1
|
Adhikary D, Mehta D, Kisiala A, Basu U, Uhrig RG, Emery RN, Rahman H, Kav NNV. Proteome- and metabolome-level changes during early stages of clubroot infection in Brassica napus canola. Mol Omics 2024; 20:265-282. [PMID: 38334713 DOI: 10.1039/d3mo00210a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Clubroot is a destructive root disease of canola (Brassica napus L.) caused by Plasmodiophora brassicae Woronin. Despite extensive research into the molecular responses of B. napus to P. brassicae, there is limited information on proteome- and metabolome-level changes in response to the pathogen, especially during the initial stages of infection. In this study, we have investigated the proteome- and metabolome- level changes in the roots of clubroot-resistant (CR) and -susceptible (CS) doubled-haploid (DH) B. napus lines, in response to P. brassicae pathotype 3H at 1-, 4-, and 7-days post-inoculation (DPI). Root proteomes were analyzed using nanoflow liquid chromatography coupled with tandem mass spectrometry (nano LC-MS/MS). Comparisons of pathogen-inoculated and uninoculated root proteomes revealed 2515 and 1556 differentially abundant proteins at one or more time points (1-, 4-, and 7-DPI) in the CR and CS genotypes, respectively. Several proteins related to primary metabolites (e.g., amino acids, fatty acids, and lipids), secondary metabolites (e.g., glucosinolates), and cell wall reinforcement-related proteins [e.g., laccase, peroxidases, and plant invertase/pectin methylesterase inhibitors (PInv/PMEI)] were identified. Eleven nucleotides and nucleoside-related metabolites, and eight fatty acids and sphingolipid-related metabolites were identified in the metabolomics study. To our knowledge, this is the first report of root proteome-level changes and associated alterations in metabolites during the early stages of P. brassicae infection in B. napus.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - R Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Rj Neil Emery
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Adhikary D, Kisiala A, Sarkar A, Basu U, Rahman H, Emery N, Kav NNV. Early-stage responses to Plasmodiophora brassicae at the transcriptome and metabolome levels in clubroot resistant and susceptible oilseed Brassica napus. Mol Omics 2022; 18:991-1014. [PMID: 36382681 DOI: 10.1039/d2mo00251e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Clubroot, a devastating soil-borne root disease, in Brassicaceae is caused by Plasmodiophora brassicae Woronin (P. brassicae W.), an obligate biotrophic protist. Plant growth and development, as well as seed yield of Brassica crops, are severely affected due to this disease. Several reports described the molecular responses of B. napus to P. brassicae; however, information on the early stages of pathogenesis is limited. In this study, we have used transcriptomics and metabolomics to characterize P. brassicae pathogenesis at 1-, 4-, and 7-days post-inoculation (DPI) in clubroot resistant (CR) and susceptible (CS) doubled-haploid (DH) canola lines. When we compared between inoculated and uninoculated groups, a total of 214 and 324 putative genes exhibited differential expression (q-value < 0.05) at one or more time-points in the CR and CS genotypes, respectively. When the inoculated CR and inoculated CS genotypes were compared, 4765 DEGs were differentially expressed (q-value < 0.05) at one or more time-points. Several metabolites related to organic acids (e.g., citrate, pyruvate), amino acids (e.g., proline, aspartate), sugars, and mannitol, were differentially accumulated in roots in response to pathogen infection when the CR and CS genotypes were compared. Several DEGs also corresponded to differentially accumulated metabolites, including pyrroline-5-carboxylate reductase (BnaC04g11450D), citrate synthase (BnaC02g39080D), and pyruvate kinase (BnaC04g23180D) as detected by transcriptome analysis. Our results suggest important roles for these genes in mediating resistance to clubroot disease. To our knowledge, this is the first report of an integrated transcriptome and metabolome analysis aimed at characterizing the molecular basis of resistance to clubroot in canola.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Anna Kisiala
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Ananya Sarkar
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Urmila Basu
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Habibur Rahman
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| | - Neil Emery
- Biology Department, Trent University, Peterborough, ON, Canada
| | - Nat N V Kav
- Department of Agricultural, Food & Nutritional Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Le Boulch P, Poëssel JL, Roux D, Lugan R. Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. FRONTIERS IN PLANT SCIENCE 2022; 13:992544. [PMID: 36275570 PMCID: PMC9581297 DOI: 10.3389/fpls.2022.992544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The transcriptomic and metabolomic responses of peach to Myzus persicae infestation were studied in Rubira, an accession carrying the major resistance gene Rm2 causing antixenosis, and GF305, a susceptible accession. Transcriptome and metabolome showed both a massive reconfiguration in Rubira 48 hours after infestation while GF305 displayed very limited changes. The Rubira immune system was massively stimulated, with simultaneous activation of genes encoding cell surface receptors involved in pattern-triggered immunity and cytoplasmic NLRs (nucleotide-binding domain, leucine-rich repeat containing proteins) involved in effector-triggered immunity. Hypersensitive reaction featured by necrotic lesions surrounding stylet punctures was supported by the induction of cell death stimulating NLRs/helpers couples, as well as the activation of H2O2-generating metabolic pathways: photorespiratory glyoxylate synthesis and activation of the futile P5C/proline cycle. The triggering of systemic acquired resistance was suggested by the activation of pipecolate pathway and accumulation of this defense hormone together with salicylate. Important reduction in carbon, nitrogen and sulphur metabolic pools and the repression of many genes related to cell division and growth, consistent with reduced apices elongation, suggested a decline in the nutritional value of apices. Finally, the accumulation of caffeic acid conjugates pointed toward their contribution as deterrent and/or toxic compounds in the mechanisms of resistance.
Collapse
Affiliation(s)
| | | | - David Roux
- UMR Qualisud, Avignon Université, Avignon, France
| | | |
Collapse
|
4
|
Shaw RK, Shen Y, Yu H, Sheng X, Wang J, Gu H. Multi-Omics Approaches to Improve Clubroot Resistance in Brassica with a Special Focus on Brassica oleracea L. Int J Mol Sci 2022; 23:9280. [PMID: 36012543 PMCID: PMC9409056 DOI: 10.3390/ijms23169280] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/04/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Brassica oleracea is an agronomically important species of the Brassicaceae family, including several nutrient-rich vegetables grown and consumed across the continents. But its sustainability is heavily constrained by a range of destructive pathogens, among which, clubroot disease, caused by a biotrophic protist Plasmodiophora brassicae, has caused significant yield and economic losses worldwide, thereby threatening global food security. To counter the pathogen attack, it demands a better understanding of the complex phenomenon of Brassica-P. brassicae pathosystem at the physiological, biochemical, molecular, and cellular levels. In recent years, multiple omics technologies with high-throughput techniques have emerged as successful in elucidating the responses to biotic and abiotic stresses. In Brassica spp., omics technologies such as genomics, transcriptomics, ncRNAomics, proteomics, and metabolomics are well documented, allowing us to gain insights into the dynamic changes that transpired during host-pathogen interactions at a deeper level. So, it is critical that we must review the recent advances in omics approaches and discuss how the current knowledge in multi-omics technologies has been able to breed high-quality clubroot-resistant B. oleracea. This review highlights the recent advances made in utilizing various omics approaches to understand the host resistance mechanisms adopted by Brassica crops in response to the P. brassicae attack. Finally, we have discussed the bottlenecks and the way forward to overcome the persisting knowledge gaps in delivering solutions to breed clubroot-resistant Brassica crops in a holistic, targeted, and precise way.
Collapse
Affiliation(s)
| | | | | | | | | | - Honghui Gu
- Institute of Vegetables, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
5
|
Pandit S, Goel R, Mishra G. Phosphatidic acid binds to and stimulates the activity of ARGAH2 from Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 185:344-355. [PMID: 35752016 DOI: 10.1016/j.plaphy.2022.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/27/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Phosphatidic acid (PA) has emerged as an important lipid signal during abiotic and biotic stress conditions such as drought, salinity, freezing, nutrient starvation, wounding and microbial elicitation. PA acts during stress responses primarily via binding and translocating target proteins or through modulating their activity. Owing to the importance of PA during stress signaling and developmental stages, it is imperative to identify PA interacting proteins and decipher their specific roles. In the present study, we have identified PA binding proteins from the leaves of Arabidopsis thaliana. Mass spectroscopy analysis led to the identification of 21 PA binding proteins with known roles in various cellular processes. One of the PA-binding proteins identified during this study, AtARGAH2, was further studied to unravel the role of PA interaction. Recombinant AtARGAH2 binding with immobilized PA on a solid support validated PA-AtARGAH2 binding invitro. PA binding to AtARGAH2 leads to the enhancement of arginase enzymatic activity in a dose dependent manner. Enzyme kinetics of recombinant AtARGAH2 demonstrated a lower Km value in presence of PA, suggesting role of PA in efficient enzyme-substrate binding. This simple approach could systematically be applied to perform an inclusive study on lipid binding proteins to elucidate their role in physiology of plants.
Collapse
Affiliation(s)
- Shatakshi Pandit
- Department of Botany, University of Delhi, Delhi, 110007, India.
| | - Renu Goel
- Translational Health Science and Technology Institute, Faridabad, Haryana, 121001, India.
| | - Girish Mishra
- Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
6
|
Aigu Y, Daval S, Gazengel K, Marnet N, Lariagon C, Laperche A, Legeai F, Manzanares-Dauleux MJ, Gravot A. Multi-Omic Investigation of Low-Nitrogen Conditional Resistance to Clubroot Reveals Brassica napus Genes Involved in Nitrate Assimilation. FRONTIERS IN PLANT SCIENCE 2022; 13:790563. [PMID: 35222461 PMCID: PMC8874135 DOI: 10.3389/fpls.2022.790563] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 01/21/2022] [Indexed: 05/10/2023]
Abstract
Nitrogen fertilization has been reported to influence the development of clubroot, a root disease of Brassicaceae species, caused by the obligate protist Plasmodiophora brassicae. Our previous works highlighted that low-nitrogen fertilization induced a strong reduction of clubroot symptoms in some oilseed rape genotypes. To further understand the underlying mechanisms, the response to P. brassicae infection was investigated in two genotypes "Yudal" and HD018 harboring sharply contrasted nitrogen-driven modulation of resistance toward P. brassicae. Targeted hormone and metabolic profiling, as well as RNA-seq analysis, were performed in inoculated and non-inoculated roots at 14 and 27 days post-inoculation, under high and low-nitrogen conditions. Clubroot infection triggered a large increase of SA concentration and an induction of the SA gene markers expression whatever the genotype and nitrogen conditions. Overall, metabolic profiles suggested that N-driven induction of resistance was independent of SA signaling, soluble carbohydrate and amino acid concentrations. Low-nitrogen-driven resistance in "Yudal" was associated with the transcriptional regulation of a small set of genes, among which the induction of NRT2- and NR-encoding genes. Altogether, our results indicate a possible role of nitrate transporters and auxin signaling in the crosstalk between plant nutrition and partial resistance to pathogens.
Collapse
Affiliation(s)
- Yoann Aigu
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Stéphanie Daval
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Kévin Gazengel
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | | | | | - Anne Laperche
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | - Fabrice Legeai
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
| | | | - Antoine Gravot
- IGEPP, INRAE, Institut Agro, Université de Rennes 1, Le Rheu, France
- *Correspondence: Gravot Antoine,
| |
Collapse
|
7
|
Wei X, Zhang Y, Zhao Y, Xie Z, Hossain MR, Yang S, Shi G, Lv Y, Wang Z, Tian B, Su H, Wei F, Zhang X, Yuan Y. Root Transcriptome and Metabolome Profiling Reveal Key Phytohormone-Related Genes and Pathways Involved Clubroot Resistance in Brassica rapa L. FRONTIERS IN PLANT SCIENCE 2021; 12:759623. [PMID: 34975941 PMCID: PMC8715091 DOI: 10.3389/fpls.2021.759623] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/01/2021] [Indexed: 05/14/2023]
Abstract
Plasmodiophora brassicae, an obligate biotrophic pathogen-causing clubroot disease, can seriously affect Brassica crops worldwide, especially Chinese cabbage. Understanding the transcriptome and metabolome profiling changes during the infection of P. brassicae will provide key insights in understanding the defense mechanism in Brassica crops. In this study, we estimated the phytohormones using targeted metabolome assays and transcriptomic changes using RNA sequencing (RNA-seq) in the roots of resistant (BrT24) and susceptible (Y510-9) plants at 0, 3, 9, and 20 days after inoculation (DAI) with P. brassicae. Differentially expressed genes (DEGs) in resistant vs. susceptible lines across different time points were identified. The weighted gene co-expression network analysis of the DEGs revealed six pathways including "Plant-pathogen interaction" and "Plant hormone signal transduction" and 15 hub genes including pathogenic type III effector avirulence factor gene (RIN4) and auxin-responsive protein (IAA16) to be involved in plants immune response. Inhibition of Indoleacetic acid, cytokinin, jasmonate acid, and salicylic acid contents and changes in related gene expression in R-line may play important roles in regulation of clubroot resistance (CR). Based on the combined metabolome profiling and hormone-related transcriptomic responses, we propose a general model of hormone-mediated defense mechanism. This study definitely enhances our current understanding and paves the way for improving CR in Brassica rapa.
Collapse
Affiliation(s)
- Xiaochun Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yingying Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Zhao
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Zhengqing Xie
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Mohammad Rashed Hossain
- Department of Genetics and Plant Breeding, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Shuangjuan Yang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Gongyao Shi
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yanyan Lv
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Zhiyong Wang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Baoming Tian
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Henan Su
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Fang Wei
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Crop Gene Resources and Improvement, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaowei Zhang
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| | - Yuxiang Yuan
- Institute of Horticulture, Henan Academy of Agricultural Sciences, Graduate T&R Base of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
8
|
Hasan J, Megha S, Rahman H. Clubroot in Brassica: recent advances in genomics, breeding, and disease management. Genome 2021; 64:735-760. [PMID: 33651640 DOI: 10.1139/gen-2020-0089] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clubroot disease, caused by Plasmodiophora brassicae, affects Brassica oilseed and vegetable production worldwide. This review is focused on various aspects of clubroot disease and its management, including understanding the pathogen and resistance in the host plants. Advances in genetics, molecular biology techniques, and omics research have helped to identify several major loci, QTL, and genes from the Brassica genomes involved in the control of clubroot resistance. Transcriptomic studies have helped to extend our understanding of the mechanism of infection by the pathogen and the molecular basis of resistance/susceptibility in the host plants. A comprehensive understanding of the clubroot disease and host resistance would allow developing a better strategy by integrating the genetic resistance with cultural practices to manage this disease from a long-term perspective.
Collapse
Affiliation(s)
- Jakir Hasan
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Swati Megha
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada.,Department of Agricultural, Food and Nutritional Science, 4-10 Agriculture/Forestry Centre, University of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
9
|
Jedelská T, Luhová L, Petřivalský M. Nitric oxide signalling in plant interactions with pathogenic fungi and oomycetes. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:848-863. [PMID: 33367760 DOI: 10.1093/jxb/eraa596] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/18/2020] [Indexed: 05/11/2023]
Abstract
Nitric oxide (NO) and reactive nitrogen species have emerged as crucial signalling and regulatory molecules across all organisms. In plants, fungi, and fungi-like oomycetes, NO is involved in the regulation of multiple processes during their growth, development, reproduction, responses to the external environment, and biotic interactions. It has become evident that NO is produced and used as a signalling and defence cue by both partners in multiple forms of plant interactions with their microbial counterparts, ranging from symbiotic to pathogenic modes. This review summarizes current knowledge on the role of NO in plant-pathogen interactions, focused on biotrophic, necrotrophic, and hemibiotrophic fungi and oomycetes. Actual advances and gaps in the identification of NO sources and fate in plant and pathogen cells are discussed. We review the decisive role of time- and site-specific NO production in germination, oriented growth, and active penetration by filamentous pathogens of the host tissues, as well in pathogen recognition, and defence activation in plants. Distinct functions of NO in diverse interactions of host plants with fungal and oomycete pathogens of different lifestyles are highlighted, where NO in interplay with reactive oxygen species governs successful plant colonization, cell death, and establishment of resistance.
Collapse
Affiliation(s)
- Tereza Jedelská
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Lenka Luhová
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Marek Petřivalský
- Department of Biochemistry, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| |
Collapse
|
10
|
Siddappa S, Marathe GK. What we know about plant arginases? PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:600-610. [PMID: 33069114 DOI: 10.1016/j.plaphy.2020.10.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/01/2020] [Indexed: 05/14/2023]
Abstract
Nitrogen is one of the essential element required for plant growth and development. In plants, most of the nitrogen is stored in arginine. Hence, metabolism of arginine to urea by arginase and its further hydrolysis to ammonia by urease is involved in nitrogen recycling to meet the metabolic demands of growing plants. In this respect, plant arginases differ from that of animals. Animals excrete urea while plants recycle the urea. However, the studies on the biochemical and biophysical characteristics of plant arginase are limited when compared to animal arginase(s). In this review, the structural and biochemical characteristics of various plant arginases are discussed. Moreover, the significance of arginase in nitrogen recycling is explained and recent literature on function and activation of plant arginases in response to various environmental (biotic and abiotic) insults is also presented.
Collapse
Affiliation(s)
- Shiva Siddappa
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India; Department of Studies in Molecular Biology, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
11
|
Daval S, Gazengel K, Belcour A, Linglin J, Guillerm‐Erckelboudt A, Sarniguet A, Manzanares‐Dauleux MJ, Lebreton L, Mougel C. Soil microbiota influences clubroot disease by modulating Plasmodiophora brassicae and Brassica napus transcriptomes. Microb Biotechnol 2020; 13:1648-1672. [PMID: 32686326 PMCID: PMC7415369 DOI: 10.1111/1751-7915.13634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
The contribution of surrounding plant microbiota to disease development has led to the 'pathobiome' concept, which represents the interaction between the pathogen, the host plant and the associated biotic microbial community, resulting or not in plant disease. The aim herein is to understand how the soil microbial environment may influence the functions of a pathogen and its pathogenesis, and the molecular response of the plant to the infection, with a dual-RNAseq transcriptomics approach. We address this question using Brassica napus and Plasmodiophora brassicae, the pathogen responsible for clubroot. A time-course experiment was conducted to study interactions between P. brassicae, two B. napus genotypes and three soils harbouring high, medium or low microbiota diversities and levels of richness. The soil microbial diversity levels had an impact on disease development (symptom levels and pathogen quantity). The P. brassicae and B. napus transcriptional patterns were modulated by these microbial diversities, these modulations being dependent on the host genotype plant and the kinetic time. The functional analysis of gene expressions allowed the identification of pathogen and plant host functions potentially involved in the change of plant disease level, such as pathogenicity-related genes (NUDIX effector) in P. brassicae and plant defence-related genes (glucosinolate metabolism) in B. napus.
Collapse
Affiliation(s)
- Stéphanie Daval
- INRAEAgrocampus OuestUniversité de RennesIGEPPLe RheuF‐35650France
| | - Kévin Gazengel
- INRAEAgrocampus OuestUniversité de RennesIGEPPLe RheuF‐35650France
| | | | - Juliette Linglin
- INRAEAgrocampus OuestUniversité de RennesIGEPPPloudanielF‐29260France
| | | | - Alain Sarniguet
- INRAEAgrocampus OuestUniversité d'AngersIRHSBeaucouzéF‐49071France
| | | | - Lionel Lebreton
- INRAEAgrocampus OuestUniversité de RennesIGEPPLe RheuF‐35650France
| | | |
Collapse
|
12
|
iTRAQ-based quantitative analysis reveals proteomic changes in Chinese cabbage (Brassica rapa L.) in response to Plasmodiophora brassicae infection. Sci Rep 2019; 9:12058. [PMID: 31427711 PMCID: PMC6700187 DOI: 10.1038/s41598-019-48608-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023] Open
Abstract
Clubroot disease is one of the major diseases affecting Brassica crops, especially Chinese cabbage (Brassica rapa L. ssp. pekinensis), which is known to be highly susceptible to the disease. In this study, the obligate biotrophic protist Plasmodiophora brassicae Woronin was used to infect the roots of Chinese cabbage seedlings. The disease symptoms were noticeable at 28 and 35 days after inoculation (DAI) in the susceptible (CM) line. Using isobaric tags for relative and absolute quantitation (iTRAQ) analysis, a total of 5,003 proteins of differential abundance were identified in the resistant/susceptible lines, which could be quantitated by dipeptide or polypeptide segments. Gene ontology (GO) analysis indicated that the differentially expressed proteins (DEPs) between the susceptible (CM) and resistant (CCR) lines were associated with the glutathione transferase activity pathway, which could catalyze the combination of glutathione and other electrophilic compounds to protect plants from disease. In addition, the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEPs may be significantly enriched cytokinin signaling or arginine biosynthesis pathways, both of which are responses to stimuli and are plant defense reactions. The cytokinins may facilitate cell division in the shoot, resulting in the hypertrophy and formation of galls and the presentation of typical clubroot symptoms. In this study, the proteomic results provide a new perspective for creating germplasm resistance to P. brassicae, as well as a genetic basis for breeding to improve Chinese cabbage.
Collapse
|
13
|
Oberländer J, Lortzing V, Hilker M, Kunze R. The differential response of cold-experienced Arabidopsis thaliana to larval herbivory benefits an insect generalist, but not a specialist. BMC PLANT BIOLOGY 2019; 19:338. [PMID: 31375063 PMCID: PMC6679549 DOI: 10.1186/s12870-019-1943-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/23/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND In native environments plants frequently experience simultaneous or sequential unfavourable abiotic and biotic stresses. The plant's response to combined stresses is usually not the sum of the individual responses. Here we investigated the impact of cold on plant defense against subsequent herbivory by a generalist and specialist insect. RESULTS We determined transcriptional responses of Arabidopsis thaliana to low temperature stress (4 °C) and subsequent larval feeding damage by the lepidopteran herbivores Mamestra brassicae (generalist), Pieris brassicae (specialist) or artificial wounding. Furthermore, we compared the performance of larvae feeding upon cold-experienced or untreated plants. Prior experience of cold strongly affected the plant's transcriptional anti-herbivore and wounding response. Feeding by P. brassicae, M. brassicae and artificial wounding induced transcriptional changes of 1975, 1695, and 2239 genes, respectively. Of these, 125, 360, and 681 genes were differentially regulated when cold preceded the tissue damage. Overall, prior experience of cold mostly reduced the transcriptional response of genes to damage. The percentage of damage-responsive genes, which showed attenuated transcriptional regulation when cold preceded the tissue damage, was highest in M. brassicae damaged plants (98%), intermediate in artificially damaged plants (89%), and lowest in P. brassicae damaged plants (69%). Consistently, the generalist M. brassicae performed better on cold-treated than on untreated plants, whereas the performance of the specialist P. brassicae did not differ. CONCLUSIONS The transcriptional defense response of Arabidopsis leaves to feeding by herbivorous insects and artificial wounding is attenuated by a prior exposure of the plant to cold. This attenuation correlates with improved performance of the generalist herbivore M. brassicae, but not the specialist P. brassicae, a herbivore of the same feeding guild.
Collapse
Affiliation(s)
- Jana Oberländer
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
- Present address: University of Bern, Molecular Plant Physiology, Altenbergrain 21, CH-3013 Bern, Switzerland
| | - Vivien Lortzing
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Monika Hilker
- Freie Universität Berlin, Institute of Biology - Applied Zoology / Animal Ecology, Dahlem Centre of Plant Sciences, Haderslebener Str. 9, 12163 Berlin, Germany
| | - Reinhard Kunze
- Freie Universität Berlin, Institute of Biology - Applied Genetics, Dahlem Centre of Plant Sciences, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| |
Collapse
|
14
|
Ranjan A, Westrick NM, Jain S, Piotrowski JS, Ranjan M, Kessens R, Stiegman L, Grau CR, Conley SP, Smith DL, Kabbage M. Resistance against Sclerotinia sclerotiorum in soybean involves a reprogramming of the phenylpropanoid pathway and up-regulation of antifungal activity targeting ergosterol biosynthesis. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1567-1581. [PMID: 30672092 PMCID: PMC6662107 DOI: 10.1111/pbi.13082] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 01/11/2019] [Accepted: 01/19/2019] [Indexed: 05/18/2023]
Abstract
Sclerotinia sclerotiorum, a predominately necrotrophic fungal pathogen with a broad host range, causes a significant yield-limiting disease of soybean called Sclerotinia stem rot. Resistance mechanisms against this pathogen in soybean are poorly understood, thus hindering the commercial deployment of resistant varieties. We used a multiomic approach utilizing RNA-sequencing, gas chromatography-mass spectrometry-based metabolomics and chemical genomics in yeast to decipher the molecular mechanisms governing resistance to S. sclerotiorum in soybean. Transcripts and metabolites of two soybean recombinant inbred lines, one resistant and one susceptible to S. sclerotiorum were analysed in a time course experiment. The combined results show that resistance to S. sclerotiorum in soybean is associated in part with an early accumulation of JA-Ile ((+)-7-iso-jasmonoyl-L-isoleucine), a bioactive jasmonate, increased ability to scavenge reactive oxygen species, and importantly, a reprogramming of the phenylpropanoid pathway leading to increased antifungal activities. Indeed, we noted that phenylpropanoid pathway intermediates, such as 4-hydroxybenzoate, cinnamic acid, ferulic acid and caffeic acid, were highly accumulated in the resistant line. In vitro assays show that these metabolites and total stem extracts from the resistant line clearly affect S. sclerotiorum growth and development. Using chemical genomics in yeast, we further show that this antifungal activity targets ergosterol biosynthesis in the fungus, by disrupting enzymes involved in lipid and sterol biosynthesis. Overall, our results are consistent with a model where resistance to S. sclerotiorum in soybean coincides with an early recognition of the pathogen, leading to the modulation of the redox capacity of the host and the production of antifungal metabolites.
Collapse
Affiliation(s)
- Ashish Ranjan
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | | | - Sachin Jain
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Jeff S. Piotrowski
- The Great Lakes Bioenergy Research CenterUniversity of Wisconsin‐MadisonMadisonWIUSA
- Present address:
Yumanity TherapeuticsCambridgeMAUSA
| | - Manish Ranjan
- School of Computational and Integrative SciencesJawaharlal Nehru UniversityNew DelhiIndia
| | - Ryan Kessens
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Logan Stiegman
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Craig R. Grau
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Shawn P. Conley
- Department of AgronomyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Damon L. Smith
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Mehdi Kabbage
- Department of Plant PathologyUniversity of Wisconsin‐MadisonMadisonWIUSA
| |
Collapse
|
15
|
Zhao C, Wang H, Lu Y, Hu J, Qu L, Li Z, Wang D, He Y, Valls M, Coll NS, Chen Q, Lu H. Deep Sequencing Reveals Early Reprogramming of Arabidopsis Root Transcriptomes Upon Ralstonia solanacearum Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:813-827. [PMID: 31140930 DOI: 10.1094/mpmi-10-18-0268-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Bacterial wilt caused by the bacterial pathogen Ralstonia solanacearum is one of the most devastating crop diseases worldwide. The molecular mechanisms controlling the early stage of R. solanacearum colonization in the root remain unknown. Aiming to better understand the mechanism of the establishment of R. solanacearum infection in root, we established four stages in the early interaction of the pathogen with Arabidopsis roots and determined the transcriptional profiles of these stages of infection. A total 2,698 genes were identified as differentially expressed genes during the initial 96 h after infection, with the majority of changes in gene expression occurring after pathogen-triggered root-hair development observed. Further analysis of differentially expressed genes indicated sequential activation of multiple hormone signaling cascades, including abscisic acid (ABA), auxin, jasmonic acid, and ethylene. Simultaneous impairment of ABA receptor genes promoted plant wilting symptoms after R. solanacearum infection but did not affect primary root growth inhibition or root-hair and lateral root formation caused by R. solanacearum. This indicated that ABA signaling positively regulates root defense to R. solanacearum. Moreover, transcriptional changes of genes involved in primary root, lateral root, and root-hair formation exhibited high temporal dynamics upon infection. Taken together, our results suggest that successful infection of R. solanacearum on roots is a highly programmed process involving in hormone crosstalk.
Collapse
Affiliation(s)
- Cuizhu Zhao
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huijuan Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Lu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jinxue Hu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ling Qu
- 2 National Wolfberry Engineering Research Center, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002, China
| | - Zheqing Li
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dongdong Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yizhe He
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Marc Valls
- 3 Genetics section, Universitat de Barcelona, 08028 Barcelona, Catalonia, Spain
- 4 Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Catalonia, Spain
| | - Núria S Coll
- 4 Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, 08193 Barcelona, Catalonia, Spain
| | - Qin Chen
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Haibin Lu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
16
|
Ciaghi S, Schwelm A, Neuhauser S. Transcriptomic response in symptomless roots of clubroot infected kohlrabi (Brassica oleracea var. gongylodes) mirrors resistant plants. BMC PLANT BIOLOGY 2019; 19:288. [PMID: 31262271 PMCID: PMC6604361 DOI: 10.1186/s12870-019-1902-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/23/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Clubroot disease caused by Plasmodiophora brassicae (Phytomyxea, Rhizaria) is one of the economically most important diseases of Brassica crops. The formation of hypertrophied roots accompanied by altered metabolism and hormone homeostasis is typical for infected plants. Not all roots of infected plants show the same phenotypic changes. While some roots remain uninfected, others develop galls of diverse size. The aim of this study was to analyse and compare the intra-plant heterogeneity of P. brassicae root galls and symptomless roots of the same host plants (Brassica oleracea var. gongylodes) collected from a commercial field in Austria using transcriptome analyses. RESULTS Transcriptomes were markedly different between symptomless roots and gall tissue. Symptomless roots showed transcriptomic traits previously described for resistant plants. Genes involved in host cell wall synthesis and reinforcement were up-regulated in symptomless roots indicating elevated tolerance against P. brassicae. By contrast, genes involved in cell wall degradation and modification processes like expansion were up-regulated in root galls. Hormone metabolism differed between symptomless roots and galls. Brassinosteroid-synthesis was down-regulated in root galls, whereas jasmonic acid synthesis was down-regulated in symptomless roots. Cytokinin metabolism and signalling were up-regulated in symptomless roots with the exception of one CKX6 homolog, which was strongly down-regulated. Salicylic acid (SA) mediated defence response was up-regulated in symptomless roots, compared with root gall tissue. This is probably caused by a secreted benzoic acid/salicylic acid methyl transferase from the pathogen (PbBSMT), which was one of the highest expressed pathogen genes in gall tissue. The PbBSMT derived Methyl-SA potentially leads to increased pathogen tolerance in uninfected roots. CONCLUSIONS Infected and uninfected roots of clubroot infected plants showed transcriptomic differences similar to those previously described between clubroot resistant and susceptible hosts. The here described intra-plant heterogeneity suggests, that for a better understanding of clubroot disease targeted, spatial analyses of clubroot infected plants will be vital in understanding this economically important disease.
Collapse
Affiliation(s)
- Stefan Ciaghi
- University of Innsbruck, Institute of Microbiology, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Arne Schwelm
- University of Innsbruck, Institute of Microbiology, Technikerstraße 25, 6020 Innsbruck, Austria
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences, Linnean Centre for Plant Biology, P.O. Box 7080, SE-75007 Uppsala, Sweden
| | - Sigrid Neuhauser
- University of Innsbruck, Institute of Microbiology, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
17
|
Zhang W, Wang S, Yu F, Tang J, Shan X, Bao K, Yu L, Wang H, Fei Z, Li J. Genome-wide characterization and expression profiling of SWEET genes in cabbage (Brassica oleracea var. capitata L.) reveal their roles in chilling and clubroot disease responses. BMC Genomics 2019; 20:93. [PMID: 30696401 PMCID: PMC6352454 DOI: 10.1186/s12864-019-5454-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/14/2019] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND The SWEET proteins are a group of sugar transporters that play a role in sugar efflux during a range of biological processes, including stress responses. However, there has been no comprehensive analysis of the SWEET family genes in Brassica oleracea (BoSWEET), and the evolutionary pattern, phylogenetic relationship, gene characteristics of BoSWEET genes and their expression patterns under biotic and abiotic stresses remain largely unexplored. RESULTS A total of 30 BoSWEET genes were identified and divided into four clades in B. oleracea. Phylogenetic analysis of the BoSWEET proteins indicated that clade II formed first, followed by clade I, clade IV and clade III, successively. Clade III, the newest clade, shows signs of rapid expansion. The Ks values of the orthologous SWEET gene pairs between B. oleracea and Arabidopsis thaliana ranged from 0.30 to 0.45, which estimated that B. oleracea diverged from A. thaliana approximately 10 to 15 million years ago. Prediction of transmembrane regions showed that eight BoSWEET proteins contain one characteristic MtN3_slv domain, twenty-one contain two, and one has four. Quantitative reverse transcription-PCR (qRT-PCR) analysis revealed that five BoSWEET genes from clades III and IV exhibited reduced expression levels under chilling stress. Additionally, the expression levels of six BoSWEET genes were up-regulated in roots of a clubroot-susceptible cabbage cultivar (CS-JF1) at 7 days after inoculation with Plasmodiophora brassicae compared with uninoculated plants, indicating that these genes may play important roles in transporting sugars into sink roots associated with P. brassicae colonization in CS-JF1. Subcellular localization analysis of a subset of BoSWEET proteins indicated that they are localized in the plasma membrane. CONCLUSIONS This study provides important insights into the evolution of the SWEET gene family in B. oleracea and other species, and represents the first study to characterize phylogenetic relationship, gene structures and expression patterns of the BoSWEET genes. These findings provide new insights into the complex transcriptional regulation of BoSWEET genes, as well as potential candidate BoSWEET genes that promote sugar transport to enhance chilling tolerance and clubroot disease resistance in cabbage.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 People’s Republic of China
| | - Shenyun Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 People’s Republic of China
| | - Fangwei Yu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 People’s Republic of China
| | - Jun Tang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 People’s Republic of China
| | - Xi Shan
- Zhenjiang Agricultural Research Institute, Jurong, Jiangsu 212400 People’s Republic of China
| | - Kan Bao
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
| | - Li Yu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 People’s Republic of China
| | - Hong Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 People’s Republic of China
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, NY 14853 USA
| | - Jianbin Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014 People’s Republic of China
| |
Collapse
|
18
|
Zhang W, Wang S, Yu F, Tang J, Yu L, Wang H, Li J. Genome-Wide Identification and Expression Profiling of Sugar Transporter Protein (STP) Family Genes in Cabbage (Brassica oleracea var. capitata L.) Reveals their Involvement in Clubroot Disease Responses. Genes (Basel) 2019; 10:E71. [PMID: 30669698 PMCID: PMC6356595 DOI: 10.3390/genes10010071] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 01/18/2019] [Indexed: 12/23/2022] Open
Abstract
Sugar transporter protein (STP) genes are involved in multiple biological processes, such as plant responses to various stresses. However, systematic analysis and functional information of STP family genes in Brassica oleracea are very limited. A comprehensive analysis was carried out to identify BoSTP genes and dissect their phylogenetic relationships and to investigate the expression profiles in different organs and in response to the clubroot disease. A total of 22 BoSTP genes were identified in the B. oleracea genome and they were further classified into four clades based on the phylogenetic analysis. All the BoSTP proteins harbored the conserved sugar transporter (Sugar_tr, PF00083) domain, and the majority of them contained 12 transmembrane helices (TMHs). Rates of synonymous substitution in B. oleracea relative to Arabidopsis thaliana indicated that STP genes of B. oleracea diverged from those of A. thaliana approximately 16.3 million years ago. Expression profiles of the BoSTP genes in different organs derived from RNA-Seq data indicated that a large number of the BoSTP genes were expressed in specific organs. Additionally, the expression of BoSTP4b and BoSTP12 genes were induced in roots of the clubroot-susceptible cabbage (CS-JF1) at 28 days after inoculation with Plasmodiophora brassicae, compared with mock-inoculated plants. We speculated that the two BoSTPs might be involved in monosaccharide unloading and carbon partitioning associated with P. brassicae colonization in CS-JF1. Subcellular localization analysis indicated that the two BoSTP proteins were localized in the cell membrane. This study provides insights into the evolution and potential functions of BoSTPs.
Collapse
Affiliation(s)
- Wei Zhang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Shenyun Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Fangwei Yu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jun Tang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Li Yu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Hong Wang
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| | - Jianbin Li
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
19
|
Daval S, Belcour A, Gazengel K, Legrand L, Gouzy J, Cottret L, Lebreton L, Aigu Y, Mougel C, Manzanares-Dauleux MJ. Computational analysis of the Plasmodiophora brassicae genome: mitochondrial sequence description and metabolic pathway database design. Genomics 2018; 111:1629-1640. [PMID: 30447277 DOI: 10.1016/j.ygeno.2018.11.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/23/2018] [Accepted: 11/12/2018] [Indexed: 10/27/2022]
Abstract
Plasmodiophora brassicae is an obligate biotrophic pathogenic protist responsible for clubroot, a root gall disease of Brassicaceae species. In addition to the reference genome of the P. brassicae European e3 isolate and the draft genomes of Canadian or Chinese isolates, we present the genome of eH, a second European isolate. Refinement of the annotation of the eH genome led to the identification of the mitochondrial genome sequence, which was found to be bigger than that of Spongospora subterranea, another plant parasitic Plasmodiophorid phylogenetically related to P. brassicae. New pathways were also predicted, such as those for the synthesis of spermidine, a polyamine up-regulated in clubbed regions of roots. A P. brassicae pathway genome database was created to facilitate the functional study of metabolic pathways in transcriptomics approaches. These available tools can help in our understanding of the regulation of P. brassicae metabolism during infection and in response to diverse constraints.
Collapse
Affiliation(s)
- Stéphanie Daval
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France.
| | - Arnaud Belcour
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | - Kévin Gazengel
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | - Ludovic Legrand
- LIPM, INRA, CNRS, Université de Toulouse, Castanet Tolosan, France
| | - Jérôme Gouzy
- LIPM, INRA, CNRS, Université de Toulouse, Castanet Tolosan, France
| | - Ludovic Cottret
- LIPM, INRA, CNRS, Université de Toulouse, Castanet Tolosan, France
| | - Lionel Lebreton
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | - Yoann Aigu
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | - Christophe Mougel
- IGEPP, INRA, AGROCAMPUS OUEST, Université Rennes, Domaine de la Motte, Le Rheu F-35653, France
| | | |
Collapse
|
20
|
Siddappa S, Basrur V, Ravishankar Rai V, Marathe GK. Biochemical and functional characterization of an atypical plant l-arginase from Cilantro (Coriandrum sativam L.). Int J Biol Macromol 2018; 118:844-856. [PMID: 29944940 DOI: 10.1016/j.ijbiomac.2018.06.096] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 06/19/2018] [Accepted: 06/20/2018] [Indexed: 12/20/2022]
Abstract
Arginase is one of the key enzymes responsible for maintaining the essential levels of nitrogen among plants, but biochemical and functional characterization of arginase among plants is limited. While screening for stable plant arginase, we found cilantro possessing an abundant and stable arginase. We purified arginase to apparent homogeneity (3300-fold purification) with a specific activity of 81,728 nmoles of urea formed/mg of protein/min and its eight-tryptic fragments had amino acid sequences identical to Arabidopsis thaliana arginase. Cilantro arginase exhibited absolute requirement for Mn2+ (0.5 mM-1 mM). Unlike other known plant arginases, cilantro arginase did not hydrolyse d-arginine and other arginine analogues. While for sulfhydryl reagents the enzyme was sensitive, l-NOHA, an arginase inhibitor showed only moderate inhibition - a property distinct from tomato arginase. We also found arginine derived amino acids and polyamines can regulate cilantro arginase in vitro. In addition, we also noticed an increase in cilantro arginase activity to both biotic and abiotic stress. We conclude that, cilantro may be used as a model plant to study plant arginases and to delineate arginase role, beyond its classical role in nitrogen recycling and polyamine biosynthesis.
Collapse
Affiliation(s)
- Shiva Siddappa
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Vittal Ravishankar Rai
- Department of Studies in Microbiology, University of Mysore, Manasagangotri, Mysuru, 570006, Karnataka, India
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysuru 570006, Karnataka, India; Department of Studies in Molecular biology, University of Mysore, Manasagangothri, Mysuru, 570006, Karnataka, India.
| |
Collapse
|
21
|
Xu L, Yang H, Ren L, Chen W, Liu L, Liu F, Zeng L, Yan R, Chen K, Fang X. Jasmonic Acid-Mediated Aliphatic Glucosinolate Metabolism Is Involved in Clubroot Disease Development in Brassica napus L. FRONTIERS IN PLANT SCIENCE 2018; 9:750. [PMID: 29922320 PMCID: PMC5996939 DOI: 10.3389/fpls.2018.00750] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/15/2018] [Indexed: 05/20/2023]
Abstract
Glucosinolate (GSL) is associated with clubroot disease, which is caused by the obligate biotrophic protist Plasmodiophora brassicae. Due to the complicated composition of GSLs, their exact role in clubroot disease development remains unclear. By investigating clubroot disease resistance in cruciferous plants and characterizing the GSL content in seeds, we can determine if clubroot disease development is related to the components of GSLs. The difference in the infection process between Matthiola incana L. (resistant) and Brassica napus L. (susceptible) was determined. Root hair infection was definitely observed in both resistant and susceptible hosts, but no infection was observed during the cortical infection stage in resistant roots; this finding was verified by molecular detection of P. brassicae via PCR amplification at various times after inoculation. Based on the time course detection of the contents and compositions of GSLs after P. brassicae inoculation, susceptible roots exhibited increased accumulation of aliphatic, indolic, and aromatic GSLs in B. napus, but only aromatic GSLs were significantly increased in M. incana. Gluconapin, which was the main aliphatic GSL in B. napus and present only in B. napus, was significantly increased during the secondary infection stage. Quantification of the internal jasmonic acid (JA) concentration showed that both resistant and susceptible plants exhibited an enhanced level of JA, particularly in susceptible roots. The exogenous JA treatment induced aliphatic GSLs in B. napus and aromatic GSLs in M. incana. JA-induced aromatic GSLs may be involved in the defense against P. brassicae, whereas aliphatic GSLs induced by JA in B. napus likely play a role during the secondary infection stage. Three candidate MYB28 genes regulate the content of aliphatic GSLs identified in B. napus; one such gene was BnMYB28.1, which was significantly increased following both the treatment with exogenous JA and P. brassicae inoculation. In summary, the increased content of JA during the secondary infection stage may induce the expression of BnMYB28.1, which caused the accumulation of aliphatic GSLs in clubroot disease development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaoping Fang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
22
|
Irani S, Trost B, Waldner M, Nayidu N, Tu J, Kusalik AJ, Todd CD, Wei Y, Bonham-Smith PC. Transcriptome analysis of response to Plasmodiophora brassicae infection in the Arabidopsis shoot and root. BMC Genomics 2018; 19:23. [PMID: 29304736 PMCID: PMC5756429 DOI: 10.1186/s12864-017-4426-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 12/29/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Clubroot is an important disease caused by the obligate parasite Plasmodiophora brassicae that infects the Brassicaceae. As a soil-borne pathogen, P. brassicae induces the generation of abnormal tissue in the root, resulting in the formation of galls. Root infection negatively affects the uptake of water and nutrients in host plants, severely reducing their growth and productivity. Many studies have emphasized the molecular and physiological effects of the clubroot disease on root tissues. The aim of the present study is to better understand the effect of P. brassicae on the transcriptome of both shoot and root tissues of Arabidopsis thaliana. RESULTS Transcriptome profiling using RNA-seq was performed on both shoot and root tissues at 17, 20 and 24 days post inoculation (dpi) of A. thaliana, a model plant host for P. brassicae. The number of differentially expressed genes (DEGs) between infected and uninfected samples was larger in shoot than in root. In both shoot and root, more genes were differentially regulated at 24 dpi than the two earlier time points. Genes that were highly regulated in response to infection in both shoot and root primarily were involved in the metabolism of cell wall compounds, lipids, and shikimate pathway metabolites. Among hormone-related pathways, several jasmonic acid biosynthesis genes were upregulated in both shoot and root tissue. Genes encoding enzymes involved in cell wall modification, biosynthesis of sucrose and starch, and several classes of transcription factors were generally differently regulated in shoot and root. CONCLUSIONS These results highlight the similarities and differences in the transcriptomic response of above- and below-ground tissues of the model host Arabidopsis following P. brassicae infection. The main transcriptomic changes in root metabolism during clubroot disease progression were identified. An overview of DEGs in the shoot underlined the physiological changes in above-ground tissues following pathogen establishment and disease progression. This study provides insights into host tissue-specific molecular responses to clubroot development and may have applications in the development of clubroot markers for more effective breeding strategies.
Collapse
Affiliation(s)
- Solmaz Irani
- 0000 0001 2154 235Xgrid.25152.31Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 Canada
| | - Brett Trost
- 0000 0001 2154 235Xgrid.25152.31Department of Computer Science, University of Saskatchewan, Saskatoon, S7N 5C9 Canada
| | - Matthew Waldner
- 0000 0001 2154 235Xgrid.25152.31Department of Computer Science, University of Saskatchewan, Saskatoon, S7N 5C9 Canada
| | - Naghabushana Nayidu
- 0000 0001 2154 235Xgrid.25152.31Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 Canada
| | - Jiangying Tu
- 0000 0001 2154 235Xgrid.25152.31Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 Canada
| | - Anthony J. Kusalik
- 0000 0001 2154 235Xgrid.25152.31Department of Computer Science, University of Saskatchewan, Saskatoon, S7N 5C9 Canada
| | - Christopher D. Todd
- 0000 0001 2154 235Xgrid.25152.31Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 Canada
| | - Yangdou Wei
- 0000 0001 2154 235Xgrid.25152.31Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 Canada
| | - Peta C. Bonham-Smith
- 0000 0001 2154 235Xgrid.25152.31Department of Biology, University of Saskatchewan, Saskatoon, S7N 5E2 Canada
| |
Collapse
|
23
|
She M, Wang J, Wang X, Yin G, Wang K, Du L, Ye X. Comprehensive molecular analysis of arginase-encoding genes in common wheat and its progenitor species. Sci Rep 2017; 7:6641. [PMID: 28747704 PMCID: PMC5529354 DOI: 10.1038/s41598-017-07084-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 06/22/2017] [Indexed: 11/09/2022] Open
Abstract
Arginase (ARG) contributes to nitrogen remobilization by conversion of arginine to ornithine and urea. However, wheat ARG genes have not yet been identified. Here we isolated and characterized ARG genes from wheat and its progenitor species and found that a single copy was present in wheat progenitors. Three common wheat ARG genes of TaARG-2AS, TaARG-2BS, and TaARG-2DS were experimentally assigned to the short arms of the group 2 chromosomes. We found an in-frame stop codon in TaARG-2AS, but not in the other two genes. The highest expression was detected in stems and sheaths for TaARG-2BS and in leaves for TaARG-2DS. Both genes have similar expression trend in different developmental stages, peaking at booting and grain filling stages. TaARG-2BS transcript was induced by high salinity and drought, whereas TaARG-2DS was induced by drought only, but neither of them were induced by low temperature. In addition, both genes showed analogous expression pattern upon powdery mildew (PM) infection in the resistant line Pm97033, with TaARG-2BS induced greatly at 72 h post PM infection. In contrast, no obvious transcripts were accumulated for TaARG-2DS in the PM susceptible line Wan7107. Monocot ARGs have more conserved mitochondrion-targeting signals and are more evolutionarily conserved than dicot ARGs.
Collapse
Affiliation(s)
- Maoyun She
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China.,Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, P.R. China
| | - Jing Wang
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Xinmin Wang
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Guixiang Yin
- Crop Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, P.R. China
| | - Ke Wang
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Lipu Du
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China
| | - Xingguo Ye
- National Key Facility of Crop Gene Resources and Genetic Improvement/Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, P.R. China.
| |
Collapse
|
24
|
Thoen MPM, Davila Olivas NH, Kloth KJ, Coolen S, Huang P, Aarts MGM, Bac‐Molenaar JA, Bakker J, Bouwmeester HJ, Broekgaarden C, Bucher J, Busscher‐Lange J, Cheng X, Fradin EF, Jongsma MA, Julkowska MM, Keurentjes JJB, Ligterink W, Pieterse CMJ, Ruyter‐Spira C, Smant G, Testerink C, Usadel B, van Loon JJA, van Pelt JA, van Schaik CC, van Wees SCM, Visser RGF, Voorrips R, Vosman B, Vreugdenhil D, Warmerdam S, Wiegers GL, van Heerwaarden J, Kruijer W, van Eeuwijk FA, Dicke M. Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. THE NEW PHYTOLOGIST 2017; 213:1346-1362. [PMID: 27699793 PMCID: PMC5248600 DOI: 10.1111/nph.14220] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/17/2016] [Indexed: 05/19/2023]
Abstract
Plants are exposed to combinations of various biotic and abiotic stresses, but stress responses are usually investigated for single stresses only. Here, we investigated the genetic architecture underlying plant responses to 11 single stresses and several of their combinations by phenotyping 350 Arabidopsis thaliana accessions. A set of 214 000 single nucleotide polymorphisms (SNPs) was screened for marker-trait associations in genome-wide association (GWA) analyses using tailored multi-trait mixed models. Stress responses that share phytohormonal signaling pathways also share genetic architecture underlying these responses. After removing the effects of general robustness, for the 30 most significant SNPs, average quantitative trait locus (QTL) effect sizes were larger for dual stresses than for single stresses. Plants appear to deploy broad-spectrum defensive mechanisms influencing multiple traits in response to combined stresses. Association analyses identified QTLs with contrasting and with similar responses to biotic vs abiotic stresses, and below-ground vs above-ground stresses. Our approach allowed for an unprecedented comprehensive genetic analysis of how plants deal with a wide spectrum of stress conditions.
Collapse
|
25
|
Gravot A, Richard G, Lime T, Lemarié S, Jubault M, Lariagon C, Lemoine J, Vicente J, Robert-Seilaniantz A, Holdsworth MJ, Manzanares-Dauleux MJ. Hypoxia response in Arabidopsis roots infected by Plasmodiophora brassicae supports the development of clubroot. BMC PLANT BIOLOGY 2016; 16:251. [PMID: 27835985 PMCID: PMC5106811 DOI: 10.1186/s12870-016-0941-y] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/01/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND The induction of alcohol fermentation in roots is a plant adaptive response to flooding stress and oxygen deprivation. Available transcriptomic data suggest that fermentation-related genes are also frequently induced in roots infected with gall forming pathogens, but the biological significance of this induction is unclear. In this study, we addressed the role of hypoxia responses in Arabidopsis roots during infection by the clubroot agent Plasmodiophora brassicae. RESULTS The hypoxia-related gene markers PYRUVATE DECARBOXYLASE 1 (PDC1), PYRUVATE DECARBOXYLASE 2 (PDC2) and ALCOHOL DEHYDROGENASE 1 (ADH1) were induced during secondary infection by two isolates of P. brassicae, eH and e2. PDC2 was highly induced as soon as 7 days post inoculation (dpi), i.e., before the development of gall symptoms, and GUS staining revealed that ADH1 induction was localised in infected cortical cells of root galls at 21 dpi. Clubroot symptoms were significantly milder in the pdc1 and pdc2 mutants compared with Col-0, but a null T-DNA insertional mutation of ADH1 did not affect clubroot susceptibility. The Arg/N-end rule pathway of ubiquitin-mediated proteolysis controls oxygen sensing in plants. Mutants of components of this pathway, ate1 ate2 and prt6, that both exhibit constitutive hypoxia responses, showed enhanced clubroot symptoms. In contrast, gall development was reduced in quintuple and sextuple mutants where the activity of all oxygen-sensing Group VII Ethylene Response Factor transcription factors (ERFVIIs) is absent (erfVII and prt6 erfVII). CONCLUSIONS Our data demonstrate that the induction of PDC1 and PDC2 during the secondary infection of roots by P. brassicae contributes positively to clubroot development, and that this is controlled by oxygen-sensing through ERFVIIs. The absence of any major role of ADH1 in symptom development may also suggest that PDC activity could contribute to the formation of galls through the activation of a PDH bypass.
Collapse
Affiliation(s)
- Antoine Gravot
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France.
| | - Gautier Richard
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | - Tanguy Lime
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | - Séverine Lemarié
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | - Mélanie Jubault
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | - Christine Lariagon
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | - Jocelyne Lemoine
- IGEPP, AGROCAMPUS OUEST, INRA, Université de Rennes 1, 35650, Le Rheu, France
| | - Jorge Vicente
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | | | - Michael J Holdsworth
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | | |
Collapse
|
26
|
Lovelock DA, Šola I, Marschollek S, Donald CE, Rusak G, van Pée KH, Ludwig-Müller J, Cahill DM. Analysis of salicylic acid-dependent pathways in Arabidopsis thaliana following infection with Plasmodiophora brassicae and the influence of salicylic acid on disease. MOLECULAR PLANT PATHOLOGY 2016; 17:1237-51. [PMID: 26719902 PMCID: PMC6638340 DOI: 10.1111/mpp.12361] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/23/2015] [Accepted: 12/26/2015] [Indexed: 05/19/2023]
Abstract
Salicylic acid (SA) biosynthesis, the expression of SA-related genes and the effect of SA on the Arabidopsis-Plasmodiophora brassicae interaction were examined. Biochemical analyses revealed that, in P. brassicae-infected Arabidopsis, the majority of SA is synthesized from chorismate. Real-time monitored expression of a gene for isochorismate synthase was induced on infection. SA can be modified after accumulation, either by methylation, improving its mobility, or by glycosylation, as one possible reaction for inactivation. Quantitative reverse transcription-polymerase chain reaction (qPCR) confirmed the induction of an SA methyltransferase gene, whereas SA glucosyltransferase expression was not changed after infection. Col-0 wild-type (wt) did not provide a visible phenotypic resistance response, whereas the Arabidopsis mutant dnd1, which constitutively activates the immune system, showed reduced gall scores. As dnd1 showed control of the pathogen, exogenous SA was applied to Arabidopsis in order to test whether it could suppress clubroot. In wt, sid2 (SA biosynthesis), NahG (SA-deficient) and npr1 (SA signalling-impaired) mutants, SA treatment did not alter the gall score, but positively affected the shoot weight. This suggests that SA alone is not sufficient for Arabidopsis resistance against P. brassicae. Semi-quantitative PCR revealed that wt, cpr1, dnd1 and sid2 showed elevated PR-1 expression on P. brassicae and SA + P. brassicae inoculation at 2 and 3 weeks post-inoculation (wpi), whereas NahG and npr1 showed no expression. This work contributes to the understanding of SA involvement in the Arabidopsis-P. brassicae interaction.
Collapse
Affiliation(s)
- David A Lovelock
- Deakin University, Faculty of Science, Engineering and Built Environment, School of Life and Environmental Science, Geelong Campus at Waurn Ponds, Vic. 3217, Australia.
| | - Ivana Šola
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia.
| | - Sabine Marschollek
- Institute of Botany, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Caroline E Donald
- Department of Primary Industries, Private bag 15, Ferntree Gully DC, Vic., 3156, Australia
| | - Gordana Rusak
- Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000, Zagreb, Croatia
| | - Karl-Heinz van Pée
- Department of Chemistry, Biochemistry, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Jutta Ludwig-Müller
- Institute of Botany, Technische Universität Dresden, D-01062, Dresden, Germany
| | - David M Cahill
- Deakin University, Faculty of Science, Engineering and Built Environment, School of Life and Environmental Science, Geelong Campus at Waurn Ponds, Vic. 3217, Australia
| |
Collapse
|
27
|
Lemarié S, Robert-Seilaniantz A, Lariagon C, Lemoine J, Marnet N, Jubault M, Manzanares-Dauleux MJ, Gravot A. Both the Jasmonic Acid and the Salicylic Acid Pathways Contribute to Resistance to the Biotrophic Clubroot Agent Plasmodiophora brassicae in Arabidopsis. PLANT & CELL PHYSIOLOGY 2015; 56:2158-68. [PMID: 26363358 DOI: 10.1093/pcp/pcv127] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/02/2015] [Indexed: 05/18/2023]
Abstract
The role of salicylic acid (SA) and jasmonic acid (JA) signaling in resistance to root pathogens has been poorly documented. We assessed the contribution of SA and JA to basal and partial resistance of Arabidopsis to the biotrophic clubroot agent Plasmodiophora brassicae. SA and JA levels as well as the expression of the SA-responsive genes PR2 and PR5 and the JA-responsive genes ARGAH2 and THI2.1 were monitored in infected roots of the accessions Col-0 (susceptible) and Bur-0 (partially resistant). SA signaling was activated in Bur-0 but not in Col-0. The JA pathway was weakly activated in Bur-0 but was strongly induced in Col-0. The contribution of both pathways to clubroot resistance was then assessed using exogenous phytohormone application and mutants affected in SA or JA signaling. Exogenous SA treatment decreased clubroot symptoms in the two Arabidopsis accessions, whereas JA treatment reduced clubroot symptoms only in Col-0. The cpr5-2 mutant, in which SA responses are constitutively induced, was more resistant to clubroot than the corresponding wild type, and the JA signaling-deficient mutant jar1 was more susceptible. Finally, we showed that the JA-mediated induction of NATA1 drove N(δ)-acetylornithine biosynthesis in infected Col-0 roots. The 35S::NATA1 and nata1 lines displayed reduced or enhanced clubroot symptoms, respectively, thus suggesting that in Col-0 this pathway was involved in the JA-mediated basal clubroot resistance. Overall, our data support the idea that, depending on the Arabidopsis accession, both SA and JA signaling can play a role in partial inhibition of clubroot development in compatible interactions with P. brassicae.
Collapse
Affiliation(s)
| | | | | | | | - Nathalie Marnet
- Plateau de Profilage Métabolique et Métabolomique (P2M2) Centre de Recherche Angers Nantes BIA, INRA de Rennes, F-35653 Le Rheu, France
| | | | | | - Antoine Gravot
- Université Rennes 1, UMR1349 IGEPP, F-35000 Rennes, France
| |
Collapse
|
28
|
Winter G, Todd CD, Trovato M, Forlani G, Funck D. Physiological implications of arginine metabolism in plants. FRONTIERS IN PLANT SCIENCE 2015; 6:534. [PMID: 26284079 PMCID: PMC4520006 DOI: 10.3389/fpls.2015.00534] [Citation(s) in RCA: 316] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 06/29/2015] [Indexed: 05/18/2023]
Abstract
Nitrogen is a limiting resource for plant growth in most terrestrial habitats since large amounts of nitrogen are needed to synthesize nucleic acids and proteins. Among the 21 proteinogenic amino acids, arginine has the highest nitrogen to carbon ratio, which makes it especially suitable as a storage form of organic nitrogen. Synthesis in chloroplasts via ornithine is apparently the only operational pathway to provide arginine in plants, and the rate of arginine synthesis is tightly regulated by various feedback mechanisms in accordance with the overall nutritional status. While several steps of arginine biosynthesis still remain poorly characterized in plants, much wider attention has been paid to inter- and intracellular arginine transport as well as arginine-derived metabolites. A role of arginine as alternative source besides glutamate for proline biosynthesis is still discussed controversially and may be prevented by differential subcellular localization of enzymes. Apparently, arginine is a precursor for nitric oxide (NO), although the molecular mechanism of NO production from arginine remains unclear in higher plants. In contrast, conversion of arginine to polyamines is well documented, and in several plant species also ornithine can serve as a precursor for polyamines. Both NO and polyamines play crucial roles in regulating developmental processes as well as responses to biotic and abiotic stress. It is thus conceivable that arginine catabolism serves on the one hand to mobilize nitrogen storages, while on the other hand it may be used to fine-tune development and defense mechanisms against stress. This review summarizes the recent advances in our knowledge about arginine metabolism, with a special focus on the model plant Arabidopsis thaliana, and pinpoints still unresolved critical questions.
Collapse
Affiliation(s)
- Gudrun Winter
- Laboratory of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Konstanz, Germany
| | | | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Forlani
- Laboratory of Plant Physiology and Biochemistry, Department of Life Science and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Dietmar Funck
- Laboratory of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Konstanz, Germany
- *Correspondence: Dietmar Funck, Laboratory of Plant Physiology and Biochemistry, Department of Biology, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany,
| |
Collapse
|
29
|
Verma SS, Rahman MH, Deyholos MK, Basu U, Kav NNV. Differential expression of miRNAs in Brassica napus root following infection with Plasmodiophora brassicae. PLoS One 2014; 9:e86648. [PMID: 24497962 PMCID: PMC3909011 DOI: 10.1371/journal.pone.0086648] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/17/2013] [Indexed: 12/29/2022] Open
Abstract
Canola (oilseed rape, Brassica napus L.) is susceptible to infection by the biotrophic protist Plasmodiophora brassicae, the causal agent of clubroot. To understand the roles of microRNAs (miRNAs) during the post-transcriptional regulation of disease initiation and progression, we have characterized the changes in miRNA expression profiles in canola roots during clubroot disease development and have compared these to uninfected roots. Two different stages of clubroot development were targeted in this miRNA profiling study: an early time of 10-dpi for disease initiation and a later 20-dpi, by which time the pathogen had colonized the roots (as evident by visible gall formation and histological observations). P. brassicae responsive miRNAs were identified and validated by qRT-PCR of miRNAs and the subsequent validation of the target mRNAs through starBase degradome analysis, and through 5' RLM-RACE. This study identifies putative miRNA-regulated genes with roles during clubroot disease initiation and development. Putative target genes identified in this study included: transcription factors (TFs), hormone-related genes, as well as genes associated with plant stress response regulation such as cytokinin, auxin/ethylene response elements. The results of our study may assist in elucidating the role of miRNAs in post-transcriptional regulation of target genes during disease development and may contribute to the development of strategies to engineer durable resistance to this important phytopathogen.
Collapse
Affiliation(s)
- Shiv S. Verma
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Muhammad H. Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Michael K. Deyholos
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Urmila Basu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Nat N. V. Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
30
|
Flórez-Zapata NMV, Reyes-Valdés MH, Hernandez-Godínez F, Martínez O. Transcriptomic landscape of prophase I sunflower male meiocytes. FRONTIERS IN PLANT SCIENCE 2014; 5:277. [PMID: 24982667 PMCID: PMC4059168 DOI: 10.3389/fpls.2014.00277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 05/27/2014] [Indexed: 05/06/2023]
Abstract
Meiosis is a form of specialized cell division that generates gametes, allowing recombination of alleles and halving the chromosome number. Arabidopsis and maize are the plant models that have been most extensively studied to determine the genes involved in meiosis. Here we present an RNA-seq study in which gene expression in male meiocytes isolated during prophase I was compared to that in somatic tissues of the sunflower HA89 line. We sampled more than 490 million gene tags from these libraries, assembled them de novo into a sunflower transcriptome. We obtained expression data for 36,304 sunflower genes, of which 19,574 (54%) were differentially expressed (DE) between meiocytes and somatic tissue. We also determined the functional categories and metabolic pathways that are DE in these libraries. As expected, we found large differences between the meiotic and somatic transcriptomes, which is in accordance with previous studies in Arabidopsis and maize. Furthermore, most of the previously implicated meiotic genes were abundantly and DE in meiocytes and a large repertoire of transcription factors (TF) and genes related to silencing are expressed in the sunflower meiocytes. We detected TFs which appear to be exclusively expressed in meiocytes. Our results allow for a better understanding of the conservation and differences in the meiotic transcriptome of plants.
Collapse
Affiliation(s)
- Nathalia M. V. Flórez-Zapata
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional(Cinvestav) Irapuato, México
| | - M. H. Reyes-Valdés
- Department of Plant Breeding, Universidad Autónoma Agraria Antonio NarroSaltillo, México
| | - Fernando Hernandez-Godínez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional(Cinvestav) Irapuato, México
| | - Octavio Martínez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional(Cinvestav) Irapuato, México
- *Correspondence: Octavio Martínez, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, K. 9.6 Libramiento Norte Carretera Irapuato-León, Irapuato 36821, México e-mail:
| |
Collapse
|
31
|
Zhang X, Shen L, Li F, Meng D, Sheng J. Hot air treatment-induced arginine catabolism is associated with elevated polyamines and proline levels and alleviates chilling injury in postharvest tomato fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:3245-51. [PMID: 23576244 DOI: 10.1002/jsfa.6166] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 03/12/2013] [Accepted: 04/09/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND To understand whether arginine catabolism might be involved in hot air (HA)-induced chilling tolerance mechanism in tomato fruit, we investigated the effect of HA treatment on endogenous arginine catabolism in relation to chilling injury. RESULTS Tomato fruit were harvested at mature green stage and treated with HA at 38°C for 12 h and then stored at 2°C for 21 days. The effects of HA treatment on fruit chilling injury and gene expression levels or enzyme activity, and metabolites related to arginine catabolism were evaluated. HA treatment reduced the chilling injury symptoms of tomato fruit and enhanced the accumulation of endogenous polyamines, especially putrescine and proline. This accumulation is associated with the increased transcript levels of genes encoding arginase (LeARG1 and LeARG2), arginine decarboxylase (LeADC), ornithine decarboxylase (LeODC) and ornithine aminotransferase (LeOAT) at most sampling times. However, HA treatment had little effect on nitric oxide synthase activity and nitric oxide concentration. CONCLUSION These results revealed that the reduction in chilling injury by HA treatment may be due to the accumulation of putrescine and proline induced primarily by activating the catabolism of endogenous arginine.
Collapse
Affiliation(s)
- Xinhua Zhang
- School of Agricultural and Food Engineering, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China; College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, People's Republic of China
| | | | | | | | | |
Collapse
|
32
|
Jubault M, Lariagon C, Taconnat L, Renou JP, Gravot A, Delourme R, Manzanares-Dauleux MJ. Partial resistance to clubroot in Arabidopsis is based on changes in the host primary metabolism and targeted cell division and expansion capacity. Funct Integr Genomics 2013; 13:191-205. [PMID: 23420032 PMCID: PMC3664179 DOI: 10.1007/s10142-013-0312-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 01/21/2013] [Accepted: 02/04/2013] [Indexed: 01/11/2023]
Abstract
To date, studies of the molecular basis of disease resistance mainly focused on qualitative resistance. However, deciphering mechanisms underlying quantitative resistance could lead to insights into the relationship between qualitative and quantitative resistance and guide the utilization of these two types of resistance to produce durably resistant cultivars. A functional genomics approach, using the CATMA whole-genome microarray, was used to detect changes in gene expression associated with partial quantitative resistance in the Arabidopsis thaliana-Plasmodiophora brassicae pathosystem. The time course of transcript abundance during partial clubroot resistance response was monitored at the whole plant level, and direct comparisons between partial resistance and susceptibility responses were made using the same host genotype. An increasingly complex host response was revealed, as was the differential influence of P. brassicae infection on the transcription of Arabidopsis genes according to the isolate used. We observed, at the transcriptomic level, that metabolic diversion by the pathogen was reduced or delayed, classical plant defense responses were induced earlier and/or more strongly, and cell enlargement and proliferation were actively inhibited in the partial quantitative resistance response compared to the susceptible one.
Collapse
Affiliation(s)
- Mélanie Jubault
- Agrocampus Ouest, UMR1349 IGEPP, 35000 Rennes, France
- Université Européenne de Bretagne, Rennes, France
| | | | - Ludivine Taconnat
- UMR INRA 1165–CNRS 8114–UEVE, Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essone, CP 5708, 91057 Evry Cedex, France
| | - Jean-Pierre Renou
- UMR INRA 1165–CNRS 8114–UEVE, Unité de Recherche en Génomique Végétale, Université d’Evry-Val-d’Essone, CP 5708, 91057 Evry Cedex, France
- Present Address: UMR IRHS, 42 rue Georges Morel, 49071 Beaucouzé Cedex, France
| | - Antoine Gravot
- Université Européenne de Bretagne, Rennes, France
- Université Rennes 1, UMR1349 IGEPP, 35000 Rennes, France
| | | | - Maria J. Manzanares-Dauleux
- Agrocampus Ouest, UMR1349 IGEPP, 35000 Rennes, France
- Université Européenne de Bretagne, Rennes, France
- UMR 1349 IGEPP INRA, Agrocampus Ouest Rennes, Université Rennes 1, BP35327, 35653 Le Rheu Cedex, France
| |
Collapse
|
33
|
Shi HT, Chan ZL. In vivo role of Arabidopsis arginase in arginine metabolism and abiotic stress response. PLANT SIGNALING & BEHAVIOR 2013; 8:e24138. [PMID: 23470718 PMCID: PMC3907415 DOI: 10.4161/psb.24138] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nitric oxide (NO) and polyamines play essential roles in many developmental processes and abiotic stress responses in plants. NO and polyamines are metabolized from arginine through NO synthase (NOS) and arginine decarboxylase (ADC), respectively. Function of arginase, another important enzyme involved in arginine metabolism, in abiotic stress remains largely unknown. In the recent study, we have dissected the impact of arginase on arginine metabolism and abiotic stress responses through manipulating AtARGAHs expression. The results suggested that manipulation of arginase expression modulated accumulation of arginine and direct downstream products of arginine catabolism. AtARGAHs knockout lines exhibited increased accumulation of polyamines and NO and enhanced abiotic stress tolerance, while AtARGAHs overexpressing lines displayed the opposite results. Notably, we highlighted that Arabidopsis arginase plays distinctive and dual roles in the crosstalk between polyamines and NO signaling during abiotic stress responses, mediating both arginine metabolism and reactive oxygen species (ROS) accumulation. It is likely that accumulation of both NO and polyamines might activate abiotic stress responses in the plant.
Collapse
|
34
|
Shi H, Ye T, Chen F, Cheng Z, Wang Y, Yang P, Zhang Y, Chan Z. Manipulation of arginase expression modulates abiotic stress tolerance in Arabidopsis: effect on arginine metabolism and ROS accumulation. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1367-79. [PMID: 23378380 PMCID: PMC3598423 DOI: 10.1093/jxb/ers400] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Arginine is an important medium for the transport and storage of nitrogen, and arginase (also known as arginine amidohydrolase, ARGAH) is responsible for catalyse of arginine into ornithine and urea in plants. In this study, the impact of AtARGAHs on abiotic stress response was investigated by manipulating AtARGAHs expression. In the knockout mutants of AtARGAHs, enhanced tolerances were observed to multiple abiotic stresses including water deficit, salt, and freezing stresses, while AtARGAH1- and AtARGAH2-overexpressing lines exhibited reduced abiotic stress tolerances compared to the wild type. Consistently, the enhanced tolerances were confirmed by the changes of physiological parameters including electrolyte leakage, water loss rate, stomatal aperture, and survival rate. Interestingly, the direct downstream products of arginine catabolism including polyamines and nitric oxide (NO) concentrations significantly increased in the AtARGAHs-knockout lines, but decreased in overexpressing lines under control conditions. Additionally, the AtARGAHs-overexpressing and -knockout lines displayed significantly reduced relative arginine (% of total free amino acids) relative to the wild type. Similarly, reactive oxygen species accumulation was remarkably regulated by AtARGAHs under abiotic stress conditions, as shown from hydrogen peroxide (H2O2), superoxide radical ( ) concentrations, and antioxidant enzyme activities. Taken together, this is the first report, as far as is known, to provide evidence that AtARGAHs negatively regulate many abiotic stress tolerances, at least partially, attribute to their roles in modulating arginine metabolism and reactive oxygen species accumulation. Biotechnological strategy based on manipulation of AtARGAHs expression will be valuable for future crop breeding.
Collapse
Affiliation(s)
- Haitao Shi
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tiantian Ye
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Fangfang Chen
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhangmin Cheng
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Yanping Wang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Yansheng Zhang
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
Polacco JC, Mazzafera P, Tezotto T. Opinion: nickel and urease in plants: still many knowledge gaps. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 199-200:79-90. [PMID: 23265321 DOI: 10.1016/j.plantsci.2012.10.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 10/19/2012] [Accepted: 10/20/2012] [Indexed: 05/22/2023]
Abstract
We propose experimental strategies to expand our understanding of the role of Ni in plants, beyond the Ni-metallocenter of urease, still the only identified Ni-containing plant enzyme. While Ni has been considered an essential mineral for plants there is a clear lack of knowledge of its involvement in metabolic steps except the urease-catalyzed conversion of urea to ammonia and bicarbonate. We argue that urease (and hence, Ni) plays an important role in optimal N-use efficiency under various N regimes by recycling urea-N, which is generated endogenously exclusively from arginase action on arginine. We further suggest that urease and arginase may connect different metabolic compartments under stress situations, and therefore may be involved in stress tolerance. To determine possible non-urease roles of Ni we call for experimental manipulation of both Ni and N availability in urease-negative mutants. Plant ureases have been shown to have defense roles, distinct from their ureolytic activity, and we call for investigation of whether Ni helps maintain a urease conformation or stability for these non-ureolytic defense roles. The beneficial effects of Ni at upper concentration limits have not been fully examined. We posit a "Ni strategy" of plants whose growth/performance is stimulated by unusual amounts of soil Ni, for defense and/or for maximal N-use efficiency. While we know little about Ni and urease roles in N metabolism and defense, virtually nothing is known about Ni roles in plant-microbial 'consortia.' And, much of what we know of Ni and urease is limited to only a few plants, e.g. soybean, potato and Arabidopsis, and we suggest studies vigorously extended to other plants.
Collapse
Affiliation(s)
- Joe C Polacco
- University of Missouri, Department of Biochemistry, Interdisciplinary Plant Group, Columbia, MO 65211, United States.
| | | | | |
Collapse
|