1
|
Zheng M, Wang X, Luo J, Ma B, Li D, Chen X. The pleiotropic functions of GOLDEN2-LIKE transcription factors in plants. FRONTIERS IN PLANT SCIENCE 2024; 15:1445875. [PMID: 39224848 PMCID: PMC11366661 DOI: 10.3389/fpls.2024.1445875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The regulation of gene expression is crucial for biological plant growth and development, with transcription factors (TFs) serving as key switches in this regulatory mechanism. GOLDEN2-LIKE (GLK) TFs are a class of functionally partially redundant nuclear TFs belonging to the GARP superfamily of MYB TFs that play a key role in regulating genes related to photosynthesis and chloroplast biogenesis. Here, we summarized the current knowledge of the pleiotropic roles of GLKs in plants. In addition to their primary functions of controlling chloroplast biogenesis and function maintenance, GLKs have been proven to regulate the photomorphogenesis of seedlings, metabolite synthesis, flowering time, leaf senescence, and response to biotic and abiotic stress, ultimately contributing to crop yield. This review will provide a comprehensive understanding of the biological functions of GLKs and serve as a reference for future theoretical and applied studies of GLKs.
Collapse
Affiliation(s)
- Mengyi Zheng
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xinyu Wang
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Luo
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Bojun Ma
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Dayong Li
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Xifeng Chen
- College of Life Sciences, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
2
|
Plackett ARG, Hibberd JM. Rice bundle sheath cell shape is regulated by the timing of light exposure during leaf development. PLANT, CELL & ENVIRONMENT 2024; 47:2597-2613. [PMID: 38549236 DOI: 10.1111/pce.14902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/14/2024] [Accepted: 03/16/2024] [Indexed: 06/06/2024]
Abstract
Plant leaves contain multiple cell types which achieve distinct characteristics whilst still coordinating development within the leaf. The bundle sheath possesses larger individual cells and lower chloroplast content than the adjacent mesophyll, but how this morphology is achieved remains unknown. To identify regulatory mechanisms determining bundle sheath cell morphology we tested the effects of perturbing environmental (light) and endogenous signals (hormones) during leaf development of Oryza sativa (rice). Total chloroplast area in bundle sheath cells was found to increase with cell size as in the mesophyll but did not maintain a 'set-point' relationship, with the longest bundle sheath cells demonstrating the lowest chloroplast content. Application of exogenous cytokinin and gibberellin significantly altered the relationship between cell size and chloroplast biosynthesis in the bundle sheath, increasing chloroplast content of the longest cells. Delayed exposure to light reduced the mean length of bundle sheath cells but increased corresponding leaf length, whereas premature light reduced final leaf length but did not affect bundle sheath cells. This suggests that the plant hormones cytokinin and gibberellin are regulators of the bundle sheath cell-chloroplast relationship and that final bundle sheath length may potentially be affected by light-mediated control of exit from the cell cycle.
Collapse
Affiliation(s)
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Lian X, Zhong L, Bai Y, Guang X, Tang S, Guo X, Wei T, Yang F, Zhang Y, Huang G, Zhang J, Shao L, Lei G, Li Z, Sahu SK, Zhang S, Liu H, Hu F. Spatiotemporal transcriptomic atlas of rhizome formation in Oryza longistaminata. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1652-1668. [PMID: 38345936 PMCID: PMC11123419 DOI: 10.1111/pbi.14294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/22/2024]
Abstract
Rhizomes are modified stems that grow underground and produce new individuals genetically identical to the mother plant. Recently, a breakthrough has been made in efforts to convert annual grains into perennial ones by utilizing wild rhizomatous species as donors, yet the developmental biology of this organ is rarely studied. Oryza longistaminata, a wild rice species featuring strong rhizomes, provides a valuable model for exploration of rhizome development. Here, we first assembled a double-haplotype genome of O. longistaminata, which displays a 48-fold improvement in contiguity compared to the previously published assembly. Furthermore, spatiotemporal transcriptomics was performed to obtain the expression profiles of different tissues in O. longistaminata rhizomes and tillers. Two spatially reciprocal cell clusters, the vascular bundle 2 cluster and the parenchyma 2 cluster, were determined to be the primary distinctions between the rhizomes and tillers. We also captured meristem initiation cells in the sunken area of parenchyma located at the base of internodes, which is the starting point for rhizome initiation. Trajectory analysis further indicated that the rhizome is regenerated through de novo generation. Collectively, these analyses revealed a spatiotemporal transcriptional transition underlying the rhizome initiation, providing a valuable resource for future perennial crop breeding.
Collapse
Affiliation(s)
- Xiaoping Lian
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Liyuan Zhong
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Yixuan Bai
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Xuanmin Guang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Sijia Tang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Xing Guo
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Tong Wei
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Feng Yang
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Yujiao Zhang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Guangfu Huang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Jing Zhang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Lin Shao
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Guijie Lei
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Zheng Li
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Sunil Kumar Sahu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Shilai Zhang
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| | - Huan Liu
- State Key Laboratory of Agricultural GenomicsBGI‐ShenzhenShenzhenGuangdongChina
| | - Fengyi Hu
- New Cornerstone Science Laboratory, State Key Laboratory for Conservation and Utilization of Bio‐Resources in Yunnan, Key Laboratory of Biology and Germplasm Innovation of Perennial rice (Co‐construction by Ministry and Province) of Ministry of Agriculture and Rural Affairs, Center of Innovation for Perennial Rice Technology in Yunnan, School of AgricultureYunnan UniversityKunmingChina
| |
Collapse
|
4
|
Liu Z, Cheng J. C 4 rice engineering, beyond installing a C 4 cycle. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108256. [PMID: 38091938 DOI: 10.1016/j.plaphy.2023.108256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024]
Abstract
C4 photosynthesis in higher plants is carried out by two distinct cell types: mesophyll cells and bundle sheath cells, as a result highly concentrated carbon dioxide is released surrounding RuBisCo in chloroplasts of bundle sheath cells and the photosynthetic efficiency is significantly higher than that of C3 plants. The evolution of the dual-cell C4 cycle involved complex modifications to leaf anatomy and cell ultra-structures. These include an increase in leaf venation, the formation of Kranz anatomy, changes in chloroplast morphology in bundle sheath cells, and increases in the density of plasmodesmata at interfaces between the bundle sheath and mesophyll cells. It is predicted that cereals will be in severe worldwide shortage at the mid-term of this century. Rice is a staple food that feeds more than half of the world's population. If rice can be engineered to perform C4 photosynthesis, it is estimated that rice yield will be increased by at least 50% due to enhanced photosynthesis. Thus, the Second Green Revolution has been launched on this principle by genetically installing C4 photosynthesis into C3 crops. The studies on molecular mechanisms underlying the changes in leaf morphoanatomy involved in C4 photosynthesis have made great progress in recent years. As there are plenty of reviews discussing the installment of the C4 cycle, we focus on the current progress and challenges posed to the research regarding leaf anatomy and cell ultra-structure modifications made towards the development of C4 rice.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, 071001, China.
| | - Jinjin Cheng
- College of Agronomy, Shanxi Agricultural University, Jinzhong, 030801, China
| |
Collapse
|
5
|
Shang G, Meng Z, Qinyue Z, Feng X, Zhang W. Effects of exogenous zinc (ZnSO 4·7H 2O) on photosynthetic characteristics and grain quality of hybrid rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108049. [PMID: 37948977 DOI: 10.1016/j.plaphy.2023.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 11/12/2023]
Abstract
Rice is an important food crop and zinc (Zn) is a beneficial microelement. However, there are few reports on the effect of zinc on yield and physiological characteristics of rice. In this study, exogenous zinc (ZnSO4·7H2O) was applied on plant to explore the effects of zinc on rice yield, quality and photosynthetic capacity. The results showed that appropriate concentration of zinc could increase the net photosynthetic rate (Pn) of rice leaves, and Zn2 (2 mg/L ZnSO4•7H2O) treatment was the most significant. However, the Zn treatment had no positive effect on rice yield except under the concentration of Zn2. Meanwhile, the result showed that Zn treatment could increase chalkiness degree (CD) and chalky grain rate (CGR), decreased amylose content (AC), increased protein content and changed protein composition of rice. The above indexes were most significant in Zn2 treatment. In addition, the Zn2 treatment significantly increased rapid viscosity analyzer (RVA) of rice. In conclusion, the results of this study suggested that Zn treatment could enhance the photosynthetic capacity of rice leaves, and improve the processing quality, taste quality and nutritional quality of rice. However, it will have a negative impact on the appearance quality of rice and cannot be used to increase rice production. This study will provide a basis for the application of zinc in rice production.
Collapse
Affiliation(s)
- Gao Shang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Zhou Meng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Zhou Qinyue
- Anhui Agricultural University, 230000, Hefei, PR China
| | - Xu Feng
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| | - Weiwei Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China.
| |
Collapse
|
6
|
Won SY, Soundararajan P, Irulappan V, Kim JS. In-silico, evolutionary, and functional analysis of CHUP1 and its related proteins in Bienertia sinuspersici-a comparative study across C 3, C 4, CAM, and SCC 4 model plants. PeerJ 2023; 11:e15696. [PMID: 37456874 PMCID: PMC10348308 DOI: 10.7717/peerj.15696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Single-cell C4 (SCC4) plants with bienertioid anatomy carry out photosynthesis in a single cell. Chloroplast movement is the underlying phenomenon, where chloroplast unusual positioning 1 (CHUP1) plays a key role. This study aimed to characterize CHUP1 and CHUP1-like proteins in an SCC4 photosynthetic plant, Bienertia sinuspersici. Also, a comparative analysis of SCC4 CHUP1 was made with C3, C4, and CAM model plants including an extant basal angiosperm, Amborella. The CHUP1 gene exists as a single copy from the basal angiosperms to SCC4 plants. Our analysis identified that Chenopodium quinoa, a recently duplicated allotetraploid, has two copies of CHUP1. In addition, the numbers of CHUP1-like and its associated proteins such as CHUP1-like_a, CHUP1-like_b, HPR, TPR, and ABP varied between the species. Hidden Markov Model analysis showed that the gene size of CHUP1-like_a and CHUP1-like_b of SCC4 species, Bienertia, and Suaeda were enlarged than other plants. Also, we identified that CHUP1-like_a and CHUP1-like_b are absent in Arabidopsis and Amborella, respectively. Motif analysis identified several conserved and variable motifs based on the orders (monocot and dicot) as well as photosynthetic pathways. For instance, CAM plants such as pineapple and cactus shared certain motifs of CHUP1-like_a irrespective of their distant phylogenetic relationship. The free ratio model showed that CHUP1 maintained purifying selection, whereas CHUP1-like_a and CHUP1-like_b have adaptive functions between SCC4 plants and quinoa. Similarly, rice and maize branches displayed functional diversification on CHUP1-like_b. Relative gene expression data showed that during the subcellular compartmentalization process of Bienertia, CHUP1 and actin-binding proteins (ABP) genes showed a similar pattern of expression. Altogether, the results of this study provide insight into the evolutionary and functional details of CHUP1 and its associated proteins in the development of the SCC4 system in comparison with other C3, C4, and CAM model plants.
Collapse
Affiliation(s)
- So Youn Won
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, South Korea
| | - Prabhakaran Soundararajan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, South Korea
| | - Vadivelmurugan Irulappan
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, South Korea
| | - Jung Sun Kim
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju-si, Jeollabuk-do, South Korea
| |
Collapse
|
7
|
Zheng H, Bai Y, Li X, Song H, Cai M, Cheng Z, Mu S, Li J, Gao J. Photosynthesis, Phytohormone Signaling and Sugar Catabolism in the Culm Sheaths of Phyllostachys edulis. PLANTS (BASEL, SWITZERLAND) 2022; 11:2866. [PMID: 36365317 PMCID: PMC9655093 DOI: 10.3390/plants11212866] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/17/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Culm sheaths play an important role in supporting and protecting bamboo shoots during the growth and development period. The physiological and molecular functions of bamboo sheaths during the growth of bamboo shoots remain unclear. In this study, we investigated the morphological anatomy of culm sheaths, photosynthesis in sheath blades, storage and distribution of sugars, and the transcriptome of the sheath. Respiration in the base of the culm sheath was higher than that in the sheath blades; chloroplasts matured with the development of the sheath blades, the fluorescence efficiency Fv/Fm value increased from 0.3 to 0.82; and sucrose and hexose accumulated in the sheath blade and the culm sheath. The sucrose, glucose, and fructose contents of the middle sheath blades were 10.66, 5.73, and 8.84 mg/g FW, respectively. Starches accumulated in parenchymal cells close to vascular bundles. Genes related to the plant hormone signaling pathway and sugar catabolism were highly expressed in the culm sheath base. These findings provide a research basis for further understanding the possible role of bamboo sheaths in the growth and development of bamboo shoots.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jian Gao
- Correspondence: ; Tel.: +86-010-8478-9801
| |
Collapse
|
8
|
Li X, Wang XH, Qiang W, Zheng HJ, ShangGuan LY, Zhang MS. Transcriptome revealing the dual regulatory mechanism of ethylene on the rhynchophylline and isorhynchophylline in Uncaria rhynchophylla. JOURNAL OF PLANT RESEARCH 2022; 135:485-500. [PMID: 35380307 DOI: 10.1007/s10265-022-01387-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/10/2022] [Indexed: 06/14/2023]
Abstract
Rhynchophylline (RIN) and isorhynchophylline (IRN) are extracted from Uncaria rhynchophylla, which are used to treat Alzheimer's disease. However, the massive accumulation of RIN and IRN in U. rhynchophylla requires exogenous stimulation. Ethylene is a potential stimulant for RIN and IRN biosynthesis, but there is no study on the role of ethylene in RIN or IRN synthesis. This study investigated the regulation of ethylene in RIN and IRN biosynthesis in U. rhynchophylla. An increase in the content of RIN and IRN was observed that could be attributed to the release of ethylene from 18 mM ethephon, while ethylene released from 36 mM ethephon reduced the content of RIN and IRN. The transcriptome and weighted gene co-expression network analysis indicated the up-regulation of seven key enzyme genes related to the RIN/IRN biosynthesis pathway and starch/sucrose metabolism pathway favored RIN/IRN synthesis. In comparison, the down-regulation of these seven key enzyme genes contributed to the reduction of RIN/IRN. Moreover, the inhibition of photosynthesis is associated with a reduction in RIN/IRN. Photosynthesis was restrained owing to the down-regulation of Lhcb1 and Lhcb6 after 36 mM ethephon treatment and further prevented supply of primary metabolites (such as α-D-glucose) for RIN/IRN synthesis. However, uninterrupted photosynthesis ensured a normal supply of primary metabolites at 18 mM ethephon treatment. AP2/ERF1, bHLH1, and bHLH2 may positively regulate the RIN/IRN accumulation, while NAC1 may play a negative regulatory role. Our results construct the potential bidirectional model for ethylene regulation on RIN/IRN synthesis and provide novel insight into the ethylene-mediated regulation of the metabolism of terpenoid indole alkaloids.
Collapse
Affiliation(s)
- Xue Li
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xiao-Hong Wang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Wei Qiang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Hao-Jie Zheng
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Li-Yang ShangGuan
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China
| | - Ming-Sheng Zhang
- School of Life Sciences/Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
9
|
Chu KL, Koley S, Jenkins LM, Bailey SR, Kambhampati S, Foley K, Arp JJ, Morley SA, Czymmek KJ, Bates PD, Allen DK. Metabolic flux analysis of the non-transitory starch tradeoff for lipid production in mature tobacco leaves. Metab Eng 2022; 69:231-248. [PMID: 34920088 PMCID: PMC8761171 DOI: 10.1016/j.ymben.2021.12.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 10/12/2021] [Accepted: 12/11/2021] [Indexed: 12/19/2022]
Abstract
The metabolic plasticity of tobacco leaves has been demonstrated via the generation of transgenic plants that can accumulate over 30% dry weight as triacylglycerols. In investigating the changes in carbon partitioning in these high lipid-producing (HLP) leaves, foliar lipids accumulated stepwise over development. Interestingly, non-transient starch was observed to accumulate with plant age in WT but not HLP leaves, with a drop in foliar starch concurrent with an increase in lipid content. The metabolic carbon tradeoff between starch and lipid was studied using 13CO2-labeling experiments and isotopically nonstationary metabolic flux analysis, not previously applied to the mature leaves of a crop. Fatty acid synthesis was investigated through assessment of acyl-acyl carrier proteins using a recently derived quantification method that was extended to accommodate isotopic labeling. Analysis of labeling patterns and flux modeling indicated the continued production of unlabeled starch, sucrose cycling, and a significant contribution of NADP-malic enzyme to plastidic pyruvate production for the production of lipids in HLP leaves, with the latter verified by enzyme activity assays. The results suggest an inherent capacity for a developmentally regulated carbon sink in tobacco leaves and may in part explain the uniquely successful leaf lipid engineering efforts in this crop.
Collapse
Affiliation(s)
- Kevin L Chu
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Somnath Koley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Lauren M Jenkins
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Sally R Bailey
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | | | - Kevin Foley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Jennifer J Arp
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Stewart A Morley
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, WA, 99164-6340, USA
| | - Doug K Allen
- Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA; United States Department of Agriculture-Agriculture Research Service, Donald Danforth Plant Science Center, St. Louis, Missouri, 63132, USA.
| |
Collapse
|
10
|
Furbank RT, Kelly S. Finding the C4 sweet spot: cellular compartmentation of carbohydrate metabolism in C4 photosynthesis. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6018-6026. [PMID: 34142128 PMCID: PMC8411606 DOI: 10.1093/jxb/erab290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/14/2021] [Indexed: 05/10/2023]
Abstract
The two-cell type C4 photosynthetic pathway requires both anatomical and biochemical specialization to achieve a functional CO2-concentrating mechanism. While a great deal of research has been done on Kranz anatomy and cell-specific expression and activity of enzymes in the C4 pathway, less attention has been paid to partitioning of carbohydrate synthesis between the cell types of C4 leaves. As early as the 1970s it became apparent that, in the small number of species examined at the time, sucrose was predominantly synthesized in the mesophyll cells and starch in the bundle sheath cells. Here we discuss how this partitioning is achieved in C4 plants and explore whether this is a consequence of C4 metabolism or indeed a requirement for its evolution and efficient operation.
Collapse
Affiliation(s)
- Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
11
|
Hua L, Stevenson SR, Reyna-Llorens I, Xiong H, Kopriva S, Hibberd JM. The bundle sheath of rice is conditioned to play an active role in water transport as well as sulfur assimilation and jasmonic acid synthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:268-286. [PMID: 33901336 DOI: 10.1111/tpj.15292] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/16/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Leaves comprise multiple cell types but our knowledge of the patterns of gene expression that underpin their functional specialization is fragmentary. Our understanding and ability to undertake the rational redesign of these cells is therefore limited. We aimed to identify genes associated with the incompletely understood bundle sheath of C3 plants, which represents a key target associated with engineering traits such as C4 photosynthesis into Oryza sativa (rice). To better understand the veins, bundle sheath and mesophyll cells of rice, we used laser capture microdissection followed by deep sequencing. Gene expression of the mesophyll is conditioned to allow coenzyme metabolism and redox homeostasis, as well as photosynthesis. In contrast, the bundle sheath is specialized in water transport, sulphur assimilation and jasmonic acid biosynthesis. Despite the small chloroplast compartment of bundle sheath cells, substantial photosynthesis gene expression was detected. These patterns of gene expression were not associated with the presence or absence of specific transcription factors in each cell type, but were instead associated with gradients in expression across the leaf. Comparative analysis with C3 Arabidopsis identified a small gene set preferentially expressed in the bundle sheath cells of both species. This gene set included genes encoding transcription factors from 14 orthogroups and proteins allowing water transport, sulphate assimilation and jasmonic acid synthesis. The most parsimonious explanation for our findings is that bundle sheath cells from the last common ancestor of rice and Arabidopsis were specialized in this manner, and as the species diverged these patterns of gene expression have been maintained.
Collapse
Affiliation(s)
- Lei Hua
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Sean R Stevenson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Haiyan Xiong
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Str. 47b, Cologne, 50674, Germany
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| |
Collapse
|
12
|
De Vega JJ, Peel N, Purdy SJ, Hawkins S, Donnison L, Dyer S, Farrar K. Differential expression of starch and sucrose metabolic genes linked to varying biomass yield in Miscanthus hybrids. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:98. [PMID: 33874976 PMCID: PMC8056674 DOI: 10.1186/s13068-021-01948-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Miscanthus is a commercial lignocellulosic biomass crop owing to its high biomass productivity and low chemical input requirements. Within an interspecific Miscanthus cross, progeny with high biomass yield were shown to have low concentrations of starch and sucrose but high concentrations of fructose. We performed a transcriptional RNA-seq analysis between selected Miscanthus hybrids with contrasting values for these phenotypes to clarify how these phenotypes are genetically controlled. RESULTS We observed that genes directly involved in the synthesis and degradation of starch and sucrose were down-regulated in high-yielding Miscanthus hybrids. At the same time, glycolysis and export of triose phosphates were up-regulated in high-yielding Miscanthus hybrids. These differentially expressed genes and biological functions were regulated by a well-connected network of less than 25 co-regulated transcription factors. CONCLUSIONS Our results evidence a direct relationship between high expression of essential enzymatic genes in the starch and sucrose pathways and co-expression with their transcriptional regulators, with high starch concentrations and lower biomass production. The strong interconnectivity between gene expression and regulators, chemotype and agronomic traits opens the door to use the expression of well-characterised genes associated with carbohydrate metabolism, particularly in the starch and sucrose pathway, for the early selection of high biomass-yielding genotypes from large Miscanthus populations.
Collapse
Affiliation(s)
| | - Ned Peel
- Earlham Institute, Norwich, NR4 7UZ, UK
| | - Sarah J Purdy
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3EE, UK
- NSW Department of Primary Industries, Chief Scientist's Branch, Locked Bag 21, Orange, NSW, 2800, Australia
| | - Sarah Hawkins
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3EE, UK
| | - Lain Donnison
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3EE, UK
| | - Sarah Dyer
- Earlham Institute, Norwich, NR4 7UZ, UK
- NIAB, Cambridge, CB3 0LE, UK
| | - Kerrie Farrar
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3EE, UK.
| |
Collapse
|
13
|
Mendonça AMDC, Viana PL, Barbosa JPRAD. LEAF ANATOMY CHARACTERIZATION OF FOUR Apochloa SPECIES: A C3 GENUS RELATED TO EVOLUTION OF C4 PATHWAY IN GRASSES. ACTA BIOLÓGICA COLOMBIANA 2020. [DOI: 10.15446/abc.v26n1.83228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Leaf anatomy characteristics provide important evidences about the transition between C3 and C4 pathways. The C4 photosynthesis pathway allowed to reduce the C3 photorespiratory rate, concentrating CO2 around the Rubisco site and using structures and machinery already presented in C3 plants. In monocots, it is observed a high number of C4 lineages, most of them phylogenetically related to C3 groups. The genus Apochloa (C3), subtribe Arthropogoninae, is related to two C4 genera Coleataenia and Cyphonanthus. The aim of this study was to evaluate four Apochloa species in order to establish anatomical characteristics related to the evolution of C4 pathway in this group. By means of transverse sections fully expanded leaves of A. euprepes, A. lorea, A. molinioides, and A. poliophylla were collected and the characteristics of the mesophyll (M) and bundle sheath (BS) cells were determined. These species showed a rustic Kranz anatomy with enlarged and radial arranged BS cells, which have few organelles organized in a centrifugal position. Although the modifications of BS cells are probably related to the maintenance of plant water status, we also discuss the evolution for the establishment of C4 photosynthesis in the related C4 genera.
Collapse
|
14
|
Abstract
C4 photosynthesis evolved multiple times independently from ancestral C3 photosynthesis in a broad range of flowering land plant families and in both monocots and dicots. The evolution of C4 photosynthesis entails the recruitment of enzyme activities that are not involved in photosynthetic carbon fixation in C3 plants to photosynthesis. This requires a different regulation of gene expression as well as a different regulation of enzyme activities in comparison to the C3 context. Further, C4 photosynthesis relies on a distinct leaf anatomy that differs from that of C3, requiring a differential regulation of leaf development in C4. We summarize recent progress in the understanding of C4-specific features in evolution and metabolic regulation in the context of C4 photosynthesis.
Collapse
Affiliation(s)
- Urte Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, 40225 Düsseldorf, Germany; ,
| |
Collapse
|
15
|
Aguilera-Alvarado GP, Guevara-García ÁA, Estrada-Antolín SA, Sánchez-Nieto S. Biochemical properties and subcellular localization of six members of the HXK family in maize and its metabolic contribution to embryo germination. BMC PLANT BIOLOGY 2019; 19:27. [PMID: 30646852 PMCID: PMC6332545 DOI: 10.1186/s12870-018-1605-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 12/17/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Seed germination is a crucial process in the plant life cycle when a dramatic variation of type and sugar content occurs just as the seed is hydrated. The production of hexose 6 phosphate is a key node in different pathways that are required for a successful germination. Hexokinase (HXK) is the only plant enzyme that phosphorylates glucose (Glc), so it is key to fueling several metabolic pathways depending on their substrate specificity, metabolite regulatory responses and subcellular localization. In maize, the HXK family is composed of nine genes, but only six of them (ZmHXK4-9) putatively encode catalytically active enzymes. Here, we cloned and functionally characterized putative catalytic enzymes to analyze their metabolic contribution during germination process. RESULTS From the six HXKs analyzed here, only ZmHXK9 has minimal hexose phosphorylating activity even though enzymatic function of all isoforms (ZmHXK4-9) was confirmed using a yeast complementation approach. The kinetic parameters of recombinant proteins showed that ZmHXK4-7 have high catalytic efficiency for Glc, fructose (Fru) and mannose (Man), ZmHXK7 has a lower Km for ATP, and together with ZmHXK8 they have lower sensitivity to inhibition by ADP, G6P and N-acetylglucosamine than ZmHXK4-6 and ZmHXK9. Additionally, we demonstrated that ZmHXK4-6 and ZmHXK9 are located in the mitochondria and their location relies on the first 30 amino acids of the N-terminal domain. Otherwise, ZmHXK7-8 are constitutively located in the cytosol. HXK activity was detected in cytosolic and mitochondrial fractions and high Glc and Fru phosphorylating activities were found in imbibed embryos. CONCLUSIONS Considering the biochemical characteristics, location and the expression of ZmHXK4 at onset of germination, we suggest that it is the main contributor to mitochondrial activity at early germination times, at 24 h other ZmHXKs also contribute to the total activity. While in the cytosol, ZmHXK7 could be responsible for the activity at the onset of germination, although later, ZmHXK8 also contributes to the total HXK activity. Our observations suggest that the HXKs may be redundant proteins with specific roles depending on carbon and ATP availability, metabolic needs, or sensor requirements. Further investigation is necessary to understand their specific or redundant physiological roles.
Collapse
Affiliation(s)
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | | | - Sobeida Sánchez-Nieto
- Departamento de Bioquímica, Facultad de Química, Conjunto E., Universidad Nacional Autónoma de México, CDMX, Mexico
| |
Collapse
|
16
|
Maeda HA. Evolutionary Diversification of Primary Metabolism and Its Contribution to Plant Chemical Diversity. FRONTIERS IN PLANT SCIENCE 2019; 10:881. [PMID: 31354760 PMCID: PMC6635470 DOI: 10.3389/fpls.2019.00881] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 06/20/2019] [Indexed: 05/05/2023]
Abstract
Plants produce a diverse array of lineage-specific specialized (secondary) metabolites, which are synthesized from primary metabolites. Plant specialized metabolites play crucial roles in plant adaptation as well as in human nutrition and medicine. Unlike well-documented diversification of plant specialized metabolic enzymes, primary metabolism that provides essential compounds for cellular homeostasis is under strong selection pressure and generally assumed to be conserved across the plant kingdom. Yet, some alterations in primary metabolic pathways have been reported in plants. The biosynthetic pathways of certain amino acids and lipids have been altered in specific plant lineages. Also, two alternative pathways exist in plants for synthesizing primary precursors of the two major classes of plant specialized metabolites, terpenoids and phenylpropanoids. Such primary metabolic diversities likely underlie major evolutionary changes in plant metabolism and chemical diversity by acting as enabling or associated traits for the evolution of specialized metabolic pathways.
Collapse
|
17
|
Reyna-Llorens I, Hibberd JM. Recruitment of pre-existing networks during the evolution of C 4 photosynthesis. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160386. [PMID: 28808102 PMCID: PMC5566883 DOI: 10.1098/rstb.2016.0386] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 11/12/2022] Open
Abstract
During C4 photosynthesis, CO2 is concentrated around the enzyme RuBisCO. The net effect is to reduce photorespiration while increasing water and nitrogen use efficiencies. Species that use C4 photosynthesis have evolved independently from their C3 ancestors on more than 60 occasions. Along with mimicry and the camera-like eye, the C4 pathway therefore represents a remarkable example of the repeated evolution of a highly complex trait. In this review, we provide evidence that the polyphyletic evolution of C4 photosynthesis is built upon pre-existing metabolic and genetic networks. For example, cells around veins of C3 species show similarities to those of the C4 bundle sheath in terms of C4 acid decarboxylase activity and also the photosynthetic electron transport chain. Enzymes of C4 photosynthesis function together in gluconeogenesis during early seedling growth of C3Arabidopsis thaliana Furthermore, multiple C4 genes appear to be under control of both light and chloroplast signals in the ancestral C3 state. We, therefore, hypothesize that relatively minor rewiring of pre-existing genetic and metabolic networks has facilitated the recurrent evolution of this trait. Understanding how these changes are likely to have occurred could inform attempts to install C4 traits into C3 crops.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
18
|
Taniguchi M, Weber APM, von Caemmerer S. Future Research into C4 Biology. PLANT & CELL PHYSIOLOGY 2016; 57:879-880. [PMID: 27260629 DOI: 10.1093/pcp/pcw082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Affiliation(s)
- Mitsutaka Taniguchi
- Graduate School of Bioagricultural Sciences, Nagoya University, Chikusa, Nagoya, 464-8601 Japan
| | - Andreas P M Weber
- Institute of Plant Biochemistry and Cluster of Excellence on Plant Science (CEPLAS), Heinrich-Heine-University, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Susanne von Caemmerer
- ARC Centre of Excellence for Translational Photosynthesis, Research School of Biology, The Australian National University, Acton, 2601, Australia
| |
Collapse
|