1
|
Liu L, Shi X, Jia L, Wang R, Liu C. Natural Compounds and Health Benefits of Ganoderma capense. Molecules 2025; 30:2250. [PMID: 40430421 PMCID: PMC12114035 DOI: 10.3390/molecules30102250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 05/13/2025] [Accepted: 05/19/2025] [Indexed: 05/29/2025] Open
Abstract
Ganoderma capense, a member of the Ganoderma genus within the Polyporaceae family, has long been recognized for its high nutritional value and extensive use in traditional medicine. Its primary distribution is in China and South Africa, with the type locality being South Africa. This species is rich in a diverse array of bioactive compounds, including various polysaccharides, glycopeptide macromolecules, and various small-molecule compounds, such as sesquiterpenes, triterpenes, steroids, and alkaloids. Research indicates that these chemical constituents exhibit numerous pharmacological properties, including antioxidant, anti-inflammatory, and anti-tumor activities, as well as inhibition of acetylcholinesterase, reduction in blood lipids, and promotion of neural synapse growth. Apart from its use in traditional Chinese medicine, the components of G. capense are utilized globally for the treatment of a wide range of diseases, including Alzheimer's disease, febrile convulsions, HIV, and diabetes. This underscores the extensive medical applications of G. capense, emphasizing its significance in contemporary and traditional healthcare. This review summarizes the latest research findings on the bioactive compounds and pharmacological effects of G. capense, compiled from databases such as PubMed, Web of Science, and Elsevier. This study aimed at providing researchers in this field with in-depth scientific insights and guidance, promoting further application and development in the pharmaceutical and food industries, and serving as a reference for subsequent exploration of active substances and the development of new disease treatments.
Collapse
Affiliation(s)
- Longshi Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; (L.L.); (X.S.); (L.J.)
| | - Xinge Shi
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; (L.L.); (X.S.); (L.J.)
| | - Longkang Jia
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; (L.L.); (X.S.); (L.J.)
| | - Ran Wang
- College of Food and Biotechnology, Changchun Polytechnic University, Changchun 130033, China
| | - Chengwei Liu
- Key Laboratory for Enzyme and Enzyme-Like Material Engineering of Heilongjiang, College of Life Science, Northeast Forestry University, Harbin 150040, China; (L.L.); (X.S.); (L.J.)
| |
Collapse
|
2
|
Feng P, Sun B, Bi H, Bao Y, Wang M, Zhang H, Fang Y. Developing Thermosensitive Metabolic Regulation Strategies in the Fermentation Process of Saccharomyces cerevisiae to Enhance α-Bisabolene Production. ACS Synth Biol 2025; 14:1129-1141. [PMID: 40033776 DOI: 10.1021/acssynbio.4c00728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
α-Bisabolene's distinctive aroma is highly prized in fragrances and cosmetics, while its antioxidant properties hold significant pharmaceutical potential. However, the production of α-bisabolene in Saccharomyces cerevisiae remains an outstanding challenge due to cell growth limitations and insufficient supply of the α-bisabolene precursor farnesyl pyrophosphate. In this work, a new S. cerevisiae platform strain capable of producing high levels of α-bisabolene was presented. Carbon flux in the α-bisabolene synthesis pathway was maximized by iterative enhancement of the mevalonate metabolic pathway. The effects of MVA pathway intermediates on cell growth were addressed through a two-stage fermentation controlled based on a temperature-sensitive regulation strategy. The fermentation medium was optimized based on metabolomics and response surface model analysis. Under the optimal fermentation process, the titer of α-bisabolene reached 18.6 g/L during fed-batch fermentation, representing the highest titer reported to date. These strategies open up new avenues for industrial-scale terpene biosynthesis.
Collapse
Affiliation(s)
- Pan Feng
- College of Chemical Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Bowen Sun
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Haoran Bi
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yufei Bao
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Meng Wang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huili Zhang
- National Energy R&D Center of Biorefinery, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yunming Fang
- College of Chemical Engineering and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
3
|
Du Y, Li S, Chen G, Mao Y, Zhu S, Zhang W, Kang M, Sui Y, Wang D. Sesquiterpene Lactone Lactucopicrin Boosts Apoptotic Cell Clearance by Colonic Epithelial Cells and Alleviates Colitis in Mice. Mol Nutr Food Res 2025:e70062. [PMID: 40249148 DOI: 10.1002/mnfr.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 02/03/2025] [Accepted: 03/27/2025] [Indexed: 04/19/2025]
Abstract
Boosting apoptotic cell clearance by phagocytes including colonic epithelial cells (CECs), a process named efferocytosis, inhibits colitis development. Lactucopicrin (LCP), one common bitter sesquiterpene lactone affluent in leafy vegetables possesses a significant antiinflammatory property. However, it remains unknown whether LCP could regulate CECs efferocytosis and colitis development in vivo. Methods and Results: LCP (0.25-1 µmol/L) does not appreciably change the efferocytic capacity of murine primary CECs to clear apoptotic CECs. Instead, LCP dose-dependently increases the efferocytic capacity of CECs treated with butyrate (But). This effect is reliant on efferocytic receptor brain-specific angiogenesis 1 (BAI1). Although LCP does not significantly affect BAI1 expression, it alters BAI1 distribution with an increase in lipid raft microdomains in plasma membrane, an effect responsible for the LCP effect on efferocytic capacity. Moreover, dietary supplementation with 0.012% wt/wt of LCP attenuates dextran sulfate sodium (DSS)-induced colitis in C57BL/6J mice, along with an increase in efferocytic capacity of CECs and fecal But content, a reduction in apoptotic cell accumulation and inflammation burden in colonic tissues. Conclusion: Dietary LCP could inhibit DSS-induced colitis in mice, likely through enhancing BAI1-mediated efferocytosis of CECs, thus providing a new candidate for the treatment of colitis.
Collapse
Affiliation(s)
- Yushi Du
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Shuangshuang Li
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Guanyu Chen
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Yihui Mao
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Shasha Zhu
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Wenyu Zhang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Mengxi Kang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
| | - Yi Sui
- Department of Clinical Nutrition, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong Province, PR China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, PR China
- Guangdong Provincial Key Laboratory for Food, Nutrition and Health, Guangzhou, Guangdong Province, PR China
| |
Collapse
|
4
|
Ziaja D, Müller C. Intraspecific and intra-individual chemodiversity and phenotypic integration of terpenes across plant parts and development stages in an aromatic plant. PLANT BIOLOGY (STUTTGART, GERMANY) 2025. [PMID: 39776209 DOI: 10.1111/plb.13763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/12/2024] [Indexed: 01/11/2025]
Abstract
Some plant species produce an extraordinary diversity of specialized metabolites. The diverse class of terpenes is characteristic for many aromatic plants, and terpenes can occur as both emitted volatiles and stored compounds. Little is known about how intraspecific chemodiversity and phenotypic integration of both emitted volatile and stored terpenes differ intra-individually across plant development and between different plant parts, and studies considering both spatial and temporal scales are scarce. To comprehensively investigate this diversity, we used the aromatic plant Tanacetum vulgare that differs in foliar terpene composition, forming chemotypes. We collected emitted volatile terpenes of both young and old leaves during the rosette, elongated stem, and flowering stage as well as emitted volatiles of flower heads at the flowering stage. Moreover, at the flowering stage, stored terpenes were extracted from different plant parts, including roots. Terpene profiles were measured with (TD)-GC-MS. The composition of emitted volatile terpenes depended on the specific combination of chemotype, plant part, and time point; the chemodiversity of emitted volatiles was mainly affected by the development stage, indicating that at specific development stages individuals require a higher chemodiversity, potentially to mediate different interactions. For stored terpenes, intra-individual differences, mostly between aboveground and belowground plant parts, were found only for specific components of chemodiversity, such as richness and evenness, but not for functional Hill diversity. Phenotypic integration differed mainly across development stage and plant part for emitted volatile terpenes, and across chemotype and plant part for stored terpenes. Our results suggest that intraspecific chemodiversity of terpenes and their integration is a highly plastic trait that may be shaped in dependence of interactions with the environment, and the value that each plant part contributes to the fitness of an individual. Such variation on different scales, both spatially and temporally, should be considered in chemical ecological studies.
Collapse
Affiliation(s)
- D Ziaja
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
| | - C Müller
- Chemical Ecology, Bielefeld University, Bielefeld, Germany
- Joint Institute for Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, Bielefeld, Germany
| |
Collapse
|
5
|
Iwasa Y, Hayashi R, Satake A. Optimal seasonal schedule for producing biogenic volatile organic compounds for tree defense. J Theor Biol 2025; 596:111986. [PMID: 39521271 DOI: 10.1016/j.jtbi.2024.111986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/24/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The leaves of many trees emit biogenic volatile organic compounds (BVOCs) that protect them from various threats, including herbivory, pathogens, and heat stress. In a previous study, we analyzed the optimal seasonal schedule for producing isoprene, a highly volatile BVOC, in leaves to mitigate heat damage and maximize net carbon gain. In this paper, we investigate the seasonal production schedule of BVOCs stored in leaves, such as monoterpenes and sesquiterpenes, which decay slowly. When the leaves are bitten, these chemicals are emitted and help to prevent further herbivory. The optimal seasonal schedule, analyzed using Pontryagin's maximum principle, includes a period of singular control. Producing BVOCs for defense is advantageous if their decay rate is slow and the photosynthetic rate is fast. The amount of BVOCs produced increases with slower decay rate and faster photosynthetic rate. But it does not increase monotonically with the magnitude of the threat. BVOCs are produced earlier than the peak period of the threat for which the chemicals are intended. Based on the results of the model, we discuss the reported variations in BVOC production among different chemical species and tree species, as well as the seasonal patterns of gene expression in different pathways for BVOC production.
Collapse
Affiliation(s)
- Yoh Iwasa
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| | - Rena Hayashi
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, Nishi-ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
6
|
Peng S, Shu F, Lu Y, Fan D, Zheng D, Yuan G. Quasi-targeted metabolomics revealed isoliquiritigenin and lauric acid associated with resistance to tobacco black shank. PLANT SIGNALING & BEHAVIOR 2024; 19:2332019. [PMID: 38527068 DOI: 10.1080/15592324.2024.2332019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/22/2024] [Indexed: 03/27/2024]
Abstract
Tobacco black shank (TBS), caused by Phytophthora nicotianae, is a severe disease. Plant root exudates play a crucial role in mediating plant-pathogen interactions in the rhizosphere. However, the specific interaction between key secondary metabolites present in root exudates and the mechanisms of disease resistance remains poorly understood. This study conducted a comprehensive comparison via quasi-targeted metabolomic analysis on the root exudate metabolites from the tobacco cultivar Yunyan87 and K326, both before and after inoculation with P. nicotianae. The results showed that the root exudate metabolites changed after P. nicotianae inoculation, and the root exudate metabolites of different tobacco cultivar was significantly different. Furthermore, homovanillic acid, lauric acid, and isoliquiritigenin were identified as potential key compounds for TBS resistance based on their impact on the mycelium growth of the pathogens. The pot experiment showed that isoliquiritigenin reduced the incidence by 55.2%, while lauric acid reduced it by 45.8%. This suggests that isoliquiritigenin and lauric acid have potential applications in the management of TBS. In summary, this study revealed the possible resistance mechanisms of differential metabolites in resistance of commercial tobacco cultivar, and for the first time discovered the inhibitory effects of isoliquiritigenin and homovanillic acid on P. nictianae, and attempt to use plants secondary metabolites of for plant protection.
Collapse
Affiliation(s)
- Shiwen Peng
- College of Agriculture, Guangxi University, Nanning, PR China
| | - Fangling Shu
- College of Agriculture, Guangxi University, Nanning, PR China
| | - Yanhui Lu
- Tobacco Leaf Department of Guangxi Zhuang Autonomous Region Tobacco Company, Nanning, PR China
| | - Dongsheng Fan
- Tobacco Leaf Department of Guangxi Zhuang Autonomous Region Tobacco Company, Nanning, PR China
| | - Dehong Zheng
- College of Agriculture, Guangxi University, Nanning, PR China
| | - Gaoqing Yuan
- College of Agriculture, Guangxi University, Nanning, PR China
| |
Collapse
|
7
|
Ntoruru JM, Osawa T, Ohnishi T, Matsui K. Identification of linalool disaccharide glycoside (linalyl β-vicianoside) in soybean leaves and its implication for herbivore resistance. Biosci Biotechnol Biochem 2024; 89:33-40. [PMID: 39424596 DOI: 10.1093/bbb/zbae144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Linalool is anticipated to have significant ecological roles. In this study, linalyl 6-O-α-arabinopyranosyl-β-d-glucopyranoside (linalyl β-vicianoside: LinVic) was synthesized, and a linalool diglycoside purified from soybean leaves was identified as LinVic by using liquid chromatography-mass spectrometry. High levels of LinVic were detected in leaves and sepals during soybean plant growth. The LinVic content did not significantly increase following methyl jasmonate treatment of the leaves, indicating that its synthesis is independent of the jasmonic acid signaling pathway. In addition to LinVic, soybean also contains 1-octen-3-yl primeveroside. We treated soybean leaves with vaporized linalool and 1-octen-3-ol to determine whether the glycosylation system discriminates between these 2 volatile alcohols. Linalool treatment resulted in the accumulation of LinVic, while 1-octen-3-ol treatment caused little change in the amount of 1-octen-3-yl primeveroside, suggesting discrimination between these compounds. Linalool-treated soybean leaves exhibited increased resistance against common cutworms, indicating that LinVic may contribute to herbivore resistance.
Collapse
Affiliation(s)
- Juliano Mwenda Ntoruru
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| | - Tsukiho Osawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Toshiyuki Ohnishi
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, Japan
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kenji Matsui
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
8
|
Zhou L, Sun X, Iqbal A, Yarra R, Wu Q, Li J, Lv X, Ye J, Yang Y. Revealing the aromatic sonata through terpenoid profiling and gene expression analysis of aromatic and non-aromatic coconut varieties. Int J Biol Macromol 2024; 280:135699. [PMID: 39288860 DOI: 10.1016/j.ijbiomac.2024.135699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Aromatic coconut represents an exceptional variety of coconut known for its distinct and delightful flavor and aroma, both of which are highly cherished by consumers. Despite its popularity, there has been a lack of systematic research on aroma components and the associated synthetic genes. In this report, we developed the metabolite profiles of terpenoids by targeted metabolomics and obtained the expression profile of genes related to terpenoid biosynthesis by RNA-seq during different coconut fruit developmental stages. Totally, we separated 26 different terpenoids in aromatic coconut pulp, among which, geranyl acetate and (-)-isosyngene emerged as the most abundant. The integrated analysis of metabolism and RNA-seq data showed that HMGS2, HMGS3, IPI/IDI1, HMGR1, HMGR3, and CMK2 as potentially key genes involved in the synthesis of terpenoids in aromatic coconut. To validate these findings, qRT-PCR was conducted on terpenoid-related genes. These findings lay a foundation for understanding aroma formation and the molecular mechanism of terpenoids in coconut fruit.
Collapse
Affiliation(s)
- Lixia Zhou
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Xiwei Sun
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Amjad Iqbal
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Department of Food Science & Technology, Abdul Wali Khan University Mardan, Pakistan; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Rajesh Yarra
- University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Qiufei Wu
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Jing Li
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Xiang Lv
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China
| | - Jianqiu Ye
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China.
| | - Yaodong Yang
- Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences/Hainan Key Laboratory of Tropical Oil Crops Biology, Wenchang, Hainan, China; Hainan Coconut International Joint Research Center, Wenchang 571339, China.
| |
Collapse
|
9
|
Mohd Zahid NII, Syed Othman SMI, Mustaffa AF, Ismail I, Che-Othman MH. Fine-tuning plant valuable secondary metabolite biosynthesis via small RNA manipulation: strategies and potential. PLANTA 2024; 260:89. [PMID: 39254898 DOI: 10.1007/s00425-024-04521-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 08/30/2024] [Indexed: 09/11/2024]
Abstract
Plants produce secondary metabolites that serve various functions, including defense against biotic and abiotic stimuli. Many of these secondary metabolites possess valuable applications in diverse fields, including medicine, cosmetic, agriculture, and food and beverage industries, exhibiting their importance in both plant biology and various human needs. Small RNAs (sRNA), such as microRNA (miRNA) and small interfering RNA (siRNA), have been shown to play significant roles in regulating the metabolic pathways post-transcriptionally by targeting specific key genes and transcription factors, thus offering a promising tool for enhancing plant secondary metabolite biosynthesis. In this review, we summarize current approaches for manipulating sRNAs to regulate secondary metabolite biosynthesis in plants. We provide an overview of the latest research strategies for sRNA manipulation across diverse plant species, including the identification of potential sRNAs involved in secondary metabolite biosynthesis in non-model plants. We also highlight the potential future research directions, focusing on the manipulation of sRNAs to produce high-value compounds with applications in pharmaceuticals, nutraceuticals, agriculture, cosmetics, and other industries. By exploring these advanced techniques, we aim to unlock new potentials for biotechnological applications, contributing to the production of high-value plant-derived products.
Collapse
Affiliation(s)
- Nur Irdina Izzatie Mohd Zahid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Syed Muhammad Iqbal Syed Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Arif Faisal Mustaffa
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Ismanizan Ismail
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
- Institute of Systems Biology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| | - Muhamad Hafiz Che-Othman
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia.
| |
Collapse
|
10
|
Li M, Pu J, Jia C, Luo D, Zhou Q, Fang X, Nie B, Liu W, Nan Z, Searle IR, Fang L, Liu Z. The genome of Vicia sativa ssp. amphicarpa provides insights into the role of terpenoids in antimicrobial resistance within subterranean fruits. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2654-2671. [PMID: 39039964 DOI: 10.1111/tpj.16939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/24/2024]
Abstract
Vicia sativa ssp. amphicarpa is a unique forage crop capable of simultaneously producing fruits above and below ground, representing a typical amphicarpic plant. In this study, we sequenced and assembled seven pseudo-chromosomes of the genome of V. sativa ssp. amphicarpa (n = 7) yielding a genome size of 1.59 Gb, with a total annotation of 48 932 protein-coding genes. Long terminal repeat (LTR) elements constituted 62.28% of the genome, significantly contributing to the expansion of genome size. Phylogenetic analysis revealed that the divergence between V. sativa ssp. amphicarpa and V. sativa was around 0.88 million years ago (MYA). Comparative transcriptomic and metabolomic analysis of aerial and subterranean pod shells showed biosynthesis of terpenoids in the subterranean pod shells indicating a correlation between the antimicrobial activity of subterranean pod shells and the biosynthesis of terpenoids. Furthermore, functional validation indicates that overexpression of VsTPS5 and VsTPS16 enhances terpenoid biosynthesis for antibacterial activity. Metabolomic analysis suggests the involvement of terpenoids in the antimicrobial properties of subterranean pod shells. Deciphering the genome of V. sativa ssp. amphicarpa elucidated the molecular mechanisms behind the antimicrobial properties of subterranean fruits in amphicarpic plants, providing valuable insights for the study of amphicarpic plant biology.
Collapse
Affiliation(s)
- Mingyu Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Jun Pu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Chenglin Jia
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Dong Luo
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Qiang Zhou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xiangling Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Bin Nie
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Wenxian Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Iain Robert Searle
- School of Biological Sciences, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Longfa Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhipeng Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
11
|
Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications-A Comprehensive Overview. Molecules 2024; 29:3861. [PMID: 39202940 PMCID: PMC11357518 DOI: 10.3390/molecules29163861] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword "terpenoids". A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Rui Ferreira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Paula C. Castilho
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
12
|
Aly SH, Elbadry AMM, Doghish AS, El-Nashar HAS. Unveiling the pharmacological potential of plant triterpenoids in breast cancer management: an updated review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5571-5596. [PMID: 38563878 PMCID: PMC11329582 DOI: 10.1007/s00210-024-03054-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
Breast cancer is the most prevalent type of cancer, the fifth leading cause of cancer-related deaths, and the second leading cause of cancer deaths among women globally. Recent research has provided increasing support for the significance of phytochemicals, both dietary and non-dietary, particularly triterpenoids, in the mitigation and management of breast cancer. Recent studies showed that triterpenoids are promising agents in the treatment and inhibition of breast cancer achieved through the implementation of several molecular modes of action on breast cancer cells. This review discusses recent innovations in plant triterpenoids and their underlying mechanisms of action in combating breast cancer within the timeframe spanning from 2017 to 2023. The present work is an overview of different plant triterpenoids with significant inhibition on proliferation, migration, apoptosis resistance, tumor angiogenesis, or metastasis in various breast cancer cells. The anticancer impact of triterpenoids may be attributed to their antiproliferative activity interfering with angiogenesis and differentiation, regulation of apoptosis, DNA polymerase inhibition, change in signal transductions, and impeding metastasis. The present review focuses on several targets, mechanisms, and pathways associated with pentacyclic triterpenoids, which are responsible for their anticancer effects. We could conclude that natural triterpenoids are considered promising agents to conquer breast cancer.
Collapse
Affiliation(s)
- Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo, Cairo, 11829, Egypt.
| | - Abdullah M M Elbadry
- Badr University in Cairo Research Center, Badr University in Cairo, Badr City, 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, , 11829, Cairo, Egypt.
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Al-Azhar University, Nasr City, 11231, Cairo, Egypt.
| | - Heba A S El-Nashar
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Egypt.
| |
Collapse
|
13
|
Iwasa Y, Hayashi R, Satake A. Optimal seasonal schedule for the production of isoprene, a highly volatile biogenic VOC. Sci Rep 2024; 14:12311. [PMID: 38811652 PMCID: PMC11137007 DOI: 10.1038/s41598-024-62975-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 05/23/2024] [Indexed: 05/31/2024] Open
Abstract
The leaves of many trees emit volatile organic compounds (abbreviated as BVOCs), which protect them from various damages, such as herbivory, pathogens, and heat stress. For example, isoprene is highly volatile and is known to enhance the resistance to heat stress. In this study, we analyze the optimal seasonal schedule for producing isoprene in leaves to mitigate damage. We assume that photosynthetic rate, heat stress, and the stress-suppressing effect of isoprene may vary throughout the season. We seek the seasonal schedule of isoprene production that maximizes the total net photosynthesis using Pontryagin's maximum principle. The isoprene production rate is determined by the changing balance between the cost and benefit of enhanced leaf protection over time. If heat stress peaks in midsummer, isoprene production can reach its highest levels during the summer. However, if a large portion of leaves is lost due to heat stress in a short period, the optimal schedule involves peaking isoprene production after the peak of heat stress. Both high photosynthetic rate and high isoprene volatility in midsummer make the peak of isoprene production in spring. These results can be clearly understood by distinguishing immediate impacts and the impacts of future expectations.
Collapse
Affiliation(s)
- Yoh Iwasa
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan.
| | - Rena Hayashi
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Akiko Satake
- Department of Biology, Faculty of Science, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| |
Collapse
|
14
|
Kumari M, Checker VG, Kathpalia R, Srivastava V, Singh IK, Singh A. Metabolic engineering for enhanced terpenoid production: Leveraging new horizons with an old technique. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108511. [PMID: 38593484 DOI: 10.1016/j.plaphy.2024.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/06/2024] [Accepted: 03/06/2024] [Indexed: 04/11/2024]
Abstract
Terpenoids are a vast class of plant specialized metabolites (PSMs) manufactured by plants and are involved in their interactions with environment. In addition, they add health benefits to human nutrition and are widely used as pharmaceutically active compounds. However, native plants produce a limited amount of terpenes restricting metabolite yield of terpene-related metabolites. Exponential growth in the plant metabolome data and the requirement of alternative approaches for producing the desired amount of terpenoids, has redirected plant biotechnology research to plant metabolic engineering, which requires in-depth knowledge and precise expertise about dynamic plant metabolic pathways and cellular physiology. Metabolic engineering is an assuring tool for enhancing the concentration of terpenes by adopting specific strategies such as overexpression of the key genes associated with the biosynthesis of targeted metabolites, controlling the modulation of transcription factors, downregulation of competitive pathways (RNAi), co-expression of the biosynthetic pathway genes in heterologous system and other combinatorial approaches. Microorganisms, fast-growing host plants (such as Nicotiana benthamiana), and cell suspension/callus cultures have provided better means for producing valuable terpenoids. Manipulation in the biosynthetic pathways responsible for synthesis of terpenoids can provide opportunities to enhance the content of desired terpenoids and open up new avenues to enhance their production. This review deliberates the worth of metabolic engineering in medicinal plants to resolve issues associated with terpenoid production at a commercial scale. However, to bring the revolution through metabolic engineering, further implementation of genome editing, elucidation of metabolic pathways using omics approaches, system biology approaches, and synthetic biology tactics are essentially needed.
Collapse
Affiliation(s)
- Megha Kumari
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India; Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India
| | | | - Renu Kathpalia
- Department of Botany, Kirori Mal College, University of Delhi, Delhi, 110007, India
| | - Vikas Srivastava
- Department of Botany, School of Life Sciences, Central University of Jammu, Samba, 181143, India
| | - Indrakant Kumar Singh
- Molecular Biology Research Lab, Department of Zoology, Deshbandhu College, University of Delhi, Kalkaji, New Delhi, 110019, India
| | - Archana Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India; Department of Botany, Hansraj College, University of Delhi, Delhi, 110007, India; Delhi School of Climate Change and Sustainability, Institution of Eminence, Maharishi Karnad Bhawan, University of Delhi, Delhi, India.
| |
Collapse
|
15
|
Wang YC, Wei Y, Li XY, Zhang HM, Meng X, Duan CQ, Pan QH. Ethylene-responsive VviERF003 modulates glycosylated monoterpenoid synthesis by upregulating VviGT14 in grapes. HORTICULTURE RESEARCH 2024; 11:uhae065. [PMID: 38689696 PMCID: PMC11059816 DOI: 10.1093/hr/uhae065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/18/2024] [Indexed: 05/02/2024]
Abstract
Terpenoids are important contributors to the aroma of grapes and wines. Grapes contain terpenoids in both volatile free form and non-volatile glycosidic form, with the latter being more abundant. Glycosylated terpenoids are deemed as latent aromatic potentials for their essential role in adding to the flowery and fruity bouquet of wines. However, the transcriptional regulatory mechanism underlying glycosylated terpenoid biosynthesis remains poorly understood. Our prior study identified an AP2/ERF transcription factor, VviERF003, through DNA pull-down screening using the promoter of terpenoid glycosyltransferase VviGT14 gene. This study demonstrated that both genes were co-expressed and synchronized with the accumulation of glycosylated monoterpenoids during grape maturation. VviERF003 can bind to the VviGT14 promoter and promote its activity according to yeast one-hybrid and dual-luciferase assays. VviERF003 upregulated VviGT14 expression in vivo, leading to increased production of glycosylated monoterpenoids based on the evidence from overexpression or RNA interference in leaves, berry skins, and calli of grapes, as well as tomato fruits. Additionally, VviERF003 and VviGT14 expressions and glycosylated monoterpenoid levels were induced by ethylene in grapes. The findings suggest that VviERF003 is ethylene-responsive and stimulates glycosylated monoterpenoid biosynthesis through upregulating VviGT14 expression.
Collapse
Affiliation(s)
- Ya-Chen Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yi Wei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiang-Yi Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hui-Min Zhang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xiao Meng
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Qiu-Hong Pan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| |
Collapse
|
16
|
Palai G, D'Onofrio C. Berry secondary metabolites and leaf physiological parameters are independently regulated by exogenous methyl jasmonate application in Sangiovese grapevines (Vitis vinifera L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108378. [PMID: 38266562 DOI: 10.1016/j.plaphy.2024.108378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 01/26/2024]
Abstract
The role of jasmonates as elicitor of secondary metabolites is well known, and many experiments have been conducted in grapevine to evaluate their effects on berry and wine quality. Even though most of these studies used foliar jasmonates applications, little investigations have been done to assess the effects on leaves which, in turn, may indirectly affect grape metabolism potentially involving a long distance signaling or crosstalk. In this experiment we jointly investigated the specific effect of jasmonates on grape berry secondary metabolites and leaf physiological parameters to better comprehend their elicitation mechanisms in grapevine. A 10 mM methyl jasmonate (MeJA) solution was applied during the lag-phase only on the leaves or only on the clusters and compared to an untreated control. The MeJA specifically affected leaf physiological parameters and berry metabolism in the treated area. When applied only on the leaves, gas exchange parameters and leaf efficiency were reduced, stimulating the senescence mechanisms, without affecting berry metabolism. On the contrary, MeJA applied on the clusters significantly delayed berry ripening, leading to hypothesize a re-route of the berry carbon resources through the biosynthesis of volatile organic compounds which were strongly increased, especially the monoterpenes in their glycosylated form.
Collapse
Affiliation(s)
- Giacomo Palai
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio D'Onofrio
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; Interdepartmental Research Center 'Nutraceuticals and Food for Health', University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy.
| |
Collapse
|
17
|
Wang ZF, Fu L, Yu EP, Zhu WG, Zeng SJ, Cao HL. Chromosome-level genome assembly and demographic history of Euryodendron excelsum in monotypic genus endemic to China. DNA Res 2024; 31:dsad028. [PMID: 38147541 PMCID: PMC10781514 DOI: 10.1093/dnares/dsad028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/04/2023] [Accepted: 12/22/2023] [Indexed: 12/28/2023] Open
Abstract
Euryodendron excelsum is in a monotypic genus Euryodendron, endemic to China. It has intermediate morphisms in the Pentaphylacaceae or Theaceae families, which make it distinct. Due to anthropogenic disturbance, E. excelsum is currently found in very restricted and fragmented areas with extremely small populations. Although much research and effort has been applied towards its conservation, its long-term survival mechanisms and evolutionary history remain elusive, especially from a genomic aspect. Therefore, using a combination of long/short whole genome sequencing, RNA sequencing reads, and Hi-C data, we assembled and annotated a high-quality genome for E. excelsum. The genome assembly of E. excelsum comprised 1,059,895,887 bp with 99.66% anchored into 23 pseudo-chromosomes and a 99.0% BUSCO completeness. Comparative genomic analysis revealed the expansion of terpenoid and flavonoid secondary metabolite genes, and displayed a tandem and/or proximal duplication framework of these genes. E. excelsum also displayed genes associated with growth, development, and defence adaptation from whole genome duplication. Demographic analysis indicated that its fluctuations in population size and its recent population decline were related to cold climate changes. The E. excelsum genome assembly provides a highly valuable resource for evolutionary and ecological research in the future, aiding its conservation, management, and restoration.
Collapse
Affiliation(s)
- Zheng-Feng Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| | - Lin Fu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| | - En-Ping Yu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei-Guang Zhu
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| | - Song-Jun Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| | - Hong-Lin Cao
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- South China National Botanical Garden, Guangzhou, Guangdong 510650, China
| |
Collapse
|
18
|
Adeosun WB, Loots DT. Medicinal Plants against Viral Infections: A Review of Metabolomics Evidence for the Antiviral Properties and Potentials in Plant Sources. Viruses 2024; 16:218. [PMID: 38399995 PMCID: PMC10892737 DOI: 10.3390/v16020218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Most plants have developed unique mechanisms to cope with harsh environmental conditions to compensate for their lack of mobility. A key part of their coping mechanisms is the synthesis of secondary metabolites. In addition to their role in plants' defense against pathogens, they also possess therapeutic properties against diseases, and their use by humans predates written history. Viruses are a unique class of submicroscopic agents, incapable of independent existence outside a living host. Pathogenic viruses continue to pose a significant threat to global health, leading to innumerable fatalities on a yearly basis. The use of medicinal plants as a natural source of antiviral agents has been widely reported in literature in the past decades. Metabolomics is a powerful research tool for the identification of plant metabolites with antiviral potentials. It can be used to isolate compounds with antiviral capacities in plants and study the biosynthetic pathways involved in viral disease progression. This review discusses the use of medicinal plants as antiviral agents, with a special focus on the metabolomics evidence supporting their efficacy. Suggestions are made for the optimization of various metabolomics methods of characterizing the bioactive compounds in plants and subsequently understanding the mechanisms of their operation.
Collapse
Affiliation(s)
- Wilson Bamise Adeosun
- Human Metabolomics, North-West University, Private Bag X6001, Box 269, Potchefstroom 2531, South Africa;
| | | |
Collapse
|
19
|
Li J, Hu H, Fu H, Li J, Zeng T, Li J, Wang M, Jongsma MA, Wang C. Exploring the co-operativity of secretory structures for defense and pollination in flowering plants. PLANTA 2024; 259:41. [PMID: 38270671 DOI: 10.1007/s00425-023-04322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/24/2023] [Indexed: 01/26/2024]
Abstract
MAIN CONCLUSION In flowers multiple secretory systems cooperate to deliver specialized metabolites to support specific roles in defence and pollination. The collective roles of cell types, enzymes, and transporters are discussed. The interplay between reproductive strategies and defense mechanisms in flowering plants has long been recognized, with trade-offs between investment in defense and reproduction predicted. Glandular trichomes and secretory cavities or ducts, which are epidermal and internal structures, play a pivotal role in the secretion, accumulation, and transport of specialized secondary metabolites, and contribute significantly to defense and pollination. Recent investigations have revealed an intricate connection between these two structures, whereby specialized volatile and non-volatile metabolites are exchanged, collectively shaping their respective ecological functions. However, a comprehensive understanding of this profound integration remains largely elusive. In this review, we explore the secretory systems and associated secondary metabolism primarily in Asteraceous species to propose potential shared mechanisms facilitating the directional translocation of these metabolites to diverse destinations. We summarize recent advances in our understanding of the cooperativity between epidermal and internal secretory structures in the biosynthesis, secretion, accumulation, and emission of terpenes, providing specific well-documented examples from pyrethrum (Tanacetum cinerariifolium). Pyrethrum is renowned for its natural pyrethrin insecticides, which accumulate in the flower head, and more recently, for emitting an aphid alarm pheromone. These examples highlight the diverse specializations of secondary metabolism in pyrethrum and raise intriguing questions regarding the regulation of production and translocation of these compounds within and between its various epidermal and internal secretory systems, spanning multiple tissues, to serve distinct ecological purposes. By discussing the cooperative nature of secretory structures in flowering plants, this review sheds light on the intricate mechanisms underlying the ecological roles of terpenes in defense and pollination.
Collapse
Affiliation(s)
- Jinjin Li
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Hu
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Hansen Fu
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Li
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tuo Zeng
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawen Li
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Maarten A Jongsma
- Business Unit Bioscience, Wageningen Plant Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| | - Caiyun Wang
- National Key Laboratory for Germplasm Innovation, Unifilization of Horticultural Crops Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
20
|
Holman AP, Goff NK, Juárez ID, Higgins S, Rodriguez A, Bagavathiannan M, Kurouski D, Subramanian N. Elucidation of sex from mature Palmer amaranth ( Amaranthus palmeri) leaves using a portable Raman spectrometer. RSC Adv 2024; 14:1833-1837. [PMID: 38192310 PMCID: PMC10772952 DOI: 10.1039/d3ra06368b] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 01/01/2024] [Indexed: 01/10/2024] Open
Abstract
Palmer amaranth (Amaranthus palmeri) is a pervasive and troublesome weed species that poses significant challenges to agriculture in the United States. Identifying the sex of Palmer amaranth plants is crucial for developing tailored control measures due to the distinct characteristics and reproductive strategies exhibited by male and female plants. Traditional methods for sex determination are expensive and time-consuming, but recent advancements in spectroscopic techniques offer new possibilities. This study explores the potential of portable Raman spectroscopy for determining the sex of mature Palmer amaranth plants in-field. Raman analysis of the plant leaves reveals spectral differences associated with nitrate salts, lipids, carotenoids, and terpenoids, allowing for high accuracy and reliable identification of the plant's sex; male plants had higher concentrations of these compounds compared to females. It was also found that male plants had higher concentrations of these compounds compared to the females. Raman spectra were analyzed using a machine learning tool, partial least squares discriminant analysis (PLS-DA), to generate accuracies of no less than 83.7% when elucidating sex from acquired spectra. These findings provide insights into the sex-specific characteristics of Palmer amaranth and suggest that Raman analysis, combined with PLS-DA, can be a promising, non-destructive, and efficient method for sex determination in field settings. This approach has implications for developing sex-specific management strategies to monitor and control this invasive weed in real-world environments, benefiting farmers, agronomists, researchers, and master gardeners.
Collapse
Affiliation(s)
- Aidan P Holman
- Department of Entomology, Texas A&M University College Station Texas 77843 USA
- Department of Biochemistry and Biophysics, Texas A&M University College Station Texas 77843 USA
| | - Nicolas K Goff
- Department of Biochemistry and Biophysics, Texas A&M University College Station Texas 77843 USA
- The University of Texas at Austin Dell Medical School Austin Texas 78712 USA
| | - Isaac D Juárez
- Department of Biochemistry and Biophysics, Texas A&M University College Station Texas 77843 USA
| | - Samantha Higgins
- Department of Biochemistry and Biophysics, Texas A&M University College Station Texas 77843 USA
| | - Axell Rodriguez
- Department of Biochemistry and Biophysics, Texas A&M University College Station Texas 77843 USA
| | | | - Dmitry Kurouski
- Department of Biochemistry and Biophysics, Texas A&M University College Station Texas 77843 USA
- Institute for Advancing Health Through Agriculture College Station Texas 77843 USA
| | - Nithya Subramanian
- Department of Soil and Crop Sciences, Texas A&M University College Station Texas 77843 USA
| |
Collapse
|
21
|
Arumugam M, Shanmugavel B, Sellppan M, Pavadai P. In silico evaluation of some commercially available terpenoids as spike glycoprotein of SARS-CoV-2 - inhibitors using molecular dynamic approach. J Biomol Struct Dyn 2024; 42:1072-1078. [PMID: 37139540 DOI: 10.1080/07391102.2023.2201848] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 03/28/2023] [Indexed: 05/05/2023]
Abstract
Coronavirus, an extremely contagious infections disease had a harmful effect on the world's population. It is a family of enveloped, single-stranded, positive-strand RNA viruses of Nidovirales order belongs to coroviridae family. At present, worldwide several lakhs of deaths and several billions of infections have been reported. Hence, the focus of the present study was to assess the SARS-CoV-2 enzyme inhibitory potential of certain commercially available terpenoids using Lamarckian genetic algorithm as a working principle and molecular dynamic studies was also performed. AutoDock 4.2 software was used to perform the computational docking calculations of terpenoids against SARS-CoV-2 enzyme. The terpenoids such as, Andrographolide, Betulonic acid, Erythrodiol, Friedelin, Mimuscopic acid, Moronic acid, and Retinol were selected based on the drug likeness properties. Remdesivir a well-known anti-viral drug was selected as the standard drug. Molecular dynamic simulation studies were carried using Desmond module of Schrodinger Suite. In the current study we observed that, Friedelin was exhibited excellent SARS-CoV-2 enzyme inhibitory potential than the standard drug and other selected terpenoids. Friedelin and the standard Remdesivir was undergone the molecular dynamic studies and Friedelin showed a good number of hydrogen bonds over the simulation time of 100 ns. Based on the in silico computational evaluation, it can be concluded that Friedelin could be worthwhile terpenoid against SARS-CoV-2 spike protein. A further study on Friedelin is required to develop a potential chemical entity against the management of COVID disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Madeswaran Arumugam
- Department of Pharmacology, Karpagam College of Pharmacy, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Brahmasundari Shanmugavel
- Department of Pharmacology, Sri Ramakrishna Institute of Paramedical Sciences, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Mohan Sellppan
- Karpagam College of Pharmacy, Affiliated to The Tamil Nadu Dr. M.G.R. Medical University, Coimbatore, Tamil Nadu, India
| | - Parasuraman Pavadai
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, M.S. Ramaiah University of Applied Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
22
|
Yao L, Wu X, Jiang X, Shan M, Zhang Z, Li Y, Yang A, Li Y, Yang C. Subcellular compartmentalization in the biosynthesis and engineering of plant natural products. Biotechnol Adv 2023; 69:108258. [PMID: 37722606 DOI: 10.1016/j.biotechadv.2023.108258] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Plant natural products (PNPs) are specialized metabolites with diverse bioactivities. They are extensively used in the pharmaceutical, cosmeceutical and food industries. PNPs are synthesized in plant cells by enzymes that are distributed in different subcellular compartments with unique microenvironments, such as ions, co-factors and substrates. Plant metabolic engineering is an emerging and promising approach for the sustainable production of PNPs, for which the knowledge of the subcellular compartmentalization of their biosynthesis is instrumental. In this review we describe the state of the art on the role of subcellular compartments in the biosynthesis of major types of PNPs, including terpenoids, phenylpropanoids, alkaloids and glucosinolates, and highlight the efforts to target biosynthetic pathways to subcellular compartments in plants. In addition, we will discuss the challenges and strategies in the field of plant synthetic biology and subcellular engineering. We expect that newly developed methods and tools, together with the knowledge gained from the microbial chassis, will greatly advance plant metabolic engineering.
Collapse
Affiliation(s)
- Lu Yao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Muhammad Shan
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yiting Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China
| | - Yu Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong 266100, China.
| |
Collapse
|
23
|
Tietel Z, Hammann S, Meckelmann SW, Ziv C, Pauling JK, Wölk M, Würf V, Alves E, Neves B, Domingues MR. An overview of food lipids toward food lipidomics. Compr Rev Food Sci Food Saf 2023; 22:4302-4354. [PMID: 37616018 DOI: 10.1111/1541-4337.13225] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/20/2023] [Accepted: 07/27/2023] [Indexed: 08/25/2023]
Abstract
Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.
Collapse
Affiliation(s)
- Zipora Tietel
- Department of Food Science, Gilat Research Center, Agricultural Research Organization, Volcani Institute, M.P. Negev, Israel
| | - Simon Hammann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven W Meckelmann
- Applied Analytical Chemistry, University of Duisburg-Essen, Essen, Germany
| | - Carmit Ziv
- Department of Postharvest Science, Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Josch K Pauling
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Michele Wölk
- Lipid Metabolism: Analysis and Integration; Center of Membrane Biochemistry and Lipid Research; Faculty of Medicine Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Vivian Würf
- LipiTUM, Chair of Experimental Bioinformatics, TUM School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Eliana Alves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - Bruna Neves
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| | - M Rosário Domingues
- Mass Spectrometry Centre, LAQV-REQUIMTE, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
- Centre for Environmental and Marine Studies, CESAM, Department of Chemistry, Santiago University Campus, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
24
|
Nigussie G, Siyadatpanah A, Norouzi R, Debebe E, Alemayehu M, Dekebo A. Antioxidant Potential of Ethiopian Medicinal Plants and Their Phytochemicals: A Review of Pharmacological Evaluation. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1901529. [PMID: 37868204 PMCID: PMC10586904 DOI: 10.1155/2023/1901529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/11/2023] [Accepted: 09/19/2023] [Indexed: 10/24/2023]
Abstract
Background Free radicals are very reactive molecules produced during oxidation events that in turn initiate a chain reaction resulting in cellular damage. Many degenerative diseases in humans, including cancer and central nervous system damage, are caused by free radicals. Scientific evidence indicates that active compounds from natural products can protect cells from free radical damage. As a result, the aim of this review is to provide evidence of the use of diverse Ethiopian medicinal plants with antioxidant properties that have been scientifically validated in order to draw attention and foster further investigations in this area. Methods The keywords antioxidant, radical scavenging activities, reactive oxygen species, natural product, Ethiopian Medicinal plants, and 2, 2-Diphenyl-1-picrylhydrazyl radical scavenging assay (DPPH) were used to identify relevant data in the major electronic scientific databases, including Google Scholar, ScienceDirect, PubMed, Medline, and Science domain. All articles with descriptions that were accessed until November 2022 were included in the search strategy. Results A total of 54 plant species from 33 families were identified, along with 46 compounds isolated. More scientific studies have been conducted on plant species from the Brassicaceae (19%), Asphodelaceae (12%), and Asteraceae (12%) families. The most used solvent and extraction method for plant samples are methanol (68%) and maceration (88%). The most examined plant parts were the leaves (42%). Plant extracts (56%) as well as isolated compounds (61%) exhibited significant antioxidant potential. The most effective plant extracts from Ethiopian flora were Bersama abyssinica, Solanecio gigas, Echinops kebericho, Verbascum sinaiticum, Apium leptophyllum, and Crinum abyssinicum. The best oxidative phytochemicals were Rutin (7), Flavan-3-ol-7-O-glucoside (8), Myricitrin (13), Myricetin-3-O-arabinopyranoside (14), 7-O-Methylaloeresin A (15), 3-Hydroxyisoagatholactone (17), β-Sitosterol-3-O-β-D-glucoside (22), Microdontin A/B (24), and Caffeic acid (39). Conclusion Many crude extracts and compounds exhibited significant antioxidant activity, making them excellent candidates for the development of novel drugs. However, there is a paucity of research into the mechanisms of action as well as clinical evidence supporting some of these isolated compounds. To fully authenticate and then commercialize, further investigation and systematic analysis of these antioxidant-rich species are required.
Collapse
Affiliation(s)
- Gashaw Nigussie
- Armauer Hansen Research Institute, P.O. Box: 1005, Addis Ababa, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | - Abolghasem Siyadatpanah
- Department of Medical Microbiology, Faculty of Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Roghayeh Norouzi
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Eyob Debebe
- Armauer Hansen Research Institute, P.O. Box: 1005, Addis Ababa, Ethiopia
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| | | | - Aman Dekebo
- Department of Applied Chemistry, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
- Institute of Pharmaceutical Sciences, Adama Science and Technology University, P.O. Box 1888, Adama, Ethiopia
| |
Collapse
|
25
|
Wolters SM, Benninghaus VA, Roelfs KU, van Deenen N, Twyman RM, Prüfer D, Schulze Gronover C. Overexpression of a pseudo-etiolated-in-light-like protein in Taraxacum koksaghyz leads to a pale green phenotype and enables transcriptome-based network analysis of photomorphogenesis and isoprenoid biosynthesis. FRONTIERS IN PLANT SCIENCE 2023; 14:1228961. [PMID: 37841614 PMCID: PMC10569127 DOI: 10.3389/fpls.2023.1228961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/21/2023] [Indexed: 10/17/2023]
Abstract
Introduction Plant growth and greening in response to light require the synthesis of photosynthetic pigments such as chlorophylls and carotenoids, which are derived from isoprenoid precursors. In Arabidopsis, the pseudo-etiolated-in-light phenotype is caused by the overexpression of repressor of photosynthetic genes 2 (RPGE2), which regulates chlorophyll synthesis and photosynthetic genes. Methods We investigated a homologous protein in the Russian dandelion (Taraxacum koksaghyz) to determine its influence on the rich isoprenoid network in this species, using a combination of in silico analysis, gene overexpression, transcriptomics and metabolic profiling. Results Homology-based screening revealed a gene designated pseudo-etiolated-in-light-like (TkPEL-like), and in silico analysis identified a light-responsive G-box element in its promoter. TkPEL-like overexpression in dandelion plants and other systems reduced the levels of chlorophylls and carotenoids, but this was ameliorated by the mutation of one or both conserved cysteine residues. Comparative transcriptomics in dandelions overexpressing TkPEL-like showed that genes responsible for the synthesis of isoprenoid precursors and chlorophyll were downregulated, probably explaining the observed pale green leaf phenotype. In contrast, genes responsible for carotenoid synthesis were upregulated, possibly in response to feedback signaling. The evaluation of additional differentially expressed genes revealed interactions between pathways. Discussion We propose that TkPEL-like negatively regulates chlorophyll- and photosynthesis-related genes in a light-dependent manner, which appears to be conserved across species. Our data will inform future studies addressing the regulation of leaf isoprenoid biosynthesis and photomorphogenesis and could be used in future breeding strategies to optimize selected plant isoprenoid profiles and generate suitable plant-based production platforms.
Collapse
Affiliation(s)
- Silva Melissa Wolters
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | | | - Kai-Uwe Roelfs
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
| | - Nicole van Deenen
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | | | - Dirk Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Münster, Germany
- Institute for Biology and Biotechnology of Plants, University of Münster, Münster, Germany
| | | |
Collapse
|
26
|
Chen Y, Liu Y, Chen N, Jin Y, Yang R, Yao H, Kong DX. A chemoinformatic analysis on natural glycosides with respect to biological origin and structural class. Nat Prod Rep 2023; 40:1464-1478. [PMID: 37070562 DOI: 10.1039/d2np00089j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
Covering: up to 202216.19% of reported natural products (NPs) in the Dictionary of Natural Products (DNP) are glycosides. As one of the most important NPs' structural modifications, glycosylation can change the NPs' polarity, making the aglycones more amphipathic. However, until now, little is known about the general distribution profile of the natural glycosides in different biological sources or structural types. The reason, structural or species preferences of the natural glycosylation remain unclear. In this highlight, chemoinformatic methods were employed to analyze the natural glycosides from DNP, the most comprehensively annotated NP database. We found that the glycosylation ratios of NPs from plants, bacteria, animals and fungi decrease successively, which are 24.99%, 20.84%, 8.40% and 4.48%, respectively. Echinoderm-derived NPs (56.11%) are the most frequently glycosylated, while those produced by molluscs (1.55%), vertebrates (2.19%) and Rhodophyta (3.00%) are the opposite. Among the diverse structural types, a large proportion of steroids (45.19%), tannins (44.78%) and flavonoids (39.21%) are glycosides, yet aminoacids and peptides (5.16%), alkaloids (5.66%) are comparatively less glycosylated. Even within the same biological source or structural type, their glycosylation rates fluctuate drastically between sub- or cross-categories. The substitute patterns of flavonoid and terpenoid glycosides and the most frequently glycosylated scaffolds were identified. NPs with different glycosylation levels occupy different chemical spaces of physicochemical property and scaffold. These findings could help us to interpret the preference of NPs' glycosylation and investigate how NP glycosylation could aid NP-based drug discovery.
Collapse
Affiliation(s)
- Yinliang Chen
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China.
| | - Yi Liu
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China.
| | - Nianhang Chen
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China.
| | - Yuting Jin
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China.
| | - Ruofei Yang
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China.
| | - Hucheng Yao
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China.
| | - De-Xin Kong
- National Key Laboratory of Agricultural Microbiology, Agricultural Bioinformatics Key Laboratory of Hubei Province, College of Informatics, Huazhong Agricultural University, Wuhan, P. R. China.
| |
Collapse
|
27
|
Song J, Xu R, Guo Q, Wu C, Li Y, Wang X, Wang J, Qiu LJ. An omics strategy increasingly improves the discovery of genetic loci and genes for seed-coat color formation in soybean. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:71. [PMID: 37663546 PMCID: PMC10471558 DOI: 10.1007/s11032-023-01414-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 08/13/2023] [Indexed: 09/05/2023]
Abstract
The phenotypic color of seeds is a complex agronomic trait and has economic and biological significance. The genetic control and molecular regulation mechanisms have been extensively studied. Here, we used a multi-omics strategy to explore the color formation in soybean seeds at a big data scale. We identified 13 large quantitative trait loci (QTL) for color with bulk segregating analysis in recombinant inbreeding lines. GWAS analysis of colors and decomposed attributes in 763 germplasms revealed associated SNP sites perfectly falling in five major QTL, suggesting inherited regulation on color during natural selection. Further transcriptomics analysis before and after color accumulation revealed 182 differentially expression genes (DEGs) in the five QTL, including known genes CHS, MYB, and F3'H involved in pigment accumulation. More DEGs with consistently upregulation or downregulation were identified as shared regulatory genes for two or more color formations while some DEGs were only for a specific color formation. For example, five upregulated DEGs in QTL qSC-3 were in flavonoid biosynthesis responsible for black and brown seed. The DEG (Glyma.08G085400) was identified in the purple seed only, which encodes gibberellin 2-beta-dioxygenase in the metabolism of colorful terpenoids. The candidate genes are involved in flavonoid biosynthesis, transcription factor regulation, gibberellin and terpenoid metabolism, photosynthesis, ascorbate and aldarate metabolism, and lipid metabolism. Seven differentially expressed transcription factors were also speculated that may regulate color formation, including a known MYB. The finds expand QTL and gene candidates for color formation, which could guide to breed better cultivars with designed colors. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01414-z.
Collapse
Affiliation(s)
- Jian Song
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Ruixin Xu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Qingyuan Guo
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Caiyu Wu
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602 USA
| | - Jun Wang
- Yangtze University, Jingzhou, 434025 Hubei P.R. China
| | - Li-Juan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA)/Key Laboratory of Soybean Biology (Beijing) (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
28
|
Zhou X, Zeng M, Huang F, Qin G, Song Z, Liu F. The potential role of plant secondary metabolites on antifungal and immunomodulatory effect. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12601-5. [PMID: 37272939 DOI: 10.1007/s00253-023-12601-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 06/06/2023]
Abstract
With the widespread use of antibiotic drugs worldwide and the global increase in the number of immunodeficient patients, fungal infections have become a serious threat to global public health security. Moreover, the evolution of fungal resistance to existing antifungal drugs is on the rise. To address these issues, the development of new antifungal drugs or fungal inhibitors needs to be targeted urgently. Plant secondary metabolites are characterized by a wide variety of chemical structures, low price, high availability, high antimicrobial activity, and few side effects. Therefore, plant secondary metabolites may be important resources for the identification and development of novel antifungal drugs. However, there are few studies to summarize those contents. In this review, the antifungal modes of action of plant secondary metabolites toward different types of fungi and fungal infections are covered, as well as highlighting immunomodulatory effects on the human body. This review of the literature should lay the foundation for research into new antifungal drugs and the discovery of new targets. KEY POINTS: • Immunocompromised patients who are infected the drug-resistant fungi are increasing. • Plant secondary metabolites toward various fungal targets are covered. • Plant secondary metabolites with immunomodulatory effect are verified in vivo.
Collapse
Affiliation(s)
- Xue Zhou
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Meng Zeng
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Fujiao Huang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Gang Qin
- Department of Otolaryngology Head and Neck Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Zhangyong Song
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
- Molecular Biotechnology Platform, Public Center of Experimental Technology, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| | - Fangyan Liu
- School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, People's Republic of China.
| |
Collapse
|
29
|
Oe M, Wada K, Asikin Y, Arakaki M, Horiuchi M, Takahashi M. Effects of processing methods on the aroma constituents of hihatsumodoki (Piper retrofractum Vahl). J Food Sci 2023. [PMID: 37183927 DOI: 10.1111/1750-3841.16606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/18/2023] [Accepted: 04/21/2023] [Indexed: 05/16/2023]
Abstract
Hihatsumodoki (Piper retrofractum Vahl) is a traditional spice from Okinawa (Japan) that can be processed in different ways to create the desired flavor. Herein, we examined the effects of processing (sun-drying, oven-drying, roasting, and steaming) on the volatile aroma constituents of hihatsumodoki fruits. Among the 106 chromatographic peaks observed in total, 58 were assigned to known aroma compounds. The relative contents of terpenes, for example, linalool, β-caryophyllene, α-caryophyllene, and germacrene D, ranged from 57.6% to 88.1%. Sun-drying decreased the content of aldehydes such as hexanal and trans-2-hexenal but did not significantly affect the total content of aroma compounds. The amount of aroma compounds released during oven-drying and roasting increased with temperature up to a certain point (90°C) and decreased at an excessively high temperature of 180°C. High-temperature roasting generated Maillard reaction products such as furans and furanones, which could impart sweet caramel odors. Steamed fruits had the lowest content of aroma compounds, which was ascribed to the loss of these compounds to vapor. Meanwhile, drying steamed fruits resulted in an approximately 3.6-fold increase in their aroma compound content, and the content of sesquiterpenes in the steamed-dried fruits was similar to that in fruits exposed to high temperatures. The effects of processing on aroma quality were visualized using multivariate statistical analysis. The aroma characteristics of roasted (180°C), steamed, and steamed-dried fruits were different from those of the control. The combined findings provide useful information for the selection of processing methods to achieve the desired flavor of hihatsumodoki. Practical Application: This study reveals the effects of different processing methods on the aroma profile of hihatsumodoki (Piper retrofractum Vahl), a subtropical spice from Okinawa (Japan). The results facilitate the selection of preferred hihatsumodoki flavors for household and industrial applications in foods and beverages. In addition, they inspire research on the processing-induced flavor changes of other tropical or subtropical spices.
Collapse
Affiliation(s)
- Moena Oe
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of Ryukyus, Nishihara, Japan
| | - Koji Wada
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of Ryukyus, Nishihara, Japan
| | - Yonathan Asikin
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of Ryukyus, Nishihara, Japan
| | - Mika Arakaki
- Subtropical Field Science Center, Faculty of Agriculture, University of Ryukyus, Nishihara, Japan
| | | | - Makoto Takahashi
- United Graduate School of Agricultural Science, Kagoshima University, Kagoshima, Japan
- Department of Bioscience and Biotechnology, Faculty of Agriculture, University of Ryukyus, Nishihara, Japan
| |
Collapse
|
30
|
Jiang H, Wang X. Biosynthesis of monoterpenoid and sesquiterpenoid as natural flavors and fragrances. Biotechnol Adv 2023; 65:108151. [PMID: 37037288 DOI: 10.1016/j.biotechadv.2023.108151] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/27/2023] [Accepted: 04/06/2023] [Indexed: 04/12/2023]
Abstract
Terpenoids are a large class of plant-derived compounds, that constitute the main components of essential oils and are widely used as natural flavors and fragrances. The biosynthesis approach presents a promising alternative route in terpenoid production compared to plant extraction or chemical synthesis. In the past decade, the production of terpenoids using biotechnology has attracted broad attention from both academia and the industry. With the growing market of flavor and fragrance, the production of terpenoids directed by synthetic biology shows great potential in promoting future market prospects. Here, we reviewed the latest advances in terpenoid biosynthesis. The engineering strategies for biosynthetic terpenoids were systematically summarized from the enzyme, metabolic, and cellular dimensions. Additionally, we analyzed the key challenges from laboratory production to scalable production, such as key enzyme improvement, terpenoid toxicity, and volatility loss. To provide comprehensive technical guidance, we collected milestone examples of biosynthetic mono- and sesquiterpenoids, compared the current application status of chemical synthesis and biosynthesis in terpenoid production, and discussed the cost drivers based on the data of techno-economic assessment. It is expected to provide critical insights into developing translational research of terpenoid biomanufacturing.
Collapse
Affiliation(s)
- Hui Jiang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China
| | - Xi Wang
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, Zhejiang 311200, PR China; College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, PR China.
| |
Collapse
|
31
|
Wang S, Shi L, Wang R, Liu C, Wang J, Shen Y, Tatsumi K, Navrot N, Liu T, Guo L. Characterization of Arnebia euchroma PGT homologs involved in the biosynthesis of shikonin. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:587-595. [PMID: 36780721 DOI: 10.1016/j.plaphy.2023.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 02/05/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Shikonin is a red naphthoquinone natural product from plants with high economical and medical values. The para-hydroxybenzoic acid geranyltransferase (PGT) catalyzes the key regulatory step of shikonin biosynthesis. PGTs from Lithospermum erythrorhizon have been well-characterized and used in industrial shikonin production. However, its perennial medicinal plant Arnebia euchroma accumulates much more pigment and the underlying mechanism remains obscure. Here, we discovered and characterized the different isoforms of AePGTs. Phylogenetic study and structure modeling suggested that the N-terminal of AePGT6 contributed to its highest activity among 7 AePGTs. Indeed, AePGT2 and AePGT3 fused with 60 amino acids from the N-terminal of AePGT6 showed even higher activity than AePGT6, while native AePGT2 and AePGT3 don't have catalytic activity. Our result not only provided a mechanistic explanation of high shikonin contents in Arnebia euchroma but also engineered a best-performing PGT to achieve the highest-to-date production of 3-geranyl-4-hydroxybenzoate acid, an intermedium of shikonin.
Collapse
Affiliation(s)
- Sheng Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China; Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, 67084, France
| | - Linyuan Shi
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ruishan Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Changzheng Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jinye Wang
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Ye Shen
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Kanade Tatsumi
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, 67084, France
| | - Nicolas Navrot
- Institut de Biologie Moléculaire des Plantes du CNRS, Université de Strasbourg, Strasbourg, 67084, France
| | - Tan Liu
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Lanping Guo
- State Key Laboratory Breeding Base of Dao-di Herbs, National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
32
|
Cui A, Jin Y, Li Y, Nie T, Sun L. Systematic identification of TPS genes in Gossypium and their characteristics in response to flooding stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1126884. [PMID: 36844072 PMCID: PMC9945120 DOI: 10.3389/fpls.2023.1126884] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 01/30/2023] [Indexed: 05/28/2023]
Abstract
Terpene synthases (TPS) is a key enzyme in the synthesis of plant terpenoids. Studies on TPSs have not been reported in Gossypium barbadense and Gossypium arboreum. 260 TPSs were identified in Gossypium, including 71 in Gossypium hirsutum, 75 in Gossypium. barbadense, 60 in Gossypium. arboreum, and 54 in Gossypium raimondii. We systematically analyzed the TPS gene family of Gossypium from three aspects: gene structure, evolutionary process and gene function. (1) Gene structure: Based on the protein structure of two conserved domains (PF01397 and PF03936), the TPS gene family is divided into five clades: TPS -a, -b, -c, -e/f and -g. (2) Evolution: Whole genome duplication and segmental duplication are the main modes of TPS gene amplification. (3) Function: The abundance of cis-acting elements may reveal the functional diversity of TPSs in cotton. TPS gene has tissue specific expression in cotton. The hypomethylation of the exon of TPSs may help to enhance the adaptability of cotton to flooding stress. In conclusion, this study can broaden the understanding of structure-evolution-function of the TPS gene family, and provide reference for the mining and verification of new genes.
Collapse
Affiliation(s)
- Aihua Cui
- Scientific Research Office, Economic Crop Institute of Jiangxi Province, Jiujiang, Jiangxi, China
| | - Yunqian Jin
- College of Agronomy, Henan University of Science and Technology, Luoyang, China
| | - Yongqi Li
- Scientific Research Office, Economic Crop Institute of Jiangxi Province, Jiujiang, Jiangxi, China
| | - Taili Nie
- Scientific Research Office, Economic Crop Institute of Jiangxi Province, Jiujiang, Jiangxi, China
| | - Liangqing Sun
- Scientific Research Office, Economic Crop Institute of Jiangxi Province, Jiujiang, Jiangxi, China
| |
Collapse
|
33
|
Demurtas OC, Nicolia A, Diretto G. Terpenoid Transport in Plants: How Far from the Final Picture? PLANTS (BASEL, SWITZERLAND) 2023; 12:634. [PMID: 36771716 PMCID: PMC9919377 DOI: 10.3390/plants12030634] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Contrary to the biosynthetic pathways of many terpenoids, which are well characterized and elucidated, their transport inside subcellular compartments and the secretion of reaction intermediates and final products at the short- (cell-to-cell), medium- (tissue-to-tissue), and long-distance (organ-to-organ) levels are still poorly understood, with some limited exceptions. In this review, we aim to describe the state of the art of the transport of several terpene classes that have important physiological and ecological roles or that represent high-value bioactive molecules. Among the tens of thousands of terpenoids identified in the plant kingdom, only less than 20 have been characterized from the point of view of their transport and localization. Most terpenoids are secreted in the apoplast or stored in the vacuoles by the action of ATP-binding cassette (ABC) transporters. However, little information is available regarding the movement of terpenoid biosynthetic intermediates from plastids and the endoplasmic reticulum to the cytosol. Through a description of the transport mechanisms of cytosol- or plastid-synthesized terpenes, we attempt to provide some hypotheses, suggestions, and general schemes about the trafficking of different substrates, intermediates, and final products, which might help develop novel strategies and approaches to allow for the future identification of terpenoid transporters that are still uncharacterized.
Collapse
Affiliation(s)
- Olivia Costantina Demurtas
- Biotechnology and Agro-Industry Division, Biotechnology Laboratory, Casaccia Research Center, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| | - Alessandro Nicolia
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops, via Cavalleggeri 25, 84098 Pontecagnano Faiano, Italy
| | - Gianfranco Diretto
- Biotechnology and Agro-Industry Division, Biotechnology Laboratory, Casaccia Research Center, ENEA—Italian National Agency for New Technologies, Energy and Sustainable Economic Development, 00123 Rome, Italy
| |
Collapse
|
34
|
Li Y, Wu T, Deng X, Tian D, Ma C, Wang X, Li Y, Zhou H. Characteristic aroma compounds in naturally withered and combined withered γ-aminobutyric acid white tea revealed by HS-SPME-GC-MS and relative odor activity value. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
35
|
Tatsumi K, Ichino T, Isaka N, Sugiyama A, Moriyoshi E, Okazaki Y, Higashi Y, Kajikawa M, Tsuji Y, Fukuzawa H, Toyooka K, Sato M, Ichi I, Shimomura K, Ohta H, Saito K, Yazaki K. Excretion of triacylglycerol as a matrix lipid facilitating apoplastic accumulation of a lipophilic metabolite shikonin. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:104-117. [PMID: 36223279 DOI: 10.1093/jxb/erac405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Plants produce a large variety of lipophilic metabolites, many of which are secreted by cells and accumulated in apoplasts. These compounds often play a role to protect plants from environmental stresses. However, little is known about how these lipophilic compounds are secreted into apoplastic spaces. In this study, we used shikonin-producing cultured cells of Lithospermum erythrorhizon as an experimental model system to analyze the secretion of lipophilic metabolites, taking advantage of its high production rate and the clear inducibility in culture. Shikonin derivatives are lipophilic red naphthoquinone compounds that accumulate exclusively in apoplastic spaces of these cells and also in the root epidermis of intact plants. Microscopic analysis showed that shikonin is accumulated in the form of numerous particles on the cell wall. Lipidomic analysis showed that L. erythrorhizon cultured cells secrete an appreciable portion of triacylglycerol (24-38% of total triacylglycerol), composed predominantly of saturated fatty acids. Moreover, in vitro reconstitution assay showed that triacylglycerol encapsulates shikonin derivatives with phospholipids to form lipid droplet-like structures. These findings suggest a novel role for triacylglycerol as a matrix lipid, a molecular component involved in the secretion of specialized lipophilic metabolites.
Collapse
Affiliation(s)
- Kanade Tatsumi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Takuji Ichino
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Natsumi Isaka
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Akifumi Sugiyama
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Eiko Moriyoshi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Yasuhiro Higashi
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Masataka Kajikawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Yoshinori Tsuji
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideya Fukuzawa
- Graduate School of Biostudies, Kyoto University, Kyoto, 606-8501, Japan
| | - Kiminori Toyooka
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Ikuyo Ichi
- Institute for Human Life Innovation, Ochanomizu University, Tokyo 112-8610, Japan
| | - Koichiro Shimomura
- Graduate School of Life Sciences, Toyo University, Gunma, 374-0193, Japan
| | - Hiroyuki Ohta
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, 226-8501, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, 230-0045, Japan
- Plant Molecular Science Center, Chiba University, Chiba, 260-8675, Japan
| | - Kazufumi Yazaki
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, 611-0011, Japan
| |
Collapse
|
36
|
Insights into the Cytochrome P450 Monooxygenase Superfamily in Osmanthus fragrans and the Role of OfCYP142 in Linalool Synthesis. Int J Mol Sci 2022; 23:ijms232012150. [PMID: 36293004 PMCID: PMC9602793 DOI: 10.3390/ijms232012150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
Osmanthus fragrans flowers have long been used as raw materials in food, tea, beverage, and perfume industries due to their attractive and strong fragrance. The P450 superfamily proteins have been reported to widely participate in the synthesis of plant floral volatile organic compounds (VOCs). To investigate the potential functions of P450 superfamily proteins in the fragrance synthesis of O. fragrans, we investigated the P450 superfamily genome wide. A total of 276 P450 genes were identified belonging to 40 families. The RNA-seq data suggested that many OfCYP genes were preferentially expressed in the flower or other organs, and some were also induced by multiple abiotic stresses. The expression patterns of seven flower-preferentially expressed OfCYPs during the five different flower aroma content stages were further explored using quantitative real-time PCR, showing that the CYP94C subfamily member OfCYP142 had the highest positive correlation with linalool synthesis gene OfTPS2. The transient expression of OfCYP142 in O. fragrans petals suggested that OfCYP142 can increase the content of linalool, an important VOC of the O. fragrans floral aroma, and a similar result was also obtained in flowers of OfCYP142 transgenic tobacco. Combined with RNA-seq data of the transiently transformed O. fragrans petals, we found that the biosynthesis pathway of secondary metabolites was significantly enriched, and many 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway genes were also upregulated. This evidence indicated that the OfCYP proteins may play critical roles in the flower development and abiotic response of O. fragrans, and that OfCYP142 can participate in linalool synthesis. This study provides valuable information about the functions of P450 genes and a valuable guide for studying further functions of OfCYPs in promoting fragrance biosynthesis of ornamental plants.
Collapse
|
37
|
Fenner ED, Scapini T, da Costa Diniz M, Giehl A, Treichel H, Álvarez-Pérez S, Alves SL. Nature's Most Fruitful Threesome: The Relationship between Yeasts, Insects, and Angiosperms. J Fungi (Basel) 2022; 8:984. [PMID: 36294549 PMCID: PMC9605484 DOI: 10.3390/jof8100984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/13/2022] [Accepted: 09/18/2022] [Indexed: 07/30/2023] Open
Abstract
The importance of insects for angiosperm pollination is widely recognized. In fact, approximately 90% of all plant species benefit from animal-mediated pollination. However, only recently, a third part player in this story has been properly acknowledged. Microorganisms inhabiting floral nectar, among which yeasts have a prominent role, can ferment glucose, fructose, sucrose, and/or other carbon sources in this habitat. As a result of their metabolism, nectar yeasts produce diverse volatile organic compounds (VOCs) and other valuable metabolites. Notably, some VOCs of yeast origin can influence insects' foraging behavior, e.g., by attracting them to flowers (although repelling effects have also been reported). Moreover, when insects feed on nectar, they also ingest yeast cells, which provide them with nutrients and protect them from pathogenic microorganisms. In return, insects serve yeasts as transportation and a safer habitat during winter when floral nectar is absent. From the plant's point of view, the result is flowers being pollinated. From humanity's perspective, this ecological relationship may also be highly profitable. Therefore, prospecting nectar-inhabiting yeasts for VOC production is of major biotechnological interest. Substances such as acetaldehyde, ethyl acetate, ethyl butyrate, and isobutanol have been reported in yeast volatomes, and they account for a global market of approximately USD 15 billion. In this scenario, the present review addresses the ecological, environmental, and biotechnological outlooks of this three-party mutualism, aiming to encourage researchers worldwide to dig into this field.
Collapse
Affiliation(s)
- Eduardo D. Fenner
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Campus Cerro Largo, Cerro Largo 97900-000, RS, Brazil
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Thamarys Scapini
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim 99700-970, RS, Brazil
| | - Mariana da Costa Diniz
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Anderson Giehl
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| | - Helen Treichel
- Laboratory of Microbiology and Bioprocesses, Federal University of Fronteira Sul, Campus Erechim, Erechim 99700-970, RS, Brazil
| | - Sergio Álvarez-Pérez
- Department of Animal Health, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Sérgio L. Alves
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Campus Cerro Largo, Cerro Largo 97900-000, RS, Brazil
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Campus Chapecó, Chapecó 89815-899, SC, Brazil
| |
Collapse
|
38
|
Koksharova OA, Safronov NA. The effects of secondary bacterial metabolites on photosynthesis in microalgae cells. Biophys Rev 2022; 14:843-856. [PMID: 36124259 PMCID: PMC9481811 DOI: 10.1007/s12551-022-00981-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 12/26/2022] Open
Abstract
Secondary metabolites of bacteria are regulatory molecules that act as "info-chemicals" that control some metabolic processes in the cells of microorganisms. These molecules provide the function of bacteria communication in microbial communities. As primary producers of organic matter in the biosphere, microalgae play a central ecological role in various ecosystems. Photosynthesis is a central process in microalgae cells, and it is exposed to various biotic and abiotic factors. Various secondary metabolites of bacteria confer a noticeable regulatory effect on photosynthesis in microalgae cells. The main purpose of this review is to highlight recent experimental results that demonstrate the impact of several types of common bacterial metabolites (volatile organic compounds, non-protein amino acids, and peptides) on photosynthetic activity in cells of microalgae. The use of these molecules as herbicides can be of great importance both for practical applications and for basic research.
Collapse
Affiliation(s)
- O. A. Koksharova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119991 Moscow, Russia
- Institute of Molecular Genetics of National Research Center, Kurchatov Institute”, Kurchatov Square, 2, 123182 Moscow, Russia
| | - N. A. Safronov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 1-40, 119991 Moscow, Russia
| |
Collapse
|
39
|
McIntyre RL, Liu YJ, Hu M, Morris BJ, Willcox BJ, Donlon TA, Houtkooper RH, Janssens GE. Pharmaceutical and nutraceutical activation of FOXO3 for healthy longevity. Ageing Res Rev 2022; 78:101621. [PMID: 35421606 DOI: 10.1016/j.arr.2022.101621] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Man Hu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Brian J Morris
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Bradley J Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Timothy A Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Wang XJ, Luo Q, Li T, Meng PH, Pu YT, Liu JX, Zhang J, Liu H, Tan GF, Xiong AS. Origin, evolution, breeding, and omics of Apiaceae: a family of vegetables and medicinal plants. HORTICULTURE RESEARCH 2022; 9:uhac076. [PMID: 38239769 PMCID: PMC10795576 DOI: 10.1093/hr/uhac076] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/17/2022] [Indexed: 01/22/2024]
Abstract
Many of the world's most important vegetables and medicinal crops, including carrot, celery, coriander, fennel, and cumin, belong to the Apiaceae family. In this review, we summarize the complex origins of Apiaceae and the current state of research on the family, including traditional and molecular breeding practices, bioactive compounds, medicinal applications, nanotechnology, and omics research. Numerous molecular markers, regulatory factors, and functional genes have been discovered, studied, and applied to improve vegetable and medicinal crops in Apiaceae. In addition, current trends in Apiaceae application and research are also briefly described, including mining new functional genes and metabolites using omics research, identifying new genetic variants associated with important agronomic traits by population genetics analysis and GWAS, applying genetic transformation, the CRISPR-Cas9 gene editing system, and nanotechnology. This review provides a reference for basic and applied research on Apiaceae vegetable and medicinal plants.
Collapse
Affiliation(s)
- Xiao-Jing Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou 550025, China
| | - Qing Luo
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ping-Hong Meng
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Yu-Ting Pu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guizhou 550025, China
| | - Jie-Xia Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 210095, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guo-Fei Tan
- Institute of Horticulture, Guizhou Academy of Agricultural Sciences, Guizhou 550006, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
41
|
Su D, He JJ, Zhou YZ, Li YL, Zhou HJ. Aroma effects of key volatile compounds in Keemun black tea at different grades: HS-SPME-GC-MS, sensory evaluation, and chemometrics. Food Chem 2022; 373:131587. [PMID: 34838407 DOI: 10.1016/j.foodchem.2021.131587] [Citation(s) in RCA: 92] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 10/13/2021] [Accepted: 11/08/2021] [Indexed: 12/23/2022]
Abstract
The present study aimed to explore the relationship between the grade and the characteristic aroma in Keemun black tea (KBT). Headspace solid-phase microextraction (HS-SPME), gas chromatography-mass spectrometry (GC-MS), sensory evaluation, and chemometrics were employed to determine the changes in the flavor evolution of KBT at grade. The results showed that a total of 110 volatile components were identified. Linalool and linalool oxide were dominant. The orthogonal partial least squares discriminant analysis (OPLS-DA) combined with relative odor activity value (rOAV > 0.1) revealed that 11 volatile components were the key volatile compounds of KBT, such as benzeneacetaldehyde (rOAV: 3.43-5.96) and methyl salicylate (rOAV: 2.15 - 2.50). Furthermore, the partial least squares (PLS) model indicated that geraniol, linalool, and methyl salicylate benefited from the reservation of floral flavor of Keemun aroma characteristic of KBT. The findings presented in this thesis add to our understanding of KBT at different grades.
Collapse
Affiliation(s)
- Dan Su
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650000, China
| | - Jiao-Jiao He
- College of Tea, Yunnan Agricultural University, Kunming 650000, China
| | - Yan-Zhu Zhou
- College of Tea, Yunnan Agricultural University, Kunming 650000, China
| | - Ya-Li Li
- College of Tea, Yunnan Agricultural University, Kunming 650000, China
| | - Hong-Jie Zhou
- College of Tea, Yunnan Agricultural University, Kunming 650000, China.
| |
Collapse
|
42
|
Ajani O, Owoeye TF, Akinlabu KD, Bolade O, Aribisala O, Durodola B. Sorghum extract: Phytochemical, proximate, and GC-MS analyses. FOODS AND RAW MATERIALS 2021. [DOI: 10.21603/2308-4057-2021-2-371-378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Introduction. Sorghum is available cereal seeds of African origin belonging to the Poaceae family. However, its metabolites and proximate composition have not studied well, which led to the under-utilization of this cereal. This research aimed to investigate the classes of phytochemical and proximate compositions of sorghum extract in order to assess its nutraceutical potential for food chemistry and dietary formulations.
Study objects and methods. We studied the sorghum seed oil extract obtained with the help of a Soxhlet extractor. Sorghum was purchased in Ota, Nigeria. The bioactive compounds were identified by standard methods of phytochemical screening, the nutritional content was investigated with proximate analysis, and the secondary metabolites in the sorghum extract were determined using gas chromatography – mass spectrometry (GC-MS).
Result and discussion. The phytochemical screening showed the presence of steroids, saponins, terpenoids, alkaloids, cardiac glycosides, and quinones in the sorghum extract. The oil yield obtained was 11.00 ± 0.18%. The proximate analysis revealed 5.94% moisture content, 3.05% ash, 0.20% crude fiber, 11.00% fat, 5.54% protein, and 74.27% carbohydrates. The selected physicochemical parameters measured in the sorghum extract included cloud point (0.40°C), specific gravity at 25°C (0.81), and refractive index (1.46). The GC-MS analysis revealed the presence of 9,12-octadecadienoic acid (Z,Z)-, stigmasterol, 8-dodecen-1-ol, acetate, (Z)-, vitamin E, linoleic acid ethyl ester, and 9,12-octadecadienoic acid, methyl ester, which accounted for about 85% in the sorghum composition. Other constituents, presented at lower amounts, included 12-heptadecyn-1-ol, 1H-Imidazole-5-ethanamine, 1-methyl-, and cyclononene.
Conclusion. The findings of this study revealed high nutritive potential of sorghum, which make it a rich source of energy for humans and animals.
Collapse
|
43
|
Antimicrobial activity and mode of action of 1,8-cineol against carbapenemase-producing Klebsiella pneumoniae. Sci Rep 2021; 11:20824. [PMID: 34675255 PMCID: PMC8531306 DOI: 10.1038/s41598-021-00249-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022] Open
Abstract
Antimicrobial resistance remains one of the most challenging issues that threatens the health of people around the world. Plant-derived natural compounds have received considerable attention for their potential role to mitigate antibiotic resistance. This study was carried out to assess the antimicrobial activity and mode of action of a monoterpene, 1,8-cineol (CN) against carbapenemase-producing Klebsiella pneumoniae (KPC-KP). Results showed that resazurin microplate assay and time-kill analysis revealed bactericidal effects of CN at 28.83 mg/mL. Zeta potential showed that CN increased the surface charge of bacteria and an increase of outer membrane permeability was also detected. CN was able to cause leakage of proteins and nucleic acids in KPC-KP cells upon exposure to CN and ethidium bromide influx/efflux experiment showed the uptake of ethidium bromide into the cell; this was attributed to membrane damage. CN was also found to induce oxidative stress in CN-treated KPC-KP cells through generation of reactive oxygen species which initiated lipid peroxidation and thus damaging the bacterial cell membrane. Scanning and transmission electron microscopies further confirmed the disruption of bacterial cell membrane and loss of intracellular materials. In this study, we demonstrated that CN induced oxidative stress and membrane damage resulting in KPC-KP cell death.
Collapse
|
44
|
Abstract
Allelopathy is an ecological phenomenon in which organisms interfere with each other. As a management strategy in agricultural systems, allelopathy can be mainly used to control weeds, resist pests, and disease and improve the interaction of soil nutrition and microorganisms. Volatile organic compounds (VOCs) are allelochemicals volatilized from plants and have been widely demonstrated to have different ecological functions. This review provides the recent advance in the allelopathic effects of VOCs on plants, such as growth, competition, dormancy, resistance of diseases and insect pests, content of reactive oxygen species (ROS), enzyme activity, respiration, and photosynthesis. VOCs also participate in plant-to-plant communication as a signaling substance. The main methods of collection and identification of VOCs are briefly summarized in this article. It also points out the disadvantages of VOCs and suggests potential directions to enhance research and solve mysteries in this emerging area. It is necessary to study the allelopathic mechanisms of plant VOCs so as to provide a theoretical basis for VOC applications. In conclusion, allelopathy of VOCs released by plants is a more economical, environmentally friendly, and effective measure to develop substantial agricultural industry by using the allelopathic effects of plant natural products.
Collapse
|
45
|
Yang C, Marillonnet S, Tissier A. The scarecrow-like transcription factor SlSCL3 regulates volatile terpene biosynthesis and glandular trichome size in tomato (Solanum lycopersicum). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 107:1102-1118. [PMID: 34143914 DOI: 10.1111/tpj.15371] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum L.) type VI glandular trichomes that occur on the surface of leaves, stems, young fruits and flowers produce and store a blend of volatile monoterpenes and sesquiterpenes. These compounds play important roles in the interaction with pathogens and herbivorous insects. Although the function of terpene synthases in the biosynthesis of volatile terpenes in tomato has been comprehensively investigated, the deciphering of their transcriptional regulation is only just emerging. We selected transcription factors that are over-expressed in trichomes based on existing transcriptome data and silenced them individually by virus-induced gene silencing. Of these, SlSCL3, a scarecrow-like (SCL) subfamily transcription factor, led to a significant decrease in volatile terpene content and expression of the corresponding terpene synthase genes when its transcription level was downregulated. Overexpression of SlSCL3 dramatically increased both the volatile terpene content and glandular trichome size, whereas its homozygous mutants showed reduced terpene biosynthesis. However, its heterozygous mutants also showed a significantly elevated volatile terpene content and enlarged glandular trichomes, similar to the overexpression plants. SlSCL3 modulates the expression of terpene biosynthetic pathway genes by transcriptional activation, but neither direct protein-DNA binding nor interaction with known regulators was observed. Moreover, transcript levels of the endogenous copy of SlSCL3 were decreased in the overexpression plants but increased in the heterozygous and homozygous mutants, suggesting feedback repression of its own promoter. Taken together, our results provide new insights into the role of SlSCL3 in the complex regulation of volatile terpene biosynthesis and glandular trichome development in tomato.
Collapse
Affiliation(s)
- Changqing Yang
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, Shandong, 266100, China
| | - Sylvestre Marillonnet
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Halle (Saale), 06120, Germany
| |
Collapse
|
46
|
Serna-Arbeláez MS, Florez-Sampedro L, Orozco LP, Ramírez K, Galeano E, Zapata W. Natural Products with Inhibitory Activity against Human Immunodeficiency Virus Type 1. Adv Virol 2021; 2021:5552088. [PMID: 34194504 PMCID: PMC8181102 DOI: 10.1155/2021/5552088] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Infections caused by human immunodeficiency virus (HIV) are considered one of the main public health problems worldwide. Antiretroviral therapy (ART) is the current modality of treatment for HIV-1 infection. It comprises the combined use of several drugs and can decrease the viral load and increase the CD4+ T cell count in patients with HIV-1 infection, thereby proving to be an effective modality. This therapy significantly decreases the rate of morbidity and mortality owing to acquired immunodeficiency syndrome (AIDS) and prolongs and improves the quality of life of infected patients. However, nonadherence to ART may increase viral resistance to antiretroviral drugs and transmission of drug-resistant strains of HIV. Therefore, it is necessary to continue research for compounds with anti-HIV-1 activity, exhibiting a potential for the development of an alternative or complementary therapy to ART with low cost and fewer side effects. Natural products and their derivatives represent an excellent option owing to their therapeutic potential against HIV. Currently, the derivatives of natural products available as anti-HIV-1 agents include zidovudine, an arabinonucleoside derivative of the Caribbean marine sponge (Tectitethya crypta), which inhibits the reverse transcriptase of the virus. This was the first antiviral agent approved for treatment of HIV infection. Additionally, bevirimat (isolated from Syzygium claviflorum) and calanolide A (isolated from Calophyllum sp.) are inhibitors of viral maturation and reverse transcription process, respectively. In the present review, we aimed to describe the wide repertoire of natural compounds exhibiting anti-HIV-1 activity that can be considered for designing new therapeutic strategies to curb the HIV pandemic.
Collapse
Affiliation(s)
- Maria S. Serna-Arbeláez
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo de Investigacion en Ciencias Animales-GRICA, Facultad de Medicina Veterinaria y Zootecnia, Universidad Cooperativa de Colombia, Bucaramanga, Colombia
| | - Laura Florez-Sampedro
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Lina P. Orozco
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Katherin Ramírez
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Elkin Galeano
- Productos Naturales Marinos, Departamento de Farmacia, Facultad de Ciencias Farmacéuticas y Alimentarias, Universidad de Antioquia (UdeA), Medellín, Colombia
| | - Wildeman Zapata
- Grupo Infettare, Facultad de Medicina, Universidad Cooperativa de Colombia, Medellín, Colombia
- Grupo Inmunovirología, Facultad de Medicina, Universidad de Antioquia (UdeA), Medellín, Colombia
| |
Collapse
|
47
|
Chen J, Liu J, Huang Y, Li R, Ma C, Zhang B, Wu F, Yu W, Zuo X, Liang Y, Wang Q. Insights into oral bioavailability enhancement of therapeutic herbal constituents by cytochrome P450 3A inhibition. Drug Metab Rev 2021; 53:491-507. [PMID: 33905669 DOI: 10.1080/03602532.2021.1917598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Herbal plants typically have complex compositions and diverse mechanisms. Among them, bioactive constituents with relatively high exposure in vivo are likely to exhibit therapeutic efficacy. On the other hand, their bioavailability may be influenced by the synergistic effects of different bioactive components. Cytochrome P450 3A (CYP3A) is one of the most abundant CYP enzymes, responsible for the metabolism of 50% of approved drugs. In recent years, many therapeutic herbal constituents have been identified as CYP3A substrates. It is more evident that CYP3A inhibition derived from the herbal formula plays a critical role in improving the oral bioavailability of therapeutic constituents. CYP3A inhibition may be the mechanism of the synergism of herbal formula. In this review, we explored the multiplicity of CYP3A, summarized herbal monomers with CYP3A inhibitory effects, and evaluated herb-mediated CYP3A inhibition, thereby providing new insights into the mechanisms of CYP3A inhibition-mediated oral herb bioavailability.
Collapse
Affiliation(s)
- Junmei Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jinman Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yueyue Huang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ruoyu Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Cuiru Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Beiping Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Fanchang Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenqian Yu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xue Zuo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Liang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
48
|
Birami B, Bamberger I, Ghirardo A, Grote R, Arneth A, Gaona-Colmán E, Nadal-Sala D, Ruehr NK. Heatwave frequency and seedling death alter stress-specific emissions of volatile organic compounds in Aleppo pine. Oecologia 2021; 197:939-956. [PMID: 33835242 PMCID: PMC8591014 DOI: 10.1007/s00442-021-04905-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
Biogenic volatile organic compounds (BVOC) play important roles in plant stress responses and can serve as stress indicators. While the impacts of gradual environmental changes on BVOCs have been studied extensively, insights in emission responses to repeated stress and recovery are widely absent. Therefore, we studied the dynamics of shoot gas exchange and BVOC emissions in Pinus halepensis seedlings during an induced moderate drought, two four-day-long heatwaves, and the combination of drought and heatwaves. We found clear stress-specific responses of BVOC emissions. Reductions in acetone emissions with declining soil water content and transpiration stood out as a clear drought indicator. All other measured BVOC emissions responded exponentially to rising temperatures during heat stress (maximum of 43 °C), but monoterpenes and methyl salicylate showed a reduced temperature sensitivity during the second heatwave. We found that these decreases in monoterpene emissions between heatwaves were not reflected by similar declines in their internal storage pools. Because stress intensity was extremely severe, most of the seedlings in the heat-drought treatment died at the end of the second heatwave (dark respiration ceased). Interestingly, BVOC emissions (methanol, monoterpenes, methyl salicylate, and acetaldehyde) differed between dying and surviving seedlings, already well before indications of a reduced vitality became visible in gas exchange dynamics. In summary, we could clearly show that the dynamics of BVOC emissions are sensitive to stress type, stress frequency, and stress severity. Moreover, we found indications that stress-induced seedling mortality was preceded by altered methanol, monoterpene, and acetaldehyde emission dynamics.
Collapse
Affiliation(s)
- Benjamin Birami
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany. .,University of Bayreuth, Chair of Plant Ecology, Universitätsstraße 30, 95440, Bayreuth, Germany.
| | - Ines Bamberger
- University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER), Atmospheric Chemistry, Dr.-Hans-Frisch-Straße 1-3, 95448, Bayreuth, Germany
| | - Andrea Ghirardo
- Research Unit Environmental Simulation, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764, Neuherberg, Germany
| | - Rüdiger Grote
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Almut Arneth
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Elizabeth Gaona-Colmán
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Daniel Nadal-Sala
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| | - Nadine K Ruehr
- Karlsruhe Institute of Technology KIT, Institute of Meteorology and Climate Research-Atmospheric Environmental Research, 82467, Garmisch-Partenkirchen, Germany
| |
Collapse
|
49
|
Kim S, Van den Broeck L, Karre S, Choi H, Christensen SA, Wang G, Jo Y, Cho WK, Balint‐Kurti P. Analysis of the transcriptomic, metabolomic, and gene regulatory responses to Puccinia sorghi in maize. MOLECULAR PLANT PATHOLOGY 2021; 22:465-479. [PMID: 33641256 PMCID: PMC7938627 DOI: 10.1111/mpp.13040] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 05/22/2023]
Abstract
Common rust, caused by Puccinia sorghi, is a widespread and destructive disease of maize. The Rp1-D gene confers resistance to the P. sorghi IN2 isolate, mediating a hypersensitive cell death response (HR). To identify differentially expressed genes (DEGs) and metabolites associated with the compatible (susceptible) interaction and with Rp1-D-mediated resistance in maize, we performed transcriptomics and targeted metabolome analyses of P. sorghi IN2-infected leaves from the near-isogenic lines H95 and H95:Rp1-D, which differed for the presence of Rp1-D. We observed up-regulation of genes involved in the defence response and secondary metabolism, including the phenylpropanoid, flavonoid, and terpenoid pathways. Metabolome analyses confirmed that intermediates from several transcriptionally up-regulated pathways accumulated during the defence response. We identified a common response in H95:Rp1-D and H95 with an additional H95:Rp1-D-specific resistance response observed at early time points at both transcriptional and metabolic levels. To better understand the mechanisms underlying Rp1-D-mediated resistance, we inferred gene regulatory networks occurring in response to P. sorghi infection. A number of transcription factors including WRKY53, BHLH124, NKD1, BZIP84, and MYB100 were identified as potentially important signalling hubs in the resistance-specific response. Overall, this study provides a novel and multifaceted understanding of the maize susceptible and resistance-specific responses to P. sorghi.
Collapse
Affiliation(s)
- Saet‐Byul Kim
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Lisa Van den Broeck
- Department of Plant and Microbial BiologyNC State UniversityRaleighNorth CarolinaUSA
| | - Shailesh Karre
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
| | - Hoseong Choi
- Research Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Shawn A. Christensen
- Chemistry Research UnitDepartment of Agriculture–Agricultural Research Service (USDA‐ARS)Center for Medical, Agricultural, and Veterinary EntomologyGainesvilleFloridaUSA
| | - Guan‐Feng Wang
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- The Key Laboratory of Plant Development and Environmental Adaptation BiologyMinistry of EducationSchool of Life SciencesShandong UniversityQingdaoChina
| | - Yeonhwa Jo
- Research Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Won Kyong Cho
- Research Institute of Agriculture and Life SciencesCollege of Agriculture and Life SciencesSeoul National UniversitySeoulRepublic of Korea
| | - Peter Balint‐Kurti
- Department of Entomology and Plant PathologyNC State UniversityRaleighNorth CarolinaUSA
- Plant Science Research Unit USDA‐ARSRaleighNorth CarolinaUSA
| |
Collapse
|
50
|
Wei J, Zhao H, Liu X, Liu S, Li L, Ma H. Physiological and Biochemical Characteristics of Two Soybean Cultivars with Different Seed Vigor During Seed Physiological Maturity. CURR PROTEOMICS 2021. [DOI: 10.2174/1570164617666200127142051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Background:
The soybean seed’s physiological maturity (R7) period is an extraordinary period
for the formation of seed vigor. However, how proteins and their related metabolic pathways in
seed and leaf change during seed physiological maturity is still not fully understood.
Methods:
In the present study, using a pair of pre-harvest seed deterioration-sensitive and -resistant
soybean cultivars Ningzhen No. 1 and Xiangdou No. 3, the changes were investigated through analyzing
leaf, cotyledon and embryo at the levels of protein, ultrastructure, and physiology and biochemistry.
Results:
Soybean cultivars with stronger photosynthetic capacity in leaf, higher nutrients accumulation
and protein biosynthesis in cotyledon, as well as stronger resistant-pathogen ability and cell stability in
embryo during seed physiological maturity, would produce higher vitality seeds.
Conclusion:
Such a study allows us to further understand the changes at protein, ultrastructure, and
physiology and biochemistry levels in developing seeds during the physiological maturity and provide
a theoretical basis for cultivating soybean cultivars with higher seed vigor.
Collapse
Affiliation(s)
- Jiaping Wei
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Haihong Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaolin Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Sushuang Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Linzhi Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|