1
|
Liu L, Luo T, Yuan R, Hui X, Xu Z, Zhang C, Guo G, Tang X, Heng W, Wei S, Jia B. Resistance to iron deficiency is mediated through rhizosphere acidification and ferric chelate reductase activity in Pyrus betulaefolia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 358:112554. [PMID: 40345552 DOI: 10.1016/j.plantsci.2025.112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Iron (Fe) deficiency stress seriously impacts the yield and quality of pear fruit. Nevertheless, the mechanism of Fe absorption in pears (Pyrus betulaefolia) remains unclear. ARFs are a class of transcription factors that are widely involved in plant stress response. However, their function in iron absorption in pears remains unknown. In this study, we identified an auxin response factor in P. betulaefolia (PbeARF2) which was significantly induced by Fe deficiency stress. The Fe absorption capacities of PbeARF2 overexpressed Arabidopsis and P. betulaefolia seedlings were significantly enhanced. Compared to wild type (WT) plants, PbeARF2 overexpressed plants showed significantly enhanced rhizosphere acidification and ferric chelate reductase (FCR) activity. Furthermore, we found that PbeARF2 can activate the expression of PbeAHA12 and PbeFRO2 by directly binding to the promoters of these two genes. In conclusion, this study reveals a novel mechanism of Fe absorption in P. betulaefolia regulated by PbeARF2, and provided an important and new theoretical basis for the genetic improvement of Fe deficiency resistance in pears rootstock.
Collapse
Affiliation(s)
- Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Tingyue Luo
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Ruikang Yuan
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xueqing Hui
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Zhou Xu
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Chen Zhang
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Guoling Guo
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shuwei Wei
- Shandong Fresh Pear Cultivation and Breeding Engineering Technology Research Center, Shandong Institute of Pomology, Taian 271000, China.
| | - Bing Jia
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Mataboge MT, Mohammed M, Dakora FD. Symbiotic N 2 Fixation, Leaf Photosynthesis, and Abiotic Stress Tolerance of Native Rhizobia Isolated from Soybean Nodules at Da, Upper West Region, Ghana. Microorganisms 2025; 13:876. [PMID: 40284713 PMCID: PMC12029937 DOI: 10.3390/microorganisms13040876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 04/29/2025] Open
Abstract
The soybean is an important source of protein and is gaining popularity in Ghana due to a rising demand for its use in the poultry industry. However, the grain yield of soybeans is relatively low in the Upper West Region due to infertile soil and climate change. This study evaluated root nodulation and symbiotic effectiveness in 31 rhizobial isolates obtained from the nodules of soybeans planted at Da in the Upper West Region, Ghana, as well as measured photosynthetic activity of the soybean plants grown under glasshouse conditions. This study further assessed the tolerance of the rhizobial isolates to different levels of temperature, drought, salinity, and pH in the laboratory and also measured the ability of the isolates to produce indole-3-acetic acid. An infrared gas analyser and the 15N and 13C natural abundance techniques were used to assess the photosynthetic activity, N2 fixation, and water-use efficiency, respectively. The results showed that the test isolates that induced greater photosynthetic rates from higher stomatal conductance also stimulated increased water loss via leaf transpiration in soybean plants. Isolates TUTGMGH9 and TUTGMGH19 elicited much higher shoot δ13C in the soybean host plant and induced higher shoot biomass, C accumulation, percent relative symbiotic effectiveness, and N2 fixation relative to Bradyrhizobium strain WB74 and 5 mM of nitrate, which were used as positive controls. Although isolate TUTGMGH9 did not grow at 40 °C, it showed growth at 5% of PEG-6000, NaCl, and a low pH while also producing moderate IAA. However, for better utilisation of these rhizobial isolates as bioinoculants, their growth performance needs to be assessed under field conditions to ascertain their competitiveness and symbiotic efficacy.
Collapse
Affiliation(s)
- Mmatladi Tesia Mataboge
- Department of Crop Sciences, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa;
| | - Mustapha Mohammed
- Department of Crop Science, University for Development Studies, Tamale P.O. Box TL 1882, Ghana;
| | - Felix Dapare Dakora
- Department of Chemistry, Tshwane University of Technology, Private Bag X680, Pretoria 0001, South Africa
| |
Collapse
|
3
|
Yan M, Zhang X, Gao J. Overexpression of FLZ12 Suppresses Root Hair Development and Enhances Iron-Deficiency Tolerance in Arabidopsis. Genes (Basel) 2025; 16:438. [PMID: 40282398 PMCID: PMC12027241 DOI: 10.3390/genes16040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/25/2025] [Accepted: 04/04/2025] [Indexed: 04/29/2025] Open
Abstract
Background: The Arabidopsis FCS-LIKE ZINC FINGER (FLZ) family proteins play crucial roles in responses to various biotic and abiotic stresses, but the functions of many family members remain uncharacterized. Methods: In this study, we investigated the function of FLZ12, a member of the FLZ family, using a reverse genetic approach. Results: We found that overexpression of FLZ12 impaired root hair development, as evidenced by marked reductions in both root hair length and number under normal growth conditions. However, deprivation of phosphate could partially restore root hair formation, although it still impeded root hair elongation. Notably, FLZ12-overexpressing lines exhibited greatly enhanced tolerance to iron deficiency, with seedlings exhibiting more vigorous and robust growth compared to wild-type plants. In contrast, knockout of FLZ12 resulted in slight impact on seedling development. Further analysis revealed that FLZ12 accumulation was increased in vascular tissues of plants subjected to iron starvation, and the protein was predominantly localized within the nucleus. Conclusions: Integrating these findings with existing evidence, we propose that FLZ12 functions as a translational regulator through interacting with other proteins, playing dual roles in root hair development and iron-deficiency responses in Arabidopsis. These findings provide new insights into the FLZ-domain-containing proteins and offer molecular strategies to enhance iron uptake efficiency in crops, highlighting FLZ12 as a promising candidate for future breeding efforts.
Collapse
Affiliation(s)
- Mingke Yan
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| | - Xin Zhang
- College of Plant Protection, Northwest A&F University, Yangling 712100, China
| | - Jinghui Gao
- College of Grassland Agriculture, Northwest A&F University, Yangling 712100, China
| |
Collapse
|
4
|
Xu Y, Li Y, Chen Z, Chen X, Li X, Li W, Li L, Li Q, Geng Z, Shi S, Zhang L, Han D. Malus xiaojinensis MxbHLH30 Confers Iron Homeostasis Under Iron Deficiency in Arabidopsis. Int J Mol Sci 2025; 26:368. [PMID: 39796222 PMCID: PMC11720179 DOI: 10.3390/ijms26010368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 12/25/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025] Open
Abstract
Iron stress adversely impacts plants' growth and development. Transcription factors (TFs) receive stress signals and modulate plant tolerance by influencing the expression of related functional genes. In the present study, we investigated the role of an apple bHLH transcription factor MxbHLH30 in the tolerance to iron stresses. The expression of MxbHLH30 was induced significantly by low-iron and high-iron treatments and MxbHLH30-overexpressed Arabidopsis plants displayed iron-stress-tolerant phenotypes. A determination of physiological and biochemical indexes associated with abiotic stress responses showed that overexpression of MxbHLH30 increased the activities of antioxidant enzymes superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT) in Arabidopsis plants treated with iron stress, and decreased the contents of H2O2 and malondialdehyde (MDA), which contribute to reduce cell membrane lipid peroxidation. Meanwhile, the accumulation of proline in transgenic plant cells increased, regulating cell osmotic pressure. Furthermore, quantitative expression analysis indicated that overexpression of MxbHLH30 improved the expression levels of positive functional genes' responses to iron stress, improving plant resistance. Interestingly, MxbHLH30 may have the ability to balance the homeostasis of iron and other metal ions for the iron homeostasis of Arabidopsis cell under low-iron environments. This research demonstrates that MxbHLH30 is a key regulator of cell iron homeostasis in Arabidopsis plants under iron deficiency, providing new knowledge for plant resistance regulation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Lihua Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.X.); (Y.L.); (Z.C.); (X.C.); (X.L.); (W.L.); (L.L.); (Q.L.); (Z.G.); (S.S.)
| | - Deguo Han
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, National-Local Joint Engineering Research Center for Development and Utilization of Small Fruits in Cold Regions, College of Horticulture & Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (Y.X.); (Y.L.); (Z.C.); (X.C.); (X.L.); (W.L.); (L.L.); (Q.L.); (Z.G.); (S.S.)
| |
Collapse
|
5
|
Bhat MA, Mishra AK, Shah SN, Bhat MA, Jan S, Rahman S, Baek KH, Jan AT. Soil and Mineral Nutrients in Plant Health: A Prospective Study of Iron and Phosphorus in the Growth and Development of Plants. Curr Issues Mol Biol 2024; 46:5194-5222. [PMID: 38920984 PMCID: PMC11201952 DOI: 10.3390/cimb46060312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/17/2024] [Accepted: 05/19/2024] [Indexed: 06/27/2024] Open
Abstract
Plants being sessile are exposed to different environmental challenges and consequent stresses associated with them. With the prerequisite of minerals for growth and development, they coordinate their mobilization from the soil through their roots. Phosphorus (P) and iron (Fe) are macro- and micronutrient; P serves as an important component of biological macromolecules, besides driving major cellular processes, including photosynthesis and respiration, and Fe performs the function as a cofactor for enzymes of vital metabolic pathways. These minerals help in maintaining plant vigor via alterations in the pH, nutrient content, release of exudates at the root surface, changing dynamics of root microbial population, and modulation of the activity of redox enzymes. Despite this, their low solubility and relative immobilization in soil make them inaccessible for utilization by plants. Moreover, plants have evolved distinct mechanisms to cope with these stresses and coregulate the levels of minerals (Fe, P, etc.) toward the maintenance of homeostasis. The present study aims at examining the uptake mechanisms of Fe and P, and their translocation, storage, and role in executing different cellular processes in plants. It also summarizes the toxicological aspects of these minerals in terms of their effects on germination, nutrient uptake, plant-water relationship, and overall yield. Considered as an important and indispensable component of sustainable agriculture, a separate section covers the current knowledge on the cross-talk between Fe and P and integrates complete and balanced information of their effect on plant hormone levels.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Sheezma Nazir Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Mudasir Ahmad Bhat
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Saima Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, Bihar, India;
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Arif Tasleem Jan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, J&K, India; (M.A.B.); (S.N.S.); (M.A.B.); (S.J.)
| |
Collapse
|
6
|
Singh K, Gupta S, Singh AP. Review: Nutrient-nutrient interactions governing underground plant adaptation strategies in a heterogeneous environment. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112024. [PMID: 38325661 DOI: 10.1016/j.plantsci.2024.112024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 12/20/2023] [Accepted: 02/01/2024] [Indexed: 02/09/2024]
Abstract
Plant growth relies on the mineral nutrients present in the rhizosphere. The distribution of nutrients in soils varies depending on their mobility and capacity to bind with soil particles. Consequently, plants often encounter either low or high levels of nutrients in the rhizosphere. Plant roots are the essential organs that sense changes in soil mineral content, leading to the activation of signaling pathways associated with the adjustment of plant architecture and metabolic responses. During differential availability of minerals in the rhizosphere, plants trigger adaptation strategies such as cellular remobilization of minerals, secretion of organic molecules, and the attenuation or enhancement of root growth to balance nutrient uptake. The interdependency, availability, and uptake of minerals, such as phosphorus (P), iron (Fe), zinc (Zn), potassium (K), nitrogen (N) forms, nitrate (NO3-), and ammonium (NH4+), modulate the root architecture and metabolic functioning of plants. Here, we summarized the interactions of major nutrients (N, P, K, Fe, Zn) in shaping root architecture, physiological responses, genetic components involved, and address the current challenges associated with nutrient-nutrient interactions. Furthermore, we discuss the major gaps and opportunities in the field for developing plants with improved nutrient uptake and use efficiency for sustainable agriculture.
Collapse
Affiliation(s)
- Kratika Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Shreya Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Amar Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India.
| |
Collapse
|
7
|
Haydar MS, Kundu S, Kundu S, Mandal P, Roy S. Zinc oxide nano-flowers improve the growth and propagation of mulberry cuttings grown under different irrigation regimes by mitigating drought-related complications and enhancing zinc uptake. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107910. [PMID: 37531852 DOI: 10.1016/j.plaphy.2023.107910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 06/21/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023]
Abstract
Silkworm larvae mainly consume mulberry leaves; therefore, mulberry cultivation is important for the production of raw silk. Drought stress and micronutrient deficiency (Zn) are known to affect the propagation of mulberry cuttings. In this purview, the current investigation attempted to inspect the efficacy of different concentrations of zinc oxide nano-flower (ZnNFs) applied through both soil admixture and foliar spray on the propagation of mulberry cuttings grown under deficit irrigation regimes. The overall results demonstrated that the ZnNF-treated plant cuttings were well-adapted to drought stress and performed better in comparison to the control set. Out of the tested concentrations - ZnNF-10 (applied as 10 mg/kg soil and 10 ppm as foliar spray thrice) was found to be optimum, showing relatively better initial root establishment, the emergence of leaves, and survival and sprouting percentage. Further studies also confirmed an improvement in the accumulation of photosynthetic pigments, carbohydrates, and protein content even under extreme drought conditions. Most importantly, the ZnNF-10 treatment contributed to ROS detoxification and cell membrane protection by enhancing the pool of antioxidant enzymes. The study further demonstrated that ZnNF-10 application enhanced zinc content by 147.50%, 179.49%, and 171.99% in root, shoot, and leaves of the treated cuttings; thereby, improving the bioaccumulation factor of the plant parts. All of these interactive phenomena led to an increment in shoot height, biomass, leaf area, and leaf number of cuttings. These findings, therefore, indicated that ZnNFs can be developed as a promising nano-fertilizer for mulberry growth facilitating Zn uptake and mitigation of drought-induced complications.
Collapse
Affiliation(s)
- Md Salman Haydar
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India; Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India.
| | - Sudipta Kundu
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India.
| | - Sourav Kundu
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India.
| | - Palash Mandal
- Nanobiology and Phytotherapy Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India.
| | - Swarnendu Roy
- Plant Biochemistry Laboratory, Department of Botany, University of North Bengal, Siliguri, West Bengal, 734013, India.
| |
Collapse
|
8
|
Gao S, Guo R, Liu Z, Hu Y, Guo J, Sun M, Shi L. Integration of the transcriptome and metabolome reveals the mechanism of resistance to low phosphorus in wild soybean seedling leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 194:406-417. [PMID: 36493589 DOI: 10.1016/j.plaphy.2022.11.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plant growth, development, yield and quality are limited by barren soil. Soil phosphorus deficiency is one of the common factors causing soil barrenness. Plants have evolved morphological, physiological and molecular adaptations to resist to phosphorus deficiency. Wild soybean, a wild relative of cultivated soybean, has an obvious genetic relationship with cultivated soybean and has many beneficial characteristics such as strong low phosphorus resistance. Therefore, in this study, the integration analysis of transcriptome and metabolome of wild and cultivated soybean seedlings leaves were applied under phosphorus deficiency to reveal the mechanism of resistance to low phosphorus stress in wild soybean leaves, especially the key role of membrane phospholipid reuse and protection. Under phosphorus deficiency, wild soybean resisted low phosphorus stress by enhancing phosphorus reuse and strengthening membrane protection mechanisms, that is, by enhancing phospholipid metabolism, degrading membrane phospholipids, releasing phosphorus, increasing phosphorus reuse, and enhancing galactolipid biosynthesis. This, in turn, produced digalactosyl diacylglycerol to replace missing phospholipids for membrane maintenance and enhanced glutathione metabolism to protect the membrane system from damage. At the same time, phosphorus deficiency increased the levels of the intermediate metabolites glycine and ornithine, while significantly regulating the expression of transcription factors WRKY75 and MYB86. The enhancement of these metabolic pathways and the significant regulation of gene expression play an important role in improving the low phosphorus tolerance of wild soybean. This study will provide a useful theoretical basis for breeding soybean with low phosphorus tolerance.
Collapse
Affiliation(s)
- Shujuan Gao
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Rui Guo
- Key Laboratory of Dryland Agriculture, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Ziyu Liu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Yunan Hu
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Jixun Guo
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Mingzhou Sun
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| | - Lianxuan Shi
- Institute of Grassland Science, Northeast Normal University, Key Laboratory of Vegetation Ecology, Ministry of Education, Changchun, 130024, China.
| |
Collapse
|
9
|
Kermeur N, Pédrot M, Cabello-Hurtado F. Iron Availability and Homeostasis in Plants: A Review of Responses, Adaptive Mechanisms, and Signaling. Methods Mol Biol 2023; 2642:49-81. [PMID: 36944872 DOI: 10.1007/978-1-0716-3044-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Iron is an essential element for all living organisms, playing a major role in plant biochemistry as a redox catalyst based on iron redox properties. Iron is the fourth most abundant element of the Earth's crust, but its uptake by plants is complex because it is often in insoluble forms that are not easily accessible for plants to use. The physical and chemical speciation of iron, as well as rhizosphere activity, are key factors controlling the bioavailability of Fe. Iron can be under reduced (Fe2+) or oxidized (Fe3+) ionic forms, adsorbed onto mineral surfaces, forming complexes with organic molecules, precipitated to form poorly crystalline hydroxides to highly crystalline iron oxides, or included in crystalline Fe-rich mineral phases. Plants must thus adapt to a complex and changing iron environment, and their response is finely regulated by multiple signaling pathways initiated by a diversity of stimulus perceptions. Higher plants possess two separate strategies to uptake iron from rhizosphere soil: the chelation strategy and the reduction strategy in grass and non-grass plants, respectively. Molecular actors involved in iron uptake and mobilization through the plant have been characterized for both strategies. All these processes that contribute to iron homeostasis in plants are highly regulated in response to iron availability by downstream signaling responses, some of which are characteristic signaling signatures of iron dynamics, while others are shared with other environmental stimuli. Recent research has thus revealed key transcription factors, cis-acting elements, post-translational regulators, and other molecular mechanisms controlling these genes or their encoded proteins in response to iron availability. In addition, the most recent research is increasingly highlighting the crosstalk between iron homeostasis and nutrient response regulation. These regulatory processes help to avoid plant iron concentrations building up to potential cell functioning disruptions that could adversely affect plant fitness. Indeed, when iron is in excess in the plant, it can lead to the production and accumulation of dangerous reactive oxygen species and free radicals (H2O2, HO•, O2•-, HO•2) that can cause considerable damages to most cellular components. To cope with iron oxidative stress, plants have developed defense systems involving the complementary action of antioxidant enzymes and molecular antioxidants, safe iron-storage mechanisms, and appropriate morphological adaptations.
Collapse
Affiliation(s)
- Nolenn Kermeur
- University of Rennes, CNRS, Ecobio, UMR 6553, Rennes, France
- University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | - Mathieu Pédrot
- University of Rennes, CNRS, Géosciences Rennes, UMR 6118, Rennes, France
| | | |
Collapse
|
10
|
Dhal SB, Mahanta S, Gumero J, O’Sullivan N, Soetan M, Louis J, Gadepally KC, Mahanta S, Lusher J, Kalafatis S. An IoT-Based Data-Driven Real-Time Monitoring System for Control of Heavy Metals to Ensure Optimal Lettuce Growth in Hydroponic Set-Ups. SENSORS (BASEL, SWITZERLAND) 2023; 23:451. [PMID: 36617048 PMCID: PMC9824838 DOI: 10.3390/s23010451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Heavy metal concentrations that must be maintained in aquaponic environments for plant growth have been a source of concern for many decades, as they cannot be completely eliminated in a commercial set-up. Our goal was to create a low-cost real-time smart sensing and actuation system for controlling heavy metal concentrations in aquaponic solutions. Our solution entails sensing the nutrient concentrations in the hydroponic solution, specifically calcium, sulfate, and phosphate, and sending them to a Machine Learning (ML) model hosted on an Android application. The ML algorithm used in this case was a Linear Support Vector Machine (Linear-SVM) trained on top three nutrient predictors chosen after applying a pipeline of Feature Selection methods namely a pairwise correlation matrix, ExtraTreesClassifier and Xgboost classifier on a dataset recorded from three aquaponic farms from South-East Texas. The ML algorithm was then hosted on a cloud platform which would then output the maximum tolerable levels of iron, copper and zinc in real time using the concentration of phosphorus, calcium and sulfur as inputs and would be controlled using an array of dispensing and detecting equipments in a closed loop system.
Collapse
Affiliation(s)
- Sambandh Bhusan Dhal
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Shikhadri Mahanta
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Jonathan Gumero
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Nick O’Sullivan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Morayo Soetan
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Julia Louis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | | | - Snehadri Mahanta
- Department of Dairy Technology, National Dairy Research Institute, Karnal 132001, India
| | - John Lusher
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Stavros Kalafatis
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
11
|
Xue C, Li W, Shen R, Lan P. Impacts of iron on phosphate starvation-induced root hair growth in Arabidopsis. PLANT, CELL & ENVIRONMENT 2023; 46:215-238. [PMID: 36174546 DOI: 10.1111/pce.14451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/29/2022] [Accepted: 06/03/2022] [Indexed: 06/16/2023]
Abstract
In Arabidopsis, phosphate starvation (-Pi)-induced responses of primary root and lateral root growth are documented to be correlated with ambient iron (Fe) status. However, whether and how Fe participates in -Pi-induced root hair growth (RHG) remains unclear. Here, responses of RHG to different Fe concentrations under Pi sufficiency/deficiency were verified. Generally, distinct dosage effects of Fe on RHG appeared at both Pi levels, due to the generation of reactive oxygen species. Following analyses using auxin mutants and the phr1 mutant revealed that auxin and the central regulator PHR1 are required for Fe-triggered RHG under -Pi. A further proteomic study indicated that processes of vesicle trafficking and auxin synthesis and transport were affected by Fe under -Pi, which were subsequently validated by using a vesicle trafficking inhibitor, brefeldin A, and an auxin reporter, R2D2. Moreover, vesicle trafficking-mediated recycling of PIN2, an auxin efflux transporter, was notably affected by Fe under -Pi. Correspondingly, root hairs of pin2 mutant displayed attenuated responses to Fe under -Pi. Together, we propose that Fe affects auxin signalling probably by modulating vesicle trafficking, chiefly the PIN2 recycling, which might work jointly with PHR1 on modulating -Pi-induced RHG.
Collapse
Affiliation(s)
- Caiwen Xue
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China and University of Chinese Academy of Sceinces, Beijing, China
| | - Wenfeng Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Nanjing, China
| | - Renfang Shen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China and University of Chinese Academy of Sceinces, Beijing, China
| | - Ping Lan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China and University of Chinese Academy of Sceinces, Beijing, China
| |
Collapse
|
12
|
Yadav S, Yugandhar P, Alavilli H, Raliya R, Singh A, Sahi SV, Sarkar AK, Jain A. Potassium Chloroaurate-Mediated In Vitro Synthesis of Gold Nanoparticles Improved Root Growth by Crosstalk with Sucrose and Nutrient-Dependent Auxin Homeostasis in Arabidopsis thaliana. NANOMATERIALS 2022; 12:nano12122099. [PMID: 35745438 PMCID: PMC9230854 DOI: 10.3390/nano12122099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/16/2022] [Accepted: 06/17/2022] [Indexed: 12/07/2022]
Abstract
In a hydroponic system, potassium chloroaurate (KAuCl4) triggers the in vitro sucrose (Suc)-dependent formation of gold nanoparticles (AuNPs). AuNPs stimulate the growth of the root system, but their molecular mechanism has not been deciphered. The root system of Arabidopsis (Arabidopsis thaliana) exhibits developmental plasticity in response to the availability of various nutrients, Suc, and auxin. Here, we showed the roles of Suc, phosphorus (P), and nitrogen (N) in facilitating a AuNPs-mediated increase in root growth. Furthermore, the recuperating effects of KAuCl4 on the natural (IAA) auxin-mediated perturbation of the root system were demonstrated. Arabidopsis seedlings harboring the cell division marker CycB1;1::CDB-GUS provided evidence of the restoration efficacy of KAuCl4 on the IAA-mediated inhibitory effect on meristematic cell proliferation of the primary and lateral roots. Arabidopsis harboring synthetic auxin DR5rev::GFP exhibited a reinstating effect of KAuCl4 on IAA-mediated aberration in auxin subcellular localization in the root. KAuCl4 also exerted significant and differential recuperating effects on the IAA-mediated altered expression of the genes involved in auxin signaling and biosynthetic pathways in roots. Our results highlight the crosstalk between KAuCl4-mediated improved root growth and Suc and nutrient-dependent auxin homeostasis in Arabidopsis.
Collapse
Affiliation(s)
- Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (S.Y.); (A.S.)
| | - Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad 500030, India;
| | - Hemasundar Alavilli
- Department of Bioresources Engineering, Sejong University, Seoul 05006, Korea;
| | - Ramesh Raliya
- Aerosol and Air Quality Research Laboratory, Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA;
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India; (S.Y.); (A.S.)
| | - Shivendra V. Sahi
- Department of Biology, University City Campus, Saint Joseph's University, 600 S. 43rd St., Philadelphia, PA 19104, USA;
| | - Ananda K. Sarkar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India;
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur 303002, India
- Correspondence:
| |
Collapse
|
13
|
Ramaiah M, Jain A, Yugandhar P, Raghothama KG. ATL8, a RING E3 ligase, modulates root growth and phosphate homeostasis in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:90-99. [PMID: 35325659 DOI: 10.1016/j.plaphy.2022.03.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 05/17/2023]
Abstract
Ubiquitination-mediated post-translational modification of proteins is a pivotal regulatory mechanism involved in the growth and development of the plant. The Arabidopsis Tóxicos en Levadura (ATL) family is a group of RING-type ubiquitin ligases (E3) and ATL8 is a membrane-localized protein. Here, a reverse genetics approach was used to elucidate the role of ATL8 in phosphate (Pi) homeostasis. Deficiencies of Pi and sucrose (Suc) enhanced the relative expression level of ATL8 in different tissues of the wild-type (Wt). The relative expression level of ATL8 was attenuated and augmented in the mutant (atl8) and overexpression lines (Oe1 and Oe2), respectively. There were significant reductions in different root traits, root hairs, root to shoot ratio, and total Pi content in atl8 compared with the Wt under different Pi regimes. On the contrary, Oe1 and Oe2 lines exhibited enhancement in some of these traits. Noticeably, anthocyanin content was significantly reduced in Oe1 and Oe2 compared with the Wt and atl8 under P- condition. Abscisic acid (ABA) treatment led to an increase in the primary root length of atl8 compared with the Wt, suggesting a cross-talk between ABA and ATL8 on root growth. Furthermore, the relative expression levels of the genes involved in the maintenance of Pi homeostasis (WRKY75, RNS1, E3L, and ACP5) were differentially modulated in atl8, Oe1, and Oe2 compared with the Wt under different Pi regimes. The results revealed the pivotal role of ATL8 in mediating morphophysiological and molecular adaptive responses to Pi deficiency.
Collapse
Affiliation(s)
- Madhuvanthi Ramaiah
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| | - Ajay Jain
- Amity Institute of Biotechnology, Amity University Rajasthan, Jaipur, India.
| | - Poli Yugandhar
- ICAR-Indian Institute of Rice Research, Hyderabad, 500030, India.
| | - Kashchandra G Raghothama
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
14
|
Thiébaut N, Hanikenne M. Zinc deficiency responses: bridging the gap between Arabidopsis and dicotyledonous crops. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1699-1716. [PMID: 34791143 DOI: 10.1093/jxb/erab491] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
Zinc (Zn) deficiency is a widespread phenomenon in agricultural soils worldwide and has a major impact on crop yield and quality, and hence on human nutrition and health. Although dicotyledonous crops represent >30% of human plant-based nutrition, relatively few efforts have been dedicated to the investigation of Zn deficiency response mechanisms in dicotyledonous, in contrast to monocotyledonous crops, such as rice or barley. Here, we describe the Zn requirement and impact of Zn deficiency in several economically important dicotyledonous crops, Phaseolus vulgaris, Glycine max, Brassica oleracea, and Solanum lycopersicum. We briefly review our current knowledge of the Zn deficiency response in Arabidopsis and outline how this knowledge is translated in dicotyledonous crops. We highlight commonalities and differences between dicotyledonous species (and with monocotyledonous species) regarding the function and regulation of Zn transporters and chelators, as well as the Zn-sensing mechanisms and the role of hormones in the Zn deficiency response. Moreover, we show how the Zn homeostatic network intimately interacts with other nutrients, such as iron or phosphate. Finally, we outline how variation in Zn deficiency tolerance and Zn use efficiency among cultivars of dicotyledonous species can be leveraged for the design of Zn biofortification strategies.
Collapse
Affiliation(s)
- Noémie Thiébaut
- InBioS - PhytoSystems, Translational Plant Biology, University of Liège, 4000 Liège, Belgium
| | - Marc Hanikenne
- InBioS - PhytoSystems, Translational Plant Biology, University of Liège, 4000 Liège, Belgium
| |
Collapse
|
15
|
Sharifi R, Jeon JS, Ryu CM. Belowground plant-microbe communications via volatile compounds. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:463-486. [PMID: 34727189 DOI: 10.1093/jxb/erab465] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Volatile compounds play important roles in rhizosphere biological communications and interactions. The emission of plant and microbial volatiles is a dynamic phenomenon that is affected by several endogenous and exogenous signals. Diffusion of volatiles can be limited by their adsorption, degradation, and dissolution under specific environmental conditions. Therefore, rhizosphere volatiles need to be investigated on a micro and spatiotemporal scale. Plant and microbial volatiles can expand and specialize the rhizobacterial niche not only by improving the root system architecture such that it serves as a nutrient-rich shelter, but also by inhibiting or promoting the growth, chemotaxis, survival, and robustness of neighboring organisms. Root volatiles play an important role in engineering the belowground microbiome by shaping the microbial community structure and recruiting beneficial microbes. Microbial volatiles are appropriate candidates for improving plant growth and health during environmental challenges and climate change. However, some technical and experimental challenges limit the non-destructive monitoring of volatile emissions in the rhizosphere in real-time. In this review, we attempt to clarify the volatile-mediated intra- and inter-kingdom communications in the rhizosphere, and propose improvements in experimental design for future research.
Collapse
Affiliation(s)
- Rouhallah Sharifi
- Department of Plant Protection, College of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Je-Seung Jeon
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
| | - Choong-Min Ryu
- Molecular Phytobacteriology Laboratory, Infectious Disease Research Center, KRIBB, Daejeon 34141, South Korea
- Biosystem and Bioengineering Program, University of Science and Technology (UST), Daejeon 34141, South Korea
| |
Collapse
|
16
|
Research and Progress on the Mechanism of Iron Transfer and Accumulation in Rice Grains. PLANTS 2021; 10:plants10122610. [PMID: 34961081 PMCID: PMC8708893 DOI: 10.3390/plants10122610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/16/2022]
Abstract
Iron (Fe) is one of the most important micronutrients for organisms. Currently, Fe deficiency is a growing nutritional problem and is becoming a serious threat to human health worldwide. A method that could help alleviate this “hidden hunger” is increasing the bioavailable Fe concentrations in edible tissues of major food crops. Therefore, understanding the molecular mechanisms of Fe accumulation in different crop tissues will help to develop crops with higher Fe nutritional values. Biofortification significantly increases the concentration of Fe in crops. This paper considers the important food crop of rice (Oryza sativa L.) as an example and highlights recent research advances on the molecular mechanisms of Fe uptake and allogeneic uptake in different tissues of rice. In addition, different approaches to the biofortification of Fe nutrition in rice and their outcomes are described and discussed. To address the problems that occur during the development and application of improving nutritional Fe in rice, technical strategies and long-term solutions are also proposed as a reference for the future improvement of staple food nutrition with micronutrients.
Collapse
|
17
|
Pélissier PM, Motte H, Beeckman T. Lateral root formation and nutrients: nitrogen in the spotlight. PLANT PHYSIOLOGY 2021; 187:1104-1116. [PMID: 33768243 PMCID: PMC8566224 DOI: 10.1093/plphys/kiab145] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 03/12/2021] [Indexed: 05/08/2023]
Abstract
Lateral roots are important to forage for nutrients due to their ability to increase the uptake area of a root system. Hence, it comes as no surprise that lateral root formation is affected by nutrients or nutrient starvation, and as such contributes to the root system plasticity. Understanding the molecular mechanisms regulating root adaptation dynamics toward nutrient availability is useful to optimize plant nutrient use efficiency. There is at present a profound, though still evolving, knowledge on lateral root pathways. Here, we aimed to review the intersection with nutrient signaling pathways to give an update on the regulation of lateral root development by nutrients, with a particular focus on nitrogen. Remarkably, it is for most nutrients not clear how lateral root formation is controlled. Only for nitrogen, one of the most dominant nutrients in the control of lateral root formation, the crosstalk with multiple key signals determining lateral root development is clearly shown. In this update, we first present a general overview of the current knowledge of how nutrients affect lateral root formation, followed by a deeper discussion on how nitrogen signaling pathways act on different lateral root-mediating mechanisms for which multiple recent studies yield insights.
Collapse
Affiliation(s)
- Pierre-Mathieu Pélissier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB-UGent Center for Plant Systems Biology, Ghent 9052, Belgium
- Author for communication:
| |
Collapse
|
18
|
Li S, Liu Z, Guo L, Li H, Nie X, Chai S, Zheng W. Genome-Wide Identification of Wheat ZIP Gene Family and Functional Characterization of the TaZIP13-B in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:748146. [PMID: 34804090 PMCID: PMC8595109 DOI: 10.3389/fpls.2021.748146] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The ZIP (Zn-regulated, iron-regulated transporter-like protein) transporter plays an important role in regulating the uptake, transport, and accumulation of microelements in plants. Although some studies have identified ZIP genes in wheat, the significance of this family is not well understood, particularly its involvement under Fe and Zn stresses. In this study, we comprehensively characterized the wheat ZIP family at the genomic level and performed functional verification of three TaZIP genes by yeast complementary analysis and of TaZIP13-B by transgenic Arabidopsis. Totally, 58 TaZIP genes were identified based on the genome-wide search against the latest wheat reference (IWGSC_V1.1). They were then classified into three groups, based on phylogenetic analysis, and the members within the same group shared the similar exon-intron structures and conserved motif compositions. Expression pattern analysis revealed that the most of TaZIP genes were highly expressed in the roots, and nine TaZIP genes displayed high expression at grain filling stage. When exposed to ZnSO4 and FeCl3 solutions, the TaZIP genes showed differential expression patterns. Additionally, six ZIP genes responded to zinc-iron deficiency. A total of 57 miRNA-TaZIP interactions were constructed based on the target relationship, and three miRNAs were downregulated when exposed to the ZnSO4 and FeCl3 stresses. Yeast complementation analysis proved that TaZIP14-B, TaZIP13-B, and TaIRT2-A could transport Zn and Fe. Finally, overexpression of TaZIP13-B in Arabidopsis showed that the transgenic plants displayed better tolerance to Fe/Zn stresses and could enrich more metallic elements in their seeds than wild-type Arabidopsis. This study systematically analyzed the genomic organization, gene structure, expression profiles, regulatory network, and the biological function of the ZIP family in wheat, providing better understanding of the regulatory roles of TaZIPs and contributing to improve nutrient quality in wheat crops.
Collapse
|
19
|
Fan X, Zhou X, Chen H, Tang M, Xie X. Cross-Talks Between Macro- and Micronutrient Uptake and Signaling in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:663477. [PMID: 34721446 PMCID: PMC8555580 DOI: 10.3389/fpls.2021.663477] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
In nature, land plants as sessile organisms are faced with multiple nutrient stresses that often occur simultaneously in soil. Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are five of the essential nutrients that affect plant growth and health. Although these minerals are relatively inaccessible to plants due to their low solubility and relative immobilization, plants have adopted coping mechanisms for survival under multiple nutrient stress conditions. The double interactions between N, Pi, S, Zn, and Fe have long been recognized in plants at the physiological level. However, the molecular mechanisms and signaling pathways underlying these cross-talks in plants remain poorly understood. This review preliminarily examined recent progress and current knowledge of the biochemical and physiological interactions between macro- and micro-mineral nutrients in plants and aimed to focus on the cross-talks between N, Pi, S, Zn, and Fe uptake and homeostasis in plants. More importantly, we further reviewed current studies on the molecular mechanisms underlying the cross-talks between N, Pi, S, Zn, and Fe homeostasis to better understand how these nutrient interactions affect the mineral uptake and signaling in plants. This review serves as a basis for further studies on multiple nutrient stress signaling in plants. Overall, the development of an integrative study of multiple nutrient signaling cross-talks in plants will be of important biological significance and crucial to sustainable agriculture.
Collapse
Affiliation(s)
| | | | | | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
20
|
O’Rourke JA, Morrisey MJ, Merry R, Espina MJ, Lorenz AJ, Stupar RM, Graham MA. Mining Fiskeby III and Mandarin (Ottawa) Expression Profiles to Understand Iron Stress Tolerant Responses in Soybean. Int J Mol Sci 2021; 22:11032. [PMID: 34681702 PMCID: PMC8537376 DOI: 10.3390/ijms222011032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/06/2021] [Accepted: 10/10/2021] [Indexed: 12/13/2022] Open
Abstract
The soybean (Glycine max L. merr) genotype Fiskeby III is highly resistant to a multitude of abiotic stresses, including iron deficiency, incurring only mild yield loss during stress conditions. Conversely, Mandarin (Ottawa) is highly susceptible to disease and suffers severe phenotypic damage and yield loss when exposed to abiotic stresses such as iron deficiency, a major challenge to soybean production in the northern Midwestern United States. Using RNA-seq, we characterize the transcriptional response to iron deficiency in both Fiskeby III and Mandarin (Ottawa) to better understand abiotic stress tolerance. Previous work by our group identified a quantitative trait locus (QTL) on chromosome 5 associated with Fiskeby III iron efficiency, indicating Fiskeby III utilizes iron deficiency stress mechanisms not previously characterized in soybean. We targeted 10 of the potential candidate genes in the Williams 82 genome sequence associated with the QTL using virus-induced gene silencing. Coupling virus-induced gene silencing with RNA-seq, we identified a single high priority candidate gene with a significant impact on iron deficiency response pathways. Characterization of the Fiskeby III responses to iron stress and the genes underlying the chromosome 5 QTL provides novel targets for improved abiotic stress tolerance in soybean.
Collapse
Affiliation(s)
| | | | - Ryan Merry
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Mary Jane Espina
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Aaron J. Lorenz
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | - Robert M. Stupar
- Department of Genetics and Agronomy, University of Minnesota, St. Paul, MN 55108, USA; (R.M.); (M.J.E.); (A.J.L.); (R.M.S.)
| | | |
Collapse
|
21
|
Kaur G, Shukla V, Meena V, Kumar A, Tyagi D, Singh J, Kandoth PK, Mantri S, Rouached H, Pandey AK. Physiological and molecular responses to combinatorial iron and phosphate deficiencies in hexaploid wheat seedlings. Genomics 2021; 113:3935-3950. [PMID: 34606916 DOI: 10.1016/j.ygeno.2021.09.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 09/23/2021] [Accepted: 09/25/2021] [Indexed: 01/16/2023]
Abstract
Iron (Fe) and phosphorus (P) are the essential mineral nutrients for plant growth and development. However, the molecular interaction of the Fe and P pathways in crops remained largely obscure. In this study, we provide a comprehensive physiological and molecular analysis of hexaploid wheat response to single (Fe, P) and its combinatorial deficiencies. Our data showed that inhibition of the primary root growth occurs in response to Fe deficiency; however, growth was rescued when combinatorial deficiencies occurred. Analysis of RNAseq revealed that distinct molecular rearrangements during combined deficiencies with predominance for genes related to metabolic pathways and secondary metabolite biosynthesis primarily include genes for UDP-glycosyltransferase, cytochrome-P450s, and glutathione metabolism. Interestingly, the Fe-responsive cis-regulatory elements in the roots in Fe stress conditions were enriched compared to the combined stress. Our metabolome data also revealed the accumulation of distinct metabolites such as amino-isobutyric acid, arabinonic acid, and aconitic acid in the combined stress environment. Overall, these results are essential in developing new strategies to improve the resilience of crops in limited nutrients.
Collapse
Affiliation(s)
- Gazaldeep Kaur
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Punjab, India
| | - Vishnu Shukla
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Varsha Meena
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Anil Kumar
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Punjab, India
| | - Deepshikha Tyagi
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Jagtar Singh
- Department of Biotechnology, Panjab University, Punjab, India
| | - Pramod Kaitheri Kandoth
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Shrikant Mantri
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India
| | - Hatem Rouached
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States of America; Plant Resilience Institute, Michigan State University, East Lansing, MI 48824, United States of America
| | - Ajay Kumar Pandey
- National Agri-Food Biotechnology Institute, Department of Biotechnology, Sector 81, Knowledge City, Mohali 140306, Punjab, India.
| |
Collapse
|
22
|
Manzoor M, Zargar SM, Akhter P, Urwat U, Mahajan R, Bhat SA, Dar TA, Khan I. Morphological, Biochemical, and Proteomic Studies Revealed Impact of Fe and P Crosstalk on Root Development in Phaseolus vulgaris L. Appl Biochem Biotechnol 2021; 193:3898-3914. [PMID: 34524636 DOI: 10.1007/s12010-021-03662-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 09/03/2021] [Indexed: 10/20/2022]
Abstract
Mineral stress is one of the major abiotic stresses faced by crop plants. The present study was undertaken to investigate the impact of mineral stress (iron (Fe) and phosphorus (P)) on various morphological and biochemical responses of the shoot and root tissues and root architecture of common bean (Phaseolus vulgaris L.). This study also leads us to the identification of P stress responsive proteins. The study was conducted under in vitro conditions, in which seeds of Shalimar French Bean-1 (SFB-1) variety were cultured on four different MGRL medium (control (P1Fe1), iron deficient (P1Fe0), phosphorus deficient (P0Fe1), and phosphorus and iron deficient (P0Fe0)). Chlorophyll content of leaves, Fe/P content of root tissues, total sugars, proline, length, and weight of shoot and root tissues were assessed and compared within and between the treatments. The analyzed data revealed significant difference between control and other three treatments. Chlorophyll content of shoots was found significantly decreased under mineral stress treatments P0Fe1, P1Fe0, and P0Fe0 than control. Length and weight of shoot and root were also observed significantly decreased under P0Fe1, P1Fe0, and P0Fe0 as compared to control. Total sugar was significantly higher in P0Fe1 of roots in comparison to control. Proline content was significantly higher in both tissues of shoots and roots of plants grown under P1Fe0, P0Fe1, and P0Fe0 than control condition. Furthermore, we unexpectedly observed the recovery of roots (mainly primary roots) under P0Fe0 as compared to P1Fe0 and P0Fe1. Interestingly higher concentration of Fe was also observed in P0Fe1 compared to other treatments and also higher concentration of P was observed in P1Fe1. These findings suggested that there is a crosstalk between Fe and P and also revealed that there is a disruption in the ability of PR (primary root) to sense local P deficiency in the absence of Fe. Furthermore, proteomics analysis (SDS-PAGE followed by MALDI MS) helped in identification of defensive proteins in P stress condition compared to control.
Collapse
Affiliation(s)
- Madhiya Manzoor
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India, 190025
| | - Sajad Majeed Zargar
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India, 190025.
| | - Parveen Akhter
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India, 190025
| | - Uneeb Urwat
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India, 190025
| | - Reetika Mahajan
- Proteomics Laboratory, Division of Plant Biotechnology, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India, 190025
| | - Sajad Ahmad Bhat
- Division of Basic Science, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| | - Tanveer Ali Dar
- Department of Clinical Biochemistry, University of Kashmir, Hazratbal, Srinagar, Jammu & Kashmir, India
| | - Imran Khan
- Division of Agricultural Statistics, Sher-E-Kashmir University of Agricultural Sciences & Technology of Kashmir, Shalimar, Srinagar, Jammu & Kashmir, India
| |
Collapse
|
23
|
Santos CS, Rodrigues E, Ferreira S, Moniz T, Leite A, Carvalho SMP, Vasconcelos MW, Rangel M. Foliar application of 3-hydroxy-4-pyridinone Fe-chelate [Fe(mpp) 3 ] induces responses at the root level amending iron deficiency chlorosis in soybean. PHYSIOLOGIA PLANTARUM 2021; 173:235-245. [PMID: 33629743 DOI: 10.1111/ppl.13367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 02/07/2021] [Accepted: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Iron (Fe) deficiency chlorosis (IDC) affects the growth of several crops, especially when growing in alkaline soils. The application of synthetic Fe-chelates is one of the most commonly used strategies in IDC amendment, despite their associated negative environmental impacts. In a previous work, the Fe-chelate tris(3-hydroxy-1-(H)-2-methyl-4-pyridinonate) iron(III) [Fe(mpp)3 ] has shown great potential for alleviating IDC in soybean (Glycine max) in the early stages of plant development under hydroponic conditions. Herein, its efficacy was verified under soil conditions in soybean grown from seed to full maturity. Chlorophyll levels, plant growth, root and shoot mineral accumulation (K, Mg, Ca, Na, P, Mn, Zn, Ni, and Co) and FERRITIN expression were accessed at V5 phenological stage. Compared to a commonly used Fe chelate, FeEDDHA, supplementation with [Fe(mpp)3 ] led to a 29% higher relative chlorophyll content, 32% higher root biomass, 36% higher trifoliate Fe concentration, and a twofold increase in leaf FERRITIN gene expression. [Fe(mpp)3 ] supplementation also resulted in increased accumulation of P, K, Zn, and Co. At full maturity, the remaining plants were harvested and [Fe(mpp)3 ] application led to a 32% seed yield increase when compared to FeEDDHA. This is the first report on the use of [Fe(mpp)3 ] under alkaline soil conditions for IDC correction, and we show that its foliar application has a longer-lasting effect than FeEDDHA, induces efficient root responses, and promotes the uptake of other nutrients.
Collapse
Affiliation(s)
- Carla S Santos
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Elsa Rodrigues
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
- GreenUPorto - Research Centre on Sustainable Agrifood Production and DGAOT, Faculty of Sciences, University of Porto, Vila do Conde, Portugal
| | - Sofia Ferreira
- REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Tânia Moniz
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Andreia Leite
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | - Susana M P Carvalho
- GreenUPorto - Research Centre on Sustainable Agrifood Production and DGAOT, Faculty of Sciences, University of Porto, Vila do Conde, Portugal
| | - Marta W Vasconcelos
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa, Porto, Portugal
| | - Maria Rangel
- REQUIMTE, LAQV, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
24
|
Lu X, Liu S, Zhi S, Chen J, Ye G. Comparative transcriptome profile analysis of rice varieties with different tolerance to zinc deficiency. PLANT BIOLOGY (STUTTGART, GERMANY) 2021; 23:375-390. [PMID: 33296551 DOI: 10.1111/plb.13227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Zinc (Zn) is an indispensable element for rice growth. Zn deficiency results in brown blotches and streaks 2-3 weeks after transplanting, as well as stunting, reduced tillering, and low productivity of rice plants. These processes are controlled by different families of expressed genes. A comparative transcriptome profile analysis was conducted using the roots of two Zn deficiency tolerant varieties (UCP122 and KALIBORO26) and two sensitive varieties (IR26 and IR64) by merging data from untreated control (CK) and Zn deficiency treated samples. Results revealed a total of 4,688 differentially expressed genes (DEGs) between the normal Zn and deficient conditions, with 2,702 and 1,489 unique DEGs upregulated and downregulated, respectively. Functional enrichment analysis identified transcription factors (TFs), such as WRKY, MYB, ERF, and bHLH which are important in the regulation of the Zn deficiency response. Furthermore, chitinases, jasmonic acid, and phenylpropanoid pathways were found to be important in the Zn deficiency response. The metal tolerance protein (MTP) genes also appeared to play an important role in conferring tolerance to Zn deficiency. A heavy metal-associated domain-containing protein 7 was associated with tolerance to Zn deficiency and negatively regulated downstream genes. Collectively, our findings provide valuable expression patterns and candidate genes for the study of molecular mechanisms underlying the response to Zn deficiency and for improvements in breeding for tolerance to Zn deficiency in rice.
Collapse
Affiliation(s)
- X Lu
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - S Liu
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Crop Genetics and Breeding, Jiangxi Agricultural University, Nanchang, China
| | - S Zhi
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, China
| | - J Chen
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - G Ye
- CAAS-IRRI Joint Laboratory for Genomics-Assisted Germplasm Enhancement, Agricultural Genomics Institute in Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Group of Crop Genetics and Breeding, Jiangxi Agricultural University, Nanchang, China
- Strategic Innovation Platform, International Rice Research Institute, Metro Manila, Philippines
| |
Collapse
|
25
|
Kumar S, Kumar S, Mohapatra T. Interaction Between Macro- and Micro-Nutrients in Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:665583. [PMID: 34040623 PMCID: PMC8141648 DOI: 10.3389/fpls.2021.665583] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
Nitrogen (N), phosphorus (P), sulfur (S), zinc (Zn), and iron (Fe) are some of the vital nutrients required for optimum growth, development, and productivity of plants. The deficiency of any of these nutrients may lead to defects in plant growth and decreased productivity. Plant responses to the deficiency of N, P, S, Fe, or Zn have been studied mainly as a separate event, and only a few reports discuss the molecular basis of biological interaction among the nutrients. Macro-nutrients like N, P, and/or S not only show the interacting pathways for each other but also affect micro-nutrient pathways. Limited reports are available on the investigation of two-by-two or multi-level nutrient interactions in plants. Such studies on the nutrient interaction pathways suggest that an MYB-like transcription factor, phosphate starvation response 1 (PHR1), acts as a master regulator of N, P, S, Fe, and Zn homeostasis. Similarly, light-responsive transcription factors were identified to be involved in modulating nutrient responses in Arabidopsis. This review focuses on the recent advances in our understanding of how plants coordinate the acquisition, transport, signaling, and interacting pathways for N, P, S, Fe, and Zn nutrition at the molecular level. Identification of the important candidate genes for interactions between N, P, S, Fe, and/or Zn metabolic pathways might be useful for the breeders to improve nutrient use efficiency and yield/quality of crop plants. Integrated studies on pathways interactions/cross-talks between macro- and micro-nutrients in the agronomically important crop plants would be essential for sustainable agriculture around the globe, particularly under the changing climatic conditions.
Collapse
Affiliation(s)
- Suresh Kumar
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
- *Correspondence: Suresh Kumar, ; , orcid.org/0000-0002-7127-3079
| | | | | |
Collapse
|
26
|
Rossini-Oliva S, Abreu MM, Santos ES, Leidi EO. Soil-plant system and potential human health risk of Chinese cabbage and oregano growing in soils from Mn- and Fe-abandoned mines: microcosm assay. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:4073-4086. [PMID: 31953626 DOI: 10.1007/s10653-020-00514-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
In Portugal, many abandoned mines are often close to agricultural areas and might be used for plant food cultivation. Soils in the vicinity of two Mn- and Fe-abandoned mines (Ferragudo and Rosalgar, SW of Portugal) were collected to cultivate two different food species (Brassica rapa subsp. pekinensis (Lour.) Hanelt and Origanum vulgare L.). Chemical characterization of the soil-plant system and potential risk of adverse effects for human health posed by plants associated with soil contamination, based on the estimation of hazard quotient (HQ), were assessed in a microcosm assay under greenhouse conditions. In both soils, the average total concentrations of Fe and Mn were above the normal values for soils in the region and their concentration in shoots of both species was very high. Brassica rapa subsp. pekinensis grew better in Ferragudo than in Rosalgar soils, and it behaved as an excluder of Cu, Mn, Fe, S and Zn in both soils. The HQ for Cu, Fe, Mn and Zn in the studied species grown on both soils was lower than unit indicating that its consumption is safe. The high Mn tolerance found in both species might be due in part to the high contents of Fe in the soil available fraction that might contribute to an antagonism effect in the uptake and translocation of Mn. The obtained results emphasize the need of further studies with different food crops before cultivation in the studied soils to assess health risks associated with high metal intake.
Collapse
Affiliation(s)
- S Rossini-Oliva
- Department of Plant Biology and Ecology, Universidad de Sevilla, Avda. Reina Mercedes S/N, 41080, Seville, Spain.
| | - M M Abreu
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - E S Santos
- Linking Landscape, Environment, Agriculture and Food Research Centre (LEAF), Instituto Superior de Agronomia, Universidade de Lisboa, Lisbon, Portugal
| | - E O Leidi
- Department of Plant Biotechnology, Instituto de Recursos Naturales Y Agrobiología de Sevilla, CSIC, Avda. Reina Mercedes 10, 41012, Seville, Spain
| |
Collapse
|
27
|
Youssef MS, Elamawi RM. Evaluation of phytotoxicity, cytotoxicity, and genotoxicity of ZnO nanoparticles in Vicia faba. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:18972-18984. [PMID: 30238264 DOI: 10.1007/s11356-018-3250-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 09/14/2018] [Indexed: 05/25/2023]
Abstract
Due to the accelerating use of manufactured nanomaterials, more research is needed to define their impact on plants. The present investigation aimed at evaluating the effect of different levels (0.0, 10, 25, 50, and 100 mg/L) of ZnO nanoparticles (NPs) on Vicia faba during seed germination and seedling establishment. Additionally, V. faba root meristems were used as a model to monitor the cytotoxic and genotoxic effects resulting from exposure to ZnO NPs. The influence of ZnO NPs on three isoenzyme systems, peroxidase, α, and β esterase, was also evaluated using native-PAGE. Our results showed that lower concentrations of ZnO NPs (especially 10 and 25 mg/L) enhanced seed germination and improved seedling growth, while higher concentrations (100 and 200 mg/L) resulted in phytotoxicity. Cytological investigations of ZnO NPs-treated V. faba root cells denoted the clastogenic and aneugenic nature of ZnO NPs. Differential increase in mitotic index and significant alterations in cell cycle were observed upon exposure to ZnO NPs. High concentrations of ZnO NPs markedly induced chromosomal aberration, micronuclei, and vacuolated nuclei formation. Chromosomal breakage, chromosomal bridges, ring chromosomes, laggard chromosomes, and stickiness were also observed at a higher rate. The PAGE analysis showed that ZnO NPs treatments altered the expression patterns of all studied enzyme systems. Collectively, results from this work will help to further understand the phytotoxic effects of nanomaterials.
Collapse
Affiliation(s)
- Mohamed S Youssef
- Botany Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt.
| | - Rabab M Elamawi
- Rice Pathology Department, Plant Pathology Research Institute, Agricultural Research Center, Sakha, Kafrelsheikh, 33717, Egypt
| |
Collapse
|
28
|
Ajeesh Krishna TP, Maharajan T, Victor Roch G, Ignacimuthu S, Antony Ceasar S. Structure, Function, Regulation and Phylogenetic Relationship of ZIP Family Transporters of Plants. FRONTIERS IN PLANT SCIENCE 2020; 11:662. [PMID: 32536933 PMCID: PMC7267038 DOI: 10.3389/fpls.2020.00662] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/29/2020] [Indexed: 05/24/2023]
Abstract
Zinc (Zn) is an essential micronutrient for plants and humans. Nearly 50% of the agriculture soils of world are Zn-deficient. The low availability of Zn reduces the yield and quality of the crops. The zinc-regulated, iron-regulated transporter-like proteins (ZIP) family and iron-regulated transporters (IRTs) are involved in cellular uptake of Zn, its intracellular trafficking and detoxification in plants. In addition to Zn, ZIP family transporters also transport other divalent metal cations (such as Cd2+, Fe2+, and Cu2+). ZIP transporters play a crucial role in biofortification of grains with Zn. Only a very limited information is available on structural features and mechanism of Zn transport of plant ZIP family transporters. In this article, we present a detailed account on structure, function, regulations and phylogenetic relationships of plant ZIP transporters. We give an insight to structure of plant ZIPs through homology modeling and multiple sequence alignment with Bordetella bronchiseptica ZIP (BbZIP) protein whose crystal structure has been solved recently. We also provide details on ZIP transporter genes identified and characterized in rice and other plants till date. Functional characterization of plant ZIP transporters will help for the better crop yield and human health in future.
Collapse
Affiliation(s)
- T. P. Ajeesh Krishna
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, India
| | - T. Maharajan
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, India
| | - G. Victor Roch
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, India
| | | | - Stanislaus Antony Ceasar
- Division of Plant Biotechnology, Entomology Research Institute, Loyola College, University of Madras, Chennai, India
| |
Collapse
|
29
|
O'Rourke JA, McCabe CE, Graham MA. Dynamic gene expression changes in response to micronutrient, macronutrient, and multiple stress exposures in soybean. Funct Integr Genomics 2020; 20:321-341. [PMID: 31655948 PMCID: PMC7152590 DOI: 10.1007/s10142-019-00709-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 07/11/2019] [Accepted: 08/08/2019] [Indexed: 12/22/2022]
Abstract
Preserving crop yield is critical for US soybean production and the global economy. Crop species have been selected for increased yield for thousands of years with individual lines selected for improved performance in unique environments, constraints not experienced by model species such as Arabidopsis. This selection likely resulted in novel stress adaptations, unique to crop species. Given that iron deficiency is a perennial problem in the soybean growing regions of the USA and phosphate deficiency looms as a limitation to global agricultural production, nutrient stress studies in crop species are critically important. In this study, we directly compared whole-genome expression responses of leaves and roots to iron (Fe) and phosphate (Pi) deficiency, representing a micronutrient and macronutrient, respectively. Conducting experiments side by side, we observed soybean responds to both nutrient deficiencies within 24 h. While soybean responds largely to -Fe deficiency, it responds strongly to Pi resupply. Though the timing of the responses was different, both nutrient stress signals used the same molecular pathways. Our study is the first to demonstrate the speed and diversity of the soybean stress response to multiple nutrient deficiencies. We also designed the study to examine gene expression changes in response to multiple stress events. We identified 865 and 3375 genes that either altered their direction of expression after a second stress exposure or were only differentially expressed after a second stress event. Understanding the molecular underpinnings of these responses in crop species could have major implications for improving stress tolerance and preserving yield.
Collapse
Affiliation(s)
- Jamie A O'Rourke
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA.
- Department of Agronomy, Iowa State University, 1567 Agronomy Hall, Ames, IA, 50011, USA.
| | - Chantal E McCabe
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
| | - Michelle A Graham
- Corn Insects and Crop Genetics Research Unit, USDA-ARS, Ames, IA, 50011, USA
- Department of Agronomy, Iowa State University, 1567 Agronomy Hall, Ames, IA, 50011, USA
| |
Collapse
|
30
|
Hsieh JWA, Yen MR, Chen PY. Epigenomic regulation of OTU5 in Arabidopsis thaliana. Genomics 2020; 112:3549-3559. [PMID: 32298708 DOI: 10.1016/j.ygeno.2020.04.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 03/30/2020] [Accepted: 04/12/2020] [Indexed: 10/24/2022]
Abstract
Epigenetic regulation by DNA methylation and histone marks is crucial to plant development. In Arabidopsis, the otu5 mutant exhibited altered root phenotypes resembling those of phosphate-deficient plants. In low phosphate (Pi) conditions, altered H3K4 and H3K27 trimethylation were associated with the expression of Pi homeostasis-related genes. However, the genetic effect of OTU5 on the epigenomes was left unexplored. We assessed genome-wide DNA methylation, gene expression and histone modifications of roots from both Col-0 and otu5 mutants. We found that OTU5 altered DNA methylation profile with a context-specific effect through targeting local genomic regions. Our analysis showed that in otu5 the abundance of H3K4me3 was clearly associated with the changes of DNA methylation, leading to the transcriptional difference from wildtype. We concluded that OTU5 induced cross-talks among epigenomes that altogether impacted the regulation of approximately 7060 genes. Of which 186 genes associated with root development were likely to be epigenetically regulated.
Collapse
Affiliation(s)
- Jo-Wei Allison Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan
| | - Ming-Ren Yen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
31
|
Zhou Z, Shi X, Zhao G, Qin M, Ibba MI, Wang Y, Li W, Yang P, Wu Z, Lei Z, Wang J. Identification of Novel Genomic Regions and Superior Alleles Associated with Zn Accumulation in Wheat Using a Genome-Wide Association Analysis Method. Int J Mol Sci 2020; 21:ijms21061928. [PMID: 32168957 PMCID: PMC7139793 DOI: 10.3390/ijms21061928] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/07/2020] [Accepted: 03/09/2020] [Indexed: 12/24/2022] Open
Abstract
Micronutrient deficiencies, and especially zinc (Zn) deficiency, pose serious health problems to people who mainly depend on cereal-based diets. Here, we performed a genome-wide association study (GWAS) to detect the genetic basis of the Zn accumulation in wheat (Triticum aestivum L.) grains with a diversity panel of 207 bread wheat varieties. To uncover authentic quantitative trait loci (QTL) controlling Zn accumulation, the varieties were planted in three locations. In total, 29 unique loci associated with Zn grain accumulation were identified. Notably, seven non-redundant loci located on chromosomes 1B, 3B, 3D, 4A, 5A, 5B, and 7A, were detected at least in two environments. Of these quantitative trait loci (QTL), six coincided with known QTL or genes, whereas the highest effect QTL on chromosome 3D identified in this study was not reported previously. Searches of public databases revealed that the seven identified QTL coincided with seven putative candidate genes linked to Zn accumulation. Among these seven genes, NAC domain-containing protein gene (TraesCS3D02G078500) linked with the most significant single nucleotide polymorphism (SNP) AX-94729264 on chromosome 3D was relevant to metal accumulation in wheat grains. Results of this study provide new insights into the genetic architecture of Zn accumulation in wheat grains.
Collapse
Affiliation(s)
- Zhengfu Zhou
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
| | - Xia Shi
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
| | - Ganqing Zhao
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan 467000, China;
| | - Maomao Qin
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
| | - Maria Itria Ibba
- Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), Mexico, D.F. 06600, Mexico;
| | - Yahuan Wang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
| | - Wenxu Li
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
| | - Pan Yang
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
| | - Zhengqing Wu
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zhensheng Lei
- Wheat Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (Z.Z.); (X.S.); (M.Q.); (Y.W.); (W.L.); (P.Y.); (Z.W.)
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan 467000, China;
- College of Life Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence: (Z.L.); (J.W.); Tel.: +86-371-6572-4084 (Z.L.); +86-158-3759-0332 (J.W.)
| | - Jiansheng Wang
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan 467000, China;
- Correspondence: (Z.L.); (J.W.); Tel.: +86-371-6572-4084 (Z.L.); +86-158-3759-0332 (J.W.)
| |
Collapse
|
32
|
Fan X, Che X, Lai W, Wang S, Hu W, Chen H, Zhao B, Tang M, Xie X. The auxin-inducible phosphate transporter AsPT5 mediates phosphate transport and is indispensable for arbuscule formation in Chinese milk vetch at moderately high phosphate supply. Environ Microbiol 2020; 22:2053-2079. [PMID: 32079042 DOI: 10.1111/1462-2920.14952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 11/30/2022]
Abstract
Phosphorus is a macronutrient that is essential for plant survival. Most land plants have evolved the ability to form a mutualistic symbiosis with arbuscular mycorrhizal (AM) fungi, which enhances phosphate (Pi) acquisition. Modulation of Pi transporter systems is the master strategy used by mycorrhizal plants to adapt to ambient Pi concentrations. However, the specific functions of PHOSPHATE TRANSPORTER 1 (PHT1) genes, which are Pi transporters that are responsive to high Pi availability, are largely unknown. Here, we report that AsPT5, an Astragalus sinicus (Chinese milk vetch) member of the PHT1 gene family, is conserved across dicotyledons and is constitutively expressed in a broad range of tissues independently of Pi supply, but is remarkably induced by indole-3-acetic acid (auxin) treatment under moderately high Pi conditions. Subcellular localization experiments indicated that AsPT5 localizes to the plasma membrane of plant cells. Using reverse genetics, we showed that AsPT5 not only mediates Pi transport and remodels root system architecture but is also essential for arbuscule formation in A. sinicus under moderately high Pi concentrations. Overall, our study provides insight into the function of AsPT5 in Pi transport, AM development and the cross-talk between Pi nutrition and auxin signalling in mycorrhizal plants.
Collapse
Affiliation(s)
- Xiaoning Fan
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianrong Che
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Wenzhen Lai
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | | | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Bin Zhao
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| | - Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Lingnan Guangdong Laboratory of Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
33
|
Bouain N, Korte A, Satbhai SB, Nam HI, Rhee SY, Busch W, Rouached H. Systems genomics approaches provide new insights into Arabidopsis thaliana root growth regulation under combinatorial mineral nutrient limitation. PLoS Genet 2019; 15:e1008392. [PMID: 31693663 PMCID: PMC6834251 DOI: 10.1371/journal.pgen.1008392] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/29/2019] [Indexed: 01/08/2023] Open
Abstract
The molecular mechanisms by which plants modulate their root growth rate (RGR) in response to nutrient deficiency are largely unknown. Using Arabidopsis thaliana accessions, we analyzed RGR variation under combinatorial mineral nutrient deficiencies involving phosphorus (P), iron (Fe), and zinc (Zn). While -P stimulated early RGR of most accessions, -Fe or -Zn reduced it. The combination of either -P-Fe or -P-Zn led to suppression of the growth inhibition exerted by -Fe or -Zn alone. Surprisingly, root growth responses of the reference accession Columbia (Col-0) were not representative of the species under -P nor -Zn. Using a systems approach that combines GWAS, network-based candidate identification, and reverse genetic screen, we identified new genes that regulate root growth in -P-Fe: VIM1, FH6, and VDAC3. Our findings provide a framework to systematically identifying favorable allelic variations to improve root growth, and to better understand how plants sense and respond to multiple environmental cues. Plants thrive in highly heterogenous soils. How they compute a multitude of contrasting stimuli and mount an adaptive response without a centralized information processing unit is an intriguing question. For instance, below ground, roots can sense and respond to the single or multiple nutrient stresses, and adjust its growth rate accordingly. Nevertheless, the genetic architecture of root growth responses under single and combined stress remains poorly understood. To fill this gap in our understanding about such crucial phenomenon for plant survival, we explored the natural variation of root growth rate (RGR) in Arabidopsis grown under single and combined nutritional stress, including deficiencies of iron (-Fe), zinc (-Zn), phosphate and iron (-P-Fe) and phosphate and zinc (-P-Zn). Our GWAS revealed distinct genetic architectures underlying root growth responses to single or combined nutrient stresses. By integrating GWAS and coexpression networks, we identified and validated genes controlling the variation of root growth to combined nutrient-deficiency, namely VARIANT IN METHYLATION 1, FORMIN-LIKE-PROTEIN-6 and VOLTAGE-DEPENDENT ANION-SELECTIVE CHANNEL PROTEIN 3. Our findings provide a framework to accelerate future research aiming at better understanding how plants sense and respond to multiple environmental inputs, and promise to help designing new agronomical and biotechnological strategies to improve root growth.
Collapse
Affiliation(s)
- Nadia Bouain
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Arthur Korte
- Evolutionary Genomics, Center for Computational and Theoretical Biology (CCTB), University Würzburg, Würzburg, Germany
| | - Santosh B. Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Plant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
| | - Hye-In Nam
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
| | - Seung Y. Rhee
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California, United States of America
- * E-mail: (SYR); (WB); (HR)
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Vienna, Austria
- Plant Molecular and Cellular Biology Laboratory, and Integrative Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California, United States of America
- * E-mail: (SYR); (WB); (HR)
| | - Hatem Rouached
- BPMP, Univ Montpellier, CNRS, INRA, SupAgro, Montpellier, France
- * E-mail: (SYR); (WB); (HR)
| |
Collapse
|
34
|
López-Bucio JS, Salmerón-Barrera GJ, Ravelo-Ortega G, Raya-González J, León P, de la Cruz HR, Campos-García J, López-Bucio J, Guevara-García ÁA. Mitogen-activated protein kinase 6 integrates phosphate and iron responses for indeterminate root growth in Arabidopsis thaliana. PLANTA 2019; 250:1177-1189. [PMID: 31190117 DOI: 10.1007/s00425-019-03212-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 06/06/2019] [Indexed: 05/21/2023]
Abstract
A MAPK module, of which MPK6 kinase is an important component, is involved in the coordination of the responses to Pi and Fe in the primary root meristem of Arabidopsis thaliana. Phosphate (Pi) deficiency induces determinate primary root growth in Arabidopsis through cessation of cell division in the meristem, which is linked to an increased iron (Fe) accumulation. Here, we show that Mitogen-Activated Protein Kinase6 (MPK6) has a role in Arabidopsis primary root growth under low Pi stress. MPK6 activity is induced in roots in response to low Pi, and such induction is enhanced by Fe supplementation, suggesting an MPK6 role in coordinating Pi/Fe balance in mediating root growth. The differentiation of the root meristem induced by low Pi levels correlates with altered expression of auxin-inducible genes and auxin transporter levels via MPK6. Our results indicate a critical role of the MPK6 kinase in coordinating meristem cell activity to Pi and Fe availability for proper primary root growth.
Collapse
Affiliation(s)
- Jesús Salvador López-Bucio
- CONACYT-Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico.
| | | | - Gustavo Ravelo-Ortega
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | - Javier Raya-González
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | - Patricia León
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, CP 62250, Cuernavaca, Morelos, Mexico
| | - Homero Reyes de la Cruz
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | - Jesús Campos-García
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, CP 58030, Morelia, Michoacán, Mexico
| | | |
Collapse
|
35
|
Xie X, Hu W, Fan X, Chen H, Tang M. Interactions Between Phosphorus, Zinc, and Iron Homeostasis in Nonmycorrhizal and Mycorrhizal Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1172. [PMID: 31616454 PMCID: PMC6775243 DOI: 10.3389/fpls.2019.01172] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Accepted: 08/27/2019] [Indexed: 05/16/2023]
Abstract
Phosphorus (P), zinc (Zn), and iron (Fe) are three essential elements for plant survival, and severe deficiencies in these nutrients lead to growth retardation and crop yield reduction. This review synthesizes recent progress on how plants coordinate the acquisition and signaling of Pi, Zn, and Fe from surrounding environments and which genes are involved in these Pi-Zn-Fe interactions with the aim of better understanding of the cross-talk between these macronutrient and micronutrient homeostasis in plants. In addition, identification of genes important for interactions between Pi, Zn, and/or Fe transport and signaling is a useful target for breeders for improvement in plant nutrient acquisition. Furthermore, to understand these processes in arbuscular mycorrhizal plants, the preliminary examination of interactions between Pi, Zn, and Fe homeostasis in some relevant crop species has been performed at the physiological level and is summarized in this article. In conclusion, the development of integrative study of cross-talks between Pi, Zn, and Fe signaling pathway in mycorrhizal plants will be essential for sustainable agriculture all around the world.
Collapse
Affiliation(s)
- Xianan Xie
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Wentao Hu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Xiaoning Fan
- Department of Plant Pathology, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Hui Chen
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources (South China Agricultural University), Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
36
|
Li Y, Wang X, Zhang H, Wang S, Ye X, Shi L, Xu F, Ding G. Molecular identification of the phosphate transporter family 1 (PHT1) genes and their expression profiles in response to phosphorus deprivation and other abiotic stresses in Brassica napus. PLoS One 2019; 14:e0220374. [PMID: 31344115 PMCID: PMC6657917 DOI: 10.1371/journal.pone.0220374] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/14/2019] [Indexed: 11/18/2022] Open
Abstract
Phosphate (Pi) transporters play critical roles in Pi acquisition and homeostasis. However, little is known about these transporters in oilseed rape. Therefore, the aim of the present study was to characterize the members of the PHT1 gene family in allotetraploid Brassica napus and to analyze their expression profiles in response to environmental stresses. In total, 49 PHT1 family members were identified in B. napus, including 27 genes in the A subgenome and 22 in the C subgenome. Most of the PHT1 proteins were predicted to localize to the plasma membrane. Phylogenetic analysis suggested that the members of the PHT1 gene family can be divided into seven clades, with the introns/exons and protein motifs conserved in each clade. Collinearity analysis revealed that most of the BnaPHT1 genes shared syntenic relationships with PHT1 members in Arabidopsis thaliana, B. rapa, and B. oleracea, and that whole-genome duplication (polyploidy) played a major driving force for BnaPHT1 evolution in addition to segmental duplication. Transcript abundance analysis showed that a broad range of expression patterns of individual BnaPHT1 genes occurred in response to phosphorus (P) deficiency. In addition, the expression levels of BnaPHT1 genes can be regulated by different nutrient stresses, including nitrogen (N), potassium (K), sulfur (S) and iron (Fe) stresses. Moveover, salt and drought stresses can regulate the transcript abundances of BnaPHT1s, as well as phytohormones including auxin and cytokinin. Gene coexpression analysis based on the RNA-seq data implied that BnaPHT1s might cooperate with each other as well as with other genes to regulate nutrient homeostasis in B. napus. Further analysis of the promoters revealed that GT-1, DRE and P1BS elements are widely distributed within the promoter regions of BnaPHT1 genes. Our results indicate that BnaPHT1s might be involved in cross-talk for sensing the external status of P, N, K, S and Fe, as well as salt and drought stresses. Moreover, these processes might be mediated by phytohormones. Our findings provide the first step in the complex genetic dissection of the Pi transport system in plants and implicate multiple transcriptional regulation, which probably refers to new roles of PHT1 genes in B. napus.
Collapse
Affiliation(s)
- Yu Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xue Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Hao Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Sheliang Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Xiangsheng Ye
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Lei Shi
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Fangsen Xu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Guangda Ding
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
37
|
Raya-González J, Oropeza-Aburto A, López-Bucio JS, Guevara-García ÁA, de Veylder L, López-Bucio J, Herrera-Estrella L. MEDIATOR18 influences Arabidopsis root architecture, represses auxin signaling and is a critical factor for cell viability in root meristems. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:895-909. [PMID: 30270572 DOI: 10.1111/tpj.14114] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 09/25/2018] [Indexed: 06/08/2023]
Abstract
The Mediator (MED) complex plays a key role in the recruitment and assembly of the transcription machinery for the control of gene expression. Here, we report on the role of MEDIATOR18 (MED18) subunit in root development, auxin signaling and meristem cell viability in Arabidopsis thaliana seedlings. Loss-of-function mutations in MED18 reduce primary root growth, but increase lateral root formation and root hair development. This phenotype correlates with alterations in cell division and elongation likely caused by an increased auxin response and transport at the root tip, as evidenced by DR5:GFP, pPIN1::PIN1-GFP, pPIN2::PIN2-GFP and pPIN3::PIN3-GFP auxin-related gene expression. Noteworthy, med18 seedlings manifest cell death in the root meristem, which exacerbates with age and/or exposition to DNA-damaging agents, and display high expression of the cell regeneration factor ERF115. Cell death in the root tip was reduced in med18 seedlings grown in darkness, but remained when only the shoot was exposed to light, suggesting that MED18 acts to protect root meristem cells from local cell death, and/or in response to root-acting signal(s) emitted by the shoot in response to light stimuli. These data point to MED18 as an important component for auxin-regulated root development, cell death and cell regeneration in root meristems.
Collapse
Affiliation(s)
- Javier Raya-González
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, México
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Araceli Oropeza-Aburto
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, México
| | - Jesús S López-Bucio
- CONACYT, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Ángel A Guevara-García
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250, Cuernavaca, Morelos, México
| | - Lieven de Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Gent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Gent, Belgium
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, México
| | - Luis Herrera-Estrella
- Unidad de Genómica Avanzada, Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del IPN, Campus Irapuato, Guanajuato, México
| |
Collapse
|
38
|
OsPIN1b is Involved in Rice Seminal Root Elongation by Regulating Root Apical Meristem Activity in Response to Low Nitrogen and Phosphate. Sci Rep 2018; 8:13014. [PMID: 30158652 PMCID: PMC6115472 DOI: 10.1038/s41598-018-29784-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 07/11/2018] [Indexed: 01/03/2023] Open
Abstract
The response of plant root development to nutrient deficiencies is critical for crop production. Auxin, nitric oxide (NO), and strigolactones (SLs) are important regulators of root growth under low-nitrogen and -phosphate (LN and LP) conditions. Polar auxin transport in plants, which is mainly dependent on auxin efflux protein PINs, creates local auxin maxima to form the basis for root initiation and elongation; however, the PIN genes that play an important role in LN- and LP-modulated root growth remain unclear. qRT-PCR analysis of OsPIN family genes showed that the expression of OsPIN1b is most abundant in root tip and is significantly downregulated by LN, LP, sodium nitroprusside (SNP, NO donor), and GR24 (analogue of SLs) treatments. Seminal roots in ospin1b mutants were shorter than those of the wild type; and the seminal root, [3H]IAA transport, and IAA concentration responses to LN, LP, SNP, and GR24 application were attenuated in ospin1b-1 mutants. pCYCB1;1::GUS expression was upregulated by LN, LP, SNP, and GR24 treatments in wild type, but not in the ospin1b-1 mutant, suggesting that OsPIN1b is involved in auxin transport and acts as a downstream mediator of NO and SLs to induce meristem activity in root tip in rice under LN and LP.
Collapse
|
39
|
Abstract
This review deals with two essential plant mineral nutrients, iron (Fe) and phosphorus (P); the acquisition of both has important environmental and economic implications. Both elements are abundant in soils but are scarcely available to plants. To prevent deficiency, dicot plants develop physiological and morphological responses in their roots to specifically acquire Fe or P. Hormones and signalling substances, like ethylene, auxin and nitric oxide (NO), are involved in the activation of nutrient-deficiency responses. The existence of common inducers suggests that they must act in conjunction with nutrient-specific signals in order to develop nutrient-specific deficiency responses. There is evidence suggesting that P- or Fe-related phloem signals could interact with ethylene and NO to confer specificity to the responses to Fe- or P-deficiency, avoiding their induction when ethylene and NO increase due to other nutrient deficiency or stress. The mechanisms responsible for such interaction are not clearly determined, and thus, the regulatory networks that allow or prevent cross talk between P and Fe deficiency responses remain obscure. Here, fragmented information is drawn together to provide a clearer overview of the mechanisms and molecular players involved in the regulation of the responses to Fe or P deficiency and their interactions.
Collapse
|
40
|
Hindu V, Palacios-Rojas N, Babu R, Suwarno WB, Rashid Z, Usha R, Saykhedkar GR, Nair SK. Identification and validation of genomic regions influencing kernel zinc and iron in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:1443-1457. [PMID: 29574570 PMCID: PMC6004279 DOI: 10.1007/s00122-018-3089-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 03/16/2018] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Genome-wide association study (GWAS) on 923 maize lines and validation in bi-parental populations identified significant genomic regions for kernel-Zinc and-Iron in maize. Bio-fortification of maize with elevated Zinc (Zn) and Iron (Fe) holds considerable promise for alleviating under-nutrition among the world's poor. Bio-fortification through molecular breeding could be an economical strategy for developing nutritious maize, and hence in this study, we adopted GWAS to identify markers associated with high kernel-Zn and Fe in maize and subsequently validated marker-trait associations in independent bi-parental populations. For GWAS, we evaluated a diverse maize association mapping panel of 923 inbred lines across three environments and detected trait associations using high-density Single nucleotide polymorphism (SNPs) obtained through genotyping-by-sequencing. Phenotyping trials of the GWAS panel showed high heritability and moderate correlation between kernel-Zn and Fe concentrations. GWAS revealed a total of 46 SNPs (Zn-20 and Fe-26) significantly associated (P ≤ 5.03 × 10-05) with kernel-Zn and Fe concentrations with some of these associated SNPs located within previously reported QTL intervals for these traits. Three double-haploid (DH) populations were developed using lines identified from the panel that were contrasting for these micronutrients. The DH populations were phenotyped at two environments and were used for validating significant SNPs (P ≤ 1 × 10-03) based on single marker QTL analysis. Based on this analysis, 11 (Zn) and 11 (Fe) SNPs were found to have significant effect on the trait variance (P ≤ 0.01, R2 ≥ 0.05) in at least one bi-parental population. These findings are being pursued in the kernel-Zn and Fe breeding program, and could hold great value in functional analysis and possible cloning of high-value genes for these traits in maize.
Collapse
Affiliation(s)
- Vemuri Hindu
- Asia Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad, Telangana 502324 India
- Sri Padmavati Mahila Visvavidyalayam (Women’s University), Tirupati, Andhra Pradesh 517502 India
| | - Natalia Palacios-Rojas
- International Maize and Wheat Improvement Center (CIMMYT), Km 45 Carretera Mexico-Veracruz, 56130 Texcoco, Mexico
| | - Raman Babu
- Asia Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad, Telangana 502324 India
- Present Address: Multi-Crop Research Center (MCRC), DuPont Pioneer, Hyderabad, Telangana 500078 India
| | - Willy B. Suwarno
- International Maize and Wheat Improvement Center (CIMMYT), Km 45 Carretera Mexico-Veracruz, 56130 Texcoco, Mexico
- Present Address: Department of Agronomy and Horticulture, Faculty of Agriculture, Bogor Agricultural University, Jl. Meranti Kampus IPB Dramaga, Bogor, 16680 Indonesia
| | - Zerka Rashid
- Asia Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad, Telangana 502324 India
| | - Rayalcheruvu Usha
- Sri Padmavati Mahila Visvavidyalayam (Women’s University), Tirupati, Andhra Pradesh 517502 India
| | - Gajanan R Saykhedkar
- Asia Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad, Telangana 502324 India
- Present Address: Project Director, SPMESM, Dr. Hedgewar Hospital, Aurangabad, Maharashtra 431005 India
| | - Sudha K. Nair
- Asia Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad, Telangana 502324 India
| |
Collapse
|
41
|
Hanlon MT, Ray S, Saengwilai P, Luthe D, Lynch JP, Brown KM. Buffered delivery of phosphate to Arabidopsis alters responses to low phosphate. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1207-1219. [PMID: 29304231 PMCID: PMC6019003 DOI: 10.1093/jxb/erx454] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/28/2017] [Indexed: 05/21/2023]
Abstract
Arabidopsis has been reported to respond to phosphate (Pi) stress by arresting primary root growth and increasing lateral root branching. We developed a system to buffer Pi availability to Arabidopsis in gel media systems by charging activated aluminum oxide particles with low and sufficient concentrations of Pi, based on previous work in horticultural and sand culture systems. This system more closely mimics soil chemistry and results in different growth and transcriptional responses to Pi stress compared with plants grown in standard gel media. Low Pi availability in buffered medium results in reduced root branching and preferential investment of resources in axial root growth. Root hair length and density, known responses to Pi stress, increase in low-buffered Pi medium. Plants grown under buffered Pi conditions have different gene expression profiles of canonical Pi stress response genes as compared with their unbuffered counterparts. The system also eliminates known complications with iron (Fe) nutrition. The growth responses of Arabidopsis supplied with buffered Pi indicate that the widely accepted low-Pi phenotype is an artifact of the standard gel-based growth system. Buffering Pi availability through the method presented here will improve the utility and accuracy of gel studies by more closely approximating soil conditions.
Collapse
Affiliation(s)
- Meredith T Hanlon
- Department of Plant Science and Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Swayamjit Ray
- Department of Plant Science and Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
- Department of Entomology, Pennsylvania State University, University Park, PA, USA
| | - Patompong Saengwilai
- Department of Plant Science and Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
- Department of Biology, Faculty of Science, Mahidol University, Rama VI Road, Rachadhavi, Bangkok, Thailand
| | - Dawn Luthe
- Department of Plant Science and Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Jonathan P Lynch
- Department of Plant Science and Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| | - Kathleen M Brown
- Department of Plant Science and Intercollege Graduate Degree Program in Plant Biology, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
42
|
Sarkar Das S, Yadav S, Singh A, Gautam V, Sarkar AK, Nandi AK, Karmakar P, Majee M, Sanan-Mishra N. Expression dynamics of miRNAs and their targets in seed germination conditions reveals miRNA-ta-siRNA crosstalk as regulator of seed germination. Sci Rep 2018; 8:1233. [PMID: 29352229 PMCID: PMC5775422 DOI: 10.1038/s41598-017-18823-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/05/2017] [Indexed: 01/07/2023] Open
Abstract
Seed germination paves the way for the dormant embryo to establish itself as a new plant marking the first critical step in postembryonic plant growth and development. Germination starts with the uptake of water (imbibition), followed by induction of transcription, translation, energy metabolism, and cell division processes. Although small RNAs have been implicated in many developmental processes, their role during seed germination stages and conditions remained elusive. Here we show that seed germination conditions, like imbibition and temperature, dynamically regulate the expression of many developmentally important miRNAs and their targets. We have identified 58 miRNAs belonging to 30 different families at different seed germination conditions. Amongst these, 15 miRNAs and their targets were significantly differentially expressed in Arabidopsis seeds in dry and 12 h, 24 h and 48 h of imbibition. Interestingly, differential expression of miR390, which targets trans-acting siRNA locus (TAS3) derived transcripts, resulted in alteration of tasiR-ARF mediated regulation of expression of target AUXIN RESPONSE FACTORs (ARF2/3/4). Our results suggest that the dynamic expression of several miRNAs, their targets, and a crosstalk between miRNA and ta-siRNA pathways contribute to the regulation of seed germination in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Shabari Sarkar Das
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Arina Asaf Ali Marg, New Delhi, 110067, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali marg, New Delhi, 110067, India
| | - Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali marg, New Delhi, 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali marg, New Delhi, 110067, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali marg, New Delhi, 110067, India
| | - Asis K Nandi
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, India
| | - Prakash Karmakar
- Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, India
| | - Manoj Majee
- National Institute of Plant Genome Research, Aruna Asaf Ali marg, New Delhi, 110067, India
| | - Neeti Sanan-Mishra
- Plant RNAi Biology Group, International Centre for Genetic Engineering and Biotechnology, Arina Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
43
|
Jia H, Zhang S, Wang L, Yang Y, Zhang H, Cui H, Shao H, Xu G. OsPht1;8, a phosphate transporter, is involved in auxin and phosphate starvation response in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5057-5068. [PMID: 29036625 DOI: 10.1093/jxb/erx317] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The responses of plants to auxin and phosphate (Pi) starvation are closely linked. However, the underlying mechanisms connecting the Pi starvation (-Pi) responses to auxin are largely unclear. Here, we show that OsPht1;8 (OsPT8), a phosphate transporter, functions in both the auxin and -Pi responses in rice (Oryza sativa L.) and tobacco (Nicotiana tabacum). The overexpression of OsPT8 (OsPT8-Oe) led to the loss of sensitivity to auxin and -Pi in adventitious roots, lateral roots, and root hairs in rice. The expression levels of OsPT8 and pOsPT8::GUS staining in roots, root-shoot junctions and leaves of rice were induced by IAA treatments. The number of young lateral roots in the OsPT8-Oe transgenic rice, which had higher auxin concentrations, was distinctly more than that in the wild-type, possibly as a result of increased expression of auxin-related genes under normal Pi condition. Moreover, tobacco overexpressing OsPT8 had a similar root phenotype to OsPT8-Oe rice. These data reveal a novel biological function of OsPT8 in the cross-talk between Pi and auxin signaling, and provide new evidence for the linkage between auxin and -Pi responses.
Collapse
Affiliation(s)
- Hongfang Jia
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Songtao Zhang
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Lizhi Wang
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
- Key Laboratory of Rice Biology in Henan Province, Henan Agricultural University, Zhengzhou 450002, China
| | - Yongxia Yang
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hongying Zhang
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Cui
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Huifang Shao
- National Tobacco Cultivation and Physiology and Biochemistry Research Centre, College of Tobacco Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
44
|
Das S, Tyagi W, Rai M, Yumnam JS. Understanding Fe 2+ toxicity and P deficiency tolerance in rice for enhancing productivity under acidic soils. Biotechnol Genet Eng Rev 2017; 33:97-117. [PMID: 28927358 DOI: 10.1080/02648725.2017.1370888] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Plants experience low phosphorus (P) and high iron (Fe) levels in acidic lowland soils that lead to reduced crop productivity. A better understanding of the relationship between these two stresses at molecular and physiological level will lead to development of suitable strategies to increase crop productivity in such poor soils. Tolerance for most abiotic stresses including P deficiency and Fe toxicity is a quantitative trait in rice. Recent studies in the areas of physiology, genetics, and overall metabolic pathways in response to P deficiency of rice plants have improved our understanding of low P tolerance. Phosphorous uptake and P use efficiency are the two key traits for improving P deficiency tolerance. In the case of Fe toxicity tolerance, QTLs have been reported but the identity and role played by underlying genes is just emerging. Details pertaining to Fe deficiency tolerance in rice are well worked out including genes involved in Fe sensing and uptake. But, how rice copes with Fe toxicity is not clearly understood. This review focuses on the progress made in understanding these key environmental stresses. Finally, an opinion on the key genes which can be targeted for this stress is provided.
Collapse
Affiliation(s)
- Sudip Das
- a School of Crop Improvement, College of Post-Graduate (CPGS), Central Agricultural University , Imphal , India
| | - Wricha Tyagi
- a School of Crop Improvement, College of Post-Graduate (CPGS), Central Agricultural University , Imphal , India
| | - Mayank Rai
- a School of Crop Improvement, College of Post-Graduate (CPGS), Central Agricultural University , Imphal , India
| | - Julia S Yumnam
- a School of Crop Improvement, College of Post-Graduate (CPGS), Central Agricultural University , Imphal , India
| |
Collapse
|
45
|
Datta M, Kaushik S, Jyoti A, Mathur N, Kothari SL, Jain A. SIZ1-mediated SUMOylation during phosphate homeostasis in plants: Looking beyond the tip of the iceberg. Semin Cell Dev Biol 2017; 74:123-132. [PMID: 28903074 DOI: 10.1016/j.semcdb.2017.09.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 09/07/2017] [Accepted: 09/09/2017] [Indexed: 11/27/2022]
Abstract
Availability of phosphate (Pi) is often limited in rhizospheres in different agroclimatic zones and adversely affects growth and development of plants. To circumvent this impasse, there is an urgent need and global consensus to develop Pi use efficient crops. To achieve this goal, it is essential to identify the molecular entities that exert regulatory influences on the sensing and signaling cascade governing Pi homeostasis. SIZ1 encodes a small ubiquitin-like modifier (SUMO E3) ligase, and plays a pivotal role in the post-translational SUMOylation of proteins. In this review, we discuss the reverse genetics approach conventionally used for providing circumstantial evidence towards the regulatory influences of SIZ1 on several morphophysiological and molecular traits that govern Pi homeostasis in taxonomically diverse Arabidopsis thaliana (Arabidopsis) and Oryza sativa (rice) model species. However, the efforts have been rather modest in identifying SUMO protein targets that play key roles in the maintenance of Pi homeostasis in these model plants contrary to the plethora of them now known in lower organisms and animals. Therefore, to predict the SIZ1-mediated SUMOylome involved in Pi homeostasis, the state-of-the-art high-throughput technologies often used for animals thus provide an attractive paradigm towards achieving the long-term goal of developing Pi use efficient crops.
Collapse
Affiliation(s)
- Manali Datta
- Amity Centre for Nanobiotechnology and Plant Nutrition, Amity University Rajasthan, Jaipur, India
| | - Sanket Kaushik
- Amity Centre for Nanobiotechnology and Plant Nutrition, Amity University Rajasthan, Jaipur, India
| | - Anupam Jyoti
- Amity Centre for Nanobiotechnology and Plant Nutrition, Amity University Rajasthan, Jaipur, India
| | - Nidhi Mathur
- Amity Centre for Nanobiotechnology and Plant Nutrition, Amity University Rajasthan, Jaipur, India
| | - Shanker L Kothari
- Amity Centre for Nanobiotechnology and Plant Nutrition, Amity University Rajasthan, Jaipur, India
| | - Ajay Jain
- Amity Centre for Nanobiotechnology and Plant Nutrition, Amity University Rajasthan, Jaipur, India.
| |
Collapse
|
46
|
Singh A, Roy S, Singh S, Das SS, Gautam V, Yadav S, Kumar A, Singh A, Samantha S, Sarkar AK. Phytohormonal crosstalk modulates the expression of miR166/165s, target Class III HD-ZIPs, and KANADI genes during root growth in Arabidopsis thaliana. Sci Rep 2017; 7:3408. [PMID: 28611467 PMCID: PMC5469759 DOI: 10.1038/s41598-017-03632-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 04/19/2017] [Indexed: 11/09/2022] Open
Abstract
Both phytohormones and non-coding microRNAs (miRNAs) play important role in root development in Arabidopsis thaliana. Mature miR166/165 s, which are derived from precursor transcripts of concerned genes, regulate developmental processes, including leaf and root patterning, by targeting Class III HOMEODOMAIN LEUCINE-ZIPPER (HD-ZIP III) transcription factors (TFs). However, their regulation through hormones remained poorly understood. Here, we show that several phytohormones dynamically regulate the spatio-temporal expression pattern of miR166/165 and target HD-ZIP IIIs in developing roots. Hormone signaling pathway mutants show differential expression pattern of miR166/165, providing further genetic evidence for multilayered regulation of these genes through phytohormones. We further show that a crosstalk of at least six different phytohormones regulate the miR166/165, their target HD-ZIP IIIs, and KANADI (KANs). Our results suggest that HD-ZIP IIIs mediated root development is modulated both transcriptionally through phytohormones and KANs, and post-transcriptionally by miR166/165 that in turn are also regulated by the phytohormonal crosstalk.
Collapse
Affiliation(s)
- Archita Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shradha Roy
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sharmila Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Shabari Sarkar Das
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vibhav Gautam
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sandeep Yadav
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashutosh Kumar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Alka Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sukanya Samantha
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ananda K Sarkar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
47
|
Heuer S, Gaxiola R, Schilling R, Herrera-Estrella L, López-Arredondo D, Wissuwa M, Delhaize E, Rouached H. Improving phosphorus use efficiency: a complex trait with emerging opportunities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 90:868-885. [PMID: 27859875 DOI: 10.1111/tpj.13423] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 05/18/2023]
Abstract
Phosphorus (P) is one of the essential nutrients for plants, and is indispensable for plant growth and development. P deficiency severely limits crop yield, and regular fertilizer applications are required to obtain high yields and to prevent soil degradation. To access P from the soil, plants have evolved high- and low-affinity Pi transporters and the ability to induce root architectural changes to forage P. Also, adjustments of numerous cellular processes are triggered by the P starvation response, a tightly regulated process in plants. With the increasing demand for food as a result of a growing population, the demand for P fertilizer is steadily increasing. Given the high costs of fertilizers and in light of the fact that phosphate rock, the source of P fertilizer, is a finite natural resource, there is a need to enhance P fertilizer use efficiency in agricultural systems and to develop plants with enhanced Pi uptake and internal P-use efficiency (PUE). In this review we will provide an overview of continuing relevant research and highlight different approaches towards developing crops with enhanced PUE. In this context, we will summarize our current understanding of root responses to low phosphorus conditions and will emphasize the importance of combining PUE with tolerance of other stresses, such as aluminum toxicity. Of the many genes associated with Pi deficiency, this review will focus on those that hold promise or are already at an advanced stage of testing (OsPSTOL1, AVP1, PHO1 and OsPHT1;6). Finally, an update is provided on the progress made exploring alternative technologies, such as phosphite fertilizer.
Collapse
Affiliation(s)
- Sigrid Heuer
- University of Adelaide / Australian Centre for Plant Functional Genomics (ACPFG), PMB 1, Glen Osmond, 5064, Australia
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Kavka M, Polle A. Dissecting nutrient-related co-expression networks in phosphate starved poplars. PLoS One 2017; 12:e0171958. [PMID: 28222153 PMCID: PMC5319788 DOI: 10.1371/journal.pone.0171958] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/29/2017] [Indexed: 11/18/2022] Open
Abstract
Phosphorus (P) is an essential plant nutrient, but its availability is often limited in soil. Here, we studied changes in the transcriptome and in nutrient element concentrations in leaves and roots of poplars (Populus × canescens) in response to P deficiency. P starvation resulted in decreased concentrations of S and major cations (K, Mg, Ca), in increased concentrations of N, Zn and Al, while C, Fe and Mn were only little affected. In roots and leaves >4,000 and >9,000 genes were differently expressed upon P starvation. These genes clustered in eleven co-expression modules of which seven were correlated with distinct elements in the plant tissues. One module (4.7% of all differentially expressed genes) was strongly correlated with changes in the P concentration in the plant. In this module the GO term "response to P starvation" was enriched with phosphoenolpyruvate carboxylase kinases, phosphatases and pyrophosphatases as well as regulatory domains such as SPX, but no phosphate transporters. The P-related module was also enriched in genes of the functional category "galactolipid synthesis". Galactolipids substitute phospholipids in membranes under P limitation. Two modules, one correlated with C and N and the other with biomass, S and Mg, were connected with the P-related module by co-expression. In these modules GO terms indicating "DNA modification" and "cell division" as well as "defense" and "RNA modification" and "signaling" were enriched; they contained phosphate transporters. Bark storage proteins were among the most strongly upregulated genes in the growth-related module suggesting that N, which could not be used for growth, accumulated in typical storage compounds. In conclusion, weighted gene coexpression network analysis revealed a hierarchical structure of gene clusters, which separated phosphate starvation responses correlated with P tissue concentrations from other gene modules, which most likely represented transcriptional adjustments related to down-stream nutritional changes and stress.
Collapse
Affiliation(s)
- Mareike Kavka
- Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen, Germany
- Labor für Radio-Isotope, Georg-August Universität Göttingen, Göttingen, Germany
| | - Andrea Polle
- Forstbotanik und Baumphysiologie, Georg-August Universität Göttingen, Göttingen, Germany
- Labor für Radio-Isotope, Georg-August Universität Göttingen, Göttingen, Germany
| |
Collapse
|
49
|
Sun H, Feng F, Liu J, Zhao Q. The Interaction between Auxin and Nitric Oxide Regulates Root Growth in Response to Iron Deficiency in Rice. FRONTIERS IN PLANT SCIENCE 2017; 8:2169. [PMID: 29312409 PMCID: PMC5743679 DOI: 10.3389/fpls.2017.02169] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/11/2017] [Indexed: 05/22/2023]
Abstract
Fe deficiency (-Fe) is a common abiotic stress that affects the root development of plants. Auxin and nitric oxide (NO) are key regulator of root growth under -Fe. However, the interactions between auxin and NO regulate root growth in response to Fe deficiency are complex and unclear. In this study, the indole-3-acetic acid (IAA) and NO levels in roots, and the responses of root growth in rice to different levels of Fe supply were investigated using wild type (WT), ospin1b and osnia2 mutants. -Fe promoted LR formation but inhibited seminal root elongation. IAA levels, [3H] IAA transport, and expression levels of PIN1a-c genes in roots were reduced under -Fe, suggesting that polar auxin transport from shoots to roots was decreased. Application of IAA to -Fe seedlings restored seminal root length, but not LR density, to levels similar to those under normal Fe (+Fe), and the seminal root length was shorter in two ospin1b mutants relative to WT under +Fe, but not under -Fe, confirming that auxin transport participates in -Fe-inhibited seminal root elongation. Moreover, -Fe-induced LR density and -Fe-inhibited seminal root elongation paralleled NO production in roots. Interestingly, similar NO accumulation and responses of LR density and root elongation were observed in osnia2 mutants compared to WT, and the higher expression of NOA gene under -Fe, suggesting that -Fe-induced NO was generated via the NO synthase-like pathway rather than the nitrate reductase pathway. However, IAA could restore the functions of NO in inhibiting seminal root elongation, but did not replace the role of NO-induced LR formation under -Fe. Overall, our findings suggested that NO functions downstream of auxin in regulating LR formation; NO-inhibited seminal root elongation by decreasing meristem activity in root tips under -Fe, with the involvement of auxin.
Collapse
|
50
|
Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses. Sci Rep 2016; 6:39266. [PMID: 28000793 PMCID: PMC5175279 DOI: 10.1038/srep39266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022] Open
Abstract
The huge variation in root system architecture (RSA) among different rice (Oryza sativa) cultivars is conferred by their genetic makeup and different growth or climatic conditions. Unlike model plant Arabidopsis, the molecular basis of such variation in RSA is very poorly understood in rice. Cultivars with stable variation are valuable resources for identification of genes involved in RSA and related physiological traits. We have screened for RSA and identified two such indica rice cultivars, IR-64 (OsAS83) and IET-16348 (OsAS84), with stable contrasting RSA. OsAS84 produces robust RSA with more crown roots, lateral roots and root hairs than OsAS83. Using comparative root transcriptome analysis of these cultivars, we identified genes related to root development and different physiological responses like abiotic stress responses, hormone signaling, and nutrient acquisition or transport. The two cultivars differ in their response to salinity/dehydration stresses, phosphate/nitrogen deficiency, and different phytohormones. Differential expression of genes involved in salinity or dehydration response, nitrogen (N) transport, phosphate (Pi) starvation signaling, hormone signaling and root development underlies more resistance of OsAS84 towards abiotic stresses, Pi or N deficiency and its robust RSA. Thus our study uncovers gene-network involved in root development and abiotic stress responses in rice.
Collapse
|