1
|
Pang L, Huang Y, He Y, Jiang D, Li R. The adaptor protein AP-3β disassembles heat-induced stress granules via 19S regulatory particle in Arabidopsis. Nat Commun 2025; 16:2039. [PMID: 40016204 PMCID: PMC11868639 DOI: 10.1038/s41467-025-57306-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
To survive under adverse conditions, plants form stress granules (SGs) to temporally store mRNA and halt translation as a primary response. Dysregulation in SG disassembly can have detrimental effects on plant survival after stress release, yet the underlying mechanism remains poorly understood. Using Arabidopsis as a model system, we demonstrate that the β subunit of adaptor protein (AP) -3 complex (AP-3β) interacts with the SG core RNA-binding proteins Tudor staphylococcal nuclease 1/2 (TSN1/2) both in vitro and in vivo. We also show that AP-3β is rapidly recruited to SGs upon heat induction and plays a key role in disassembling SGs during stress recovery. Genetic evidences support that AP-3β serves as an adaptor to recruit the 19S regulatory particle (RP) of the proteasome to SGs. Notably, the 19S RP promotes SG disassembly through RP-associated deubiquitylation, independent of its proteolytic activity. This deubiquitylation process of SG components is crucial for translation reinitiation and growth recovery after heat release. Our findings uncover a previously unexplored role of the 19S RP in regulating SG disassembly and highlights the importance of endomembrane proteins in supporting RNA granule dynamics in plants.
Collapse
Affiliation(s)
- Lei Pang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuanzhi Huang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yilin He
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dong Jiang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Ruixi Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Wang M, He F, Zhang W, Du C, Wang L, Sui J, Li F. SYNTAXIN OF PLANTS132 Regulates Root Meristem Activity and Stem Cell Niche Maintenance via RGF-PLT Pathways. Int J Mol Sci 2025; 26:2123. [PMID: 40076746 PMCID: PMC11900091 DOI: 10.3390/ijms26052123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Root growth and development are contingent upon continuous cell division and differentiation in root tips. In this study, we found that the knockdown of the syntaxin gene SYNTAXIN OF PLANTS132 (SYP132) in Arabidopsis thaliana resulted in a significant reduction in root meristem activity and disruption of root stem cell niche (SCN) identity. The SYP132 knockdown mutant exhibits a compromised SCN characterized by an increased number of quiescent center (QC) cells, abnormal columella stem cells (CSCs), reduced meristem size, and subsequent inhibition of root growth. In syp132, vesicle transport of PIN proteins is disrupted, leading to altered auxin distribution and decreased expression of the auxin-response transcription factors PLETHORA 1 (PLT1) and PLETHORA 2 (PLT2). Furthermore, the transcription level of the precursor of root meristem growth factor 1 (RGF1) is also modified in syp132. The reduction in PLT2 transcription and protein levels along with defects in the root SCN are partially rescued by the application of synthesized RGF1. This finding suggests that both the auxin-PLT and RGF-PLT pathways are interconnected through SYP132-mediated vesicle transport. Collectively, our findings indicate that SYP132 regulates the PLT pathway to maintain the root stem cell niche (SCN) in an RGF1-dependent manner.
Collapse
Affiliation(s)
- Mingjing Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Fumeng He
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Wei Zhang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Chong Du
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Linlin Wang
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Jia Sui
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| | - Fenglan Li
- College of Life Sciences, Northeast Agricultural University, Harbin 150030, China; (M.W.)
| |
Collapse
|
3
|
Drs M, Krupař P, Škrabálková E, Haluška S, Müller K, Potocká A, Brejšková L, Serrano N, Voxeur A, Vernhettes S, Ortmannová J, Caldarescu G, Fendrych M, Potocký M, Žárský V, Pečenková T. Chitosan stimulates root hair callose deposition, endomembrane dynamics, and inhibits root hair growth. PLANT, CELL & ENVIRONMENT 2025; 48:451-469. [PMID: 39267452 PMCID: PMC11615431 DOI: 10.1111/pce.15111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 08/03/2024] [Accepted: 08/10/2024] [Indexed: 09/17/2024]
Abstract
Although angiosperm plants generally react to immunity elicitors like chitin or chitosan by the cell wall callose deposition, this response in particular cell types, especially upon chitosan treatment, is not fully understood. Here we show that the growing root hairs (RHs) of Arabidopsis can respond to a mild (0.001%) chitosan treatment by the callose deposition and by a deceleration of the RH growth. We demonstrate that the glucan synthase-like 5/PMR4 is vital for chitosan-induced callose deposition but not for RH growth inhibition. Upon the higher chitosan concentration (0.01%) treatment, RHs do not deposit callose, while growth inhibition is prominent. To understand the molecular and cellular mechanisms underpinning the responses to two chitosan treatments, we analysed early Ca2+ and defence-related signalling, gene expression, cell wall and RH cellular endomembrane modifications. Chitosan-induced callose deposition is also present in the several other plant species, including functionally analogous and evolutionarily only distantly related RH-like structures such as rhizoids of bryophytes. Our results point to the RH callose deposition as a conserved strategy of soil-anchoring plant cells to cope with mild biotic stress. However, high chitosan concentration prominently disturbs RH intracellular dynamics, tip-localised endomembrane compartments, growth and viability, precluding callose deposition.
Collapse
Affiliation(s)
- Matěj Drs
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Pavel Krupař
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Eliška Škrabálková
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Samuel Haluška
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Karel Müller
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Andrea Potocká
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Lucie Brejšková
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Natalia Serrano
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - Aline Voxeur
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin (IJPB)VersaillesFrance
| | - Samantha Vernhettes
- Université Paris‐Saclay, INRAE, AgroParisTech, Institut Jean‐Pierre Bourgin (IJPB)VersaillesFrance
| | - Jitka Ortmannová
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
| | - George Caldarescu
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Matyáš Fendrych
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| | - Tamara Pečenková
- Institute of Experimental Botany of the Czech Academy of SciencesPrague 6Czech Republic
- Department of Experimental Plant Biology, Faculty of ScienceCharles UniversityPrague 2Czech Republic
| |
Collapse
|
4
|
Waghmare S, Xia L, Ly TP, Xu J, Farami S, Burchmore R, Blatt MR, Karnik R. SYNTAXIN OF PLANTS 132 underpins secretion of cargoes associated with salicylic acid signaling and pathogen defense. PLANT PHYSIOLOGY 2024; 197:kiae541. [PMID: 39387490 DOI: 10.1093/plphys/kiae541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/13/2024] [Indexed: 10/15/2024]
Abstract
Secretory trafficking in plant cells is facilitated by SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins that drive membrane fusion of cargo-containing vesicles. In Arabidopsis, SYNTAXIN OF PLANTS 132 (SYP132) is an evolutionarily ancient SNARE that functions with syntaxins SYP121 and SYP122 at the plasma membrane. Whereas SYP121 and SYP122 mediate overlapping secretory pathways, albeit with differences in their importance in plant-environment interactions, the SNARE SYP132 is absolutely essential for plant development and survival. SYP132 promotes endocytic traffic of the plasma membrane H+-ATPase AHA1 and aquaporin PIP2;1, and it coordinates plant growth and bacterial pathogen immunity through PATHOGENESIS-RELATED1 (PR1) secretion. Yet, little else is known about SYP132 cargoes. Here, we used advanced quantitative tandem mass tagging (TMT)-MS combined with immunoblot assays to track native secreted cargo proteins in the leaf apoplast. We found that SYP132 supports a basal level of secretion in Arabidopsis leaves, and its overexpression influences salicylic acid and jasmonic acid defense-related cargoes including PR1, PR2, and PR5 proteins. Impairing SYP132 function also suppressed defense-related secretory traffic when challenged with the bacterial pathogen Pseudomonas syringae. Thus, we conclude that, in addition to its role in hormone-related H+-ATPase cycling, SYP132 influences basal plant immunity.
Collapse
Affiliation(s)
- Sakharam Waghmare
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| | - Lingfeng Xia
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| | - Thu Phan Ly
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| | - Jing Xu
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| | - Sahar Farami
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| | - Richard Burchmore
- School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir Graeme Davies Building, Gilmorehill Campus, University Place, Glasgow G12 8QQ, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Rucha Karnik
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow G12 8QQ, UK
| |
Collapse
|
5
|
Zhu J, Li M, Lu H, Li Y, Ren M, Xu J, Ding W, Wang Y, Wu Y, Liu Y, Wu Z, Mo X, Mao C. The t-SNARE protein OsSYP132 is required for vesicle fusion and root morphogenesis in rice. THE NEW PHYTOLOGIST 2024; 244:2413-2429. [PMID: 39449241 DOI: 10.1111/nph.20180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Root morphogenesis is crucial for water and nutrient acquisition, but many aspects of root morphogenesis in crops are not well-understood. Here, we cloned and functionally characterized a key gene for root morphogenesis in rice (Oryza sativa) based on mutant analysis. The stop root morphogenesis 1 (srm1) mutant lacks crown roots (CRs) and lateral roots (LRs) and carries a point mutation in the t-SNARE coding gene SYNTAXIN OF PLANTS 132 (OsSYP132), leading to a premature stop codon and ablating the post-transmembrane (PTM) region of OsSYP132. We identified the functional SNARE complex OsSYP132-OsNPSN13-OsSYP71-OsVAMP721/722 and determined that the integrity of the PTM region of OsSYP132 is essential for OsSYP132-based SNARE complex-mediated fusion of OsVAMP721/722 vesicles with the plasma membrane. The loss of this region in srm1 disrupts the intercellular trafficking and plasma membrane localization of OsPIN1b, preventing proper auxin distribution in the primordia of CRs and LRs and inhibiting their outgrowth.
Collapse
Affiliation(s)
- Jianshu Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Mengzhen Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hong Lu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yong Li
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meiyan Ren
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jiming Xu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wona Ding
- Ningbo Key Laboratory of Agricultural Germplasm Resources Mining and Environmental Regulation, College of Science and Technology, Ningbo University, Ningbo, 315300, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yunrong Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yu Liu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhongchang Wu
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaorong Mo
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuanzao Mao
- State Key Laboratory of Plant Environmental Resilience, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya, Hainan, 572025, China
| |
Collapse
|
6
|
Cermesoni C, Grefen C, Ricardi MM. Where R-SNAREs like to roam - the vesicle-associated membrane proteins VAMP721 & VAMP722 in trafficking hotspots. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102571. [PMID: 38896926 DOI: 10.1016/j.pbi.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/22/2024] [Indexed: 06/21/2024]
Abstract
VAMP721 and VAMP722, play crucial roles in membrane fusion at post-Golgi compartments. They are involved in cell plate formation, recycling, endocytosis, and secretion. While individual SNARE actors and regulators exhibit significant overlap, specificity is achieved through distinct combinations of these components. Cytokinesis-related SNAREs traffic as preformed CIS-complexes, which require disassembly by the NSF/αSNAP chaperoning complex to facilitate subsequent homotypic fusion at the cell plate. Recent findings suggest a similar mechanism may operate during secretion. Regulation of VAMP721 activity involves interactions with tethers, GTPases, and Sec1/Munc18 proteins, along with a newly discovered phosphorylation at Tyrosine residue 57. These advances provide valuable insights into the fascinating world of cellular trafficking and membrane fusion.
Collapse
Affiliation(s)
- Cecilia Cermesoni
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christopher Grefen
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | - Martiniano M Ricardi
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina; Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina; Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany.
| |
Collapse
|
7
|
Kankaanpää S, Väisänen E, Goeminne G, Soliymani R, Desmet S, Samoylenko A, Vainio S, Wingsle G, Boerjan W, Vanholme R, Kärkönen A. Extracellular vesicles of Norway spruce contain precursors and enzymes for lignin formation and salicylic acid. PLANT PHYSIOLOGY 2024; 196:788-809. [PMID: 38771246 PMCID: PMC11444294 DOI: 10.1093/plphys/kiae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/09/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024]
Abstract
Lignin is a phenolic polymer in plants that rigidifies the cell walls of water-conducting tracheary elements and support-providing fibers and stone cells. Different mechanisms have been suggested for the transport of lignin precursors to the site of lignification in the cell wall. Extracellular vesicle (EV)-enriched samples isolated from a lignin-forming cell suspension culture of Norway spruce (Picea abies L. Karst.) contained both phenolic metabolites and enzymes related to lignin biosynthesis. Metabolomic analysis revealed mono-, di-, and oligolignols in the EV isolates, as well as carbohydrates and amino acids. In addition, salicylic acid (SA) and some proteins involved in SA signaling were detected in the EV-enriched samples. A proteomic analysis detected several laccases, peroxidases, β-glucosidases, putative dirigent proteins, and cell wall-modifying enzymes, such as glycosyl hydrolases, transglucosylase/hydrolases, and expansins in EVs. Our findings suggest that EVs are involved in transporting enzymes required for lignin polymerization in Norway spruce, and radical coupling of monolignols can occur in these vesicles.
Collapse
Affiliation(s)
- Santeri Kankaanpää
- Production Systems, Natural Resources Institute Finland (Luke), 31600 Jokioinen, Finland
| | - Enni Väisänen
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| | - Geert Goeminne
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Rabah Soliymani
- Meilahti Clinical Proteomics Core Facility, Biochemistry & Developmental Biology, Faculty of Medicine, Biomedicum Helsinki, University of Helsinki, 00014 Helsinki, Finland
| | - Sandrien Desmet
- VIB Metabolomics Core Ghent, VIB-UGent Center for Plant Systems Biology, Ghent University, 9052 Ghent, Belgium
| | - Anatoliy Samoylenko
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Seppo Vainio
- Faculty of Biochemistry and Molecular Medicine, Disease Networks Research Unit, Kvantum Institute, Infotech Oulu, University of Oulu, 90014 Oulu, Finland
| | - Gunnar Wingsle
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Wout Boerjan
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Ruben Vanholme
- VIB Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
| | - Anna Kärkönen
- Production Systems, Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
- Department of Agricultural Sciences, Viikki Plant Science Centre, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Zhong H, Wang S, Huang Y, Cui X, Ding X, Zhu L, Yuan M, Fu Y. Endomembrane trafficking driven by microtubule growth regulates stomatal movement in Arabidopsis. Nat Commun 2024; 15:7967. [PMID: 39261498 PMCID: PMC11391047 DOI: 10.1038/s41467-024-52338-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 08/31/2024] [Indexed: 09/13/2024] Open
Abstract
Microtubule-based vesicle trafficking usually relies upon kinesin and dynein motors and few reports describe microtubule polymerisation driving directional vesicle trafficking. Here we show that Arabidopsis END BINDING1b (EB1b), a microtubule plus-end binding protein, directly interacts with SYP121, a SNARE protein that mediates the trafficking of the K+ channel KAT1 and its distribution to the plasma membrane (PM) in Arabidopsis guard cells. Knockout of AtEB1b and its homologous proteins results in a modest but significant change in the distribution of KAT1 and SYP121 in guard cells and consequently delays light-induced stomatal opening. Live-cell imaging reveals that a portion of SYP121-associated endomembrane compartments co-localise with AtEB1b at the growing ends of microtubules, trafficking along with the growth of microtubules for targeting to the PM. Our study reveals a mechanism of vesicle trafficking driven by microtubule growth, which is involved in the redistribution of PM proteins to modulate guard cell movement.
Collapse
Affiliation(s)
- Hua Zhong
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shuwei Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yaohui Huang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiankui Cui
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xuening Ding
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Lei Zhu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ming Yuan
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Ying Fu
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing, China.
- Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing, China.
| |
Collapse
|
9
|
Ohta D, Fuwa A, Yamaroku Y, Isobe K, Nakamoto M, Okazawa A, Ogawa T, Ebine K, Ueda T, Mercier P, Schaller H. Characterization of Subcellular Dynamics of Sterol Methyltransferases Clarifies Defective Cell Division in smt2 smt3, a C-24 Ethyl Sterol-Deficient Mutant of Arabidopsis. Biomolecules 2024; 14:868. [PMID: 39062582 PMCID: PMC11275053 DOI: 10.3390/biom14070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/14/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
An Arabidopsis sterol mutant, smt2 smt3, defective in sterolmethyltransferase2 (SMT2), exhibits severe growth abnormalities. The loss of C-24 ethyl sterols, maintaining the biosynthesis of C-24 methyl sterols and brassinosteroids, suggests specific roles of C-24 ethyl sterols. We characterized the subcellular localizations of fluorescent protein-fused sterol biosynthetic enzymes, such as SMT2-GFP, and found these enzymes in the endoplasmic reticulum during interphase and identified their movement to the division plane during cytokinesis. The mobilization of endoplasmic reticulum-localized SMT2-GFP was independent of the polarized transport of cytokinetic vesicles to the division plane. In smt2 smt3, SMT2-GFP moved to the abnormal division plane, and unclear cell plate ends were surrounded by hazy structures from SMT2-GFP fluorescent signals and unincorporated cellulose debris. Unusual cortical microtubule organization and impaired cytoskeletal function accompanied the failure to determine the cortical division site and division plane formation. These results indicated that both endoplasmic reticulum membrane remodeling and cytokinetic vesicle transport during cytokinesis were impaired, resulting in the defects of cell wall generation. The cell wall integrity was compromised in the daughter cells, preventing the correct determination of the subsequent cell division site. We discuss the possible roles of C-24 ethyl sterols in the interaction between the cytoskeletal network and the plasma membrane.
Collapse
Affiliation(s)
- Daisaku Ohta
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; (D.O.); (T.O.)
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Ayaka Fuwa
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Yuka Yamaroku
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Kazuki Isobe
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; (D.O.); (T.O.)
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Masatoshi Nakamoto
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Atsushi Okazawa
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; (D.O.); (T.O.)
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Takumi Ogawa
- Graduate School of Agriculture, Osaka Metropolitan University, 1-1 Gakuen-cho, Sakai 599-8531, Japan; (D.O.); (T.O.)
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Sakai 599-8531, Japan
| | - Kazuo Ebine
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan; (K.E.); (T.U.)
- The Graduate Institute for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Takashi Ueda
- National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan; (K.E.); (T.U.)
- The Graduate Institute for Advanced Studies, SOKENDAI, Nishigonaka 38, Myodaiji, Okazaki 444-8585, Japan
| | - Pierre Mercier
- Institute de Biologie Moléculaire des Plantes, CNRS, 12, Rue du Général Zimmer, F-67084 Strasbourg, France; (P.M.); (H.S.)
| | - Hubert Schaller
- Institute de Biologie Moléculaire des Plantes, CNRS, 12, Rue du Général Zimmer, F-67084 Strasbourg, France; (P.M.); (H.S.)
| |
Collapse
|
10
|
Govta N, Fatiukha A, Govta L, Pozniak C, Distelfeld A, Fahima T, Beckles DM, Krugman T. Nitrogen deficiency tolerance conferred by introgression of a QTL derived from wild emmer into bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:187. [PMID: 39020219 PMCID: PMC11255033 DOI: 10.1007/s00122-024-04692-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/04/2024] [Indexed: 07/19/2024]
Abstract
KEY MESSAGE Genetic dissection of a QTL from wild emmer wheat, QGpc.huj.uh-5B.2, introgressed into bread wheat, identified candidate genes associated with tolerance to nitrogen deficiency, and potentially useful for improving nitrogen-use efficiency. Nitrogen (N) is an important macronutrient critical to wheat growth and development; its deficiency is one of the main factors causing reductions in grain yield and quality. N availability is significantly affected by drought or flooding, that are dependent on additional factors including soil type or duration and severity of stress. In a previous study, we identified a high grain protein content QTL (QGpc.huj.uh-5B.2) derived from the 5B chromosome of wild emmer wheat, that showed a higher proportion of explained variation under water-stress conditions. We hypothesized that this QTL is associated with tolerance to N deficiency as a possible mechanism underlying the higher effect under stress. To validate this hypothesis, we introgressed the QTL into the elite bread wheat var. Ruta, and showed that under N-deficient field conditions the introgression IL99 had a 33% increase in GPC (p < 0.05) compared to the recipient parent. Furthermore, evaluation of IL99 response to severe N deficiency (10% N) for 14 days, applied using a semi-hydroponic system under controlled conditions, confirmed its tolerance to N deficiency. Fine-mapping of the QTL resulted in 26 homozygous near-isogenic lines (BC4F5) segregating to N-deficiency tolerance. The QTL was delimited from - 28.28 to - 1.29 Mb and included 13 candidate genes, most associated with N-stress response, N transport, and abiotic stress responses. These genes may improve N-use efficiency under severely N-deficient environments. Our study demonstrates the importance of WEW as a source of novel candidate genes for sustainable improvement in tolerance to N deficiency in wheat.
Collapse
Affiliation(s)
- Nikolai Govta
- Wild Cereal Gene Bank, Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Andrii Fatiukha
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Liubov Govta
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Assaf Distelfeld
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Tzion Fahima
- Department of Evolutionary and Environmental Biology, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel
| | - Diane M Beckles
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Tamar Krugman
- Wild Cereal Gene Bank, Institute of Evolution, University of Haifa, Abba Khoushy Ave 199, 3498838, Haifa, Israel.
| |
Collapse
|
11
|
Baena G, Xia L, Waghmare S, Yu Z, Guo Y, Blatt MR, Zhang B, Karnik R. Arabidopsis SNARE SYP132 impacts on PIP2;1 trafficking and function in salinity stress. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1036-1053. [PMID: 38289468 DOI: 10.1111/tpj.16649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
In plants so-called plasma membrane intrinsic proteins (PIPs) are major water channels governing plant water status. Membrane trafficking contributes to functional regulation of major PIPs and is crucial for abiotic stress resilience. Arabidopsis PIP2;1 is rapidly internalised from the plasma membrane in response to high salinity to regulate osmotic water transport, but knowledge of the underlying mechanisms is fragmentary. Here we show that PIP2;1 occurs in complex with SYNTAXIN OF PLANTS 132 (SYP132) together with the plasma membrane H+-ATPase AHA1 as evidenced through in vivo and in vitro analysis. SYP132 is a multifaceted vesicle trafficking protein, known to interact with AHA1 and promote endocytosis to impact growth and pathogen defence. Tracking native proteins in immunoblot analysis, we found that salinity stress enhances SYP132 interactions with PIP2;1 and PIP2;2 isoforms to promote redistribution of the water channels away from the plasma membrane. Concurrently, AHA1 binding within the SYP132-complex was significantly reduced under salinity stress and increased the density of AHA1 proteins at the plasma membrane in leaf tissue. Manipulating SYP132 function in Arabidopsis thaliana enhanced resilience to salinity stress and analysis in heterologous systems suggested that the SNARE influences PIP2;1 osmotic water permeability. We propose therefore that SYP132 coordinates AHA1 and PIP2;1 abundance at the plasma membrane and influences leaf hydraulics to regulate plant responses to abiotic stress signals.
Collapse
Affiliation(s)
- Guillermo Baena
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Lingfeng Xia
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Sakharam Waghmare
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - ZhiYi Yu
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Yue Guo
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Michael R Blatt
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| | - Ben Zhang
- School of Life Science, Shanxi University, Taiyuan, Shanxi, 030006, China
| | - Rucha Karnik
- Plant Science Group, School of Molecular Biosciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, University Avenue, Glasgow, G12 8QQ, UK
| |
Collapse
|
12
|
Ricardi MM, Wallmeroth N, Cermesoni C, Mehlhorn DG, Richter S, Zhang L, Mittendorf J, Godehardt I, Berendzen KW, von Roepenack-Lahaye E, Stierhof YD, Lipka V, Jürgens G, Grefen C. A tyrosine phospho-switch within the Longin domain of VAMP721 modulates SNARE functionality. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1633-1651. [PMID: 37659090 DOI: 10.1111/tpj.16451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/04/2023]
Abstract
The final step in secretion is membrane fusion facilitated by SNARE proteins that reside in opposite membranes. The formation of a trans-SNARE complex between one R and three Q coiled-coiled SNARE domains drives the final approach of the membranes providing the mechanical energy for fusion. Biological control of this mechanism is exerted by additional domains within some SNAREs. For example, the N-terminal Longin domain (LD) of R-SNAREs (also called Vesicle-associated membrane proteins, VAMPs) can fold back onto the SNARE domain blocking interaction with other cognate SNAREs. The LD may also determine the subcellular localization via interaction with other trafficking-related proteins. Here, we provide cell-biological and genetic evidence that phosphorylation of the Tyrosine57 residue regulates the functionality of VAMP721. We found that an aspartate mutation mimics phosphorylation, leading to protein instability and subsequent degradation in lytic vacuoles. The mutant SNARE also fails to rescue the defects of vamp721vamp722 loss-of-function lines in spite of its wildtype-like localization within the secretory pathway and the ability to interact with cognate SNARE partners. Most importantly, it imposes a dominant negative phenotype interfering with root growth, normal secretion and cytokinesis in wildtype plants generating large aggregates that mainly contain secretory vesicles. Non-phosphorylatable VAMP721Y57F needs higher gene dosage to rescue double mutants in comparison to native VAMP721 underpinning that phosphorylation modulates SNARE function. We propose a model where short-lived phosphorylation of Y57 serves as a regulatory step to control VAMP721 activity, favoring its open state and interaction with cognate partners to ultimately drive membrane fusion.
Collapse
Affiliation(s)
- Martiniano Maria Ricardi
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Niklas Wallmeroth
- University of Tübingen, ZMBP Developmental Genetics, Tübingen, Germany
| | - Cecilia Cermesoni
- Departamento de Fisiología y Biología Molecular y Celular (FBMC), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Sandra Richter
- University of Tübingen, ZMBP Developmental Genetics, Tübingen, Germany
- University of Tübingen, ZMBP Central Facilities, Tübingen, Germany
| | - Lei Zhang
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | - Josephine Mittendorf
- University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Göttingen, Germany
| | - Ingeborg Godehardt
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| | | | | | | | - Volker Lipka
- University of Göttingen, Albrecht-von-Haller-Institute of Plant Sciences, Göttingen, Germany
| | - Gerd Jürgens
- University of Tübingen, ZMBP Developmental Genetics, Tübingen, Germany
| | - Christopher Grefen
- Ruhr University Bochum, Faculty of Biology and Biotechnology, Bochum, Germany
| |
Collapse
|
13
|
Hirano T, Ebine K, Ueda T, Higaki T, Watanabe-Nakayama T, Konno H, Takigawa-Imamura H, Sato MH. The SYP123-VAMP727 SNARE complex delivers secondary cell wall components for root hair shank hardening in Arabidopsis. THE PLANT CELL 2023; 35:4347-4365. [PMID: 37713604 PMCID: PMC10689195 DOI: 10.1093/plcell/koad240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 09/17/2023]
Abstract
The extended tubular shape of root hairs is established by tip growth and concomitant hardening. Here, we demonstrate that a syntaxin of plants (SYP)123-vesicle-associated membrane protein (VAMP)727-dependent secretion system delivers secondary cell wall components for hardening the subapical zone and shank of Arabidopsis (Arabidopsis thaliana) root hairs. We found increased SYP123 localization at the plasma membrane (PM) of the subapical and shank zones compared with the tip region in elongating root hairs. Inhibition of phosphatidylinositol (PtdIns)(3,5)P2 production impaired SYP123 localization at the PM and SYP123-mediated root hair shank hardening. Moreover, root hair elongation in the syp123 mutant was insensitive to a PtdIns(3,5)P2 synthesis inhibitor. SYP123 interacts with both VAMP721 and VAMP727. syp123 and vamp727 mutants exhibited reduced shank cell wall stiffness due to impaired secondary cell wall component deposition. Based on these results, we conclude that SYP123 is involved in VAMP721-mediated conventional secretion for root hair elongation as well as in VAMP727-mediated secretory functions for the delivery of secondary cell wall components to maintain root hair tubular morphology.
Collapse
Affiliation(s)
- Tomoko Hirano
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, Sokendai, Okazaki, Aichi 444-8585, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Okazaki 444-8585, Japan
- Department of Basic Biology, Sokendai, Okazaki, Aichi 444-8585, Japan
| | - Takumi Higaki
- International Research Organization for Advanced Science and Technology, Kumamoto University, Kurokami, Kumamoto 860-8555, Japan
| | | | - Hiroki Konno
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | | | - Masa H Sato
- Laboratory of Cellular Dynamics, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto 606-8522, Japan
| |
Collapse
|
14
|
He Y, Gao J, Luo M, Gao C, Lin Y, Wong HY, Cui Y, Zhuang X, Jiang L. VAMP724 and VAMP726 are involved in autophagosome formation in Arabidopsis thaliana. Autophagy 2023; 19:1406-1423. [PMID: 36130166 PMCID: PMC10240985 DOI: 10.1080/15548627.2022.2127240] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 11/02/2022] Open
Abstract
Macroautophagy/autophagy, an evolutionarily conserved degradative process essential for cell homeostasis and development in eukaryotes, involves autophagosome formation and fusion with a lysosome/vacuole. The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins play important roles in regulating autophagy in mammals and yeast, but relatively little is known about SNARE function in plant autophagy. Here we identified and characterized two Arabidopsis SNAREs, AT4G15780/VAMP724 and AT1G04760/VAMP726, involved in plant autophagy. Phenotypic analysis showed that mutants of VAMP724 and VAMP726 are sensitive to nutrient-starved conditions. Live-cell imaging on mutants of VAMP724 and VAMP726 expressing YFP-ATG8e showed the formation of abnormal autophagic structures outside the vacuoles and compromised autophagic flux. Further immunogold transmission electron microscopy and electron tomography (ET) analysis demonstrated a direct connection between the tubular autophagic structures and the endoplasmic reticulum (ER) in vamp724-1 vamp726-1 double mutants. Further transient co-expression, co-immunoprecipitation and double immunogold TEM analysis showed that ATG9 (autophagy related 9) interacts and colocalizes with VAMP724 and VAMP726 in ATG9-positive vesicles during autophagosome formation. Taken together, VAMP724 and VAMP726 regulate autophagosome formation likely working together with ATG9 in Arabidopsis.Abbreviations: ATG, autophagy related; BTH, benzo-(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester; Conc A, concanamycin A; EM, electron microscopy; ER, endoplasmic reticulum; FRET, Förster/fluorescence resonance energy transfer; MS, Murashige and Skoog; MVB, multivesicular body; PAS, phagophore assembly site; PM, plasma membrane; PVC, prevacuolar compartment; SNARE, soluble N-ethylmaleimide-sensitive factor attachment protein receptor; TEM, transmission electron microscopy; TGN, trans-Golgi network; WT, wild-type.
Collapse
Affiliation(s)
- Yilin He
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Jiayang Gao
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Mengqian Luo
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Caiji Gao
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, China
| | - Youshun Lin
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Hiu Yan Wong
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen, China
| | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Liwen Jiang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| |
Collapse
|
15
|
Lu C, Peng Z, Liu Y, Li G, Wan S. Genome-Wide Analysis of the SNARE Family in Cultivated Peanut ( Arachis hypogaea L.) Reveals That Some Members Are Involved in Stress Responses. Int J Mol Sci 2023; 24:ijms24087103. [PMID: 37108265 PMCID: PMC10139436 DOI: 10.3390/ijms24087103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
The superfamily of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins mediates membrane fusion during vesicular transport between endosomes and the plasma membrane in eukaryotic cells, playing a vital role in plant development and responses to biotic and abiotic stresses. Peanut (Arachis hypogaea L.) is a major oilseed crop worldwide that produces pods below ground, which is rare in flowering plants. To date, however, there has been no systematic study of SNARE family proteins in peanut. In this study, we identified 129 putative SNARE genes from cultivated peanut (A. hypogaea) and 127 from wild peanut (63 from Arachis duranensis, 64 from Arachis ipaensis). We sorted the encoded proteins into five subgroups (Qa-, Qb-, Qc-, Qb+c- and R-SNARE) based on their phylogenetic relationships with Arabidopsis SNAREs. The genes were unevenly distributed on all 20 chromosomes, exhibiting a high rate of homolog retention from their two ancestors. We identified cis-acting elements associated with development, biotic and abiotic stresses in the promoters of peanut SNARE genes. Transcriptomic data showed that expression of SNARE genes is tissue-specific and stress inducible. We hypothesize that AhVTI13b plays an important role in the storage of lipid proteins, while AhSYP122a, AhSNAP33a and AhVAMP721a might play an important role in development and stress responses. Furthermore, we showed that three AhSNARE genes (AhSYP122a, AhSNAP33a and AhVAMP721) enhance cold and NaCl tolerance in yeast (Saccharomyces cerevisiae), especially AhSNAP33a. This systematic study provides valuable information about the functional characteristics of AhSNARE genes in the development and regulation of abiotic stress responses in peanut.
Collapse
Affiliation(s)
- Chaoxia Lu
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Zhenying Peng
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yiyang Liu
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Guowei Li
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Shubo Wan
- Shandong Provincial Key Laboratory of Crop Genetic Improvement, Ecology and Physiology, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| |
Collapse
|
16
|
TaSYP137 and TaVAMP723, the SNAREs Proteins from Wheat, Reduce Resistance to Blumeria graminis f. sp. tritici. Int J Mol Sci 2023; 24:ijms24054830. [PMID: 36902258 PMCID: PMC10003616 DOI: 10.3390/ijms24054830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
SNARE protein is an essential factor driving vesicle fusion in eukaryotes. Several SNAREs have been shown to play a crucial role in protecting against powdery mildew and other pathogens. In our previous study, we identified SNARE family members and analyzed their expression pattern in response to powdery mildew infection. Based on quantitative expression and RNA-seq results, we focused on TaSYP137/TaVAMP723 and hypothesized that they play an important role in the interaction between wheat and Blumeria graminis f. sp. Tritici (Bgt). In this study, we measured the expression patterns of TaSYP132/TaVAMP723 genes in wheat post-infection with Bgt and found that the expression pattern of TaSYP137/TaVAMP723 was opposite in resistant and susceptible wheat samples infected by Bgt. The overexpression of TaSYP137/TaVAMP723 disrupted wheat's defense against Bgt infection, while silencing these genes enhanced its resistance to Bgt. Subcellular localization studies revealed that TaSYP137/TaVAMP723 are present in both the plasma membrane and nucleus. The interaction between TaSYP137 and TaVAMP723 was confirmed using the yeast two-hybrid (Y2H) system. This study offers novel insights into the involvement of SNARE proteins in the resistance of wheat against Bgt, thereby enhancing our comprehension of the role of the SNARE family in the pathways related to plant disease resistance.
Collapse
|
17
|
Wang M, Zhang H, Zhao X, Zhou J, Qin G, Liu Y, Kou X, Zhao Z, Wu T, Zhu JK, Feng X, Li L. SYNTAXIN OF PLANTS81 regulates root meristem activity and stem cell niche maintenance via ROS signaling. PLANT PHYSIOLOGY 2023; 191:1365-1382. [PMID: 36427205 PMCID: PMC9922426 DOI: 10.1093/plphys/kiac530] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Root growth and development depend on continuous cell division and differentiation in root tips. In these processes, reactive oxygen species (ROS) play a critical role as signaling molecules. However, few ROS signaling regulators have been identified. In this study, we found knockdown of a syntaxin gene, SYNTAXIN OF PLANTS81 in Arabidopsis thaliana (AtSYP81) resulted in a severe reduction in root meristem activity and disruption of root stem cell niche (SCN) identity. Subsequently, we found AtSYP81 was highly expressed in roots and localized on the endoplasmic reticulum (ER). Interestingly, the reduced expression of AtSYP81 conferred a decreased number of peroxisomes in root meristem cells, raising a possibility that AtSYP81 regulates root development through peroxisome-mediated ROS production. Further transcriptome analysis revealed that class III peroxidases, which are responsible for intracellular ROS homeostasis, showed significantly changed expression in the atsyp81 mutants and AtSYP81 overexpression lines, adding evidence of the regulatory role of AtSYP81 in ROS signaling. Accordingly, rescuing the decreased ROS level via applying ROS donors effectively restored the defects in root meristem activity and SCN identity in the atsyp81 mutants. APETALA2 (AP2) transcription factors PLETHORA1 and 2 (PLT1 and PLT2) were then established as the downstream effectors in this pathway, while potential crosstalk between ROS signaling and auxin signaling was also indicated. Taken together, our findings suggest that AtSYP81 regulates root meristem activity and maintains root SCN identity by controlling peroxisome- and peroxidase-mediated ROS homeostasis, thus both broadening and deepening our understanding of the biological roles of SNARE proteins and ROS signaling.
Collapse
Affiliation(s)
- Mingjing Wang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hailong Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiaonan Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Jingwen Zhou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Guochen Qin
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China
| | - Yuqi Liu
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Xiaoyue Kou
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Zhenjie Zhao
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Tao Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xianzhong Feng
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lixin Li
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
18
|
Shi Y, Luo C, Xiang Y, Qian D. Rab GTPases, tethers, and SNAREs work together to regulate Arabidopsis cell plate formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1120841. [PMID: 36844074 PMCID: PMC9950755 DOI: 10.3389/fpls.2023.1120841] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Cell plates are transient structures formed by the fusion of vesicles at the center of the dividing plane; furthermore, these are precursors to new cell walls and are essential for cytokinesis. Cell plate formation requires a highly coordinated process of cytoskeletal rearrangement, vesicle accumulation and fusion, and membrane maturation. Tethering factors have been shown to interact with the Ras superfamily of small GTP binding proteins (Rab GTPases) and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which are essential for cell plate formation during cytokinesis and are fundamental for maintaining normal plant growth and development. In Arabidopsis thaliana, members of the Rab GTPases, tethers, and SNAREs are localized in cell plates, and mutations in the genes encoding these proteins result in typical cytokinesis-defective phenotypes, such as the formation of abnormal cell plates, multinucleated cells, and incomplete cell walls. This review highlights recent findings on vesicle trafficking during cell plate formation mediated by Rab GTPases, tethers, and SNAREs.
Collapse
|
19
|
Yun HS, Sul WJ, Chung HS, Lee JH, Kwon C. Secretory membrane traffic in plant-microbe interactions. THE NEW PHYTOLOGIST 2023; 237:53-59. [PMID: 36089820 DOI: 10.1111/nph.18470] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/23/2022] [Indexed: 06/15/2023]
Abstract
Plant defense responses include the extracellular release of defense-related molecules, such as pathogenesis-related proteins and secondary metabolites, as well as cell wall materials. This primarily depends on the trafficking of secretory vesicles to the plasma membrane, where they discharge their contents into the apoplastic space via soluble N-ethylmaleimide sensitive factor attachment protein receptor-assisted exocytosis. However, some pathogenic and symbiotic microbes have developed strategies to manipulate host plant exocytic pathways. Here, we discuss the mechanisms by which plant exocytic pathways function in immunity and how microbes have evolved to manipulate those pathways.
Collapse
Affiliation(s)
- Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, 05029, Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Korea
| | - Hoo Sun Chung
- Plant Biotechnology Research Center, Ghent University, Global Campus, Incheon, 21985, Korea
| | - Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan, 46241, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, 31116, Korea
| |
Collapse
|
20
|
Xue C, Li W, Shen R, Lan P. Impacts of iron on phosphate starvation-induced root hair growth in Arabidopsis. PLANT, CELL & ENVIRONMENT 2023; 46:215-238. [PMID: 36174546 DOI: 10.1111/pce.14451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 06/16/2023]
Abstract
In Arabidopsis, phosphate starvation (-Pi)-induced responses of primary root and lateral root growth are documented to be correlated with ambient iron (Fe) status. However, whether and how Fe participates in -Pi-induced root hair growth (RHG) remains unclear. Here, responses of RHG to different Fe concentrations under Pi sufficiency/deficiency were verified. Generally, distinct dosage effects of Fe on RHG appeared at both Pi levels, due to the generation of reactive oxygen species. Following analyses using auxin mutants and the phr1 mutant revealed that auxin and the central regulator PHR1 are required for Fe-triggered RHG under -Pi. A further proteomic study indicated that processes of vesicle trafficking and auxin synthesis and transport were affected by Fe under -Pi, which were subsequently validated by using a vesicle trafficking inhibitor, brefeldin A, and an auxin reporter, R2D2. Moreover, vesicle trafficking-mediated recycling of PIN2, an auxin efflux transporter, was notably affected by Fe under -Pi. Correspondingly, root hairs of pin2 mutant displayed attenuated responses to Fe under -Pi. Together, we propose that Fe affects auxin signalling probably by modulating vesicle trafficking, chiefly the PIN2 recycling, which might work jointly with PHR1 on modulating -Pi-induced RHG.
Collapse
Affiliation(s)
- Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China and University of Chinese Academy of Sceinces, Beijing, China
| | - Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China and University of Chinese Academy of Sceinces, Beijing, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China and University of Chinese Academy of Sceinces, Beijing, China
| |
Collapse
|
21
|
Kim S, Park K, Kwon C, Yun HS. Synaptotagmin 4 and 5 additively contribute to Arabidopsis immunity to Pseudomonas syringae DC3000. PLANT SIGNALING & BEHAVIOR 2022; 17:2025323. [PMID: 35060423 PMCID: PMC9176259 DOI: 10.1080/15592324.2021.2025323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/30/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are essential for vesicle trafficking in plants. Vesicle-associated membrane protein 721 and 722 (VAMP721/722) are secretory vesicle-localized R-SNAREs, which are involved in a variety of biological processes in plants. Compared to VAMP721/722, a VAMP721/722-interacting plasma membrane (PM)-localized Qa-SNARE is engaged in a rather specific physiological process. This indicates that an in vivo regulator controls an interaction between a Qa-SNARE and VAMP721/722 for a specific cellular activity. We previously reported that synaptotagmin 5 (SYT5) modulates the interaction between SYP132 PM Qa-SNARE and VAMP721/722 for Arabidopsis resistance to Pseudomonas syringae DC3000. In this study, we show that defense against P. syringae DC3000 is compromised in SYT4-lacking plants, which belongs to the same subclade as SYT5. Further elevation of bacterial growth in syt4 syt5-2 plants compared to either syt4 or syt5-2 single mutant suggests that SYT4 and SYT5 play additive roles in Arabidopsis immunity to P. syringae DC3000.
Collapse
Affiliation(s)
- Soohong Kim
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Keunchun Park
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul, Korea
| |
Collapse
|
22
|
Ricardi MM, Estevez JM. The tip of the iceberg: ROP2 directly interacts with SYP121 to regulate root-hair polarization, elongation, and exocytosis. MOLECULAR PLANT 2022; 15:1084-1086. [PMID: 35684965 DOI: 10.1016/j.molp.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Martiniano M Ricardi
- Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE-UBA-CONICET) and Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires C1428EHA, Argentina
| | - José M Estevez
- Fundación Instituto Leloir and IIBBA-CONICET. Av. Patricias Argentinas 435, Buenos Aires C1405BWE, Argentina; Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago 8370146, Chile; ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago 8370146, Chile.
| |
Collapse
|
23
|
Melkonian K, Stolze SC, Harzen A, Nakagami H. miniTurbo-based interactomics of two plasma membrane-localized SNARE proteins in Marchantia polymorpha. THE NEW PHYTOLOGIST 2022; 235:786-800. [PMID: 35396742 DOI: 10.1111/nph.18151] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Marchantia polymorpha is a model liverwort and its overall low genetic redundancy is advantageous for dissecting complex pathways. Proximity-dependent in vivo biotin-labelling methods have emerged as powerful interactomics tools in recent years. However, interactomics studies applying proximity labelling are currently limited to angiosperm species in plants. Here, we established and evaluated a miniTurbo-based interactomics method in M. polymorpha using MpSYP12A and MpSYP13B, two plasma membrane-localized SNARE proteins, as baits. We show that our method yields a manifold of potential interactors of MpSYP12A and MpSYP13B compared to a coimmunoprecipitation approach. Our method could capture specific candidates for each SNARE. We conclude that a miniTurbo-based method is a feasible tool for interactomics in M. polymorpha and potentially applicable to other model bryophytes. Our interactome dataset on MpSYP12A and MpSYP13B will be a useful resource to elucidate the evolution of SNARE functions.
Collapse
Affiliation(s)
- Katharina Melkonian
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Sara Christina Stolze
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Anne Harzen
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| | - Hirofumi Nakagami
- Basic Immune System of Plants, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
- Protein Mass Spectrometry, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829, Cologne, Germany
| |
Collapse
|
24
|
Baena G, Xia L, Waghmare S, Karnik R. SNARE SYP132 mediates divergent traffic of plasma membrane H+-ATPase AHA1 and antimicrobial PR1 during bacterial pathogenesis. PLANT PHYSIOLOGY 2022; 189:1639-1661. [PMID: 35348763 PMCID: PMC9237740 DOI: 10.1093/plphys/kiac149] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/08/2022] [Indexed: 05/15/2023]
Abstract
The vesicle trafficking SYNTAXIN OF PLANTS132 (SYP132) drives hormone-regulated endocytic traffic to suppress the density and function of plasma membrane (PM) H+-ATPases. In response to bacterial pathogens, it also promotes secretory traffic of antimicrobial pathogenesis-related (PR) proteins. These seemingly opposite actions of SYP132 raise questions about the mechanistic connections between the two, likely independent, membrane trafficking pathways intersecting plant growth and immunity. To study SYP132 and associated trafficking of PM H+-ATPase 1 (AHA1) and PATHOGENESIS-RELATED PROTEIN1 (PR1) during pathogenesis, we used the virulent Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) bacteria for infection of Arabidopsis (Arabidopsis thaliana) plants. SYP132 overexpression suppressed bacterial infection in plants through the stomatal route. However, bacterial infection was enhanced when bacteria were infiltrated into leaf tissue to bypass stomatal defenses. Tracking time-dependent changes in native AHA1 and SYP132 abundance, cellular distribution, and function, we discovered that bacterial pathogen infection triggers AHA1 and SYP132 internalization from the plasma membrane. AHA1 bound to SYP132 through its regulatory SNARE Habc domain, and these interactions affected PM H+-ATPase traffic. Remarkably, using the Arabidopsis aha1 mutant, we discovered that AHA1 is essential for moderating SYP132 abundance and associated secretion of PR1 at the plasma membrane for pathogen defense. Thus, we show that during pathogenesis SYP132 coordinates AHA1 with opposing effects on the traffic of AHA1 and PR1.
Collapse
Affiliation(s)
- Guillermo Baena
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Lingfeng Xia
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Sakharam Waghmare
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| | - Rucha Karnik
- Plant Science Group, Laboratory of Plant Physiology and Biophysics, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, University of Glasgow, Bower Building, Glasgow G12 8QQ, UK
| |
Collapse
|
25
|
Cui X, Wang S, Huang Y, Ding X, Wang Z, Zheng L, Bi Y, Ge F, Zhu L, Yuan M, Yalovsky S, Fu Y. Arabidopsis SYP121 acts as an ROP2 effector in the regulation of root hair tip growth. MOLECULAR PLANT 2022; 15:1008-1023. [PMID: 35488430 DOI: 10.1016/j.molp.2022.04.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 04/04/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Tip growth is an extreme form of polarized cell expansion that occurs in all eukaryotic kingdoms to generate highly elongated tubular cells with specialized functions, including fungal hyphae, animal neurons, plant pollen tubes, and root hairs (RHs). RHs are tubular structures that protrude from the root epidermis to facilitate water and nutrient uptake, microbial interactions, and plant anchorage. RH tip growth requires polarized vesicle targeting and active exocytosis at apical growth sites. However, how apical exocytosis is spatially and temporally controlled during tip growth remains elusive. Here, we report that the Qa-Soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) SYP121 acts as an effector of Rho of Plants 2 (ROP2), mediating the regulation of RH tip growth. We show that active ROP2 promotes SYP121 targeting to the apical plasma membrane. Moreover, ROP2 directly interacts with SYP121 and promotes the interaction between SYP121 and the R-SNARE VAMP722 to form a SNARE complex, probably by facilitating the release of the Sec1/Munc18 protein SEC11, which suppresses the function of SYP121. Thus, the ROP2-SYP121 pathway facilitates exocytic trafficking during RH tip growth. Our study uncovers a direct link between an ROP GTPase and vesicular trafficking and a new mechanism for the control of apical exocytosis, whereby ROP GTPase signaling spatially regulates SNARE complex assembly and the polar distribution of a Q-SNARE.
Collapse
Affiliation(s)
- Xiankui Cui
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shuwei Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yaohui Huang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xuening Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zirong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lidan Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yujing Bi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Fanghui Ge
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lei Zhu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China
| | - Ming Yuan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shaul Yalovsky
- Department of Plant Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ying Fu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; Joint Laboratory for International Cooperation in Crop Molecular Breeding, Ministry of Education, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
26
|
Dahhan DA, Reynolds GD, Cárdenas JJ, Eeckhout D, Johnson A, Yperman K, Kaufmann WA, Vang N, Yan X, Hwang I, Heese A, De Jaeger G, Friml J, Van Damme D, Pan J, Bednarek SY. Proteomic characterization of isolated Arabidopsis clathrin-coated vesicles reveals evolutionarily conserved and plant-specific components. THE PLANT CELL 2022; 34:2150-2173. [PMID: 35218346 DOI: 10.1101/2021.09.16.460678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/22/2022] [Indexed: 05/26/2023]
Abstract
In eukaryotes, clathrin-coated vesicles (CCVs) facilitate the internalization of material from the cell surface as well as the movement of cargo in post-Golgi trafficking pathways. This diversity of functions is partially provided by multiple monomeric and multimeric clathrin adaptor complexes that provide compartment and cargo selectivity. The adaptor-protein assembly polypeptide-1 (AP-1) complex operates as part of the secretory pathway at the trans-Golgi network (TGN), while the AP-2 complex and the TPLATE complex jointly operate at the plasma membrane to execute clathrin-mediated endocytosis. Key to our further understanding of clathrin-mediated trafficking in plants will be the comprehensive identification and characterization of the network of evolutionarily conserved and plant-specific core and accessory machinery involved in the formation and targeting of CCVs. To facilitate these studies, we have analyzed the proteome of enriched TGN/early endosome-derived and endocytic CCVs isolated from dividing and expanding suspension-cultured Arabidopsis (Arabidopsis thaliana) cells. Tandem mass spectrometry analysis results were validated by differential chemical labeling experiments to identify proteins co-enriching with CCVs. Proteins enriched in CCVs included previously characterized CCV components and cargos such as the vacuolar sorting receptors in addition to conserved and plant-specific components whose function in clathrin-mediated trafficking has not been previously defined. Notably, in addition to AP-1 and AP-2, all subunits of the AP-4 complex, but not AP-3 or AP-5, were found to be in high abundance in the CCV proteome. The association of AP-4 with suspension-cultured Arabidopsis CCVs is further supported via additional biochemical data.
Collapse
Affiliation(s)
- Dana A Dahhan
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Gregory D Reynolds
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Jessica J Cárdenas
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Alexander Johnson
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Walter A Kaufmann
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Nou Vang
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Xu Yan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Inhwan Hwang
- Department of Life Sciences, Pohang University of Science & Technology, Pohang 37673, Korea
| | - Antje Heese
- Division of Biochemistry, Interdisciplinary Plant Group, University of Missouri-Columbia, Columbia, Missouri 65211, USA
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jiří Friml
- Institute of Science and Technology (IST Austria), Klosterneuburg 3400, Austria
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Jianwei Pan
- College Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Sebastian Y Bednarek
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
27
|
Pang L, Ma Z, Zhang X, Huang Y, Li R, Miao Y, Li R. The small GTPase RABA2a recruits SNARE proteins to regulate the secretory pathway in parallel with the exocyst complex in Arabidopsis. MOLECULAR PLANT 2022; 15:398-418. [PMID: 34798312 DOI: 10.1016/j.molp.2021.11.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/24/2021] [Accepted: 11/12/2021] [Indexed: 05/22/2023]
Abstract
Delivery of proteins to the plasma membrane occurs via secretion, which requires tethering, docking, priming, and fusion of vesicles. In yeast and mammalian cells, an evolutionarily conserved RAB GTPase activation cascade functions together with the exocyst and SNARE proteins to coordinate vesicle transport with fusion at the plasma membrane. However, it is unclear whether this is the case in plants. In this study, we show that the small GTPase RABA2a recruits and interacts with the VAMP721/722-SYP121-SNAP33 SNARE ternary complex for membrane fusion. Through immunoprecipitation coupled with mass spectrometry analysis followed by the validatation with a series of biochemical assays, we identified the SNARE proteins VAMP721 and SYP121 as the interactors and downstream effectors of RABA2a. Further expreiments showed that RABA2a interacts with all members of the SNARE complex in its GTP-bound form and modulates the assembly of the VAMP721/722-SYP121-SNAP33 SNARE ternary complex. Intriguingly, we did not observe the interaction of the exocyst subunits with either RABA2a or theSNARE proteins in several different experiments. Neither RABA2a inactivation affects the subcellular localization or assembly of the exocystnor the exocyst subunit mutant exo84b shows the disrupted RABA2a-SNARE association or SNARE assembly, suggesting that the RABA2a-SNARE- and exocyst-mediated secretory pathways are largely independent. Consistently, our live imaging experiments reveal that the two sets of proteins follow non-overlapping trafficking routes, and genetic and cell biologyanalyses indicate that the two pathways select different cargos. Finally, we demonstrate that the plant-specific RABA2a-SNARE pathway is essential for the maintenance of potassium homeostasis in Arabisopsis seedlings. Collectively, our findings imply that higher plants might have generated different endomembrane sorting pathways during evolution and may enable the highly conserved endomembrane proteins to participate in plant-specific trafficking mechanisms for adaptation to the changing environment.
Collapse
Affiliation(s)
- Lei Pang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhiming Ma
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Xi Zhang
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yuanzhi Huang
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ruili Li
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yansong Miao
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Ruixi Li
- Key Laboratory of Molecular Design for Plant Cell Factory of Guangdong Higher Education Institutes, Institute of Plant and Food Science, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
28
|
Molinelli HR, Liu M, O'Connell RJ, Nielsen ME. Plant SYP12 syntaxins mediate an evolutionarily conserved general immunity to filamentous pathogens. eLife 2022; 11:73487. [PMID: 35119361 PMCID: PMC8865848 DOI: 10.7554/elife.73487] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/30/2022] [Indexed: 12/03/2022] Open
Abstract
Filamentous fungal and oomycete plant pathogens that invade by direct penetration through the leaf epidermal cell wall cause devastating plant diseases. Plant preinvasive immunity toward nonadapted filamentous pathogens is highly effective and durable. Pre- and postinvasive immunity correlates with the formation of evolutionarily conserved and cell-autonomous cell wall structures, named papillae and encasements, respectively. Yet, it is still unresolved how papillae/encasements are formed and whether these defense structures prevent pathogen ingress. Here, we show that in Arabidopsis the two closely related members of the SYP12 clade of syntaxins (PEN1 and SYP122) are indispensable for the formation of papillae and encasements. Moreover, loss-of-function mutants were hampered in preinvasive immunity toward a range of phylogenetically distant nonadapted filamentous pathogens, underlining the versatility and efficacy of this defense. Complementation studies using SYP12s from the early diverging land plant, Marchantia polymorpha, showed that the SYP12 clade immunity function has survived 470 million years of independent evolution. These results suggest that ancestral land plants evolved the SYP12 clade to provide a broad and durable preinvasive immunity to facilitate their life on land and pave the way to a better understanding of how adapted pathogens overcome this ubiquitous plant defense strategy.
Collapse
Affiliation(s)
| | - Mengqi Liu
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | - Mads Eggert Nielsen
- Department of Plant and Environmental Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
29
|
Luo C, Shi Y, Xiang Y. SNAREs Regulate Vesicle Trafficking During Root Growth and Development. FRONTIERS IN PLANT SCIENCE 2022; 13:853251. [PMID: 35360325 PMCID: PMC8964185 DOI: 10.3389/fpls.2022.853251] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 01/27/2022] [Indexed: 05/13/2023]
Abstract
SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) proteins assemble to drive the final membrane fusion step of membrane trafficking. Thus, SNAREs are essential for membrane fusion and vesicular trafficking, which are fundamental mechanisms for maintaining cellular homeostasis. In plants, SNAREs have been demonstrated to be located in different subcellular compartments and involved in a variety of fundamental processes, such as cytokinesis, cytoskeleton organization, symbiosis, and biotic and abiotic stress responses. In addition, SNAREs can also contribute to the normal growth and development of Arabidopsis. Here, we review recent progress in understanding the biological functions and signaling network of SNAREs in vesicle trafficking and the regulation of root growth and development in Arabidopsis.
Collapse
|
30
|
McGee R, Dean GH, Wu D, Zhang Y, Mansfield SD, Haughn GW. Pectin Modification in Seed Coat Mucilage by In Vivo Expression of Rhamnogalacturonan-I- and Homogalacturonan-Degrading Enzymes. PLANT & CELL PHYSIOLOGY 2021; 62:1912-1926. [PMID: 34059917 DOI: 10.1093/pcp/pcab077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/23/2021] [Accepted: 05/31/2021] [Indexed: 05/27/2023]
Abstract
The cell wall is essential for plant survival. Determining the relationship between cell wall structure and function using mutant analysis or overexpressing cell wall-modifying enzymes has been challenging due to the complexity of the cell wall and the appearance of secondary, compensatory effects when individual polymers are modified. In addition, viability of the plants can be severely impacted by wall modification. A useful model system for studying structure-function relationships among extracellular matrix components is the seed coat epidermal cells of Arabidopsis thaliana. These cells synthesize relatively simple, easily accessible, pectin-rich mucilage that is not essential for plant viability. In this study, we expressed enzymes predicted to modify polysaccharide components of mucilage in the apoplast of seed coat epidermal cells and explored their impacts on mucilage. The seed coat epidermal-specific promoter TESTA ABUNDANT2 (TBA2) was used to drive expression of these enzymes to avoid adverse effects in other parts of the plant. Mature transgenic seeds expressing Rhamnogalacturonate lyase A (RglA) or Rhamnogalacturonate lyase B (RglB) that degrade the pectin rhamnogalacturonan-I (RG-I), a major component of mucilage, had greatly reduced mucilage capsules surrounding the seeds and concomitant decreases in the monosaccharides that comprise the RG-I backbone. Degradation of the minor mucilage component homogalacturonan (HG) using the HG-degrading enzymes Pectin lyase A (PLA) or ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE2 (ADPG2) resulted in developing seed coat epidermal cells with disrupted cell-cell adhesion and signs of early cell death. These results demonstrate the feasibility of manipulating the seed coat epidermal cell extracellular matrix using a targeted genetic engineering approach.
Collapse
Affiliation(s)
- Robert McGee
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
- L'Institut National de la Recherche Scientifique Centre Armand-Frappier Santé Biotechnologie (INRS-CAFSB), 531 des Prairies Blvd. Laval, QC, H7V 1B7, Canada
| | - Gillian H Dean
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Di Wu
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
- Faculty of Land and Food Systems, University of British Columbia, 248-2357 Main Mall Vancouver, BC V6T 1Z4, Canada
| | - Yuelin Zhang
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, University of British Columbia, 2900-2424 Main Mall Vancouver, BC V6T 1Z4, Canada
| | - George W Haughn
- Department of Botany, University of British Columbia, 6270 University Blvd., Vancouver, BC V6T 1Z4, Canada
| |
Collapse
|
31
|
Bibeau JP, Galotto G, Wu M, Tüzel E, Vidali L. Quantitative cell biology of tip growth in moss. PLANT MOLECULAR BIOLOGY 2021; 107:227-244. [PMID: 33825083 PMCID: PMC8492783 DOI: 10.1007/s11103-021-01147-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/25/2021] [Indexed: 05/16/2023]
Abstract
KEY MESSAGE Here we review, from a quantitative point of view, the cell biology of protonemal tip growth in the model moss Physcomitrium patens. We focus on the role of the cytoskeleton, vesicle trafficking, and cell wall mechanics, including reviewing some of the existing mathematical models of tip growth. We provide a primer for existing cell biological tools that can be applied to the future study of tip growth in moss. Polarized cell growth is a ubiquitous process throughout the plant kingdom in which the cell elongates in a self-similar manner. This process is important for nutrient uptake by root hairs, fertilization by pollen, and gametophyte development by the protonemata of bryophytes and ferns. In this review, we will focus on the tip growth of moss cells, emphasizing the role of cytoskeletal organization, cytoplasmic zonation, vesicle trafficking, cell wall composition, and dynamics. We compare some of the existing knowledge on tip growth in protonemata against what is known in pollen tubes and root hairs, which are better-studied tip growing cells. To fully understand how plant cells grow requires that we deepen our knowledge in a variety of forms of plant cell growth. We focus this review on the model plant Physcomitrium patens, which uses tip growth as the dominant form of growth at its protonemal stage. Because mosses and vascular plants shared a common ancestor more than 450 million years ago, we anticipate that both similarities and differences between tip growing plant cells will provide mechanistic information of tip growth as well as of plant cell growth in general. Towards this mechanistic understanding, we will also review some of the existing mathematical models of plant tip growth and their applicability to investigate protonemal morphogenesis. We attempt to integrate the conclusions and data across cell biology and physical modeling to our current state of knowledge of polarized cell growth in P. patens and highlight future directions in the field.
Collapse
Affiliation(s)
- Jeffrey P Bibeau
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Giulia Galotto
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Min Wu
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, MA, USA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Erkan Tüzel
- Bioengineering Department, Temple University, Philadelphia, PA, USA
| | - Luis Vidali
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA, USA.
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, USA.
| |
Collapse
|
32
|
Lee Y, Dean GH, Gilchrist E, Tsai AY, Haughn GW. Asymmetric distribution of extracellular matrix proteins in seed coat epidermal cells of Arabidopsis is determined by polar secretion. PLANT DIRECT 2021; 5:e360. [PMID: 34877448 PMCID: PMC8628086 DOI: 10.1002/pld3.360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Although asymmetric deposition of the plant extracellular matrix is critical for the normal functioning of many cell types, the molecular mechanisms establishing this asymmetry are not well understood. During differentiation, Arabidopsis seed coat epidermal cells deposit large amounts of pectin-rich mucilage asymmetrically to form an extracellular pocket between the plasma membrane and the outer tangential primary cell wall. At maturity, the mucilage expands on contact with water, ruptures the primary cell wall, and extrudes to encapsulate the seed. In addition to polysaccharides, mucilage contains secreted proteins including the β-galactosidase MUCILAGE MODIFIED 2 (MUM2). A functional chimeric protein where MUM2 was fused translationally with Citrine yellow fluorescent protein (Citrine) indicated that MUM2-Citrine fluorescence preferentially accumulates in the mucilage pocket concomitant with mucilage deposition and rapidly disappears when mucilage synthesis ceases. A secreted form of Citrine, secCitrine, showed a similar pattern of localization when expressed in developing seed coat epidermal cells. This result suggested that both the asymmetric localization and rapid decrease of fluorescence is not unique to MUM2-Citrine and may represent the default pathway for secreted proteins in this cell type. v-SNARE proteins were localized only in the membrane adjacent to the mucilage pocket, supporting the hypothesis that the cellular secretory apparatus is redirected and targets secretion to the outer periclinal apoplast during mucilage synthesis. In addition, mutation of ECHIDNA, a gene encoding a TGN-localized protein involved in vesicle targeting, causes misdirection of mucilage, MUM2 and v-SNARE proteins from the apoplast/plasma membrane to the vacuole/tonoplast. Western blot analyses suggested that the disappearance of MUM2-Citrine fluorescence at the end of mucilage synthesis is due to protein degradation and because several proteases have been identified in extruded seed mucilage. However, as mutation of these genes did not result in a substantial delay in MUM2-Citrine degradation and the timing of their expression and/or their intracellular localization were not consistent with a role in MUM2-Citrine disappearance, the mechanism underlying the abrupt decrease of MUM2-Citrine remains unclear.
Collapse
Affiliation(s)
- Yi‐Chen Lee
- Department of BotanyUniversity of British ColumbiaVancouverCanada
- Present address:
Biodiversity Research CenterAcademia SinicaTaipeiTaiwan
| | - Gillian H. Dean
- Department of BotanyUniversity of British ColumbiaVancouverCanada
| | - Erin Gilchrist
- Department of BotanyUniversity of British ColumbiaVancouverCanada
- Present address:
Molecular DiagnosticsAnandia LaboratoriesVancouverCanada
| | - Allen Yi‐Lun Tsai
- Department of BotanyUniversity of British ColumbiaVancouverCanada
- Present address:
International Research Center for Agricultural & Environmental Biology, Faculty of Advanced Science and TechnologyKumamoto UniversityKumamotoJapan
| | - George W. Haughn
- Department of BotanyUniversity of British ColumbiaVancouverCanada
| |
Collapse
|
33
|
Kim S, Kim H, Park K, Cho DJ, Kim MK, Kwon C, Yun HS. Synaptotagmin 5 Controls SYP132-VAMP721/722 Interaction for Arabidopsis Immunity to Pseudomonas syringae pv tomato DC3000. Mol Cells 2021; 44:670-679. [PMID: 34504049 PMCID: PMC8490205 DOI: 10.14348/molcells.2021.0100] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/11/2021] [Accepted: 08/08/2021] [Indexed: 01/18/2023] Open
Abstract
Vesicle-associated membrane proteins 721 and 722 (VAMP721/722) are secretory vesicle-localized arginine-conserved soluble N-ethylmaleimide-sensitive factor attachment protein receptors (R-SNAREs) to drive exocytosis in plants. They are involved in diverse physiological processes in plants by interacting with distinct plasma membrane (PM) syntaxins. Here, we show that synaptotagmin 5 (SYT5) is involved in plant defense against Pseudomonas syringae pv tomato (Pst) DC3000 by regulating SYP132-VAMP721/722 interactions. Calcium-dependent stimulation of in vitro SYP132-VAMP722 interaction by SYT5 and reduced in vivo SYP132-VAMP721/722 interaction in syt5 plants suggest that SYT5 regulates the interaction between SYP132 and VAMP721/722. We interestingly found that disease resistance to Pst DC3000 bacterium but not to Erysiphe pisi fungus is compromised in syt5 plants. Since SYP132 plays an immune function to bacteria, elevated growth of surface-inoculated Pst DC3000 in VAMP721/722-deficient plants suggests that SYT5 contributes to plant immunity to Pst DC3000 by promoting the SYP132-VAMP721/722 immune secretory pathway.
Collapse
Affiliation(s)
- Soohong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Hyeran Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Keunchun Park
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Da Jeong Cho
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Mi Kyung Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
34
|
Peptide-Based Identification of Phytophthora Isolates and Phytophthora Detection in Planta. Int J Mol Sci 2020; 21:ijms21249463. [PMID: 33322721 PMCID: PMC7763169 DOI: 10.3390/ijms21249463] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/31/2022] Open
Abstract
Phytophthora is arguably one of the most damaging genera of plant pathogens. This pathogen is well suited to transmission via the international plant trade, and globalization has been promoting its spread since the 19th century. Early detection is essential for reducing its economic and ecological impact. Here, a shotgun proteomics approach was utilized for Phytophthora analysis. The collection of 37 Phytophthora isolates representing 12 different species was screened for species-specific peptide patterns. Next, Phytophthora proteins were detected in planta, employing model plants Solanum tuberosum and Hordeum vulgare. Although the evolutionarily conserved sequences represented more than 10% of the host proteome and limited the pathogen detection, the comparison between qPCR and protein data highlighted more than 300 protein markers, which correlated positively with the amount of P. infestans DNA. Finally, the analysis of P. palmivora response in barley revealed significant alterations in plant metabolism. These changes included enzymes of cell wall metabolism, ROS production, and proteins involved in trafficking. The observed root-specific attenuation in stress-response mechanisms, including the biosynthesis of jasmonates, ethylene and polyamines, and an accumulation of serotonin, provided the first insight into molecular mechanisms behind this particular biotic interaction.
Collapse
|
35
|
Kanazawa T, Morinaka H, Ebine K, Shimada TL, Ishida S, Minamino N, Yamaguchi K, Shigenobu S, Kohchi T, Nakano A, Ueda T. The liverwort oil body is formed by redirection of the secretory pathway. Nat Commun 2020; 11:6152. [PMID: 33262353 PMCID: PMC7708844 DOI: 10.1038/s41467-020-19978-1] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 11/09/2020] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic cells acquired novel organelles during evolution through mechanisms that remain largely obscure. The existence of the unique oil body compartment is a synapomorphy of liverworts that represents lineage-specific acquisition of this organelle during evolution, although its origin, biogenesis, and physiological function are yet unknown. We find that two paralogous syntaxin-1 homologs in the liverwort Marchantia polymorpha are distinctly targeted to forming cell plates and the oil body, suggesting that these structures share some developmental similarity. Oil body formation is regulated by an ERF/AP2-type transcription factor and loss of the oil body increases M. polymorpha herbivory. These findings highlight a common strategy for the acquisition of organelles with distinct functions in plants, via periodical redirection of the secretory pathway depending on cellular phase transition.
Collapse
Affiliation(s)
- Takehiko Kanazawa
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Hatsune Morinaka
- Department of Biological Sciences, Graduate School of Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takashi L Shimada
- Department of Applied Biological Chemistry, Graduate School of Horticulture, Chiba University, 648 Matsudo, Matsudo, Chiba, Japan
| | - Sakiko Ishida
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Naoki Minamino
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Katsushi Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), Okazaki, Aichi, 444-8585, Japan
| | - Shuji Shigenobu
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan
- Functional Genomics Facility, National Institute for Basic Biology (NIBB), Okazaki, Aichi, 444-8585, Japan
| | - Takayuki Kohchi
- Graduate School of Biostudies, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Akihiko Nakano
- Live Cell Super-Resolution Imaging Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- The Department of Basic Biology, SOKENDAI (The Graduate University for Advanced Studies), Nishigonaka 38, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| |
Collapse
|
36
|
Gu X, Brennan A, Wei W, Guo G, Lindsey K. Vesicle Transport in Plants: A Revised Phylogeny of SNARE Proteins. Evol Bioinform Online 2020; 16:1176934320956575. [PMID: 33116351 PMCID: PMC7573729 DOI: 10.1177/1176934320956575] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Communication systems within and between plant cells involve the transfer of ions and molecules between compartments, and are essential for development and responses to biotic and abiotic stresses. This in turn requires the regulated movement and fusion of membrane systems with their associated cargo. Recent advances in genomics has provided new resources with which to investigate the evolutionary relationships between membrane proteins across plant species. Members of the soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) are known to play important roles in vesicle trafficking across plant, animal and microbial species. Using recent public expression and transcriptomic data from 9 representative green plants, we investigated the evolution of the SNARE classes and linked protein changes to functional specialization (expression patterns). We identified an additional 3 putative SNARE genes in the model plant Arabidopsis. We found that all SNARE classes have expanded in number to a greater or lesser degree alongside the evolution of multicellularity, and that within-species expansions are also common. These gene expansions appear to be associated with the accumulation of amino acid changes and with sub-functionalization of SNARE family members to different tissues. These results provide an insight into SNARE protein evolution and functional specialization. The work provides a platform for hypothesis-building and future research into the precise functions of these proteins in plant development and responses to the environment.
Collapse
Affiliation(s)
- Xiaoyan Gu
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
- Department of Biosciences, Durham University, Durham, UK
| | - Adrian Brennan
- Department of Biosciences, Durham University, Durham, UK
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, UK
| | - Guangqin Guo
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, UK
| |
Collapse
|
37
|
Sogawa A, Takahashi I, Kyo M, Imaizumi-Anraku H, Tajima S, Nomura M. Requirements of Qa-SNARE LjSYP132s for Nodulation and Seed Development in Lotus japonicus. PLANT & CELL PHYSIOLOGY 2020; 61:1750-1759. [PMID: 32706881 DOI: 10.1093/pcp/pcaa099] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
SNAREs (soluble N-ethyl maleimide-sensitive factor attachment protein receptors) mediate membrane fusion of vesicle transport in eukaryotic cells. LjSYP132s are the members of Qa-SNAREs in Lotus japonicus. Two isoforms, LjSYP132a and LjSYP132b, are generated by alternative splicing. Immunoblot analysis detected strong expression of LjSYP132s in infected root nodules and seeds by posttranscriptional modification. In either LjSYP132a or LjSYP132b silenced roots (RNAi-LjSYP132a, RNAi-LjSYP132b), the infection thread (IT) was not elongated, suggesting that both LjSYP132a and LjSYP132b have a role in IT progression. The results were consistent with the data of qRT-PCR showing that both genes were expressed at the early stage of infection. However, during the nodulation, only LjSYP132a was induced. LjSYP132s protein was observed in the Mesorhizobium loti-inoculated roots of mutants, nfr1, castor and pollux, suggesting that LjSYP132s can be induced without Nod factor signaling. Accumulation of LjSYP132s in the peribacteroid membrane suggests the function of not only IT formation but also nutrient transport. In contrast, qRT-PCR showed that LjSYP132b was expressed in the seeds. A stable transgenic plant of LjSYP132b, R132b, was produced by RNAi silencing. In the R132b plants, small pods with a few seeds and abnormal tip growth of the pollen tubes were observed, suggesting that LjSYP132b has a role in pollen tube growth and nutrient transport in the plasma membrane of seeds.
Collapse
Affiliation(s)
- Aoi Sogawa
- Faculty of Agriculture, Kagawa University, Miki, Kita, Kagawa, 761-0795 Japan
| | - Issei Takahashi
- Faculty of Agriculture, Kagawa University, Miki, Kita, Kagawa, 761-0795 Japan
| | - Masaharu Kyo
- Faculty of Agriculture, Kagawa University, Miki, Kita, Kagawa, 761-0795 Japan
| | - Haruko Imaizumi-Anraku
- Institute of Agrobiological Sciences, NARO, 3-1-3 Kannon-dai, Tsukuba, Ibaraki, 305-8604 Japan
| | - Shigeyuki Tajima
- Faculty of Agriculture, Kagawa University, Miki, Kita, Kagawa, 761-0795 Japan
| | - Mika Nomura
- Faculty of Agriculture, Kagawa University, Miki, Kita, Kagawa, 761-0795 Japan
| |
Collapse
|
38
|
MARTINIÈRE A, MOREAU P. Complex roles of Rabs and SNAREs in the secretory pathway and plant development: a never‐ending story. J Microsc 2020; 280:140-157. [DOI: 10.1111/jmi.12952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/22/2020] [Accepted: 07/31/2020] [Indexed: 12/14/2022]
Affiliation(s)
- A. MARTINIÈRE
- Univ Montpellier, CNRS, INRAE, Montpellier SupAgro BPMP Montpellier France
| | - P. MOREAU
- UMR 5200 Membrane Biogenesis Laboratory CNRS and University of Bordeaux, INRAE Bordeaux Villenave d'Ornon France
| |
Collapse
|
39
|
Buschmann H. Into another dimension: how streptophyte algae gained morphological complexity. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3279-3286. [PMID: 32270175 DOI: 10.1093/jxb/eraa181] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 04/07/2020] [Indexed: 06/11/2023]
Abstract
Land plants with elaborated three-dimensional (3D) body plans have evolved from streptophyte algae. The streptophyte algae are known to exhibit varying degrees of morphological complexity, ranging from single-celled flagellates to branched macrophytic forms exhibiting tissue-like organization. In this review, I discuss mechanisms by which, during evolution, filamentous algae may have gained 2D and eventually 3D body plans. There are, in principle, two mechanisms by which an additional dimension may be added to an existing algal filament or cell layer: first, by tip growth-mediated branching. An example of this mechanism is the emergence and polar expansion of root hairs from land plants. The second possibility is the rotation of the cell division plane. In this case, the plane of the forthcoming cell division is rotated within the parental cell wall. This type of mechanism corresponds to the formative cell division seen in meristems of land plants. This literature review shows that of the extant streptophyte algae, the Charophyceae and Coleochaetophyceae are capable of performing both mechanisms, while the Zygnematophyceae (the actual sister to land plants) show tip growth-based branching only. I finally discuss how apical cells with two or three cutting faces, as found in mosses, may have evolved from algal ancestors.
Collapse
|
40
|
Won KH, Kim H. Functions of the Plant Qbc SNARE SNAP25 in Cytokinesis and Biotic and Abiotic Stress Responses. Mol Cells 2020; 43:313-322. [PMID: 32274918 PMCID: PMC7191049 DOI: 10.14348/molcells.2020.2245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/26/2020] [Accepted: 03/29/2020] [Indexed: 12/29/2022] Open
Abstract
Eukaryotes transport biomolecules between intracellular organelles and between cells and the environment via vesicle trafficking. Soluble N -ethylmaleimide-sensitive factor attachment protein receptors (SNARE proteins) play pivotal roles in vesicle and membrane trafficking. These proteins are categorized as Qa, Qb, Qc, and R SNAREs and form a complex that induces vesicle fusion for targeting of vesicle cargos. As the core components of the SNARE complex, the SNAP25 Qbc SNAREs perform various functions related to cellular homeostasis. The Arabidopsis thaliana SNAP25 homolog AtSNAP33 interacts with Qa and R SNAREs and plays a key role in cytokinesis and in triggering innate immune responses. However, other Arabidopsis SNAP25 homologs, such as AtSNAP29 and AtSNAP30, are not well studied; this includes their localization, interactions, structures, and functions. Here, we discuss three biological functions of plant SNAP25 orthologs in the context of AtSNAP33 and highlight recent findings on SNAP25 orthologs in various plants. We propose future directions for determining the roles of the less well-characterized AtSNAP29 and AtSNAP30 proteins.
Collapse
Affiliation(s)
- Kang-Hee Won
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Hyeran Kim
- Department of Biological Sciences, Kangwon National University, Chuncheon 24341, Korea
| |
Collapse
|
41
|
Huisman R, Hontelez J, Bisseling T, Limpens E. SNARE Complexity in Arbuscular Mycorrhizal Symbiosis. FRONTIERS IN PLANT SCIENCE 2020; 11:354. [PMID: 32308661 PMCID: PMC7145992 DOI: 10.3389/fpls.2020.00354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/10/2020] [Indexed: 05/04/2023]
Abstract
How cells control the proper delivery of vesicles and their associated cargo to specific plasma membrane (PM) domains upon internal or external cues is a major question in plant cell biology. A widely held hypothesis is that expansion of plant exocytotic machinery components, such as SNARE proteins, has led to a diversification of exocytotic membrane trafficking pathways to function in specific biological processes. A key biological process that involves the creation of a specialized PM domain is the formation of a host-microbe interface (the peri-arbuscular membrane) in the symbiosis with arbuscular mycorrhizal fungi. We have previously shown that the ability to intracellularly host AM fungi correlates with the evolutionary expansion of both v- (VAMP721d/e) and t-SNARE (SYP132α) proteins, that are essential for arbuscule formation in Medicago truncatula. Here we studied to what extent the symbiotic SNAREs are different from their non-symbiotic family members and whether symbiotic SNAREs define a distinct symbiotic membrane trafficking pathway. We show that all tested SYP1 family proteins, and most of the non-symbiotic VAMP72 members, are able to complement the defect in arbuscule formation upon knock-down/-out of their symbiotic counterparts when expressed at sufficient levels. This functional redundancy is in line with the ability of all tested v- and t-SNARE combinations to form SNARE complexes. Interestingly, the symbiotic t-SNARE SYP132α appeared to occur less in complex with v-SNAREs compared to the non-symbiotic syntaxins in arbuscule-containing cells. This correlated with a preferential localization of SYP132α to functional branches of partially collapsing arbuscules, while non-symbiotic syntaxins accumulate at the degrading parts. Overexpression of VAMP721e caused a shift in SYP132α localization toward the degrading parts, suggesting an influence on its endocytic turn-over. These data indicate that the symbiotic SNAREs do not selectively interact to define a symbiotic vesicle trafficking pathway, but that symbiotic SNARE complexes are more rapidly disassembled resulting in a preferential localization of SYP132α at functional arbuscule branches.
Collapse
|
42
|
Zhang L, Xing J, Lin J. At the intersection of exocytosis and endocytosis in plants. THE NEW PHYTOLOGIST 2019; 224:1479-1489. [PMID: 31230354 DOI: 10.1111/nph.16018] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 05/18/2023]
Abstract
Vesicle exocytosis and endocytosis control the activities and turnover of plasma membrane proteins required for signaling triggering or attenuating at the cell surface. In recent years, the diverse exocytic and endocytic trafficking pathways have been uncovered in plants. The balance between conventional and unconventional protein secretion provides an efficient strategy to respond to stress conditions. Similarly, clathrin-dependent and -independent endocytosis cooperatively regulate the dynamics of membrane proteins in response to environmental cues. In fact, many aspects of plant growth and development, such as tip growth, immune response, and protein polarity establishment, involve the tight deployment of exo-endocytic trafficking. However, our understanding of their intersection is limited. Here, we discuss recent advances in the molecular factors coupling plant exo-endocytic trafficking and the biological significance of balance between exocytosis and endocytosis in plants.
Collapse
Affiliation(s)
- Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang, 453007, China
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jingjing Xing
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- Key Laboratory of Plant Stress Biology, School of Life Sciences, Henan University, Kaifeng, 457001, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences & Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
43
|
Identification of Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) responsive miRNAs in banana root. Sci Rep 2019; 9:13682. [PMID: 31548557 PMCID: PMC6757108 DOI: 10.1038/s41598-019-50130-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
The fungus, Fusarium oxysporum f. sp. cubense (Foc), is the causal agent of Fusarium wilt disease, which is the most serious disease affecting the whole banana industry. Although extensive studies have characterized many Foc-responsive genes in banana, the molecular mechanisms on microRNA level underlying both banana defense and Foc pathogenesis are not yet fully understood. In this study, we aimed to reveal the role of miRNA during banana-Foc TR4 interactions. Illumina sequencing was used to reveal the changes in small RNAome profiles in roots of Foc TR4-inoculated ‘Tianbaojiao’ banana (Musa acuminata cv. Tianbaojiao) in the early stages (i.e. 5 h, 10 h and 25 h post Foc TR4 inoculation, respectively). The expression of some differentially expressed (DE) miRNAs and their predicted target genes was studied by using quantitative real time PCR (qRT-PCR). Totally, 254 known miRNAs from 31 miRNA families and 28 novel miRNAs were identified. Differential expression analysis identified 84, 77 and 74 DE miRNAs at the three respective Foc TR4 infection time points compared with control healthy banana (CK). GO and KEGG analysis revealed that most of the predicted target genes of DE miRNAs (DET) were implicated in peroxisome, fatty acid metabolism, auxin-activated signaling pathway, sulfur metabolism, lignin metabolism and so on, and many known stress responsive genes were identified to be DETs. Moreover, expected inverse correlations were confirmed between some miRNA and their corresponding target genes by using qRT-PCR analysis. Our study revealed that miRNA play important regulatory roles during the banana-Foc TR4 interaction by regulating peroxidase, fatty acid metabolism, auxin signaling, sulfur metabolism, lignin metabolism related genes and many known stress responsive genes.
Collapse
|
44
|
Kim S, Choi Y, Kwon C, Yun HS. Endoplasmic reticulum stress-induced accumulation of VAMP721/722 requires CALRETICULIN 1 and CALRETICULIN 2 in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:974-980. [PMID: 30280512 DOI: 10.1111/jipb.12728] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 09/27/2018] [Indexed: 05/27/2023]
Abstract
Excessive demand for translation and protein folding in the endoplasmic reticulum (ER) can cause ER stress in plants. Here, we show that CALRETICULIN 1 (CRT1) and CRT2 are critical components in the accumulation of VESICLE-ASSOCIATED MEMBRANE PROTEIN 721 (VAMP721) and VAMP722 during ER stress responses. We show that CRT2 interacts with VAMP722 and that CRT1/2 post-translationally maintain elevated VAMP721/722 levels under ER stress. The greater growth inhibition in VAMP721/722-deficient plants, induced by tunicamycin, suggests that plants under ER stress maintain physiological homeostasis, at least in part, by regulating VAMP721/722 levels, as VAMP721/722 are known to participate in various biological processes.
Collapse
Affiliation(s)
- Soohong Kim
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Yunjin Choi
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan 31116, Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
45
|
Crombez H, Motte H, Beeckman T. Tackling Plant Phosphate Starvation by the Roots. Dev Cell 2019; 48:599-615. [PMID: 30861374 DOI: 10.1016/j.devcel.2019.01.002] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 10/16/2018] [Accepted: 12/31/2018] [Indexed: 12/17/2022]
Abstract
Plant responses to phosphate deprivation encompass a wide range of strategies, varying from altering root system architecture, entering symbiotic interactions to excreting root exudates for phosphorous release, and recycling of internal phosphate. These processes are tightly controlled by a complex network of proteins that are specifically upregulated upon phosphate starvation. Although the different effects of phosphate starvation have been intensely studied, the full extent of its contribution to altered root system architecture remains unclear. In this review, we focus on the effect of phosphate starvation on the developmental processes that shape the plant root system and their underlying molecular pathways.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, Ghent 9052, Belgium; VIB Center for Plant Systems Biology, Technologiepark 71, Ghent 9052, Belgium.
| |
Collapse
|
46
|
Zhang C, Xue J, Cheng D, Feng Y, Liu Y, Aly HM, Li Z. Uptake, translocation and distribution of three veterinary antibiotics in Zea mays L. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:47-57. [PMID: 30981935 DOI: 10.1016/j.envpol.2019.03.110] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 03/10/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Frequently detected residuals of antibiotics in crops has drawn increasing attention from research community and the general public. This study was conducted under the controlled environmental conditions to investigate the uptake, translocation and distribution of three different veterinary antibiotics (VAs) in plants of Zea mays L. (maize, the third largest crop in the world, especially in China) and the associated mechanisms. The distribution color-maps of mixed-VAs showed that the highest RCF (root concentration factors) values of chlortetracycline (CTC) and sulfamethoxazole (SMZ) were found in the 0.5-2.0 mm zone (cell division zone), while the highest RCF value of sulfathiazole (ST) was in the 6.0-8.0 mm zone (elongation zone) of root tips (0.5-10.0 mm) after 120 h of exposure to VAs. The translocation factor (TF) of CTC was greater than 1.0, but the TFs of SMZ and ST were less than 1.0 under addition of single antibiotic. However, the TFs of three VAs were all greater than 1.0 at the end of exposure under addition of mixed-VAs. The dissipation of antibiotics by maize was also demonstrated by harvesting all plant parts in an enclosed system. The possible mechanisms for uptake and translocation of VAs in maize were investigated by adding multiple respiration inhibitors into the culture solution. The RCFs of VAs were suppressed heavily by salicylhydroxamic acid (SHAM) and sodium azide (NaN3), which indicates that the uptake of VAs was an active process. The results of TFs and stem concentration factors (SCFs) of CTC and SMZ in HgCl2 treatments revealed that the translocation of VAs was associated with the aquaporin activity in maize. The findings from this study will have significant implications for the management of crop food contamination by VAs and for the development of phytoremediation technology for antibiotics in the environment.
Collapse
Affiliation(s)
- Cheng Zhang
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China; Scion, Private Bag, 29237, Christchurch, New Zealand
| | - Dengmiao Cheng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yuanwang Liu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Hesham M Aly
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Agriculture Research Center, Horticulture Institute, Department of Forestry and Wood Technology, Antoniadis Botanical Garden, 21554, Alexandria, Egypt
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture/China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
47
|
Denninger P, Reichelt A, Schmidt VAF, Mehlhorn DG, Asseck LY, Stanley CE, Keinath NF, Evers JF, Grefen C, Grossmann G. Distinct RopGEFs Successively Drive Polarization and Outgrowth of Root Hairs. Curr Biol 2019; 29:1854-1865.e5. [PMID: 31104938 DOI: 10.1016/j.cub.2019.04.059] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 04/01/2019] [Accepted: 04/23/2019] [Indexed: 11/24/2022]
Abstract
Root hairs are tubular protrusions of the root epidermis that significantly enlarge the exploitable soil volume in the rhizosphere. Trichoblasts, the cell type responsible for root hair formation, switch from cell elongation to tip growth through polarization of the growth machinery to a predefined root hair initiation domain (RHID) at the plasma membrane. The emergence of this polar domain resembles the establishment of cell polarity in other eukaryotic systems [1-3]. Rho-type GTPases of plants (ROPs) are among the first molecular determinants of the RHID [4, 5], and later play a central role in polar growth [6]. Numerous studies have elucidated mechanisms that position the RHID in the cell [7-9] or regulate ROP activity [10-18]. The molecular players that target ROPs to the RHID and initiate outgrowth, however, have not been identified. We dissected the timing of the growth machinery assembly in polarizing hair cells and found that positioning of molecular players and outgrowth are temporally separate processes that are each controlled by specific ROP guanine nucleotide exchange factors (GEFs). A functional analysis of trichoblast-specific GEFs revealed GEF3 to be required for normal ROP polarization and thus efficient root hair emergence, whereas GEF4 predominantly regulates subsequent tip growth. Ectopic expression of GEF3 induced the formation of spatially confined, ROP-recruiting domains in other cell types, demonstrating the role of GEF3 to serve as a membrane landmark during cell polarization.
Collapse
Affiliation(s)
- Philipp Denninger
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Anna Reichelt
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Vanessa A F Schmidt
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Dietmar G Mehlhorn
- Center for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Lisa Y Asseck
- Center for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Claire E Stanley
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir-Prelog-Weg 1, 8093 Zürich, Switzerland; Agroecology and Environment Research Division, Agroscope, Reckenholzstrasse 191, 8046 Zürich, Switzerland
| | - Nana F Keinath
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Jan-Felix Evers
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Christopher Grefen
- Center for Plant Molecular Biology, Developmental Genetics, University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Guido Grossmann
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany; Excellence Cluster CellNetworks, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany.
| |
Collapse
|
48
|
Distinct segregation patterns of yeast cell-peripheral proteins uncovered by a method for protein segregatome analysis. Proc Natl Acad Sci U S A 2019; 116:8909-8918. [PMID: 30975753 DOI: 10.1073/pnas.1819715116] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Protein segregation contributes to various cellular processes such as polarization, differentiation, and aging. However, the difficulty in global determination of protein segregation hampers our understanding of its mechanisms and physiological roles. Here, by developing a quantitative proteomics technique, we globally monitored segregation of preexisting and newly synthesized proteins during cell division of budding yeast, and identified crucial domains that determine the segregation of cell-peripheral proteins. Remarkably, the proteomic and subsequent microscopic analyses demonstrated that the flow through the bud neck of the proteins that harbor both endoplasmic reticulum (ER) membrane-spanning and plasma membrane (PM)-binding domains is not restricted by the previously suggested ER membrane or PM diffusion barriers but by septin-mediated partitioning of the PM-associated ER (pmaER). Furthermore, the proteomic analysis revealed that although the PM-spanning t-SNARE Sso2 was retained in mother cells, its paralog Sso1 unexpectedly showed symmetric localization. We found that the transport of Sso1 to buds was required for enhancement of polarized cell growth and resistance to cell-wall stress. Taken together, these data resolve long-standing questions about septin-mediated compartmentalization of the cell periphery, and provide new mechanistic insights into the segregation of cell-periphery proteins and their cellular functions.
Collapse
|
49
|
Zhang HM, Devine LB, Xia X, Offler CE, Patrick JW. Ethylene and hydrogen peroxide regulate formation of a sterol-enriched domain essential for wall labyrinth assembly in transfer cells. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1469-1482. [PMID: 30649402 PMCID: PMC6411373 DOI: 10.1093/jxb/erz003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/02/2019] [Indexed: 05/20/2023]
Abstract
Transfer cells (TCs) facilitate high rates of nutrient transport into, and within, the plant body. Their transport function is conferred by polarized wall ingrowth papillae, deposited upon a specialized uniform wall layer, that form a scaffold supporting an amplified area of plasma membrane enriched in nutrient transporters. We explored the question of whether lipid-enriched domains of the TC plasma membrane could serve as organizational platforms for proteins regulating the construction of the intricate TC wall labyrinth using developing Vicia faba cotyledons. When these cotyledons are placed in culture, their adaxial epidermal cells trans-differentiate to a TC phenotype regulated by auxin, ethylene, extracellular hydrogen peroxide (apoH2O2), and cytosolic Ca2+ ([Ca2+]cyt) arranged in series. Staining cultured cotyledons with the sterol-specific dye, Filipin III, detected a polarized sterol-enriched domain in the plasma membrane of their trans-differentiating epidermal transfer cells (ETCs). Ethylene activated sterol biosynthesis while extracellular apoH2O2 directed sterol-enriched vesicles to fuse with the outer periclinal region of the ETC plasma membrane. The sterol-enriched domain was essential for generating the [Ca2+]cyt signal and orchestrating construction of both the uniform wall layer and wall ingrowth papillae. A model is presented outlining how the sterol-enriched plasma membrane domain forms and functions to regulate wall labyrinth assembly.
Collapse
Affiliation(s)
- Hui-Ming Zhang
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
| | - Luke B Devine
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
| | - Xue Xia
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
| | - Christina E Offler
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
- Correspondence: or
| | - John W Patrick
- School of Environmental and Life Sciences, University of Newcastle, Newcastle NSW, Australia
- Correspondence: or
| |
Collapse
|
50
|
Sogawa A, Yamazaki A, Yamasaki H, Komi M, Manabe T, Tajima S, Hayashi M, Nomura M. SNARE Proteins LjVAMP72a and LjVAMP72b Are Required for Root Symbiosis and Root Hair Formation in Lotus japonicus. FRONTIERS IN PLANT SCIENCE 2019; 9:1992. [PMID: 30700990 PMCID: PMC6343493 DOI: 10.3389/fpls.2018.01992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 12/20/2018] [Indexed: 05/27/2023]
Abstract
SNARE (soluble N-ethyl maleimide sensitive factor attachment protein receptor) proteins mediate membrane trafficking in eukaryotic cells. Both LjVAMP72a and LjVAMP72b are members of R-SNARE and belong to a symbiotic subgroup of VAMP72 in Lotus japonicus. Their sequences are closely related and both were induced in the root upon rhizobial inoculation. The expression level of LjVAMP72a in the nodules was higher than in the leaves or roots; however, LjVMAP72b was expressed constitutively in the leaves, roots, and nodules. Immunoblot analysis showed that not only LjVAMP72a but also LjVAMP72b were accumulated in a symbiosome-enriched fraction, suggesting its localization in the symbiosome membrane during nodulation. Since there was 89% similarity between LjVAMP72a and LjVAMP72b, knockdown mutant by RNAi suppressed both genes. The suppression of both genes impaired root nodule symbiosis (RNS). The number of bacteroids and the nitrogen fixation activity were severely curtailed in the nodules formed on knockdown roots (RNAi-LjVAMP72a/72b). Arbuscular mycorrhization (AM) was also attenuated in knockdown roots, indicating that LjVAMP72a and LjVAMP72b were required to establish not only RNS but also AM. In addition, transgenic hairy roots of RNAi-LjVAMP72a/72b suppressed the elongation of root hairs without infections by rhizobia or arbuscular mycorrhizal fungi. Amino acid alignment showed the symbiotic subclade of VAMP72s containing LjVAMP72a and LjVAMP72b were a conserved six amino acid region (HHQAQD) within the SNARE motif. Taken together, our data suggested that LjVAMP72a and LjVAMP72b positively controlled both symbioses and root hair formation by affecting the secretory pathway.
Collapse
Affiliation(s)
- Aoi Sogawa
- Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | | | | | - Misa Komi
- Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | - Tomomi Manabe
- Faculty of Agriculture, Kagawa University, Kagawa, Japan
| | | | - Makoto Hayashi
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mika Nomura
- Faculty of Agriculture, Kagawa University, Kagawa, Japan
| |
Collapse
|