1
|
Bitarishvili S, Clement G, Meyer C, Volkova P. Metabolic profiling of Achillea millefolium from the Chernobyl exclusion zone reveals the adaptive strategies to low-dose chronic radiation exposure. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109551. [PMID: 39879828 DOI: 10.1016/j.plaphy.2025.109551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 12/13/2024] [Accepted: 01/22/2025] [Indexed: 01/31/2025]
Abstract
The radionuclide contamination of the environment is an abiotic stress factor that influences biological systems. Plants growing in contaminated areas for many generations provide a unique opportunity to study adaptive strategies aimed at maintaining homeostasis under elevated radiation levels. Using non-targeted metabolomics approaches, we investigated the metabolomic profiles of Achillea millefolium L. plants from the Chernobyl exclusion zone. Amino acid biosynthesis pathways (arginine, glycine, serine, threonine, and proline) and metabolites associated with nitrogen mobilization, cell wall response to injury, photosynthetic efficiency, and defence responses were highly affected in plants from contaminated plots. Our results suggest that these changes may be involved in the adaptive strategies of A. millefolium plant to chronic radiation exposure.
Collapse
Affiliation(s)
- Sofia Bitarishvili
- Department of Radiation and Genetic Technologies in Crop Production, Russian Institute of Radiology and Agroecology of National Research Centre "Kurchatov Institute", 249035, Obninsk, Russia.
| | - Gilles Clement
- Institute Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Christian Meyer
- Institute Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | | |
Collapse
|
2
|
Ruffatto K, da Silva LCO, Neves CDO, Kuntzler SG, de Lima JC, Almeida FA, Silveira V, Corrêa FM, Minello LVP, Johann L, Sperotto RA. Unravelling soybean responses to early and late Tetranychus urticae (Acari: Tetranychidae) infestation. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:1223-1239. [PMID: 39250320 DOI: 10.1111/plb.13717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 09/11/2024]
Abstract
Soybean is a crucial source of food, protein, and oil worldwide that is facing challenges from biotic stresses. Infestation of Tetranychus urticae Koch (Acari: Tetranychidae) stands out as detrimentally affecting plant growth and grain production. Understanding soybean responses to T. urticae infestation is pivotal for unravelling the dynamics of mite-plant interactions. We evaluated the physiological and molecular responses of soybean plants to mite infestation after 5 and 21 days. We employed visual/microscopy observations of leaf damage, H2O2 accumulation, and lipid peroxidation. Additionally, the impact of mite infestation on shoot length/dry weight, chlorophyll concentration, and development stages was analysed. Proteomic analysis identified differentially abundant proteins (DAPs) after early (5 days) and late (21 days) infestation. Furthermore, GO, KEGG, and protein-protein interaction analyses were performed to understand effects on metabolic pathways. Throughout the analysed period, symptoms of leaf damage, H2O2 accumulation, and lipid peroxidation consistently increased. Mite infestation reduced shoot length/dry weight, chlorophyll concentration, and development stage duration. Proteomics revealed 185 and 266 DAPs after early and late mite infestation, respectively, indicating a complex remodelling of metabolic pathways. Photorespiration, chlorophyll synthesis, amino acid metabolism, and Krebs cycle/energy production were impacted after both early and late infestation. Additionally, specific metabolic pathways were modified only after early or late infestation. This study underscores the detrimental effects of mite infestation on soybean physiology and metabolism. DAPs offer potential in breeding programs for enhanced resistance. Overall, this research highlights the complex nature of soybean response to mite infestation, providing insights for intervention and breeding strategies.
Collapse
Affiliation(s)
- K Ruffatto
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - L C O da Silva
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - C D O Neves
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - S G Kuntzler
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - J C de Lima
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - F A Almeida
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - V Silveira
- Laboratory of Biotechnology, Bioscience and Biotechnology Center (CBB), State University of Northern Rio de Janeiro Darcy Ribeiro (UENF), Campos dos Goytacazes, Brazil
| | - F M Corrêa
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L V P Minello
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| | - L Johann
- Graduate Program in Biotechnology, University of Vale do Taquari - Univates, Lajeado, Brazil
- Life Sciences Area, University of Vale do Taquari - Univates, Lajeado, Brazil
| | - R A Sperotto
- Graduate Program in Plant Physiology, Federal University of Pelotas, Pelotas, Brazil
| |
Collapse
|
3
|
Takeuchi K, Ogiso M, Ota A, Nishimura K, Nishino C, Omori Y, Maeda M, Mizui R, Yamanaka H, Ogino T, Seo S. Pseudomonas rhodesiae HAI-0804 suppresses Pythium damping off and root rot in cucumber by its efficient root colonization promoted by amendment with glutamate. Front Microbiol 2024; 15:1485167. [PMID: 39564481 PMCID: PMC11573540 DOI: 10.3389/fmicb.2024.1485167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 09/30/2024] [Indexed: 11/21/2024] Open
Abstract
Plant diseases caused by soil-borne fungi and oomycetes significantly reduce yield and quality of many crops in the agricultural systems and are difficult to control. We herein examine Pseudomonas rhodesiae HAI-0804, a bacterial biological control agent that was originally developed for control of bacterial diseases on the surface of vegetables, and assessed its efficacy at controlling soil-borne diseases caused by oomycetes. Strain HAI-0804 did not exhibit detectable antibiotic activity toward Pythium ultimum, a causal agent of damping-off and root rot; however, it effectively protected against Pythium damping-off and root rot in cucumber. Exogenous glutamate enhanced the efficacy of biocontrol, the production of siderophore pyoverdine, root colonization in cucumber plants, and the ratio of biofilm formation to planktonic cells. The epiphytic fitness of strain HAI-0804 appears to contribute to plant protection efficacy against a broad spectrum of pathogens for both above-ground plant parts and the rhizosphere.
Collapse
Affiliation(s)
- Kasumi Takeuchi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Masayo Ogiso
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Arisa Ota
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| | - Kentaro Nishimura
- Field Research Department, Odawara Research Center, Nippon Soda Co., Ltd., Shizuoka, Japan
| | - Chihiro Nishino
- Field Research Department, Odawara Research Center, Nippon Soda Co., Ltd., Shizuoka, Japan
| | - Yasuhiro Omori
- Development Department, Agro Products Division, Nippon Soda Co., Ltd., Tokyo, Japan
| | | | - Ryousuke Mizui
- Field Research Department, Odawara Research Center, Nippon Soda Co., Ltd., Shizuoka, Japan
| | - Homare Yamanaka
- Field Research Department, Odawara Research Center, Nippon Soda Co., Ltd., Shizuoka, Japan
| | - Tomokazu Ogino
- Field Research Department, Odawara Research Center, Nippon Soda Co., Ltd., Shizuoka, Japan
| | - Shigemi Seo
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Japan
| |
Collapse
|
4
|
Singh D, Zhao H, Gupta SK, Kumar Y, Kim J, Pawar PAM. Characterization of Arabidopsis eskimo1 reveals a metabolic link between xylan O-acetylation and aliphatic glucosinolate metabolism. PHYSIOLOGIA PLANTARUM 2024; 176:e14618. [PMID: 39542838 DOI: 10.1111/ppl.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/16/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Glucuronoxylan is present mainly in the dicot of the secondary cell walls, often O-acetylated, which stabilizes cell structure by maintaining interaction with cellulose and other cell wall components. Some members of the Golgi localized Trichome Birefringence-Like (TBL) family function as xylan O-acetyl transferase (XOAT). The primary XOAT in the stem of Arabidopsis is ESKIMO1/TBL29, and its disruption results in decreased xylan acetylation, stunted plant growth, and collapsed xylem vessels. To elucidate the effect on metabolic reprogramming and identify the underlying cause of the stunted growth in eskimo1, we performed transcriptomic, targeted, and untargeted metabolome analysis, mainly in the inflorescence stem tissue. RNA sequencing analysis revealed that the genes involved in the biosynthesis, regulation, and transport of aliphatic glucosinolates (GSLs) were upregulated, whereas those responsible for indolic GSL metabolism were unaffected in the eskimo1 inflorescence stem. Consistently, aliphatic GSLs, such as 4-methylsulfinylbutyl (4MSOB), were increased in stem tissues and seeds. This shift in the profile of aliphatic GSLs in eskimo1 was further supported by the quantification of the soluble acetate, decrease in accumulation of GSL precursor, i.e., methionine, and increase in the level of jasmonic acid.
Collapse
Affiliation(s)
- Deepika Singh
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| | - Haohao Zhao
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Sonu Kumar Gupta
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Yashwant Kumar
- Non-Communicable Diseases Division, Translational Health Science and Technology Institute, Faridabad, India
| | - Jeongim Kim
- Horticultural Sciences Department, University of Florida, Gainesville, FL, USA
| | - Prashant Anupama-Mohan Pawar
- Laboratory of Plant Cell Wall Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad, Haryana, India
| |
Collapse
|
5
|
Yin X, Ren Z, Jia R, Wang X, Yu Q, Zhang L, Liu L, Shen W, Fang Z, Liang J, Liu B. Metabolic profiling and spatial metabolite distribution in wild soybean ( G. soja) and cultivated soybean ( G. max) seeds. Food Chem X 2024; 23:101717. [PMID: 39229612 PMCID: PMC11369396 DOI: 10.1016/j.fochx.2024.101717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/03/2024] [Indexed: 09/05/2024] Open
Abstract
Wild soybeans retain many substances significantly reduced or lost in cultivars during domestication. This study utilized LC-MS to analyze metabolites in the seed coats and embryos of wild and cultivated soybeans. 866 and 815 metabolites were identified in the seed extracts of both soybean types, with 35 and 10 significantly differing metabolites in the seed coat and embryos, respectively. The upregulated metabolites in wild soybeans are linked to plant defense, stress responses, and nitrogen cycling. MALDI-MSI results further elucidated the distribution of these differential metabolites in the cotyledons, hypocotyls, and radicles. In addition to their role in physiological processes like growth and response to environmental stimuli, the prevalent terpenoids, lipids, and flavonoids present in wild soybeans exhibit beneficial bioactivities, including anti-inflammatory, antibacterial, anticancer, and cardiovascular disease prevention properties. These findings underscore the potential of wild soybeans as a valuable resource for enhancing the nutritional and ecological adaptability of cultivated soybeans.
Collapse
Affiliation(s)
- Xin Yin
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhentao Ren
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ruizong Jia
- Sanya Research Institution/Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Chinese Academy of Tropical Agriculture Sciences, Sanya 572011, China
| | - Xiaodong Wang
- Key Laboratory of Mass Spectrometry Imaging and Metabolomics (Minzu University of China), State Ethnic Affairs Commission, Beijing 100081, China
| | - Qi Yu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Li Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Laipan Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Wenjing Shen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Zhixiang Fang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jingang Liang
- Development Center of Science and Technology, Ministry of Agriculture and Rural Affairs, Beijing 100176, China
| | - Biao Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| |
Collapse
|
6
|
Engevik KA, Hazzard A, Puckett B, Hoch KM, Haidacher SJ, Haag AM, Spinler JK, Versalovic J, Engevik MA, Horvath TD. Phylogenetically diverse bacterial species produce histamine. Syst Appl Microbiol 2024; 47:126539. [PMID: 39029335 DOI: 10.1016/j.syapm.2024.126539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
Histamine is an important biogenic amine known to impact a variety of patho-physiological processes ranging from allergic reactions, gut-mediated anti-inflammatory responses, and neurotransmitter activity. Histamine is found both endogenously within specialized host cells and exogenously in microbes. Exogenous histamine is produced through the decarboxylation of the amino acid L-histidine by bacterial-derived histidine decarboxylase enzymes. To investigate how widespread histamine production is across bacterial species, we examined 102,018 annotated genomes in the Integrated Microbial Genomes Database and identified 3,679 bacterial genomes (3.6 %) which possess the enzymatic machinery to generate histamine. These bacteria belonged to 10 phyla: Bacillota, Bacteroidota, Actinomycetota, Pseudomonadota, Lentisphaerota, Fusobacteriota, Armatimonadota, Cyanobacteriota, Thermodesulfobacteriota, and Verrucomicrobiota. The majority of the identified bacteria were terrestrial or aquatic in origin, although several bacteria originated in the human gut microbiota. We used liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based targeted metabolomics to confirm our genome discoveries correlated with L-histidine-to-histamine conversion in a chemically defined bacterial growth medium by a cohort of select environmental and human gut bacteria. We found that environmental microbes Vibrio harveyi, Pseudomonas fluorescens and Streptomyces griseus generated considerable levels of histamine (788 - 8,730 ng/mL). Interestingly, we found higher concentrations of histamine produced by gut-associated Fusobacterium varium, Clostridium perfringens, Limosilactobacillus reuteri and Morganella morganii (8,510--82,400 ng/mL). This work expands our knowledge of histamine production by diverse microbes.
Collapse
Affiliation(s)
- Kristen A Engevik
- Department of Molecular Virology & Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Amber Hazzard
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC USA; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Brenton Puckett
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC USA; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Kathleen M Hoch
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Sigmund J Haidacher
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Anthony M Haag
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Jennifer K Spinler
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - James Versalovic
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA
| | - Melinda A Engevik
- Department of Regenerative Medicine & Cell Biology, Medical University of South Carolina, Charleston, SC USA; Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Thomas D Horvath
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX, USA; Department of Pathology, Texas Children's Hospital, Houston, TX, USA.
| |
Collapse
|
7
|
Amjadi Z, Hamzehzarghani H, Rodriguez VM, Huang YJ, Farahbakhsh F. Studying temperature's impact on Brassica napus resistance to identify key regulatory mechanisms using comparative metabolomics. Sci Rep 2024; 14:19865. [PMID: 39191882 PMCID: PMC11350117 DOI: 10.1038/s41598-024-68345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
To investigate the effects of temperature on Brassica napus (canola) resistance to Leptosphaeria maculans (LM), the causal agent of blackleg disease, metabolic profiles of LM infected resistant (R) and susceptible (S) canola cultivars at 21 °C and 28 °C were analyzed. Metabolites were detected in cotyledons of R and S plants at 48- and 120-h post-inoculation with LM using UPLC-QTOF/MS. The mock-inoculated plants were used as controls. Some of the resistance-related specific pathways, including lipid metabolism, amino acid metabolism, carbohydrate metabolism, and aminoacyl-tRNA biosynthesis, were down-regulated in S plants but up-regulated in R plants at 21 °C. However, some of these pathways were down-regulated in R plants at 28 °C. Amino acid metabolism, lipid metabolism, alkaloid biosynthesis, phenylpropanoid biosynthesis, and flavonoid biosynthesis were the pathways linked to combined heat and pathogen stresses. By using network analysis and enrichment analysis, these pathways were identified as important. The pathways of carotenoid biosynthesis, pyrimidine metabolism, and lysine biosynthesis were identified as unique mechanisms related to heat stress and may be associated with the breakdown of resistance against the pathogen. The increased susceptibility of R plants at 28 °C resulted in the down-regulation of signal transduction pathway components and compromised signaling, particularly during the later stages of infection. Deactivating LM-specific signaling networks in R plants under heat stress may result in compatible responses and deduction in signaling metabolites, highlighting global warming challenges in crop disease control.
Collapse
Affiliation(s)
- Zahra Amjadi
- Plant Protection Department, Shiraz University, Shiraz, Iran
| | | | - Víctor Manuel Rodriguez
- Group of Genetics, Breeding and Biochemistry of Brassicas, Misión Biológica de Galicia (MBG-CSIC), Apartado 28, 36080, Pontevedra, Spain
| | - Yong-Ju Huang
- Centre for Agriculture, Food and Environmental Management, University of Hertfordshire, Hatfield, Hertfordshire, AL10 9AB, UK
| | - Farideh Farahbakhsh
- Plant Protection Research Department, Fars Agricultural and Natural Resources and Education Center, Agricultural Research, Education, and Extension Organization (AREEO), Darab, Iran
| |
Collapse
|
8
|
Tanaka T, Fujita M, Kusajima M, Narita F, Asami T, Maruyama-Nakashita A, Nakajima M, Nakashita H. Priming of Immune System in Tomato by Treatment with Low Concentration of L-Methionine. Int J Mol Sci 2024; 25:6315. [PMID: 38928022 PMCID: PMC11204331 DOI: 10.3390/ijms25126315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Various metabolites, including phytohormones, phytoalexins, and amino acids, take part in the plant immune system. Herein, we analyzed the effects of L-methionine (Met), a sulfur-containing amino acid, on the plant immune system in tomato. Treatment with low concentrations of Met enhanced the resistance of tomato to a broad range of diseases caused by the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato (Pst) and the necrotrophic fungal pathogen Botrytis cinerea (Bc), although it did not induce the production of any antimicrobial substances against these pathogens in tomato leaf tissues. Analyses of gene expression and phytohormone accumulation indicated that Met treatment alone did not activate the defense signals mediated by salicylic acid, jasmonic acid, and ethylene. However, the salicylic acid-responsive defense gene and the jasmonic acid-responsive gene were induced more rapidly in Met-treated plants after infection with Pst and Bc, respectively. These findings suggest that low concentrations of Met have a priming effect on the phytohormone-mediated immune system in tomato.
Collapse
Affiliation(s)
- Tomoya Tanaka
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
| | - Moeka Fujita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Miyuki Kusajima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8567, Japan; (M.K.); (T.A.)
| | - Futo Narita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
| | - Tadao Asami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8567, Japan; (M.K.); (T.A.)
| | - Akiko Maruyama-Nakashita
- Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka 819-0395, Japan;
| | - Masami Nakajima
- Graduate School of Agriculture, Ibaraki University, Ibaraki 300-0393, Japan;
| | - Hideo Nakashita
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Fukui 910-1195, Japan; (T.T.); (M.F.)
| |
Collapse
|
9
|
Hida A, Okano N, Tadokoro C, Fukunishi M, Ahmed AA, Takenaka K, Tateuchi Y, Fujioka K, Torii H, Tajima T, Kato J. Fermented botanical fertilizer controls bacterial wilt of tomatoes caused by Ralstonia pseudosolanacearum. Biosci Biotechnol Biochem 2024; 88:571-576. [PMID: 38383669 DOI: 10.1093/bbb/zbae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
This study demonstrates the effect of fermented botanical product (FBP) on Ralstonia pseudosolanacearum-induced bacterial wilt disease and unravels its action mechanism. Soaking with diluted FBP solutions (0.1%-0.5%) significantly suppressed bacterial wilt in tomato plants, and FBP-treated tomato plants grew well against R. pseudosolanacearum infection. Growth assays showed that FBP had no antibacterial effect but promoted R. pseudosolanacearum growth. In contrast, few or no R. pseudosolanacearum cells were detected in aerial parts of tomato plants grown in FBP-soaked soil. Subsequent infection assays using the chemotaxis-deficient mutant (ΔcheA) or the root-dip inoculation method revealed that FBP does not affect pathogen migration to plant roots during infection. Moreover, FBP-pretreated tomato plants exhibited reduced bacterial wilt in the absence of FBP. These findings suggest that the plant, but not the pathogen, could be affected by FBP, resulting in an induced resistance against R. pseudosolanacearum, leading to a suppressive effect on bacterial wilt.
Collapse
Affiliation(s)
- Akiko Hida
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Nanako Okano
- Program of Biotechnology, School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Chika Tadokoro
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Myuji Fukunishi
- Program of Biotechnology, School of Engineering, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Asmaa Ali Ahmed
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Agricultural Microbiology, Faculty of Agriculture, Minia University, Minia, Egypt
| | - Kohei Takenaka
- Department of Research and Development, Manda Fermentation Co., Ltd., Onomichi, Hiroshima, Japan
| | - Yusuke Tateuchi
- Department of Research and Development, Manda Fermentation Co., Ltd., Onomichi, Hiroshima, Japan
| | - Kotaro Fujioka
- Department of Research and Development, Manda Fermentation Co., Ltd., Onomichi, Hiroshima, Japan
| | - Hideto Torii
- Department of Research and Development, Manda Fermentation Co., Ltd., Onomichi, Hiroshima, Japan
| | - Takahisa Tajima
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Junichi Kato
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
10
|
Li S, Yu Y, Xie P, Zhu X, Yang C, Wang L, Zhang S. Antifungal Activities of L-Methionine and L-Arginine Treatment In Vitro and In Vivo against Botrytis cinerea. Microorganisms 2024; 12:360. [PMID: 38399764 PMCID: PMC10891807 DOI: 10.3390/microorganisms12020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Gray mold caused by Botrytis cinerea is a common postharvest fungal disease in fruit and vegetables. The prevention and treatment of postharvest gray mold has been one of the hot research issues addressed by researchers. This study aimed to investigate the effect of L-methionine and L-arginine on Botrytis cinerea in vitro and on cherry tomato fruit. The results of the in vitro experiment showed that L-methionine and L-arginine had significant inhibitory effects on the mycelial growth and spore germination of Botrytis cinerea, and the inhibitory effects were enhanced with increasing L-methionine or L-arginine concentration. In addition, L-methionine and L-arginine treatment increased the leakage of Botrytis cinerea electrolytes, proteins and nucleic acids. The experiment involving propidium iodide staining and malondialdehyde content assay also confirmed that L-methionine and L-arginine treatment could lead to cell membrane rupture and lipid peroxidation. The results of scanning electron microscopy further verified that the morphology of hyphae was damaged, deformed, dented and wrinkled after treatment with L-methionine or L-arginine. Fruit inoculation experiments displayed that L-methionine and L-arginine treatments significantly inhibited the occurrence and development of gray mold in postharvest cherry tomato. Therefore, treatment with L-methionine or L-arginine might be an effective means to control postharvest gray mold in fruit and vegetables.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shaoying Zhang
- College of Food Science, Shanxi Normal University, Taiyuan 030031, China; (S.L.); (P.X.); (C.Y.)
| |
Collapse
|
11
|
Harris FM, Mou Z. Damage-Associated Molecular Patterns and Systemic Signaling. PHYTOPATHOLOGY 2024; 114:308-327. [PMID: 37665354 DOI: 10.1094/phyto-03-23-0104-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cellular damage inflicted by wounding, pathogen infection, and herbivory releases a variety of host-derived metabolites, degraded structural components, and peptides into the extracellular space that act as alarm signals when perceived by adjacent cells. These so-called damage-associated molecular patterns (DAMPs) function through plasma membrane localized pattern recognition receptors to regulate wound and immune responses. In plants, DAMPs act as elicitors themselves, often inducing immune outputs such as calcium influx, reactive oxygen species generation, defense gene expression, and phytohormone signaling. Consequently, DAMP perception results in a priming effect that enhances resistance against subsequent pathogen infections. Alongside their established function in local tissues, recent evidence supports a critical role of DAMP signaling in generation and/or amplification of mobile signals that induce systemic immune priming. Here, we summarize the identity, signaling, and synergy of proposed and established plant DAMPs, with a focus on those with published roles in systemic signaling.
Collapse
Affiliation(s)
- Fiona M Harris
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| |
Collapse
|
12
|
Shakoor N, Hussain M, Adeel M, Azeem I, Ahmad MA, Zain M, Zhang P, Li Y, Quanlong W, Horton R, Rui Y. Lithium-induced alterations in soybean nodulation and nitrogen fixation through multifunctional mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166438. [PMID: 37633397 DOI: 10.1016/j.scitotenv.2023.166438] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/10/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023]
Abstract
The increasing footprints of lithium (Li) in agroecosystems combined with limited recycling options have raised uncertain consequences for important crops. Nitrogen (N2)-fixation by legumes is an important biological response process, but the cause and effect of Li exposure on plant root-nodule symbiosis and biological N2-fixation (BNF) potential are still unclear. Soybean as a model plant was exposed to Li at low (25 mg kg-1), medium (50 mg kg-1), and high (100 mg kg-1) concentrations. We found that soybean growth and nodulation capacity had a concentration-dependent response to Li. Li at 100 mg kg-1 reduced the nodule numbers, weight, and BNF potential of soybean in comparison to the low and medium levels. Significant shift in soybean growth and BNF after exposure to Li were associated with alteration in the nodule metabolic pathways involved in nitrogen uptake and metabolism (urea, glutamine and glutamate). Importantly, poor soybean nodulation after high Li exposure was due in part to a decreased abundance of bacterium Ensifer in the nodule bacterial community. Also, the dominant N2-fixing bacterium Ensifer was significantly correlated with carbon and nitrogen metabolic pathways. The findings of our study offer mechanistic insights into the environmental and biological impacts of Li on soybean root-nodule symbiosis and N2-acquisition and provide a pathway to develop strategies to mitigate the challenges posed by Li in agroecosystems.
Collapse
Affiliation(s)
- Noman Shakoor
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Muzammil Hussain
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Muhammad Adeel
- BNU-HKUST Laboratory of Green Innovation, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 519087, Guangdong, PR China.
| | - Imran Azeem
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Muhammad Arslan Ahmad
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, PR China
| | - Muhammad Zain
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Jiangsu Key Laboratory of Crop Cultivation and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China
| | - Peng Zhang
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Yuanbo Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Wang Quanlong
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China
| | - Robert Horton
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
| | - Yukui Rui
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation and College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
13
|
Yuan T, Ren W, Wang Z, Fry EL, Tang S, Yin J, Zhang J, Jia Z. How does the pattern of root metabolites regulating beneficial microorganisms change with different grazing pressures? FRONTIERS IN PLANT SCIENCE 2023; 14:1180576. [PMID: 37484473 PMCID: PMC10361787 DOI: 10.3389/fpls.2023.1180576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/08/2023] [Indexed: 07/25/2023]
Abstract
Grazing disturbance can change the structure of plant rhizosphere microbial communities and thereby alter the feedback to promote plant growth or induce plant defenses. However, little is known about how such changes occur and vary under different grazing pressures or the roles of root metabolites in altering the composition of rhizosphere microbial communities. In this study, the effects of different grazing pressures on the composition of microbial communities were investigated, and the mechanisms by which different grazing pressures changed rhizosphere microbiomes were explored with metabolomics. Grazing changed composition, functions, and co-expression networks of microbial communities. Under light grazing (LG), some saprophytic fungi, such as Lentinus sp., Ramichloridium sp., Ascobolus sp. and Hyphoderma sp., were significantly enriched, whereas under heavy grazing (HG), potentially beneficial rhizobacteria, such as Stenotrophomonas sp., Microbacterium sp., and Lysobacter sp., were significantly enriched. The beneficial mycorrhizal fungus Schizothecium sp. was significantly enriched in both LG and HG. Moreover, all enriched beneficial microorganisms were positively correlated with root metabolites, including amino acids (AAs), short-chain organic acids (SCOAs), and alkaloids. This suggests that these significantly enriched rhizosphere microbial changes may be caused by these differential root metabolites. Under LG, it is inferred that root metabolites, especially AAs such as L-Histidine, may regulate specific saprophytic fungi to participate in material transformations and the energy cycle and promote plant growth. Furthermore, to help alleviate the stress of HG and improve plant defenses, it is inferred that the root system actively regulates the synthesis of these root metabolites such as AAs, SCOAs, and alkaloids under grazing interference, and then secretes them to promote the growth of some specific plant growth-promoting rhizobacteria and fungi. To summarize, grasses can regulate beneficial microorganisms by changing root metabolites composition, and the response strategies vary under different grazing pressure in typical grassland ecosystems.
Collapse
Affiliation(s)
- Ting Yuan
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Weibo Ren
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhaoming Wang
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, Inner Mongolia M-Grass Ecology and Environment (Group) Co., Ltd., Hohhot, China
| | - Ellen L. Fry
- Department of Biology, Edge Hill University, Ormskirk, United Kingdom
| | - Shiming Tang
- Key Laboratory of Model Innovation in Forage Production Efficiency, Institute of Grassland Research, Chinese Academy of Agricultural Sciences, Hohhot, China
| | - Jingjing Yin
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Jiatao Zhang
- Inner Mongolia Key Laboratory of Grassland Ecology, School of Ecology and Environment, Inner Mongolia University, Hohhot, China
| | - Zhenyu Jia
- Key Laboratory of Forage Breeding and Seed Production of Inner Mongolia, Inner Mongolia M-Grass Ecology and Environment (Group) Co., Ltd., Hohhot, China
| |
Collapse
|
14
|
Chen L, Ma Y, He T, Chen T, Pan Y, Zhou D, Li X, Lu Y, Wu Q, Wang L. Integrated transcriptome and metabolome analysis unveil the response mechanism in wild rice ( Zizania latifolia griseb.) against sheath rot infection. Front Genet 2023; 14:1163464. [PMID: 37359383 PMCID: PMC10289006 DOI: 10.3389/fgene.2023.1163464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Sheath rot disease (SRD) is one of the most devastating diseases of Manchurian wild rice (MWR) (Zizania latifolia Griseb). Pilot experiments in our laboratory have shown that an MWR cultivar "Zhejiao NO.7"exhibits signs of SRD tolerance. To explore the responses of Zhejiao No. 7 to SRD infection, we used a combined transcriptome and metabolome analysis approach. A total of 136 differentially accumulated metabolites (DAMs, 114 up- and 22 down-accumulated in FA compared to CK) were detected. These up-accumulated metabolites were enriched in tryptophan metabolism, amino acid biosynthesis, flavonoids, and phytohormone signaling. Transcriptome sequencing results showed the differential expression of 11,280 genes (DEGs, 5,933 up-, and 5,347 downregulated in FA compared to CK). The genes expressed in tryptophan metabolism, amino acid biosynthesis, phytohormone biosynthesis and signaling, and reactive oxygen species homeostasis confirmed the metabolite results. In addition, genes related to the cell wall, carbohydrate metabolism, and plant-pathogen interaction (especially hypersensitive response) showed changes in expression in response to SRD infection. These results provide a basis for understanding the response mechanisms in MWR to FA attack that can be used for breeding SRD-tolerant MWR.
Collapse
Affiliation(s)
- Limin Chen
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yamin Ma
- Agricultural and Rural Bureau of Jinyun County, Jinyun, Zhejiang, China
| | - Tianjun He
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - TingTing Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yiming Pan
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - Dayun Zhou
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - Xiaowei Li
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yaobin Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection, Ministry of Agriculture and Rural Affairs, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Quancong Wu
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| | - Lailiang Wang
- Lishui Institute of Agriculture and Forestry Sciences, Lishui, Zhejiang, China
| |
Collapse
|
15
|
Yuxiao Z, Guo Y, Xinhua S. Comprehensive insight into an amino acid metabolic network in postharvest horticultural products: a review. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023. [PMID: 37066732 DOI: 10.1002/jsfa.12638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
Amino acid (AA) metabolism plays a vital role in the central metabolism of plants. In addition to protein biosynthesis, AAs are involved in secondary metabolite biosynthesis, signal transduction, stress response, defense against pathogens, flavor formation, and so on. Besides these functions, AAs can be degraded into precursors or intermediates of the tricarboxylic acid cycle to substitute respiratory substrates and restore energy homeostasis, as well as directly acting as signal molecules or be involved in the regulation of plant signals to delay senescence of postharvest horticultural products (PHPs). AA metabolism and its role in plants growth have been clarified; however, only a few studies about their roles exist concerning the postharvest preservation of fruit and vegetables. This study reviews the potential functions of various AAs by comparing the difference in AA metabolism at the postharvest stage and then discusses the crosstalk of AA metabolism and energy metabolism, the target of rapamycin/sucrose nonfermenting-related kinase 1 signaling and secondary metabolism. Finally, the roles and effect mechanism of several exogenous AAs in the preservation of PHPs are highlighted. This review provides a comprehensive insight into the AA metabolism network in PHPs. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Zhang Yuxiao
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zi'bo, China
| | - Yanyin Guo
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zi'bo, China
| | - Song Xinhua
- College of Life Science, Shandong University of Technology, Zi'bo, China
| |
Collapse
|
16
|
Sakata N, Ino T, Hayashi C, Ishiga T, Ishiga Y. Controlling stomatal aperture, a potential strategy for managing plant bacterial disease. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 327:111534. [PMID: 36379298 DOI: 10.1016/j.plantsci.2022.111534] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/04/2022] [Accepted: 11/10/2022] [Indexed: 05/27/2023]
Abstract
Bacterial blight of crucifers caused by Pseudomonas cannabina pv. alisalensis (Pcal) inflicts great damage on crucifer production. To explore efficient and sustainable strategies for Pcal disease control, we here investigated and screened for amino acids with reduced disease development. We found that exogenous foliar application with multiple amino acids reduced disease symptoms and bacterial populations in cabbage after spray-inoculation, but not syringe-inoculation. These results indicate that these amino acids showed a protective effect before Pcal entered plants. Therefore, we observed stomatal responses, which is a main gateway for Pcal entry into the apoplast, after amino acid treatments. As a results, we found several amino acids induce stomatal closure. Moreover, our findings demonstrated that reducing stomatal aperture width can limit bacterial entry into plants, leading to reduced disease symptoms. Indeed, Cys, Glu, and Lys, which showed a protective effect on cabbage, reduced stomatal aperture width and bacterial entry. Therefore, managing stomatal aperture can be a powerful strategy for controlling bacterial disease.
Collapse
Affiliation(s)
- Nanami Sakata
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Taiki Ino
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Chinatsu Hayashi
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Takako Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Yasuhiro Ishiga
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| |
Collapse
|
17
|
Hirayama T, Mochida K. Plant Hormonomics: A Key Tool for Deep Physiological Phenotyping to Improve Crop Productivity. PLANT & CELL PHYSIOLOGY 2023; 63:1826-1839. [PMID: 35583356 PMCID: PMC9885943 DOI: 10.1093/pcp/pcac067] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/07/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Agriculture is particularly vulnerable to climate change. To cope with the risks posed by climate-related stressors to agricultural production, global population growth, and changes in food preferences, it is imperative to develop new climate-smart crop varieties with increased yield and environmental resilience. Molecular genetics and genomic analyses have revealed that allelic variations in genes involved in phytohormone-mediated growth regulation have greatly improved productivity in major crops. Plant science has remarkably advanced our understanding of the molecular basis of various phytohormone-mediated events in plant life. These findings provide essential information for improving the productivity of crops growing in changing climates. In this review, we highlight the recent advances in plant hormonomics (multiple phytohormone profiling) and discuss its application to crop improvement. We present plant hormonomics as a key tool for deep physiological phenotyping, focusing on representative plant growth regulators associated with the improvement of crop productivity. Specifically, we review advanced methodologies in plant hormonomics, highlighting mass spectrometry- and nanosensor-based plant hormone profiling techniques. We also discuss the applications of plant hormonomics in crop improvement through breeding and agricultural management practices.
Collapse
Affiliation(s)
- Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046 Japan
| | - Keiichi Mochida
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehirocho, Tsurumiku, Yokohama, Kanagawa, 230-0045 Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maiokacho, Totsukaku, Yokohama, Kanagawa, 244-0813 Japan
- School of Information and Data Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki, 852-8521 Japan
- RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehirocho, Tsurumiku, Yokohama, Kanagawa 230-0045 Japan
| |
Collapse
|
18
|
Liao HS, Chung YH, Hsieh MH. Glutamate: A multifunctional amino acid in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111238. [PMID: 35351313 DOI: 10.1016/j.plantsci.2022.111238] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
Glutamate (Glu) is a versatile metabolite and a signaling molecule in plants. Glu biosynthesis is associated with the primary nitrogen assimilation pathway. The conversion between Glu and 2-oxoglutarate connects Glu metabolism to the tricarboxylic acid cycle, carbon metabolism, and energy production. Glu is the predominant amino donor for transamination reactions in the cell. In addition to protein synthesis, Glu is a building block for tetrapyrroles, glutathione, and folate. Glu is the precursor of γ-aminobutyric acid that plays an important role in balancing carbon/nitrogen metabolism and various cellular processes. Glu can conjugate to the major auxin indole 3-acetic acid (IAA), and IAA-Glu is destined for oxidative degradation. Glu also conjugates with isochorismate for the production of salicylic acid. Accumulating evidence indicates that Glu functions as a signaling molecule to regulate plant growth, development, and defense responses. The ligand-gated Glu receptor-like proteins (GLRs) mediate some of these responses. However, many of the Glu signaling events are GLR-independent. The receptor perceiving extracellular Glu as a danger signal is still unknown. In addition to GLRs, Glu may act on receptor-like kinases or receptor-like proteins to trigger immune responses. Glu metabolism and Glu signaling may entwine to regulate growth, development, and defense responses in plants.
Collapse
Affiliation(s)
- Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yi-Hsin Chung
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan; Department of Life Sciences, National Central University, Taoyuan 32001, Taiwan.
| |
Collapse
|
19
|
MacIntyre AM, Meline V, Gorman Z, Augustine SP, Dye CJ, Hamilton CD, Iyer-Pascuzzi AS, Kolomiets MV, McCulloh KA, Allen C. Trehalose increases tomato drought tolerance, induces defenses, and increases resistance to bacterial wilt disease. PLoS One 2022; 17:e0266254. [PMID: 35476629 PMCID: PMC9045674 DOI: 10.1371/journal.pone.0266254] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 03/16/2022] [Indexed: 12/13/2022] Open
Abstract
Ralstonia solanacearum causes bacterial wilt disease, leading to severe crop losses. Xylem sap from R. solanacearum-infected tomato is enriched in the disaccharide trehalose. Water-stressed plants also accumulate trehalose, which increases drought tolerance via abscisic acid (ABA) signaling. Because R. solanacearum-infected plants suffer reduced water flow, we hypothesized that bacterial wilt physiologically mimics drought stress, which trehalose could mitigate. We found that R. solanacearum-infected plants differentially expressed drought-associated genes, including those involved in ABA and trehalose metabolism, and had more ABA in xylem sap. Consistent with this, treating tomato roots with ABA reduced both stomatal conductance and stem colonization by R. solanacearum. Treating roots with trehalose increased xylem sap ABA and reduced plant water use by lowering stomatal conductance and temporarily improving water use efficiency. Trehalose treatment also upregulated expression of salicylic acid (SA)-dependent tomato defense genes; increased xylem sap levels of SA and other antimicrobial compounds; and increased bacterial wilt resistance of SA-insensitive NahG tomato plants. Additionally, trehalose treatment increased xylem concentrations of jasmonic acid and related oxylipins. Finally, trehalose-treated plants were substantially more resistant to bacterial wilt disease. Together, these data show that exogenous trehalose reduced both water stress and bacterial wilt disease and triggered systemic disease resistance, possibly through a Damage Associated Molecular Pattern (DAMP) response pathway. This suite of responses revealed unexpected linkages between plant responses to biotic and abiotic stress and suggested that R. solanacearum-infected plants increase trehalose to improve water use efficiency and increase wilt disease resistance. The pathogen may degrade trehalose to counter these efforts. Together, these results suggest that treating tomatoes with exogenous trehalose could be a practical strategy for bacterial wilt management.
Collapse
Affiliation(s)
- April M. MacIntyre
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States of America
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Valerian Meline
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States of America
| | - Zachary Gorman
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States of America
| | - Steven P. Augustine
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Carolyn J. Dye
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Corri D. Hamilton
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Anjali S. Iyer-Pascuzzi
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States of America
| | - Michael V. Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, United States of America
| | - Katherine A. McCulloh
- Department of Botany, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, United States of America
- * E-mail:
| |
Collapse
|
20
|
Kobayashi M, Win KT, Jiang CJ. Soybean Hypocotyls Prevent Calonectria ilicicola Invasion by Multi-Layered Defenses. FRONTIERS IN PLANT SCIENCE 2022; 12:813578. [PMID: 35140731 PMCID: PMC8819093 DOI: 10.3389/fpls.2021.813578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
In plants, many pathogens infect a specific set of host organs to cause disease, yet the underlying mechanisms remain unclear. Here, we show that inoculation of soybean plants with Calonectria ilicicola, the soil-borne causal agent of soybean red crown rot, caused typical disease symptoms of root rot and leaf chlorosis and necrosis. However, the pathogen DNA was only detected in the roots and stem (hypocotyl) base but not other aerial parts of the plants. As we observed vigorous fungal growth in all culture media made of extracts from roots, stems, and leaves, differences in key components including available nutrients did not determine organ-specific infection and reproduction by C. ilicicola. Furthermore, inoculation of stems both with and without a surface wound showed that the stems resisted C. ilicicola infection via both the pre- and post-invasion defense layers. Transcriptomic comparison of roots and stems using RNA-seq analysis further revealed that upon C. ilicicola inoculation, a greater expression of genes involved in stress response was induced in the plant stems, including receptor-like kinase, AP2/ERF, MYB, and WRKY. In addition, pathways related to amino acid metabolism were also more upregulated in the stems in response to C. ilicicola infection. These results suggest that soybean stems provide C. ilicicola resistance, at least in part, by activating an organ-specific defense response.
Collapse
|
21
|
The Glutamate Receptor Plays a Role in Defense against Botrytis cinerea through Electrical Signaling in Tomato. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112311217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Plant glutamate-like receptor genes (GLRs) are homologous to mammalian ionotropic glutamate receptors genes (iGluRs). Although GLRs have been implicated in plant defenses to biotic stress, the relationship between GLR-mediated plant immunity against fungal pathogens and electrical signals remains poorly understood. Here, we found that pretreatment with a GLR inhibitor, 6,7-dinitriquinoxaline-2,3-dione (DNQX), increased the susceptibility of tomato plants to the necrotrophic fungal pathogen Botrytis cinerea. Assessment of the glr3.3, glr3.5 and glr3.3/glr3.5 double-mutants upon B. cinerea infection showed that tomato GLR3.3 and GLR3.5 are essential for plant immunity against B. cinerea, wherein GLR3.3 plays the main role. Analysis of the membrane potential changes induced by glutamate (Glu) or glycine (Gly) revealed that amplitude was significantly reduced by knocking out GLR3.3 in tomato. While treatment with Glu or Gly significantly increased immunity against B. cinerea in wild-type plants, this effect was significantly attenuated in glr3.3 mutants. Thus, our data demonstrate that GLR3.3- and GLR3.5-mediated plant immunity against B. cinerea is associated with electrical signals in tomato plants.
Collapse
|
22
|
Tanaka K, Heil M. Damage-Associated Molecular Patterns (DAMPs) in Plant Innate Immunity: Applying the Danger Model and Evolutionary Perspectives. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:53-75. [PMID: 33900789 DOI: 10.1146/annurev-phyto-082718-100146] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Danger signals trigger immune responses upon perception by a complex surveillance system. Such signals can originate from the infectious nonself or the damaged self, the latter termed damage-associated molecular patterns (DAMPs). Here, we apply Matzinger's danger model to plant innate immunity to discuss the adaptive advantages of DAMPs and their integration into preexisting signaling pathways. Constitutive DAMPs (cDAMPs), e.g., extracellular ATP, histones, and self-DNA, fulfill primary, conserved functions and adopt a signaling role only when cellular damage causes their fragmentation or localization to aberrant compartments. By contrast, immunomodulatory peptides (also known as phytocytokines) exclusively function as signals and, upon damage, are activated as inducible DAMPs (iDAMPs). Dynamic coevolutionary processes between the signals and their emerging receptors and shared co-receptors have likely linked danger recognition to preexisting, conserved downstream pathways.
Collapse
Affiliation(s)
- Kiwamu Tanaka
- Department of Plant Pathology, Washington State University, Pullman, Washington 99163, USA;
| | - Martin Heil
- Departamento de Ingeniería Genética, CINVESTAV, 36821 Irapuato, Guanajuato, México
| |
Collapse
|
23
|
Chicken Feather Waste Hydrolysate as a Superior Biofertilizer in Agroindustry. Curr Microbiol 2021; 78:2212-2230. [PMID: 33903939 DOI: 10.1007/s00284-021-02491-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/13/2021] [Indexed: 10/24/2022]
Abstract
Billions of tons of keratinous waste in the form of feathers, antlers, bristles, claws, hair, hoofs, horns, and wool are generated by different industries and their demolition causes environmental deterioration. Chicken feathers have 92% keratin that can be a good source of peptides, amino acids, and minerals. Traditional methods of feather hydrolysis require large energy inputs, and also reduce the content of amino acids and net protein utilization values. Biological treatment of feathers with keratinolytic microbes is a feasible and environmental favorable preference for the formulation of hydrolysate that can be used as bioactive peptides, protein supplement, livestock feed, biofertilizer, etc. The presence of amino acids, soluble proteins, and peptides in hydrolysate facilitates the growth of microbes in rhizosphere that promotes the uptake and utilization of nutrients from soil. Application of hydrolysate enhances water holding capacity, C/N ratio, and mineral content of soil. The plant growth promoting activities of hydrolysate potentiates its possible use in organic farming, and improves soil ecosystem and microbiota. This paper reviews the current scenario on the methods available for management of keratinous waste, nutritional quality of hydrolysate generated using keratinolytic microbes, and its possible application as plant growth promoter in agroindustry.
Collapse
|
24
|
Fujimoto T, Abe H, Mizukubo T, Seo S. Phytol, a Constituent of Chlorophyll, Induces Root-Knot Nematode Resistance in Arabidopsis via the Ethylene Signaling Pathway. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2021; 34:279-285. [PMID: 33166202 DOI: 10.1094/mpmi-07-20-0186-r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) parasitize the roots or stems of a wide range of plant species, resulting in severe damage to the parasitized plant. The phytohormone ethylene (ET) plays an important role in signal transduction pathways leading to resistance against RKNs. However, little is currently known about the induction mechanisms of ET-dependent RKN resistance. Inoculation of Arabidopsis thaliana roots with RKNs decreased chlorophyll contents in aerial parts of the plant. We observed accumulation of phytol, a constituent of chlorophyll and a precursor of tocopherols, in RKN-parasitized roots. Application of sclareol, a diterpene that has been shown to induce ET-dependent RKN resistance, to the roots of Arabidopsis plants increased phytol contents in roots accompanied by a decrease in chlorophyll in aerial parts. Exogenously applied phytol inhibited RKN penetration of roots without exhibiting nematicidal activity. This phytol-induced inhibition of RKN penetration was attenuated in the ET-insensitive Arabidopsis mutant ein2-1. Exogenously applied phytol enhanced the production of α-tocopherol and expression of VTE5, a gene involved in tocopherol production, in Arabidopsis roots. α-Tocopherol exerted induction of RKN resistance similar to that of phytol and showed increased accumulation in roots inoculated with RKNs. Furthermore, the Arabidopsis vte5 mutant displayed no inhibition of RKN penetration in response to phytol. These results suggest that exogenously applied phytol induces EIN2-dependent RKN resistance, possibly via tocopherol production.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Taketo Fujimoto
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo
| | - Hiroshi Abe
- Experimental Plant Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, 305-0074, Japan
| | - Takayuki Mizukubo
- National Agricultural Research Center, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8666, Japan
| | - Shigemi Seo
- National Institute of Agrobiological Sciences, Tsukuba, Ibaraki, 305-8602, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-8602, Japan
| |
Collapse
|
25
|
Goto Y, Maki N, Ichihashi Y, Kitazawa D, Igarashi D, Kadota Y, Shirasu K. Exogenous Treatment with Glutamate Induces Immune Responses in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:474-487. [PMID: 31721650 DOI: 10.1094/mpmi-09-19-0262-r] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Plant resistance inducers (PRIs) are compounds that protect plants from diseases by activating immunity responses. Exogenous treatment with glutamate (Glu), an important amino acid for all living organisms, induces resistance against fungal pathogens in rice and tomato. To understand the molecular mechanisms of Glu-induced immunity, we used the Arabidopsis model system. We found that exogenous treatment with Glu induces resistance against pathogens in Arabidopsis. Consistent with this, transcriptome analyses of Arabidopsis seedlings showed that Glu significantly induces the expression of wound-, defense-, and stress-related genes. Interestingly, Glu activates the expression of genes induced by pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns at much later time points than the flg22 peptide, which is a bacterial-derived PAMP. The Glu receptor-like (GLR) proteins GLR3.3 and GLR3.6 are involved in the early expression of Glu-inducible genes; however, the sustained expression of these genes does not require the GLR proteins. Glu-inducible gene expression is also not affected by mutations in genes that encode PAMP receptors (EFR, FLS2, and CERK1), regulators of pattern-triggered immunity (BAK1, BKK1, BIK1, and PBL1), or a salicylic acid biosynthesis enzyme (SID2). The treatment of roots with Glu activates the expression of PAMP-, salicylic acid-, and jasmonic acid-inducible genes in leaves. Moreover, the treatment of roots with Glu primes chitin-induced responses in leaves, possibly through transcriptional activation of LYSIN-MOTIF RECEPTOR-LIKE KINASE 5 (LYK5), which encodes a chitin receptor. Because Glu treatment does not cause discernible growth retardation, Glu can be used as an effective PRI.
Collapse
Affiliation(s)
- Yukihisa Goto
- RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Noriko Maki
- RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Yasunori Ichihashi
- RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Daisuke Kitazawa
- Frontier Research Labs, Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Japan
| | - Daisuke Igarashi
- Frontier Research Labs, Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki 210-8681, Japan
| | - Yasuhiro Kadota
- RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Plant Immunity Research Group, Suehiro-cho 1-7-22 Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| |
Collapse
|
26
|
Xu J, Jia W, Hu C, Nie M, Ming J, Cheng Q, Cai M, Sun X, Li X, Zheng X, Wang J, Zhao X. Selenium as a potential fungicide could protect oilseed rape leaves from Sclerotinia sclerotiorum infection. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 257:113495. [PMID: 31733958 DOI: 10.1016/j.envpol.2019.113495] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 05/21/2023]
Abstract
Sclerotinia sclerotiorum (S. sclerotiorum) is a soil-borne pathogen causing serious damage to the yield of oilseed rape. Selenium (Se) acted as a beneficial element for plants, and also proved to inhibit the growth of plant pathogens. However, whether Se could reduce S. sclerotiorum infection in oilseed rape, the related mechanism is still unclear. In this study, proper Se levels (0.1 mg/kg and 0.5 mg/kg) applied in soil decreased the lesion diameter and incidence of S. sclerotiorum in rape leaves. Se enfeebled the decrease of net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (Tr), and maintained leaf cell structure. Se enhanced the antioxidant system of leaves, as evidenced by the maintenance of mitochondrial function, reduction of reactive oxygen species (ROS) accumulation and malondialdehyde (MDA) content, and the improvement of antioxidant enzyme activities including catalase (CAT), polyphenol oxidase (PPO) and peroxidase (POD). The upregulated defense gene expressions (CHI, ESD1, NPR1 and PDF1.2) of leaves were also observed under Se treatments. Furthermore, metabolome analysis revealed that Se promoted the metabolism of energy and amino acids in leaves infected with S. sclerotiorum. These findings inferred that Se could act as a potential eco-fungicide to protect oilseed rape leaves from S. sclerotiorum attack. The result arising from this study not only introduces an ecological method to control S. sclerotiorum, but also provides a deep insight into microelement for plant protection.
Collapse
Affiliation(s)
- Jiayang Xu
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Wei Jia
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Chengxiao Hu
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Min Nie
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Jiajia Ming
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Qin Cheng
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Miaomiao Cai
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xuecheng Sun
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xinran Li
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaoyan Zheng
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Jing Wang
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaohu Zhao
- College of Resources and Environment, Huazhong Agricultural University / Hubei Provincial Engineering Laboratory for New-Type Fertilizer / Research Center of Trace Elements / Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| |
Collapse
|
27
|
Fu HZ, Marian M, Enomoto T, Suga H, Shimizu M. Potential Use of L-arabinose for the Control of Tomato Bacterial Wilt. Microbes Environ 2020; 35:ME20106. [PMID: 33087626 PMCID: PMC7734405 DOI: 10.1264/jsme2.me20106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
Abstract
The present study aimed to investigate the potential of simple sugars for use as protection agents in the control of tomato bacterial wilt caused by Ralstonia pseudosolanacearum. Based on the sugar assimilation patterns of the pathogen, four unassimilable sugars (L-arabinose, maltose, D-raffinose, and D-ribose) were selected from 10 representative sugars present in tomato root exudates. These sugars were evaluated for their effects on bacterial wilt using a tomato seedling bioassay. The application of 0.25% L-arabinose significantly reduced disease severity and was, thus, selected as a candidate for further evaluations in a pot experiment under glasshouse conditions. The results obtained showed that the disease suppressive effects of L-arabinose slightly increased at higher concentrations; drench treatments at 0.1, 0.25, and 0.5% reduced disease severity by ca. 48, 70, and 87%, respectively. The drench treatment with 0.5% L-arabinose significantly reduced the pathogen population in the rhizosphere and stem tissues of tomato plants without any antibacterial activity. Real-time reverse-transcription PCR revealed that the expression of salicylic acid-dependent and ethylene-dependent defense genes was significantly enhanced in the stem tissues of L-arabinose-treated tomato plants following the pathogen inoculation. These results suggest that soil drenching with L-arabinose effectively suppresses tomato bacterial wilt by preventing pathogen proliferation in the rhizosphere and stem tissues of tomato plants. This is the first study to report the potential of L-arabinose as a safe, eco-friendly, and cost-effective plant protection agent for the control of tomato bacterial wilt.
Collapse
Affiliation(s)
- Hui-Zhen Fu
- The United Graduate School of Agricultural Science, Gifu University, 1–1 Yanagido, Gifu, Gifu 501–1193, Japan
| | - Malek Marian
- Faculty of Applied Biological Sciences, Gifu University, 1–1 Yanagido, Gifu, Gifu 501–1193, Japan
- College of Agriculture, Ibaraki University, 3–21–1 Chuuo, Ami, Inashiki, Ibaraki 300–0393, Japan
| | - Takuo Enomoto
- Faculty of Applied Biological Sciences, Gifu University, 1–1 Yanagido, Gifu, Gifu 501–1193, Japan
| | - Haruhisa Suga
- Life Science Research Center, Gifu University, 1–1 Yanagido, Gifu, Gifu 501–1193, Japan
| | - Masafumi Shimizu
- The United Graduate School of Agricultural Science, Gifu University, 1–1 Yanagido, Gifu, Gifu 501–1193, Japan
| |
Collapse
|
28
|
Kong CH, Xuan TD, Khanh TD, Tran HD, Trung NT. Allelochemicals and Signaling Chemicals in Plants. Molecules 2019; 24:molecules24152737. [PMID: 31357670 PMCID: PMC6695906 DOI: 10.3390/molecules24152737] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/13/2022] Open
Abstract
Plants abound with active ingredients. Among these natural constituents, allelochemicals and signaling chemicals that are released into the environments play important roles in regulating the interactions between plants and other organisms. Allelochemicals participate in the defense of plants against microbial attack, herbivore predation, and/or competition with other plants, most notably in allelopathy, which affects the establishment of competing plants. Allelochemicals could be leads for new pesticide discovery efforts. Signaling chemicals are involved in plant neighbor detection or pest identification, and they induce the production and release of plant defensive metabolites. Through the signaling chemicals, plants can either detect or identify competitors, herbivores, or pathogens, and respond by increasing defensive metabolites levels, providing an advantage for their own growth. The plant-organism interactions that are mediated by allelochemicals and signaling chemicals take place both aboveground and belowground. In the case of aboveground interactions, mediated air-borne chemicals are well established. Belowground interactions, particularly in the context of soil-borne chemicals driving signaling interactions, are largely unknown, due to the complexity of plant-soil interactions. The lack of effective and reliable methods of identification and clarification their mode of actions is one of the greatest challenges with soil-borne allelochemicals and signaling chemicals. Recent developments in methodological strategies aim at the quality, quantity, and spatiotemporal dynamics of soil-borne chemicals. This review outlines recent research regarding plant-derived allelochemicals and signaling chemicals, as well as their roles in agricultural pest management. The effort represents a mechanistically exhaustive view of plant-organism interactions that are mediated by allelochemicals and signaling chemicals and provides more realistic insights into potential implications and applications in sustainable agriculture.
Collapse
Affiliation(s)
- Chui-Hua Kong
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| | - Tran Dang Xuan
- Graduate School for International Development and Cooperation, Hiroshima University, Hiroshima 739-8529, Japan.
| | - Tran Dang Khanh
- Agricultural Genetics Institute, Pham Van Dong Street, Hanoi 122000, Vietnam
- Center for Expert, Vietnam National University of Agriculture, Hanoi 131000, Vietnam
| | - Hoang-Dung Tran
- Faculty of Biotechnology, Nguyen Tat Thanh University, Ho Chi Minh 72820, Vietnam
| | - Nguyen Thanh Trung
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
| |
Collapse
|
29
|
Hou S, Liu Z, Shen H, Wu D. Damage-Associated Molecular Pattern-Triggered Immunity in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:646. [PMID: 31191574 PMCID: PMC6547358 DOI: 10.3389/fpls.2019.00646] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/29/2019] [Indexed: 05/14/2023]
Abstract
As a universal process in multicellular organisms, including animals and plants, cells usually emit danger signals when suffering from attacks of microbes and herbivores, or physical damage. These signals, termed as damage-associated molecular patterns (DAMPs), mainly include cell wall or extracellular protein fragments, peptides, nucleotides, and amino acids. Once exposed on cell surfaces, DAMPs are detected by plasma membrane-localized receptors of surrounding cells to regulate immune responses against the invading organisms and promote damage repair. DAMPs may also act as long-distance mobile signals to mediate systemic wounding responses. Generation, release, and perception of DAMPs, and signaling events downstream of DAMP perception are all rigorously modulated by plants. These processes integrate together to determine intricate mechanisms of DAMP-triggered immunity in plants. In this review, we present an extensive overview on our current understanding of DAMPs in plant immune system.
Collapse
Affiliation(s)
- Shuguo Hou
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- *Correspondence: Shuguo Hou,
| | - Zunyong Liu
- State Key Laboratory of Rice Biology, Zhejiang University, Hangzhou, China
| | - Hexi Shen
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
| | - Daoji Wu
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, China
- Daoji Wu,
| |
Collapse
|
30
|
Jana GA, Al Kharusi L, Sunkar R, Al-Yahyai R, Yaish MW. Metabolomic analysis of date palm seedlings exposed to salinity and silicon treatments. PLANT SIGNALING & BEHAVIOR 2019; 14:1663112. [PMID: 31505987 PMCID: PMC6804709 DOI: 10.1080/15592324.2019.1663112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 08/28/2019] [Accepted: 08/29/2019] [Indexed: 05/21/2023]
Abstract
Silicon is known to promote plant growth as well as stress tolerance of plants. The current study was undertaken to assess the growth promoting effect of silicon on date palm seedling development as well as its ability to abate some of the negative effects of salinity. In this study, date palm seedlings were treated with silicon and sodium chloride salts, and the effect of these salts on some physiological parameters of the plants was determined. In addition, a global nontargeted metabolomics analysis was performed for the leaf and root tissues using liquid chromatography-mass spectrometry (LC-MS). The results showed that under non-stress conditions, silicon treatment enhanced the growth of the date palm seedlings, however, under salinity, silicon slightly mitigates the negative effects of salt stress on the date palm seedlings although it enhances the potassium accumulation under this condition. The global metabolomics analysis has identified a total of 1,101 significant differentially accumulated (p, q ≤ 0.05) metabolites in leaves and roots under silicon, salinity or their combination. A differential pairwise metabolic profile comparison revealed the accumulation of distinct metabolites in response to silicon and salinity treatments such as antioxidant compounds pyridoxine, cepharanthine, allithiamine, myristic acid and boldine; osmoregulators such as mucic acid; along with the accumulation of detoxification intermediates such as S-D-lactoylglutathione, beta-cyano-L-alanine and gamma-glutamyl-conjugates. In addition, histochemical analyses revealed that application of silicon significantly (p ≤ 0.05) enhanced the formation of the Casparian strip. Identification of the differentially accumulated metabolites could offer an insight into how silicon is able to promote growth and salinity tolerance in date palms.
Collapse
Affiliation(s)
- Gerry Aplang Jana
- Department of Biology, College of Sciences, Sultan Qaboos University, Muscat, Oman
| | - Latifa Al Kharusi
- Department of Biology, College of Sciences, Sultan Qaboos University, Muscat, Oman
| | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Rashid Al-Yahyai
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud W. Yaish
- Department of Biology, College of Sciences, Sultan Qaboos University, Muscat, Oman
- CONTACT Mahmoud W. Yaish , Department of Biology, College of Sciences, Sultan Qaboos University, P.O. Box 36, Muscat 123, Oman
| |
Collapse
|
31
|
Ombiro GS, Sawai T, Noutoshi Y, Nishina Y, Matsui H, Yamamoto M, Toyoda K, Ichinose Y. Specific growth inhibitors of Ralstonia solanacearum, Xanthomonas oryzae pv. oryzae, X. campestris pv. campestris, and Clavibacter michiganensis subsp. michiganensis. Microbiol Res 2018; 215:29-35. [DOI: 10.1016/j.micres.2018.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/28/2018] [Accepted: 06/09/2018] [Indexed: 11/26/2022]
|
32
|
Noge K, Tamogami S. Isovaleronitrile co-induced with its precursor, l-leucine, by herbivory in the common evening primrose stimulates foraging behavior of the predatory blue shield bug. Biosci Biotechnol Biochem 2018; 82:395-406. [DOI: 10.1080/09168451.2018.1433019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Herbivore-induced plant volatiles play important roles in plant–insect and plant–plant interactions. The common evening primrose, Oenothera biennis, is often infested by the flea beetle, Altica oleracea, on which the predatory blue shield bug, Zicrona caerulea, is usually found. This observation suggests that the predatory bug can discriminate infested plants from intact ones to locate its prey. In this study, l-leucine-derived nitrogen-containing compounds [isovaleronitrile (3-methylbutanenitrile), (E/Z)-isovaleraldoxime and 3-methyl-1-nitrobutane] and some terpenes were identified as a characteristic volatile blend from herbivore-infested O. biennis leaves by gas chromatography/mass spectrometry, chemical synthesis, and incorporation assays using deuterium-labeled l-leucine. Volatile emission was also elicited by exogenous methyl jasmonate (MeJA), but not by mechanical damage. l-Leucine accumulated temporarily in O. biennis leaves after MeJA treatment prior to isovaleronitrile emission. Behavioral assays revealed that Z. caerulea showed a strong preference for herbivore-infested leaves, their volatiles, and isovaleronitrile in laboratory conditions.
Collapse
Affiliation(s)
- Koji Noge
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| | - Shigeru Tamogami
- Department of Biological Production, Akita Prefectural University, Akita, Japan
| |
Collapse
|