive environmental niches defined by redox potential.
Collapse
|