1
|
Shirasawa K, Ariizumi T. Near-complete genome assembly of tomato ( Solanum lycopersicum) cultivar Micro-Tom. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2024; 41:367-374. [PMID: 40083580 PMCID: PMC11897730 DOI: 10.5511/plantbiotechnology.24.0522a] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 05/22/2024] [Indexed: 03/16/2025]
Abstract
We present a near-complete genome assembly of tomato (Solanum lycopersicum) cultivar Micro-Tom, which has been recognized as a model cultivar for fruit research. The genome DNA of Micro-Tom, provided by the National BioResource Project (NBRP) Tomato of Japan, was sequenced to obtain 72 Gb of high-fidelity long reads. These reads were assembled into 140 contigs, spanning 832.8 Mb, with an N50 length of 39.6 Mb. The contigs were aligned against the tomato reference genome sequence SL4.0 to establish a chromosome-level assembly. The genome assembly of Micro-Tom contained 98.5% complete BUSCOs and a total of 31,429 genes. Comparative genome structure analysis revealed that Micro-Tom possesses a cluster of ribosomal DNA genes spanning a 15 Mb stretch at the short arm of chromosome 2. This region was not found in the genome assemblies of previously sequenced tomato cultivars, possibly because of the inability of previous technologies to sequence such repetitive DNA. In conclusion, the near-complete genome assembly of Micro-Tom reported in this study would advance the genomics and genetics research on tomato and facilitate the breeding of improved tomato cultivars.
Collapse
Affiliation(s)
- Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Tohru Ariizumi
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
2
|
Nagasaki H, Shirasawa K, Hoshikawa K, Isobe S, Ezura H, Aoki K, Hirakawa H. Genomic variation across distribution of Micro-Tom, a model cultivar of tomato (Solanum lycopersicum). DNA Res 2024; 31:dsae016. [PMID: 38845356 PMCID: PMC11481021 DOI: 10.1093/dnares/dsae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/09/2024] [Accepted: 06/02/2024] [Indexed: 10/17/2024] Open
Abstract
Micro-Tom is a cultivar of tomato (Solanum lycopersicum), which is known as a major crop and model plant in Solanaceae. Micro-Tom has phenotypic traits such as dwarfism, and substantial EMS-mutagenized lines have been reported. After Micro-Tom was generated in Florida, USA, it was distributed to research institutes worldwide and used as a genetic resource. In Japan, the Micro-Tom lines have been genetically fixed; currently, three lines have been re-distributed from three institutes, but many phenotypes among the lines have been observed. We have determined the genome sequence de novo of the Micro-Tom KDRI line, one of the Micro-Tom lines distributed from Kazusa DNA Research Institute (KDRI) in Japan, and have built chromosome-scale pseudomolecules. Genotypes among six Micro-Tom lines, including three in Japan, one in the United States, one in France, and one in Brazil showed phenotypic alternation. Here, we unveiled the swift emergence of genetic diversity in both phenotypes and genotypes within the Micro-Tom genome sequence during its propagation. These findings offer valuable insights crucial for the management of bioresources.
Collapse
Affiliation(s)
- Hideki Nagasaki
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Kenta Shirasawa
- Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Ken Hoshikawa
- Tsukuba Plant Innovation Research Center, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki 305-8686, Japan
| | - Sachiko Isobe
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, Institute of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Metropolitan University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Hideki Hirakawa
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa-kamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|
3
|
Khan Q, Wang Y, Xia G, Yang H, Luo Z, Zhang Y. Deleterious Effects of Heat Stress on the Tomato, Its Innate Responses, and Potential Preventive Strategies in the Realm of Emerging Technologies. Metabolites 2024; 14:283. [PMID: 38786760 PMCID: PMC11122942 DOI: 10.3390/metabo14050283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The tomato is a fruit vegetable rich in nutritional and medicinal value grown in greenhouses and fields worldwide. It is severely sensitive to heat stress, which frequently occurs with rising global warming. Predictions indicate a 0.2 °C increase in average surface temperatures per decade for the next three decades, which underlines the threat of austere heat stress in the future. Previous studies have reported that heat stress adversely affects tomato growth, limits nutrient availability, hammers photosynthesis, disrupts reproduction, denatures proteins, upsets signaling pathways, and damages cell membranes. The overproduction of reactive oxygen species in response to heat stress is toxic to tomato plants. The negative consequences of heat stress on the tomato have been the focus of much investigation, resulting in the emergence of several therapeutic interventions. However, a considerable distance remains to be covered to develop tomato varieties that are tolerant to current heat stress and durable in the perspective of increasing global warming. This current review provides a critical analysis of the heat stress consequences on the tomato in the context of global warming, its innate response to heat stress, and the elucidation of domains characterized by a scarcity of knowledge, along with potential avenues for enhancing sustainable tolerance against heat stress through the involvement of diverse advanced technologies. The particular mechanism underlying thermotolerance remains indeterminate and requires further elucidatory investigation. The precise roles and interplay of signaling pathways in response to heat stress remain unresolved. The etiology of tomato plants' physiological and molecular responses against heat stress remains unexplained. Utilizing modern functional genomics techniques, including transcriptomics, proteomics, and metabolomics, can assist in identifying potential candidate proteins, metabolites, genes, gene networks, and signaling pathways contributing to tomato stress tolerance. Improving tomato tolerance against heat stress urges a comprehensive and combined strategy including modern techniques, the latest apparatuses, speedy breeding, physiology, and molecular markers to regulate their physiological, molecular, and biochemical reactions.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Zhang
- Department of Landscape and Horticulture‚ Ecology College‚ Lishui University‚ Lishui 323000‚ China; (Q.K.); (Y.W.); (G.X.); (H.Y.); (Z.L.)
| |
Collapse
|
4
|
Deng CH, Naithani S, Kumari S, Cobo-Simón I, Quezada-Rodríguez EH, Skrabisova M, Gladman N, Correll MJ, Sikiru AB, Afuwape OO, Marrano A, Rebollo I, Zhang W, Jung S. Genotype and phenotype data standardization, utilization and integration in the big data era for agricultural sciences. Database (Oxford) 2023; 2023:baad088. [PMID: 38079567 PMCID: PMC10712715 DOI: 10.1093/database/baad088] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 10/17/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023]
Abstract
Large-scale genotype and phenotype data have been increasingly generated to identify genetic markers, understand gene function and evolution and facilitate genomic selection. These datasets hold immense value for both current and future studies, as they are vital for crop breeding, yield improvement and overall agricultural sustainability. However, integrating these datasets from heterogeneous sources presents significant challenges and hinders their effective utilization. We established the Genotype-Phenotype Working Group in November 2021 as a part of the AgBioData Consortium (https://www.agbiodata.org) to review current data types and resources that support archiving, analysis and visualization of genotype and phenotype data to understand the needs and challenges of the plant genomic research community. For 2021-22, we identified different types of datasets and examined metadata annotations related to experimental design/methods/sample collection, etc. Furthermore, we thoroughly reviewed publicly funded repositories for raw and processed data as well as secondary databases and knowledgebases that enable the integration of heterogeneous data in the context of the genome browser, pathway networks and tissue-specific gene expression. Based on our survey, we recommend a need for (i) additional infrastructural support for archiving many new data types, (ii) development of community standards for data annotation and formatting, (iii) resources for biocuration and (iv) analysis and visualization tools to connect genotype data with phenotype data to enhance knowledge synthesis and to foster translational research. Although this paper only covers the data and resources relevant to the plant research community, we expect that similar issues and needs are shared by researchers working on animals. Database URL: https://www.agbiodata.org.
Collapse
Affiliation(s)
- Cecilia H Deng
- Molecular and Digital Breeding, New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited, 120 Mt Albert Road, Auckland 1025, New Zealand
| | - Sushma Naithani
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Sunita Kumari
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York, NY 11724, USA
| | - Irene Cobo-Simón
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Institute of Forest Science (ICIFOR-INIA, CSIC), Madrid, Spain
| | - Elsa H Quezada-Rodríguez
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Ciudad de México, México
- Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Maria Skrabisova
- Department of Biochemistry, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Nick Gladman
- Cold Spring Harbor Laboratory, 1 Bungtown Rd, Cold Spring Harbor, New York, NY 11724, USA
- U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University, Ithaca, NY 14853, USA
| | - Melanie J Correll
- Agricultural and Biological Engineering Department, University of Florida, 1741 Museum Rd, Gainesville, FL 32611, USA
| | | | | | - Annarita Marrano
- Phoenix Bioinformatics, 39899 Balentine Drive, Suite 200, Newark, CA 94560, USA
| | | | - Wentao Zhang
- National Research Council Canada, 110 Gymnasium Pl, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Sook Jung
- Department of Horticulture, Washington State University, 303c Plant Sciences Building, Pullman, WA 99164-6414, USA
| |
Collapse
|
5
|
A Tomato EMS-Mutagenized Population Provides New Valuable Resources for Gene Discovery and Breeding of Developmental Traits. PLANTS 2022; 11:plants11192453. [PMID: 36235319 PMCID: PMC9571841 DOI: 10.3390/plants11192453] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
Abstract
Tomato (Solanum lycopersicum L.) is a major horticultural crop and a model species among eudicots, especially for traits related to reproductive development. Although considerable progress has been made since the tomato genome sequence project was completed, most of the genes identified remain predictions with an unknown or hypothetical function. This lack of functional characterization hampers the use of the huge amount of genomic information available to improve the quality and productivity of this crop. Reverse genetics strategies such as artificial mutagenesis and next-generation sequencing approaches build the perfect tandem for increasing knowledge on functional annotation of tomato genes. This work reports the phenotypic characterization of a tomato mutant collection generated from an EMS chemical mutagenesis program aimed to identify interesting agronomic mutants and novel gene functions. Tomato mutants were grouped into fourteen phenotypic classes, including vegetative and reproductive development traits, and the inheritance pattern of the identified mutations was studied. In addition, causal mutation of a selected mutant line was isolated through a mapping-by-sequencing approach as a proof of concept of this strategy’s successful implementation. Results support tomato mutagenesis as an essential tool for functional genomics in this fleshy-fruited model species and a highly valuable resource for future breeding programs of this crop species aimed at the development of more productive and resilient new varieties under challenging climatic and production scenarios.
Collapse
|
6
|
Vitale E, Velikova V, Tsonev T, Costanzo G, Paradiso R, Arena C. Manipulation of light quality is an effective tool to regulate photosynthetic capacity and fruit antioxidant properties of Solanum lycopersicum L. cv. 'Microtom' in a controlled environment. PeerJ 2022; 10:e13677. [PMID: 35795173 PMCID: PMC9252183 DOI: 10.7717/peerj.13677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 01/17/2023] Open
Abstract
Light quality plays an essential role in setting plant structural and functional traits, including antioxidant compounds. This paper aimed to assess how manipulating the light spectrum during growth may regulate the photosynthetic activity and fruit bioactive compound synthesis in Solanum lycopersicum L. cv. 'Microtom' to improve plant physiological performance and fruit nutritional value. Plants were cultivated under three light quality regimes: red-green-blue LEDs (RGB), red-blue LEDs (RB) and white fluorescent lamps (FL), from sowing to fruit ripening. Leaf functional traits, photosynthetic efficiency, Rubisco and D1 protein expression, and antioxidant production in fruits were analyzed. Compared to FL, RGB and RB regimes reduced height and increased leaf number and specific leaf area, enhancing plant dwarf growth. The RGB regime improved photosynthesis and stomatal conductance despite lower biomass, favoring Rubisco synthesis and carboxylation rate than RB and FL regimes. The RB light produced plants with fewer flowers and fruits with a lower ascorbic acid amount but the highest polyphenol content, antioxidant capacity and SOD and CAT activities. Our data indicate that the high percentage of the green wavelength in the RGB regime promoted photosynthesis and reduced plant reproductive capacity compared to FL and RB. Conversely, the RB regime was the best in favoring the production of health-promoting compounds in tomato berries.
Collapse
Affiliation(s)
| | - Violeta Velikova
- Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Tsonko Tsonev
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Giulia Costanzo
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Roberta Paradiso
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Carmen Arena
- Department of Biology, University of Naples Federico II, Naples, Italy,BAT Center-Center for Studies on Bioinspired Agro-Environmental Technology, Portici, Italy
| |
Collapse
|
7
|
Sandhya D, Jogam P, Venkatapuram AK, Savitikadi P, Peddaboina V, Allini VR, Abbagani S. Highly efficient Agrobacterium-mediated transformation and plant regeneration system for genome engineering in tomato. Saudi J Biol Sci 2022; 29:103292. [PMID: 35540178 PMCID: PMC9079358 DOI: 10.1016/j.sjbs.2022.103292] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/05/2022] [Accepted: 04/17/2022] [Indexed: 11/19/2022] Open
Abstract
Tomato (Solanum lycopersicum L.) is an important vegetable and nutritious crop plant worldwide. They are rich sources of several indispensable compounds such as lycopene, minerals, vitamins, carotenoids, essential amino acids, and bioactive polyphenols. Plant regeneration and Agrobacterium-mediated genetic transformation system from different explants in various genotypes of tomato are necessary for genetic improvement. Among diverse plant growth regulator (PGR) combinations and concentrations tested, Zeatin (ZEA) at 2.0 mg l-1 in combination with 0.1 mg l-1 indole-3-acetic acid (IAA) generated the most shoots/explant from the cotyledon of Arka Vikas (36.48 shoots/explant) and PED (24.68 shoots/explant), respectively. The hypocotyl explant produced 28.76 shoots/explant in Arka Vikas and 19.44 shoots/explant in PED. In contrast, leaf explant induced 23.54 shoots/explant in Arka Vikas and 17.64 shoots/explant in PED. The obtained multiple shoot buds from three explant types were elongated on a medium fortified with Gibberellic acid (GA3) (1.0 mg l-1), IAA (0.5 mg l-1), and ZEA (0.5 mg l-1) in both the cultivars. The rooting was observed on a medium amended with 0.5 mg l-1 indole 3-butyric acid (IBA). The transformation efficiency was significantly improved by optimizing the pre-culture of explants, co-cultivation duration, bacterial density and infection time, and acetosyringone concentration. The presence of transgenes in the plant genome was validated using different methods like histochemical GUS assay, Polymerase Chain Reaction (PCR), and Southern blotting. The transformation efficiency was 42.8% in PED and 64.6% in Arka Vikas. A highly repeatable plant regeneration protocol was established by manipulating various plant growth regulators (PGRs) in two tomato cultivars (Arka Vikas and PED). The Agrobacterium-mediated transformation method was optimized using different explants like cotyledon, hypocotyl, and leaf of two tomato genotypes. The present study could be favourable to transferring desirable traits and precise genome editing techniques to develop superior tomato genotypes.
Collapse
Affiliation(s)
- Dulam Sandhya
- Department of Biotechnology, Kakatiya University, Warangal, Telangana 506009, India
| | - Phanikanth Jogam
- Department of Biotechnology, Kakatiya University, Warangal, Telangana 506009, India
| | | | | | | | | | - Sadanandam Abbagani
- Department of Biotechnology, Kakatiya University, Warangal, Telangana 506009, India
| |
Collapse
|
8
|
Hoshikawa K, Pham D, Ezura H, Schafleitner R, Nakashima K. Genetic and Molecular Mechanisms Conferring Heat Stress Tolerance in Tomato Plants. FRONTIERS IN PLANT SCIENCE 2021; 12:786688. [PMID: 35003175 PMCID: PMC8739973 DOI: 10.3389/fpls.2021.786688] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/29/2021] [Indexed: 05/17/2023]
Abstract
Climate change is a major threat to global food security. Changes in climate can directly impact food systems by reducing the production and genetic diversity of crops and their wild relatives, thereby restricting future options for breeding improved varieties and reducing the ability to adapt crops to future challenges. The global surface temperature is predicted to rise by an average of 0.3°C during the next decade, and the Paris Agreement (Paris Climate Accords) aims to limit global warming to below an average of 2°C, preferably to 1.5°C compared to pre-industrial levels. Even if the goal of the Paris Agreement can be met, the predicted rise in temperatures will increase the likelihood of extreme weather events, including heatwaves, making heat stress (HS) a major global abiotic stress factor for many crops. HS can have adverse effects on plant morphology, physiology, and biochemistry during all stages of vegetative and reproductive development. In fruiting vegetables, even moderate HS reduces fruit set and yields, and high temperatures may result in poor fruit quality. In this review, we emphasize the effects of abiotic stress, especially at high temperatures, on crop plants, such as tomatoes, touching upon key processes determining plant growth and yield. Specifically, we investigated the molecular mechanisms involved in HS tolerance and the challenges of developing heat-tolerant tomato varieties. Finally, we discuss a strategy for effectively improving the heat tolerance of vegetable crops.
Collapse
Affiliation(s)
- Ken Hoshikawa
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- Vegetable Diversity and Improvement, World Vegetable Center, Tainan, Taiwan
| | - Dung Pham
- Faculty of Biotechnology, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Hiroshi Ezura
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | | | - Kazuo Nakashima
- Japan International Research Center for Agricultural Sciences, Tsukuba, Japan
| |
Collapse
|
9
|
Nagata T, Lombardo F, Ezura H. Complementation of the tomato HWS gene with its Arabidopsis counterpart demonstrates conservation of the gene function between both species. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:387-390. [PMID: 34782827 PMCID: PMC8562581 DOI: 10.5511/plantbiotechnology.21.0729a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The HAWAIIAN SKIRT (HWS) gene was originally described in Arabidopsis for the characteristic fusion of sepals in the mutant. A tomato line mutated in the putative ortholog gene was isolated in a previous study. The tomato hws-1 mutant showed facultative parthenocarpy and produced fruits with elevated Brix, revealing the gene as a hopeful resource for crop improvement. To confirm the orthology relationship between the Arabidopsis and tomato HWS genes, the hws-1 mutant was complemented with either the tomato wild-type genomic fragment or the Arabidopsis sequence of the gene. In both complementation experiments, defective phenotypes of hws-1 are rescued, albeit to different extents. Recovery of these phenotypes, which include parthenocarpic fruit production, increased Brix, loss of leaflet serration, alteration of bud and petal shape, firmly establishes SlHWS as an ortholog of the originally described HWS in Arabidopsis. This work indicates that the function of HWS is likely to be conserved in a wide range of plant species.
Collapse
Affiliation(s)
- Toshifumi Nagata
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Fabien Lombardo
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
10
|
Lombardo F, Gramazio P, Ezura H. Increase in Phloem Area in the Tomato hawaiian skirt Mutant Is Associated with Enhanced Sugar Transport. Genes (Basel) 2021; 12:genes12060932. [PMID: 34207298 PMCID: PMC8234570 DOI: 10.3390/genes12060932] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 11/29/2022] Open
Abstract
The HAWAIIAN SKIRT (HWS) gene has been described in Arabidopsis, rice, tomato and poplar where it seems to perform distinct functions with relatively little overlap. In tomato, alteration of the gene function confers facultative parthenocarpy, thought to be a consequence of changes in the microRNA metabolism. In the rice mutant, improvement in panicle architecture is associated with an increase in grain yield. Knowing that hws tomato fruits show a higher Brix level, it was suspected that vascular bundles might also be altered in this species, in a similar fashion to the rice phenotype. The pedicel structure of the hws-1 line was therefore examined under the microscope and sugar concentrations from phloem exudate were determined in an enzymatic assay. A distinct increase in the phloem area was observed as well as a higher sugar content in mutant phloem exudates, which is hypothesized to contribute to the high Brix level in the mutant fruits. Furthermore, the described phenotype in this study bridges the gap between Arabidopsis and rice phenotypes, suggesting that the modulation of the microRNA metabolism by HWS influences traits of agricultural interest across several species.
Collapse
Affiliation(s)
- Fabien Lombardo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
- Correspondence:
| | - Pietro Gramazio
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan;
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba 305-8572, Japan;
| |
Collapse
|
11
|
Emwas AHM, Al-Rifai N, Szczepski K, Alsuhaymi S, Rayyan S, Almahasheer H, Jaremko M, Brennan L, Lachowicz JI. You Are What You Eat: Application of Metabolomics Approaches to Advance Nutrition Research. Foods 2021; 10:1249. [PMID: 34072780 PMCID: PMC8229064 DOI: 10.3390/foods10061249] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 12/17/2022] Open
Abstract
A healthy condition is defined by complex human metabolic pathways that only function properly when fully satisfied by nutritional inputs. Poor nutritional intakes are associated with a number of metabolic diseases, such as diabetes, obesity, atherosclerosis, hypertension, and osteoporosis. In recent years, nutrition science has undergone an extraordinary transformation driven by the development of innovative software and analytical platforms. However, the complexity and variety of the chemical components present in different food types, and the diversity of interactions in the biochemical networks and biological systems, makes nutrition research a complicated field. Metabolomics science is an "-omic", joining proteomics, transcriptomics, and genomics in affording a global understanding of biological systems. In this review, we present the main metabolomics approaches, and highlight the applications and the potential for metabolomics approaches in advancing nutritional food research.
Collapse
Affiliation(s)
- Abdul-Hamid M. Emwas
- Imaging and Characterization Core Lab, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Nahla Al-Rifai
- Environmental Technology Management (2005-2012), College for Women, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait;
| | - Kacper Szczepski
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (S.A.); (M.J.)
| | - Shuruq Alsuhaymi
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (S.A.); (M.J.)
| | - Saleh Rayyan
- Chemistry Department, Birzeit University, Birzeit 627, Palestine;
| | - Hanan Almahasheer
- Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University (IAU), Dammam 31441-1982, Saudi Arabia;
| | - Mariusz Jaremko
- Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia; (K.S.); (S.A.); (M.J.)
| | - Lorraine Brennan
- Institute of Food and Health and Conway Institute, School of Agriculture & Food Science, Dublin 4, Ireland;
| | - Joanna Izabela Lachowicz
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria, 09042 Monserrato, Italy
| |
Collapse
|
12
|
Alaguero-Cordovilla A, Sánchez-García AB, Ibáñez S, Albacete A, Cano A, Acosta M, Pérez-Pérez JM. An auxin-mediated regulatory framework for wound-induced adventitious root formation in tomato shoot explants. PLANT, CELL & ENVIRONMENT 2021; 44:1642-1662. [PMID: 33464573 DOI: 10.1111/pce.14001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 05/24/2023]
Abstract
Adventitious roots (ARs) are produced from non-root tissues in response to different environmental signals, such as abiotic stresses, or after wounding, in a complex developmental process that requires hormonal crosstalk. Here, we characterized AR formation in young seedlings of Solanum lycopersicum cv. 'Micro-Tom' after whole root excision by means of physiological, genetic and molecular approaches. We found that a regulated basipetal auxin transport from the shoot and local auxin biosynthesis triggered by wounding are both required for the re-establishment of internal auxin gradients within the vasculature. This promotes cell proliferation at the distal cambium near the wound in well-defined positions of the basal hypocotyl and during a narrow developmental window. In addition, a pre-established pattern of differential auxin responses along the apical-basal axis of the hypocotyl and an as of yet unknown cell-autonomous inhibitory pathway contribute to the temporal and spatial patterning of the newly formed ARs on isolated hypocotyl explants. Our work provides an experimental outline for the dissection of wound-induced AR formation in tomato, a species that is suitable for molecular identification of gene regulatory networks via forward and reverse genetics approaches.
Collapse
Affiliation(s)
| | | | - Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - Alfonso Albacete
- Present address: Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA), La Alberca, Spain
- CEBAS-CSIC, Department of Plant Nutrition, Campus Universitario de Espinardo, Espinardo, Murcia, Spain
| | - Antonio Cano
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain
| | - Manuel Acosta
- Departamento de Biología Vegetal, Universidad de Murcia, Murcia, Spain
| | | |
Collapse
|
13
|
Mori K, Lemaire-Chamley M, Jorly J, Carrari F, Conte M, Asamizu E, Mizoguchi T, Ezura H, Rothan C. The conserved brassinosteroid-related transcription factor BIM1a negatively regulates fruit growth in tomato. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1181-1197. [PMID: 33097930 DOI: 10.1093/jxb/eraa495] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Brassinosteroids (BRs) are steroid hormones that play key roles in plant development and defense. Our goal is to harness the extensive knowledge of the Arabidopsis BR signaling network to improve productivity in crop species. This first requires identifying components of the conserved network and their function in the target species. Here, we investigated the function of SlBIM1a, the closest tomato homolog of AtBIM1, which is highly expressed in fruit. SlBIM1a-overexpressing lines displayed severe plant and fruit dwarfism, and histological characterization of different transgenic lines revealed that SlBIM1a expression negatively correlated with fruit pericarp cell size, resulting in fruit size modifications. These growth phenotypes were in contrast to those found in Arabidopsis, and this was confirmed by the reciprocal ectopic expression of SlBIM1a/b in Arabidopsis and of AtBIM1 in tomato. These results determined that BIM1 function depends more on the recipient species than on its primary sequence. Yeast two-hybrid interaction studies and transcriptomic analyses of SlBIM1a-overexpressing fruit further suggested that SlBIM1a acts through its interaction with SlBZH1 to govern the transcriptional regulation of growth-related BR target genes. Together, these results suggest that SlBIM1a is a negative regulator of pericarp cell expansion, possibly at the crossroads with auxin and light signaling.
Collapse
Affiliation(s)
- Kentaro Mori
- INRAE, Univ. Bordeaux, UMR BFP, 33882, Villenave d'Ornon, France
| | | | - Joana Jorly
- INRAE, Univ. Bordeaux, UMR BFP, 33882, Villenave d'Ornon, France
| | - Fernando Carrari
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA Castelar, Argentina
| | - Mariana Conte
- Instituto de Biotecnología, Instituto Nacional de Tecnología Agropecuaria, Consejo Nacional de Investigaciones Científicas y Técnicas, B1712WAA Castelar, Argentina
| | - Erika Asamizu
- Department of Plant Life Science, Faculty of Agriculture, Ryukoku University, Otsu, Shiga, Japan
| | - Tsuyoshi Mizoguchi
- Department of Natural Sciences, International Christian University, Mitaka, Tokyo, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tskuba, Ibaraki, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tskuba, Ibaraki, Japan
| | | |
Collapse
|
14
|
Alaguero-Cordovilla A, Gran-Gómez FJ, Jadczak P, Mhimdi M, Ibáñez S, Bres C, Just D, Rothan C, Pérez-Pérez JM. A quick protocol for the identification and characterization of early growth mutants in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110673. [PMID: 33218638 DOI: 10.1016/j.plantsci.2020.110673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
Root system architecture (RSA) manipulation may improve water and nutrient capture by plants under normal and extreme climate conditions. With the aim of initiating the genetic dissection of RSA in tomato, we established a defined ontology that allowed the curated annotation of the observed phenotypes on 12 traits at four consecutive growth stages. In addition, we established a quick approach for the molecular identification of the mutations associated with the trait-of-interest by using a whole-genome sequencing approach that does not require the building of an additional mapping population. As a proof-of-concept, we screened 4543 seedlings from 300 tomato M3 lines (Solanum lycopersicum L. cv. Micro-Tom) generated by chemical mutagenesis with ethyl methanesulfonate. We studied the growth and early development of both the root system (primary and lateral roots) and the aerial part of the seedlings as well as the wound-induced adventitious roots emerging from the hypocotyl. We identified 659 individuals (belonging to 203 M3 lines) whose early seedling and RSA phenotypes differed from those of their reference background. We confirmed the genetic segregation of the mutant phenotypes affecting primary root length, seedling viability and early RSA in 31 M4 families derived from 15 M3 lines selected in our screen. Finally, we identified a missense mutation in the SlCESA3 gene causing a seedling-lethal phenotype with short roots. Our results validated the experimental approach used for the identification of tomato mutants during early growth, which will allow the molecular identification of the genes involved.
Collapse
Affiliation(s)
| | | | - Paula Jadczak
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Mariem Mhimdi
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Sergio Ibáñez
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202, Elche, Alicante, Spain.
| | - Cécile Bres
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | - Daniel Just
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | - Christophe Rothan
- INRAE and University of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140, Villenave d'Ornon, France.
| | | |
Collapse
|
15
|
Komatsu H, Abdellatif IMY, Yuan S, Ono M, Nonaka S, Ezura H, Ariizumi T, Miura K. Genome editing in PDS genes of tomatoes by non-selection method and of Nicotiana benthamiana by one single guide RNA to edit two orthologs. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2020; 37:213-221. [PMID: 32821229 PMCID: PMC7434671 DOI: 10.5511/plantbiotechnology.20.0527b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The CRISPR/Cas9 system is widely used for targeted mutagenesis in many organisms including plants. For application of this system, tissue culture methods need to be established. In this study, detailed methods for introduction of mutations in tomato and Nicotiana benthamiana plants using the CRISPR/Cas9 system are described. The methods include tissue culture protocols for tomato and N. benthamiana. We also demonstrate the methodology to generate Cas9-free genome edited tomato plants and use of one single guide RNA (sgRNA) to edit two orthologs in N. benthamiana. The examples of editing the PHYTOENE DESATURASE (PDS) genes in these plants are also provided. The Cas9-free tomato line was obtained when tomato plants were cultured on a non-selective medium after transformation with the CRISPR/Cas9 system. Two orthologs of PDS in N. benthamiana were mutated using a sgRNA, because these orthologs contain the same nucleotide sequences with PAM motif. These mutations were inherited to the next generation. The mutations in the PDS genes resulted in an albino phenotype in tomato and N. benthamiana plants. These results demonstrate that the non-selective method is one of the ways to obtain Cas9-free genome editing in tomato plants and that the two orthologs can be edited by one sgRNA in N. benthamiana.
Collapse
Affiliation(s)
- Hiroki Komatsu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Islam M. Y. Abdellatif
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Shaoze Yuan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Misaki Ono
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Satoko Nonaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Ibaraki 305-8572, Japan
| | - Tohru Ariizumi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Ibaraki 305-8572, Japan
- E-mail: Tel & Fax: +81-29-853-4710
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, Ibaraki 305-8572, Japan
- E-mail: Tel & Fax: +81-29-853-6401
| |
Collapse
|
16
|
Schuurink R, Tissier A. Glandular trichomes: micro-organs with model status? THE NEW PHYTOLOGIST 2020; 225:2251-2266. [PMID: 31651036 DOI: 10.1111/nph.16283] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/01/2019] [Indexed: 05/19/2023]
Abstract
Glandular trichomes are epidermal outgrowths that are the site of biosynthesis and storage of large quantities of specialized metabolites. Besides their role in the protection of plants against biotic and abiotic stresses, they have attracted interest owing to the importance of the compounds they produce for human use; for example, as pharmaceuticals, flavor and fragrance ingredients, or pesticides. Here, we review what novel concepts investigations on glandular trichomes have brought to the field of specialized metabolism, particularly with respect to chemical and enzymatic diversity. Furthermore, the next challenges in the field are understanding the metabolic network underlying the high productivity of glandular trichomes and the transport and storage of metabolites. Another emerging area is the development of glandular trichomes. Studies in some model species, essentially tomato, tobacco, and Artemisia, are now providing the first molecular clues, but many open questions remain: How is the distribution and density of different trichome types on the leaf surface controlled? When is the decision for an epidermal cell to differentiate into one type of trichome or another taken? Recent advances in gene editing make it now possible to address these questions and promise exciting discoveries in the near future.
Collapse
Affiliation(s)
- Robert Schuurink
- Swammerdam Institute for Life Sciences, Green Life Science Research Cluster, University of Amsterdam, Postbus 1210, 1000 BE, Amsterdam, the Netherlands
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, 06120, Halle (Saale), Germany
| |
Collapse
|
17
|
Abstract
Tomato is a major crop plant and an important constituent of the human diet. Exclusive features such as bearing fleshy fruits and undergoing a phase transition from partially photosynthetic to fully heterotrophic metabolism make tomato fruit a model system for fruit development studies. Although the tomato genome has been completely sequenced, functional proteomics studies are still at their starting stage. Proteomics technologies, especially the combination of multiple approaches, provide a very powerful tool to accurately identify functional proteins and investigate certain sets of proteins in more detail. The direct binding of plant 14-3-3 proteins to their multiple target proteins modulates the functions of the latter, suggesting that these 14-3-3 proteins are directly involved in various physiological pathways. This chapter outline methods for the identification of 14-3-3 protein complexes in tomato fruit tissues. These methods include detailed protocols for protein extraction, coimmunoprecipitation, SDS-PAGE, SYPRO Ruby staining, in-gel trypsin digestion, and LC-MS/MS analysis for 14-3-3 interactomics.
Collapse
|
18
|
Chaudhary J, Khatri P, Singla P, Kumawat S, Kumari A, R V, Vikram A, Jindal SK, Kardile H, Kumar R, Sonah H, Deshmukh R. Advances in Omics Approaches for Abiotic Stress Tolerance in Tomato. BIOLOGY 2019; 8:biology8040090. [PMID: 31775241 PMCID: PMC6956103 DOI: 10.3390/biology8040090] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 11/11/2019] [Accepted: 11/19/2019] [Indexed: 12/21/2022]
Abstract
Tomato, one of the most important crops worldwide, has a high demand in the fresh fruit market and processed food industries. Despite having considerably high productivity, continuous supply as per the market demand is hard to achieve, mostly because of periodic losses occurring due to biotic as well as abiotic stresses. Although tomato is a temperate crop, it is grown in almost all the climatic zones because of widespread demand, which makes it challenge to adapt in diverse conditions. Development of tomato cultivars with enhanced abiotic stress tolerance is one of the most sustainable approaches for its successful production. In this regard, efforts are being made to understand the stress tolerance mechanism, gene discovery, and interaction of genetic and environmental factors. Several omics approaches, tools, and resources have already been developed for tomato growing. Modern sequencing technologies have greatly accelerated genomics and transcriptomics studies in tomato. These advancements facilitate Quantitative trait loci (QTL) mapping, genome-wide association studies (GWAS), and genomic selection (GS). However, limited efforts have been made in other omics branches like proteomics, metabolomics, and ionomics. Extensive cataloging of omics resources made here has highlighted the need for integration of omics approaches for efficient utilization of resources and a better understanding of the molecular mechanism. The information provided here will be helpful to understand the plant responses and the genetic regulatory networks involved in abiotic stress tolerance and efficient utilization of omics resources for tomato crop improvement.
Collapse
Affiliation(s)
- Juhi Chaudhary
- Department of Biology, Oberlin College, Oberlin, OH 44074, USA;
| | - Praveen Khatri
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Pankaj Singla
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Surbhi Kumawat
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Anu Kumari
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
| | - Vinaykumar R
- Department of Vegetable Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (V.R.); (A.V.)
| | - Amit Vikram
- Department of Vegetable Science, Dr. Yashwant Singh Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh 173230, India; (V.R.); (A.V.)
| | - Salesh Kumar Jindal
- Department of Vegetable Science, Punjab Agricultural University, Ludhiana, Punjab 141004, India;
| | - Hemant Kardile
- Division of Crop Improvement, ICAR-Central Potato Research Institute (CPRI), Shimla, Himachal Pradesh 171001, India;
| | - Rahul Kumar
- Department of Plant Science, University of Hyderabad, Hyderabad 500046, India;
| | - Humira Sonah
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
- Correspondence: (H.S.); (R.D.)
| | - Rupesh Deshmukh
- National Agri-Food Biotechnology Institute (NABI), Mohali, Punjab 140306, India; (P.K.); (P.S.); (S.K.); (A.K.)
- Correspondence: (H.S.); (R.D.)
| |
Collapse
|
19
|
Mayo-Hernández J, Ramírez-Chávez E, Molina-Torres J, Guillén-Cisneros MDL, Rodríguez-Herrera R, Hernández-Castillo F, Flores-Olivas A, Valenzuela-Soto JH. Effects of Bactericera cockerelli Herbivory on Volatile Emissions of Three Varieties of Solanum lycopersicum. PLANTS 2019; 8:plants8110509. [PMID: 31731734 PMCID: PMC6918368 DOI: 10.3390/plants8110509] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/15/2019] [Accepted: 11/07/2019] [Indexed: 11/16/2022]
Abstract
Domesticated tomato (Solanum lycopersicum L.) crops have presented an increased susceptibility to pests under field and greenhouse conditions. Among these pests is tomato/potato psyllid, Bactericera cockerelli Sulc (Hemiptera: Triozidae), a major pest in solanaceous crops. In this study, we evaluated volatile organic compound (VOC) emissions from the headspace in three healthy varieties of tomato plants (Floradade, Micro-Tom and wild) under greenhouse conditions using solid-phase microextraction and gas chromatography–mass spectrometry (SPME/GC-MS). Later, independent bioassays were performed to evaluate VOC emissions with three varieties infested with nymphs of B. cockerelli. The results in healthy plants showed markedly different VOC profiles in each variety (14 compounds for wild, 17 for Floradade and 4 for Micro-Tom). Plants infested with nymphs showed changes in VOC emissions distinctly in Floradade and wild varieties. We suggest that these qualitative differences in VOC profiles by the degree of domestication could explain the preferences of B. cockerelli.
Collapse
Affiliation(s)
- Juan Mayo-Hernández
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo, C.P. 25315, Coahuila, Mexico; (J.M.-H.); (F.H.-C.)
| | - Enrique Ramírez-Chávez
- CINVESTAV-Unidad Irapuato, Unidad de Biotecnología e Ingeniería Genética de Plantas, Km 9.6 del Libramiento Norte Carretera Irapuato-León, Irapuato, C.P. 36821, Guanajuato, Mexico; (E.R.-C.); (J.M.-T.)
| | - Jorge Molina-Torres
- CINVESTAV-Unidad Irapuato, Unidad de Biotecnología e Ingeniería Genética de Plantas, Km 9.6 del Libramiento Norte Carretera Irapuato-León, Irapuato, C.P. 36821, Guanajuato, Mexico; (E.R.-C.); (J.M.-T.)
| | - María de Lourdes Guillén-Cisneros
- Centro de Investigación en Química Aplicada, Laboratorio Central de Instrumentación Analítica, Boulevard Enrique Reyna Hermosillo 140, Saltillo, C.P. 25294, Coahuila, Mexico;
| | - Raúl Rodríguez-Herrera
- Universidad Autónoma de Coahuila, Facultad de Ciencias Químicas, Boulevard Venustiano Carranza y José Cárdenas S/N, Saltillo, C.P. 25280, Coahuila, Mexico;
| | - Francisco Hernández-Castillo
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo, C.P. 25315, Coahuila, Mexico; (J.M.-H.); (F.H.-C.)
| | - Alberto Flores-Olivas
- Departamento de Parasitología, Universidad Autónoma Agraria Antonio Narro, Buenavista, Saltillo, C.P. 25315, Coahuila, Mexico; (J.M.-H.); (F.H.-C.)
- Correspondence: (A.F.-O.); (J.H.V.-S.)
| | - José Humberto Valenzuela-Soto
- CONACyT-Centro de Investigación en Química Aplicada, Departamento de Biocienciasy Agrotecnología, Boulevard Enrique Reyna Hermosillo 140, Saltillo, C.P. 25294, Coahuila, Mexico
- Correspondence: (A.F.-O.); (J.H.V.-S.)
| |
Collapse
|
20
|
Xiao XO, Lin W, Li K, Feng X, Jin H, Zou H. Genome-Wide Analysis of Artificial Mutations Induced by Ethyl Methanesulfonate in the Eggplant ( Solanum melongena L.). Genes (Basel) 2019; 10:E595. [PMID: 31394801 PMCID: PMC6722539 DOI: 10.3390/genes10080595] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/19/2019] [Accepted: 08/01/2019] [Indexed: 12/20/2022] Open
Abstract
Whole-genome sequences of four EMS (ethyl methanesulfonate)-induced eggplant mutants were analyzed to identify genome-wide mutations. In total, 173.01 GB of paired-end reads were obtained for four EMS-induced mutants and (WT) wild type and 1,076,010 SNPs (single nucleotide polymorphisms) and 183,421 indels were identified. The most common mutation type was C/G to T/A transitions followed by A/T to G/C transitions. The mean densities were one SNP per 1.3 to 2.6 Mb. The effect of mutations on gene function was annotated and only 7.2% were determined to be deleterious. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed 10 and 11 genes, which were nonsynonymous mutation or frameshift deletion in 48-5 and L6-5 involved in the anthocyanin biosynthesis or flavone and flavonol biosynthesis. QRT-PCR results showed that only the Sme2.5_06210.1_g00004.1, which was annotated as UFGT (Flavonoid galactosidase transferase), expression significantly decreased in the L6-5 mutant compared with the WT. Also, the Sme2.5_06210.1_g00004.1 expression was lower in the colorless eggplant compared with colorful eggplant in the natural eggplant cultivar. These results suggest that Sme2.5_06210.1_g00004.1 may play a key role in eggplant anthocyanin synthesis.
Collapse
Affiliation(s)
- Xi-Ou Xiao
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China.
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China.
| | - Wenqiu Lin
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| | - Ke Li
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| | - Xuefeng Feng
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| | - Hui Jin
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| | - Huafeng Zou
- South Subtropical Crop Research Institute Chinese Academy of Tropical Agricultural Sciences, Zhanjiang City 524091, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic Improvement, Guangdong Province, Zhanjiang City 524091, China
| |
Collapse
|
21
|
Damayanti F, Lombardo F, Masuda JI, Shinozaki Y, Ichino T, Hoshikawa K, Okabe Y, Wang N, Fukuda N, Ariizumi T, Ezura H. Functional Disruption of the Tomato Putative Ortholog of HAWAIIAN SKIRT Results in Facultative Parthenocarpy, Reduced Fertility and Leaf Morphological Defects. FRONTIERS IN PLANT SCIENCE 2019; 10:1234. [PMID: 31681360 PMCID: PMC6801985 DOI: 10.3389/fpls.2019.01234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/05/2019] [Indexed: 05/03/2023]
Abstract
A number of plant microRNAs have been demonstrated to regulate developmental processes by integrating internal and environmental cues. Recently, the Arabidopsis thaliana F-box protein HAWAIIAN SKIRT (HWS) gene has been described for its role in miRNA biogenesis. We have isolated in a forward genetic screen a tomato (Solanum lycopersicum) line mutated in the putative ortholog of HWS. We show that the tomato hws-1 mutant exhibits reduction in leaflet serration, leaflet fusion, some degree of floral organ fusion, and alteration in miRNA levels, similarly to the original A. thaliana hws-1 mutant. We also describe novel phenotypes for hws such as facultative parthenocarpy, reduction in fertility and flowering delay. In slhws-1, the parthenocarpy trait is influenced by temperature, with higher parthenocarpy rate in warmer environmental conditions. Conversely, slhws-1 is able to produce seeds when grown in cooler environment. We show that the reduction in seed production in the mutant is mainly due to a defective male function and that the levels of several miRNAs are increased, in accordance with previous HWS studies, accounting for the abnormal leaf and floral phenotypes as well as the altered flowering and fruit development processes. This is the first study of HWS in fleshy fruit plant, providing new insights in the function of this gene in fruit development.
Collapse
Affiliation(s)
- Farida Damayanti
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Fabien Lombardo
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Jun-ichiro Masuda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Japan
| | - Yoshihito Shinozaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Takuji Ichino
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
| | - Ken Hoshikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Japan
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Innovation Center, Nippon Flour Mills Co., Ltd, Atsugi, Japan
| | - Ning Wang
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Naoya Fukuda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Japan
- *Correspondence: Hiroshi Ezura,
| |
Collapse
|
22
|
Hoshikawa K, Fujita S, Renhu N, Ezura K, Yamamoto T, Nonaka S, Ezura H, Miura K. Efficient transient protein expression in tomato cultivars and wild species using agroinfiltration-mediated high expression system. PLANT CELL REPORTS 2019; 38:75-84. [PMID: 30328507 DOI: 10.1007/s00299-018-2350-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 10/07/2018] [Indexed: 05/23/2023]
Abstract
The new transient protein expression system using the pBYR2HS vector is applicable to several tomato cultivars and wild species with high level of protein expression. Innovation and improvement of effective tools for transient protein expression in plant cells is critical for the development of plant biotechnology. We have created the new transient protein expression system using the pBYR2HS vector that led to about 4 mg/g fresh weight of protein expression in Nicotiana benthamiana. In this study, we validated the adaptability of this transient protein expression system by agroinfiltration to leaves and fruits of several tomato cultivars and wild species. Although the GFP protein was transiently expressed in the leaves and fruits of all tomato cultivars and wild species, we observed species-specific differences in protein expression. In particular, GFP protein expression was higher in the leaves and fruits of Micro-Tom, Solanum pimpinellifolium (0043) and S. pimpinellifolium (0049-w1) than in those of cultivars and wild species. Furthermore, Agrobacterium with GABA transaminase enhanced transient expression in tomato fruits of Micro-Tom. Taken together with these results, our system is applicable to several tomato cultivars and species as well as a model tomato, even though characteristics are often different among tomato cultivars or species. Thus, the system is an effective, simple, and valuable tool to achieve rapid transgene expression to examine gene function in tomato plant cells.
Collapse
Affiliation(s)
- Ken Hoshikawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
- Japan International Research Center for Agricultural Sciences, 1-1 Ohwashi, Tsukuba, Ibaraki, 305-8686, Japan
| | - Satoshi Fujita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Na Renhu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Kentaro Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Tsuyoshi Yamamoto
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Satoko Nonaka
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroshi Ezura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
- Tsukuba-Plant Innovation Research Center, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
23
|
Alaguero-Cordovilla A, Gran-Gómez FJ, Tormos-Moltó S, Pérez-Pérez JM. Morphological Characterization of Root System Architecture in Diverse Tomato Genotypes during Early Growth. Int J Mol Sci 2018; 19:E3888. [PMID: 30563085 PMCID: PMC6321557 DOI: 10.3390/ijms19123888] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 11/29/2018] [Accepted: 12/03/2018] [Indexed: 12/20/2022] Open
Abstract
Plant roots exploit morphological plasticity to adapt and respond to different soil environments. We characterized the root system architecture of nine wild tomato species and four cultivated tomato (Solanum lycopersicum L.) varieties during early growth in a controlled environment. Additionally, the root system architecture of six near-isogenic lines from the tomato 'Micro-Tom' mutant collection was also studied. These lines were affected in key genes of ethylene, abscisic acid, and anthocyanin pathways. We found extensive differences between the studied lines for a number of meaningful morphological traits, such as lateral root distribution, lateral root length or adventitious root development, which might represent adaptations to local soil conditions during speciation and subsequent domestication. Taken together, our results provide a general quantitative framework for comparing root system architecture in tomato seedlings and other related species.
Collapse
Affiliation(s)
| | | | - Sergio Tormos-Moltó
- Instituto de Bioingeniería, Universidad Miguel Hernández, 03202 Elche, Spain.
- OQOTECH Process Validation System, 03801 Alcoy, Spain.
| | | |
Collapse
|
24
|
Choi SW, Hoshikawa K, Fujita S, Thi DP, Mizoguchi T, Ezura H, Ito E. Evaluation of internal control genes for quantitative realtime PCR analyses for studying fruit development of dwarf tomato cultivar 'Micro-Tom'. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2018; 35:225-235. [PMID: 31819727 PMCID: PMC6879362 DOI: 10.5511/plantbiotechnology.18.0525a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 05/25/2018] [Indexed: 06/10/2023]
Abstract
Quantitative real-time PCR (qRT-PCR) is widely used to analyze the expression profiles of the genes of interest. In order to obtain accurate quantification data, normalization by using reliable internal control genes is essential. In this study, we evaluated the stability and applicability of eight internal control gene candidates for analyzing gene expression during fruit development in dwarf tomato cultivar Micro-Tom. We collected seventeen different samples from flowers and fruits at different developmental stages, and estimated the expression stability of the candidate genes by two statistical algorithms, geNorm and NormFinder. The combined ranking order and qRT-PCR analyses for expression profiles of SlYABBY2a, SlYABBY1a, FRUITFULL1 and APETALA2c suggested that EXPRESSED was the most stable and reliable internal control gene among the candidates. Our analysis also suggested that RPL8 was also suitable if the sample group is limited to fruits at different maturation stages. In addition to EXPRESSED, GAPDH was also applicable for relative quantitation to monitor gene expression profiles through fruit development from pistil to pericarp.
Collapse
Affiliation(s)
- Seung-won Choi
- Department of Natural Sciences, International Christian University (ICU), 3-10-2 Osawa, Mitaka, Tokyo 181-8585, Japan
| | - Ken Hoshikawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Satoshi Fujita
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Dung Pham Thi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Tsuyoshi Mizoguchi
- Department of Natural Sciences, International Christian University (ICU), 3-10-2 Osawa, Mitaka, Tokyo 181-8585, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Emi Ito
- Department of Natural Sciences, International Christian University (ICU), 3-10-2 Osawa, Mitaka, Tokyo 181-8585, Japan
| |
Collapse
|
25
|
Shinozaki Y, Ezura K, Hu J, Okabe Y, Bénard C, Prodhomme D, Gibon Y, Sun TP, Ezura H, Ariizumi T. Identification and functional study of a mild allele of SlDELLA gene conferring the potential for improved yield in tomato. Sci Rep 2018; 8:12043. [PMID: 30104574 PMCID: PMC6089951 DOI: 10.1038/s41598-018-30502-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/24/2018] [Indexed: 12/27/2022] Open
Abstract
Parthenocarpy, or pollination-independent fruit set, is an attractive trait for fruit production and can be induced by increased responses to the phytohormone gibberellin (GA), which regulates diverse aspects of plant development. GA signaling in plants is negatively regulated by DELLA proteins. A loss-of-function mutant of tomato DELLA (SlDELLA), procera (pro) thus exhibits enhanced GA-response phenotypes including parthenocarpy, although the pro mutation also confers some disadvantages for practical breeding. This study identified a new milder hypomorphic allele of SlDELLA, procera-2 (pro-2), which showed weaker GA-response phenotypes than pro. The pro-2 mutant contains a single nucleotide substitution, corresponding to a single amino acid substitution in the SAW subdomain of the SlDELLA. Accumulation of the mutated SlDELLA transcripts in wild-type (WT) resulted in parthenocarpy, while introduction of intact SlDELLA into pro-2 rescued mutant phenotypes. Yeast two-hybrid assays revealed that SlDELLA interacted with three tomato homologues of GID1 GA receptors with increasing affinity upon GA treatment, while their interactions were reduced by the pro and pro-2 mutations. Both pro and pro-2 mutants produced higher fruit yields under high temperature conditions, which were resulted from higher fruit set efficiency, demonstrating the potential for genetic parthenocarpy to improve yield under adverse environmental conditions.
Collapse
Affiliation(s)
- Yoshihito Shinozaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo, 102-0083, Japan
| | - Kentaro Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
- Research Fellow of Japan Society for Promotion of Science (JSPS), Kojimachi, Tokyo, 102-0083, Japan
| | - Jianhong Hu
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Yoshihiro Okabe
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Camille Bénard
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ, Bordeaux, Villenave d'Ornon, F-33883, France
| | - Duyen Prodhomme
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ, Bordeaux, Villenave d'Ornon, F-33883, France
| | - Yves Gibon
- UMR 1332 Biologie du Fruit et Pathologie, INRA, Univ, Bordeaux, Villenave d'Ornon, F-33883, France
| | - Tai-Ping Sun
- Department of Biology, Duke University, Durham, North Carolina, 27708, USA
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan
| | - Tohru Ariizumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
26
|
Pulungan SI, Yano R, Okabe Y, Ichino T, Kojima M, Takebayashi Y, Sakakibara H, Ariizumi T, Ezura H. SlLAX1 is Required for Normal Leaf Development Mediated by Balanced Adaxial and Abaxial Pavement Cell Growth in Tomato. PLANT & CELL PHYSIOLOGY 2018. [PMID: 29528453 DOI: 10.1093/pcp/pcy052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Leaves are the major plant organs with a primary function for photosynthesis. Auxin controls various aspects of plant growth and development, including leaf initiation, expansion and differentiation. Unique and intriguing auxin features include its polar transport, which is mainly controlled by the AUX1/LAX and PIN gene families as influx and efflux carriers, respectively. The role of AUX1/LAX genes in root development is well documented, but the role of these genes in leaf morphogenesis remains unclear. Moreover, most studies have been conducted in the plant model Arabidopsis thaliana, while studies in tomato are still scarce. In this study, we isolated six lines of the allelic curly leaf phenotype 'curl' mutants from a γ-ray and EMS (ethyl methanesulfonate) mutagenized population. Using a map-based cloning strategy combined with exome sequencing, we observed that a mutation occurred in the SlLAX1 gene (Solyc09g014380), which is homologous to an Arabidopsis auxin influx carrier gene, AUX1 (AtAUX1). Characterization of six alleles of single curl mutants revealed the pivotal role of SlLAX1 in controlling tomato leaf flatness by balancing adaxial and abaxial pavement cell growth, which has not been reported in tomato. Using TILLING (Targeting Induced Local Lesions IN Genome) technology, we isolated an additional mutant allele of the SlLAX1 gene and this mutant showed a curled leaf phenotype similar to other curl mutants, suggesting that Solyc09g014380 is responsible for the curl phenotype. These results showed that SlLAX1 is required for normal leaf development mediated by balanced adaxial and abaxial pavement cell growth in tomato.
Collapse
Affiliation(s)
- Sri Imriani Pulungan
- Graduate School Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
| | - Ryoichi Yano
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
| | - Yoshihiro Okabe
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| | - Takuji Ichino
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
| | - Mikiko Kojima
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Yumiko Takebayashi
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource Science, Suehiro 1-7-22, Tsurumi, Yokohama, Kanagawa, 230-0045 Japan
| | - Tohru Ariizumi
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| | - Hiroshi Ezura
- Faculty Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, 305-8572 Japan
- Tsukuba Plant Innovation Research Center, University of Tsukuba, Tsukuba, Ibaraki, 305-8577 Japan
| |
Collapse
|
27
|
Hozumi A, Bera S, Fujiwara D, Obayashi T, Yokoyama R, Nishitani K, Aoki K. Arabinogalactan Proteins Accumulate in the Cell Walls of Searching Hyphae of the Stem Parasitic Plants, Cuscuta campestris and Cuscuta japonica. PLANT & CELL PHYSIOLOGY 2017; 58:1868-1877. [PMID: 29016904 DOI: 10.1093/pcp/pcx121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/17/2017] [Indexed: 05/06/2023]
Abstract
Stem parasitic plants (Cuscuta spp.) develop a specialized organ called a haustorium to penetrate their hosts' stem tissues. To reach the vascular tissues of the host plant, the haustorium needs to overcome the physical barrier of the cell wall, and the parasite-host interaction via the cell wall is a critical process. However, the cell wall components responsible for the establishment of parasitic connections have not yet been identified. In this study, we investigated the spatial distribution patterns of cell wall components at a parasitic interface using parasite-host complexes of Cuscuta campestris-Arabidopsis thaliana and Cuscuta japonica-Glycine max. We focused on arabinogalactan proteins (AGPs), because AGPs accumulate in the cell walls of searching hyphae of both C. campestris and C. japonica. We found more AGPs in elongated haustoria than in pre haustoria, indicating that AGP accumulation is developmentally regulated. Using in situ hybridization, we identified five genes in C. campestris that encode hyphal-expressed AGPs that belong to the fasciclin-like AGP (FLA) family, which were named CcFLA genes. Three of the five CcFLA genes were expressed in the holdfast, which develops on the Cuscuta stem epidermis at the attachment site for the host's stem epidermis. Our results suggest that AGPs are involved in hyphal elongation and adhesion to host cells, and in the adhesion between the epidermal tissues of Cuscuta and its host.
Collapse
Affiliation(s)
- Akitaka Hozumi
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| | - Subhankar Bera
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| | - Daiki Fujiwara
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| | - Takeshi Obayashi
- Graduate School of Information Sciences, Tohoku University, 6-3-09 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Ryusuke Yokoyama
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Kazuhiko Nishitani
- Graduate School of Life Sciences, Tohoku University, 6-3 Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai 599-8531, Japan
| |
Collapse
|
28
|
Salhi A, Negrão S, Essack M, Morton MJL, Bougouffa S, Razali R, Radovanovic A, Marchand B, Kulmanov M, Hoehndorf R, Tester M, Bajic VB. DES-TOMATO: A Knowledge Exploration System Focused On Tomato Species. Sci Rep 2017; 7:5968. [PMID: 28729549 PMCID: PMC5519719 DOI: 10.1038/s41598-017-05448-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/25/2017] [Indexed: 12/29/2022] Open
Abstract
Tomato is the most economically important horticultural crop used as a model to study plant biology and particularly fruit development. Knowledge obtained from tomato research initiated improvements in tomato and, being transferrable to other such economically important crops, has led to a surge of tomato-related research and published literature. We developed DES-TOMATO knowledgebase (KB) for exploration of information related to tomato. Information exploration is enabled through terms from 26 dictionaries and combination of these terms. To illustrate the utility of DES-TOMATO, we provide several examples how one can efficiently use this KB to retrieve known or potentially novel information. DES-TOMATO is free for academic and nonprofit users and can be accessed at http://cbrc.kaust.edu.sa/des_tomato/, using any of the mainstream web browsers, including Firefox, Safari and Chrome.
Collapse
Affiliation(s)
- Adil Salhi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Sónia Negrão
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Magbubah Essack
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Mitchell J L Morton
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Salim Bougouffa
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Rozaimi Razali
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Aleksandar Radovanovic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | | | - Maxat Kulmanov
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
| | - Robert Hoehndorf
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia
| | - Mark Tester
- King Abdullah University of Science and Technology (KAUST), Division of Biological and Environmental Sciences and Engineering, Thuwal, 23955-6900, Saudi Arabia
| | - Vladimir B Bajic
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal, 23955-6900, Saudi Arabia.
- King Abdullah University of Science and Technology (KAUST), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), Thuwal, 23955-6900, Saudi Arabia.
| |
Collapse
|
29
|
Gascuel Q, Diretto G, Monforte AJ, Fortes AM, Granell A. Use of Natural Diversity and Biotechnology to Increase the Quality and Nutritional Content of Tomato and Grape. FRONTIERS IN PLANT SCIENCE 2017; 8:652. [PMID: 28553296 PMCID: PMC5427129 DOI: 10.3389/fpls.2017.00652] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/10/2017] [Indexed: 05/18/2023]
Abstract
Improving fruit quality has become a major goal in plant breeding. Direct approaches to tackling fruit quality traits specifically linked to consumer preferences and environmental friendliness, such as improved flavor, nutraceutical compounds, and sustainability, have slowly been added to a breeder priority list that already includes traits like productivity, efficiency, and, especially, pest and disease control. Breeders already use molecular genetic tools to improve fruit quality although most advances have been made in producer and industrial quality standards. Furthermore, progress has largely been limited to simple agronomic traits easy-to-observe, whereas the vast majority of quality attributes, specifically those relating to flavor and nutrition, are complex and have mostly been neglected. Fortunately, wild germplasm, which is used for resistance against/tolerance of environmental stresses (including pathogens), is still available and harbors significant genetic variation for taste and health-promoting traits. Similarly, heirloom/traditional varieties could be used to identify which genes contribute to flavor and health quality and, at the same time, serve as a good source of the best alleles for organoleptic quality improvement. Grape (Vitis vinifera L.) and tomato (Solanum lycopersicum L.) produce fleshy, berry-type fruits, among the most consumed in the world. Both have undergone important domestication and selection processes, that have dramatically reduced their genetic variability, and strongly standardized fruit traits. Moreover, more and more consumers are asking for sustainable production, incompatible with the wide range of chemical inputs. In the present paper, we review the genetic resources available to tomato/grape breeders, and the recent technological progresses that facilitate the identification of genes/alleles of interest within the natural or generated variability gene pool. These technologies include omics, high-throughput phenotyping/phenomics, and biotech approaches. Our review also covers a range of technologies used to transfer to tomato and grape those alleles considered of interest for fruit quality. These include traditional breeding, TILLING (Targeting Induced Local Lesions in Genomes), genetic engineering, or NPBT (New Plant Breeding Technologies). Altogether, the combined exploitation of genetic variability and innovative biotechnological tools may facilitate breeders to improve fruit quality tacking more into account the consumer standards and the needs to move forward into more sustainable farming practices.
Collapse
Affiliation(s)
- Quentin Gascuel
- Laboratory of Plant-Microbe Interactions, Centre National de la Recherche Scientifique, Institut National de la Recherche Agronomique, Toulouse UniversityCastanet Tolosan, France
| | - Gianfranco Diretto
- Italian National Agency for New Technologies, Energy, and Sustainable Development, Casaccia Research CentreRome, Italy
| | - Antonio J. Monforte
- Instituto de Biología Molecular y Celular de Plantas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| | - Ana M. Fortes
- Faculdade de Ciências de Lisboa, Instituto de Biossistemas e Ciências Integrativas (BioISI), Universidade de LisboaLisboa, Portugal
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Agencia Estatal Consejo Superior de Investigaciones Científicas, Universidad Politécnica de ValenciaValencia, Spain
| |
Collapse
|
30
|
Kudo T, Kobayashi M, Terashima S, Katayama M, Ozaki S, Kanno M, Saito M, Yokoyama K, Ohyanagi H, Aoki K, Kubo Y, Yano K. TOMATOMICS: A Web Database for Integrated Omics Information in Tomato. PLANT & CELL PHYSIOLOGY 2017; 58:e8. [PMID: 28111364 PMCID: PMC5444566 DOI: 10.1093/pcp/pcw207] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 11/16/2016] [Indexed: 05/23/2023]
Abstract
Solanum lycopersicum (tomato) is an important agronomic crop and a major model fruit-producing plant. To facilitate basic and applied research, comprehensive experimental resources and omics information on tomato are available following their development. Mutant lines and cDNA clones from a dwarf cultivar, Micro-Tom, are two of these genetic resources. Large-scale sequencing data for ESTs and full-length cDNAs from Micro-Tom continue to be gathered. In conjunction with information on the reference genome sequence of another cultivar, Heinz 1706, the Micro-Tom experimental resources have facilitated comprehensive functional analyses. To enhance the efficiency of acquiring omics information for tomato biology, we have integrated the information on the Micro-Tom experimental resources and the Heinz 1706 genome sequence. We have also inferred gene structure by comparison of sequences between the genome of Heinz 1706 and the transcriptome, which are comprised of Micro-Tom full-length cDNAs and Heinz 1706 RNA-seq data stored in the KaFTom and Sequence Read Archive databases. In order to provide large-scale omics information with streamlined connectivity we have developed and maintain a web database TOMATOMICS (http://bioinf.mind.meiji.ac.jp/tomatomics/). In TOMATOMICS, access to the information on the cDNA clone resources, full-length mRNA sequences, gene structures, expression profiles and functional annotations of genes is available through search functions and the genome browser, which has an intuitive graphical interface.
Collapse
Affiliation(s)
- Toru Kudo
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Masaaki Kobayashi
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shin Terashima
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Minami Katayama
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Soichi Ozaki
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Maasa Kanno
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Misa Saito
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Koji Yokoyama
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hajime Ohyanagi
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Koh Aoki
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, 599-8531 Japan
| | - Yasutaka Kubo
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530 Japan
| | - Kentaro Yano
- Bioinformatics Laboratory, School of Agriculture, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
31
|
Kanayama Y. Sugar Metabolism and Fruit Development in the Tomato. THE HORTICULTURE JOURNAL 2017; 86:417-425. [PMID: 0 DOI: 10.2503/hortj.okd-ir01] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
|
32
|
Xi-ou X, Wenqiu L, Wei L, Xiaoming G, Lingling L, Feiyue M, Yuge L. The Analysis of Physiological Variations in M 2 Generation of Solanum melongena L. Mutagenized by Ethyl Methane Sulfonate. FRONTIERS IN PLANT SCIENCE 2017; 8:17. [PMID: 28154575 PMCID: PMC5243811 DOI: 10.3389/fpls.2017.00017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 01/04/2017] [Indexed: 05/22/2023]
Abstract
The eggplant was mutagenized with ethyl methane sulfonate (EMS) to enhance its genetic variability in our previous paper. In this article, we further analyzed the phenotype of M2 generation of mutant eggplants. A total of 325 independent M2 families were investigated for phenotypic variation. In addition to the visible phenotypic variation, chlorogenic acid (CGA) concentrations were analyzed in 26 fruits of mutants with High Performance Liquid Chromatography assay. Seventeen fruits exhibited significantly higher concentrations of CGAs than those in wild-type. The anthocyanin concentration of S9-1, the purple black mutant, was higher than WT, meanwhile, the anthocyanin concentration of L6-4 and U36-1 was lower than WT. Furthermore, our RT-PCR result demonstrated that the expression levels of anthocyanin biosynthetic genes, except for SmPAL, were increased in S9-1, and the regulator SmMYB1 was decreased in L6-4 and U36-1 mutants. Together, our data indicated that, M2 generation showed abundant phenotypic variations and the strong potential usage for next step of breeding and molecular genetic mechanisms in eggplant.
Collapse
Affiliation(s)
- Xiao Xi-ou
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)Zhanjiang, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic ImprovementZhanjiang, China
- *Correspondence: Xiao Xi-ou,
| | - Lin Wenqiu
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)Zhanjiang, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic ImprovementZhanjiang, China
| | - Li Wei
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)Zhanjiang, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic ImprovementZhanjiang, China
| | - Gao Xiaoming
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)Zhanjiang, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic ImprovementZhanjiang, China
| | - Lv Lingling
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)Zhanjiang, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic ImprovementZhanjiang, China
| | - Ma Feiyue
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)Zhanjiang, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic ImprovementZhanjiang, China
| | - Liu Yuge
- South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS)Zhanjiang, China
- Zhanjiang City Key Laboratory for Tropical Crops Genetic ImprovementZhanjiang, China
| |
Collapse
|
33
|
Ohyanagi H, Obayashi T, Yano K. Editorial: Plant and Cell Physiology's 2016 Online Database Issue. PLANT & CELL PHYSIOLOGY 2016; 57:1-3. [PMID: 26801748 DOI: 10.1093/pcp/pcv205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Hajime Ohyanagi
- King Abdullah University of Science and Technology (KAUST), Computational Bioscience Research Center (CBRC), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Takeshi Obayashi
- Graduate School of Information Sciences, Tohoku University, Sendai, 980-8579 Japan
| | - Kentaro Yano
- Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, 214-8571 Japan
| |
Collapse
|