1
|
Cheng Y, Li G, Qi A, Mandlik R, Pan C, Wang D, Ge S, Qi Y. A comprehensive all-in-one CRISPR toolbox for large-scale screens in plants. THE PLANT CELL 2025; 37:koaf081. [PMID: 40261966 PMCID: PMC12013820 DOI: 10.1093/plcell/koaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (Cas) technologies facilitate routine genome engineering of one or a few genes at a time. However, large-scale CRISPR screens with guide RNA libraries remain challenging in plants. Here, we have developed a comprehensive all-in-one CRISPR toolbox for Cas9-based genome editing, cytosine base editing, adenine base editing (ABE), Cas12a-based genome editing and ABE, and CRISPR-Act3.0-based gene activation in both monocot and dicot plants. We evaluated all-in-one T-DNA expression vectors in rice (Oryza sativa, monocot) and tomato (Solanum lycopersicum, dicot) protoplasts, demonstrating their broad and reliable applicability. To showcase the applications of these vectors in CRISPR screens, we constructed guide RNA (gRNA) pools for testing in rice protoplasts, establishing a high-throughput approach to select high-activity gRNAs. Additionally, we demonstrated the efficacy of sgRNA library screening for targeted mutagenesis of ACETOLACTATE SYNTHASE in rice, recovering novel candidate alleles for herbicide resistance. Furthermore, we carried out a CRISPR activation screen in Arabidopsis thaliana, rapidly identifying potent gRNAs for FLOWERING LOCUS T activation that confer an early-flowering phenotype. This toolbox contains 61 versatile all-in-one vectors encompassing nearly all commonly used CRISPR technologies. It will facilitate large-scale genetic screens for loss-of-function or gain-of-function studies, presenting numerous promising applications in plants.
Collapse
Affiliation(s)
- Yanhao Cheng
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Gen Li
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Aileen Qi
- Montgomery Blair High School, Silver Spring, MD 20901, USA
| | - Rushil Mandlik
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Changtian Pan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Doris Wang
- Montgomery Blair High School, Silver Spring, MD 20901, USA
| | - Sophia Ge
- Montgomery Blair High School, Silver Spring, MD 20901, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
2
|
Xin H, Strickland LW, Hamilton JP, Trusky JK, Fang C, Butler NM, Douches DS, Buell CR, Jiang J. Jan and mini-Jan, a model system for potato functional genomics. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1243-1256. [PMID: 39846980 PMCID: PMC11933877 DOI: 10.1111/pbi.14582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/28/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Potato (Solanum tuberosum) is the third-most important food crop in the world. Although the potato genome has been fully sequenced, functional genomics research of potato lags behind that of other major food crops, largely due to the lack of a model experimental potato line. Here, we present a diploid potato line, 'Jan,' which possesses all essential characteristics for facile functional genomics studies. Jan exhibits a high level of homozygosity after seven generations of self-pollination. Jan is vigorous, highly fertile and produces tubers with outstanding traits. Additionally, it demonstrates high regeneration rates and excellent transformation efficiencies. We generated a chromosome-scale genome assembly for Jan, annotated its genes and identified syntelogs relative to the potato reference genome assembly DMv6.1 to facilitate functional genomics. To miniaturize plant architecture, we developed two 'mini-Jan' lines with compact and dwarf plant stature through CRISPR/Cas9-mediated mutagenesis targeting the Dwarf and Erecta genes involved in growth. One mini-Jan mutant, mini-JanE, is fully fertile and will permit higher-throughput studies in limited growth chamber and greenhouse space. Thus, Jan and mini-Jan offer a robust model system that can be leveraged for gene editing and functional genomics research in potato.
Collapse
Affiliation(s)
- Haoyang Xin
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | | | - John P. Hamilton
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGAUSA
| | - Jacob K. Trusky
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Chao Fang
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
- Present address:
Yazhouwan National LaboratorySanyaChina
| | - Nathaniel M. Butler
- Department of HorticultureUniversity of Wisconsin‐MadisonMadisonWIUSA
- United States Department of Agriculture‐Agricultural Research ServiceVegetable Crops Research UnitMadisonWIUSA
| | - David S. Douches
- Department of Plant, Soil, and Microbial SciencesMichigan State UniversityEast LansingMIUSA
- Michigan State University AgBioResearchEast LansingMIUSA
| | - C. Robin Buell
- Center for Applied Genetic TechnologiesUniversity of GeorgiaAthensGAUSA
- Department of Crop and Soil SciencesUniversity of GeorgiaAthensGAUSA
- Institute of Plant Breeding, Genetics and GenomicsUniversity of GeorgiaAthensGAUSA
- The Plant CenterUniversity of GeorgiaAthensGAUSA
| | - Jiming Jiang
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
- Michigan State University AgBioResearchEast LansingMIUSA
- Department of HorticultureMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
3
|
Lu R, Zhang Z, Hu S, Xia H, Han H. A micropeptide regulates seed desiccation. FRONTIERS IN PLANT SCIENCE 2025; 16:1550190. [PMID: 40206881 PMCID: PMC11979150 DOI: 10.3389/fpls.2025.1550190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025]
Affiliation(s)
| | | | | | | | - Huibin Han
- Research Center of Plant Functional Genes and Tissue Culture Technology, College of
Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
4
|
Li X, Schmitz RJ. Cis-regulatory dynamics in plant domestication. Trends Genet 2025:S0168-9525(25)00046-0. [PMID: 40140332 DOI: 10.1016/j.tig.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/12/2025] [Accepted: 02/26/2025] [Indexed: 03/28/2025]
Abstract
Cis-regulatory elements (CREs) are critical sequence determinants for spatiotemporal control of gene expression. Genetic variants within CREs have driven phenotypic transitions from wild to cultivated plants during domestication. This review summarizes our current understanding of genetic variants within CREs involved in plant domestication. We also propose avenues for studies to expand our understanding of both CRE biology and domestication processes, such as examining primary mechanisms that generate CRE genetic variants during plant domestication and investigating the roles of CREs in domestication syndrome. Additionally, we discuss existing challenges and highlight future opportunities for exploring CREs in plant domestication, emphasizing the potential of modifying CREs to contribute to crop improvement.
Collapse
Affiliation(s)
- Xiang Li
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| | - Robert J Schmitz
- Department of Genetics, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
5
|
Sheng H, Zhang H, Deng H, Zhang Z, Qiu F, Yang F. Maize COMPACT PLANT 3 regulates plant architecture and facilitates high-density planting. THE PLANT CELL 2025; 37:koaf029. [PMID: 39928526 PMCID: PMC11879032 DOI: 10.1093/plcell/koaf029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/15/2024] [Accepted: 02/06/2025] [Indexed: 02/12/2025]
Abstract
Compact plant architecture allows more efficient light capture under higher planting density. Thus, it is a crucial strategy for improving crop yield, particularly in maize (Zea mays L.). Here, we isolated a maize gene, COMPACT PLANT 3 (CT3), regulating plant architecture, using map-based cloning. CT3, encoding a GRAS protein, interacts with an AP2 transcription factor (TF), DWARF AND IRREGULAR LEAF 1 (DIL1). The genetic analysis showed that CT3 and DIL1 regulate leaf angle and plant height via the same pathway, supporting the biological role of their interaction by forming a complex. Transcriptome and DNA profiling analyses revealed that these 2 TFs share many common target genes. We further observed that CT3 functions as a co-regulator to enhance the DNA affinity and transcriptional activity of DIL1. This finding was further supported by the direct binding of DIL1 to 2 cell wall-related genes, ZmEXO1 and ZmXTH14, which were downregulated in the ct3 mutant. Furthermore, ZmEXO1 regulated plant architecture in a manner similar to CT3- and DIL1-mediated regulation. Zmexo1, ct3, and dil1 mutants showed defective cell wall integrity and had reduced cell wall-related components. The introduction of the ct3 or dil1 mutant allele into elite maize hybrids led to a more compact architecture and increased yield under high planting density. Our findings reveal a regulatory pathway of maize plant architecture and provide targets to increase yield under high planting density.
Collapse
Affiliation(s)
- Huangjun Sheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Han Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Hua Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zuxin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Yazhouwan National Laboratory, Sanya 572024, China
| | - Fazhan Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Fang Yang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Hao Y, Feng J, Li Y, Yuan Z, Miao P, Cheng H, Wang Q, Zhang Y, Lv L, Zuo D, Liu J, Song G. Construction of a Cas9-targeted mutagenesis mini-library in the upland cotton genetic standard line (TM-1). PLANT CELL REPORTS 2025; 44:28. [PMID: 39797989 DOI: 10.1007/s00299-024-03416-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025]
Affiliation(s)
- Yunfei Hao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- National Nanfan Research Institute (Sanya) of Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Jiajia Feng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- National Nanfan Research Institute (Sanya) of Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Yuanyuan Li
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- National Nanfan Research Institute (Sanya) of Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Zhangcheng Yuan
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- National Nanfan Research Institute (Sanya) of Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Pengfei Miao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- National Nanfan Research Institute (Sanya) of Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Hailiang Cheng
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qiaolian Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youping Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Limin Lv
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Dongyun Zuo
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
| | - Ji Liu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- National Nanfan Research Institute (Sanya) of Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Guoli Song
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China.
- National Nanfan Research Institute (Sanya) of Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
- Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
7
|
Li H, Li Z, Zhang S, Pu X. Malicious DNS detection by combining improved transformer and CNN. Sci Rep 2024; 14:30248. [PMID: 39632869 PMCID: PMC11618505 DOI: 10.1038/s41598-024-81189-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024] Open
Abstract
With the widespread application of the Internet, network security issues have become increasingly prominent. As an important infrastructure of the Internet, the domain name server has been attacked in various forms. Traditional methods for detecting malicious domain servers are usually based on rules or feature engineering, requiring a large amount of manual participation and rule library updates. These methods cannot adapt to the constantly changing threat environment. In response to these issues, this study first improves the Transformer by adjusting its attention head and encoding method. Then, the model is combined with convolutional neural networks. Finally, a block-based ensemble classifier is used for classification detection. The relevant outcomes showed that the average accuracy score of the proposed method was as high as 95.8 points, the average detection time score was 96.8 points, the average feature extraction ability score of the model was 96.3 points, and the overall performance score was 97.6 points. This method has significant advantages over traditional methods in terms of accuracy and detection time, providing a new tool for detecting malicious domain servers.
Collapse
Affiliation(s)
- Heyu Li
- Admission Office Changchun Sci-Tech University, Changchun, 130600, China.
| | - Zhangmeizhi Li
- The Petroleum Institute, China University of Petroleum-Beijing at Karamay, Karamay, 834000, China.
| | - Shuyan Zhang
- The Petroleum Institute, China University of Petroleum-Beijing at Karamay, Karamay, 834000, China
| | - Xiao Pu
- The Petroleum Institute, China University of Petroleum-Beijing at Karamay, Karamay, 834000, China
| |
Collapse
|
8
|
Wang F, Liang S, Wang G, Hu T, Fu C, Wang Q, Xu Z, Fan Y, Che L, Min L, Li B, Long L, Gao W, Zhang X, Jin S. CRISPR-Cas9-mediated construction of a cotton CDPK mutant library for identification of insect-resistance genes. PLANT COMMUNICATIONS 2024; 5:101047. [PMID: 39138865 PMCID: PMC11589327 DOI: 10.1016/j.xplc.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/10/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Calcium-dependent protein kinases (CDPKs) act as key signal transduction enzymes in plants, especially in response to diverse stresses, including herbivory. In this study, a comprehensive analysis of the CDPK gene family in upland cotton revealed that GhCPKs are widely expressed in multiple cotton tissues and respond positively to various biotic and abiotic stresses. We developed a strategy for screening insect-resistance genes from a CRISPR-Cas9 mutant library of GhCPKs. The library was created using 246 single-guide RNAs targeting the GhCPK gene family to generate 518 independent T0 plants. The average target-gene coverage was 86.18%, the genome editing rate was 89.49%, and the editing heritability was 82%. An insect bioassay in the field led to identification of 14 GhCPK mutants that are resistant or susceptible to insects. The mutant that showed the clearest insect resistance, cpk33/74 (in which the homologous genes GhCPK33 and GhCPK74 were knocked out), was selected for further study. Oral secretions from Spodoptera litura induced a rapid influx of Ca2+ in cpk33/74 leaves, resulting in a significant increase in jasmonic acid content. S-adenosylmethionine synthase is an important protein involved in plant stress response, and protein interaction experiments provided evidence for interactions of GhCPK33 and GhCPK74 with GhSAMS1 and GhSAM2. In addition, virus-induced gene silencing of GhSAMS1 and GhSAM2 in cotton impaired defense against S. litura. This study demonstrates an effective strategy for constructing a mutant library of a gene family in a polyploid plant species and offers valuable insights into the role of CDPKs in the interaction between plants and herbivorous insects.
Collapse
Affiliation(s)
- Fuqiu Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Liang
- Academy of Industry Innovation and Development, Huanghuai University, Zhumadian, Henan 463000, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianyu Hu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyang Fu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibo Fan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianlian Che
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Min
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091 Xinjiang, China.
| | - Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Henan 475004, China.
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Henan 475004, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
9
|
Zhao D, Chen S, Han Y, Liu G, Liu J, Yang Q, Zhang T, Shen J, Fan X, Zhang C, Zhang T, Li Q, Chen C, Liu Q. A CRISPR/Cas9-mediated mutant library of seed-preferred genes in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3012-3014. [PMID: 38925598 PMCID: PMC11500995 DOI: 10.1111/pbi.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Dongsheng Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
- Zhongshan Biological Breeding Laboratory, Co‐Innovation Centre for Modern Production Technology of Grain Crops of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Siyu Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Yangshuo Han
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Guanqing Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Jinyu Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Qingqing Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Tao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Jilei Shen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Xiaolei Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
- Zhongshan Biological Breeding Laboratory, Co‐Innovation Centre for Modern Production Technology of Grain Crops of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Tao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
- Zhongshan Biological Breeding Laboratory, Co‐Innovation Centre for Modern Production Technology of Grain Crops of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Qianfeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
- Zhongshan Biological Breeding Laboratory, Co‐Innovation Centre for Modern Production Technology of Grain Crops of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Chen Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
- Zhongshan Biological Breeding Laboratory, Co‐Innovation Centre for Modern Production Technology of Grain Crops of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
- Zhongshan Biological Breeding Laboratory, Co‐Innovation Centre for Modern Production Technology of Grain Crops of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| |
Collapse
|
10
|
Wang L, Liu J, Tang J, Dang Y, Sun L, Liu B, Li H, He X, Shuai Q, Peng Z, Huang T, Sun Y, Feng Y, Xie J. Development of a quinic acid-induced CRISPR/Cas9 genome editing system and its application for the activation of ilicicolin H biosynthesis in Trichoderma reesei. Int J Biol Macromol 2024; 279:135339. [PMID: 39245126 DOI: 10.1016/j.ijbiomac.2024.135339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/10/2024]
Abstract
The CRISPR/Cas9 genome editing tool has been extensively utilized in filamentous fungi, including Trichoderma reesei. However, most existing systems employ constitutive promoters for the expression of Cas9 protein within the cells or directly introduce Cas9 protein into the cells, which often leads to continuous expression of Cas9 resulting in undesired phenotypes or increased operational cost. In this study, we identified a quinic acid (QA)-induced qai5 promoter and employed it to express Cas9, thereby establishing an inducible genome editing system in T. reesei. By utilizing this system, we successfully edited the ypr1 gene and the silent gene cluster involved in ilicicolin H synthesis using donor DNA labeling 41-bp homology arm (HA), resulting in an editing efficiency ranging from 29.2 % to 46.7 %. Consequently, biosynthesis of ilicicolin H was achieved in T. reesei. To summarize, this study presents a novel form of CRISPR/Cas9 genome editing system that enables efficient and controllable genetic modifications in T. reesei.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China; Shanxi Academy of Advanced Research and Innovation, Taiyuan 030032, Shanxi, China.
| | - Jialong Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Jiaxin Tang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yaqi Dang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Luyan Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Bin Liu
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Haoyang Li
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Xiyue He
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Qizhi Shuai
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Zhiwei Peng
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Tingjuan Huang
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yaojun Sun
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China
| | - Yan Feng
- College of Life Sciences, Shanxi Agricultural University, Jinzhong 030801, Shanxi, China
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, China; MOE Key Laboratory of Coal Environmental Pathogenicity and Prevention, Shanxi Medical University, Taiyuan 030001, Shanxi, China.
| |
Collapse
|
11
|
Farinati S, Devillars A, Gabelli G, Vannozzi A, Scariolo F, Palumbo F, Barcaccia G. How Helpful May Be a CRISPR/Cas-Based System for Food Traceability? Foods 2024; 13:3397. [PMID: 39517184 PMCID: PMC11544785 DOI: 10.3390/foods13213397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Genome editing (GE) technologies have the potential to completely transform breeding and biotechnology applied to crop species, contributing to the advancement of modern agriculture and influencing the market structure. To date, the GE-toolboxes include several distinct platforms able to induce site-specific and predetermined genomic modifications, introducing changes within the existing genetic blueprint of an organism. For these reasons, the GE-derived approaches are considered like new plant breeding methods, known also as New Breeding Techniques (NBTs). Particularly, the GE-based on CRISPR/Cas technology represents a considerable improvement forward biotech-related techniques, being highly sensitive, precise/accurate, and straightforward for targeted gene editing in a reliable and reproducible way, with numerous applications in food-related plants. Furthermore, numerous examples of CRISPR/Cas system exploitation for non-editing purposes, ranging from cell imaging to gene expression regulation and DNA assembly, are also increasing, together with recent engagements in target and multiple chemical detection. This manuscript aims, after providing a general overview, to focus attention on the main advances of CRISPR/Cas-based systems into new frontiers of non-editing, presenting and discussing the associated implications and their relative impacts on molecular traceability, an aspect closely related to food safety, which increasingly arouses general interest within public opinion and the scientific community.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Campus of Agripolis, University of Padova, Viale dell’Università 16, 35020 Legnaro, Italy; (S.F.); (A.D.); (G.G.); (A.V.); (F.S.); (F.P.)
| |
Collapse
|
12
|
Vandeputte W, Coussens G, Aesaert S, Haeghebaert J, Impens L, Karimi M, Debernardi JM, Pauwels L. Use of GRF-GIF chimeras and a ternary vector system to improve maize (Zea mays L.) transformation frequency. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2116-2132. [PMID: 38923048 DOI: 10.1111/tpj.16880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 05/24/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Maize (Zea mays L.) is an important crop that has been widely studied for its agronomic and industrial applications and is one of the main classical model organisms for genetic research. Agrobacterium-mediated transformation of immature maize embryos is a commonly used method to introduce transgenes, but a low transformation frequency remains a bottleneck for many gene-editing applications. Previous approaches to enhance transformation included the improvement of tissue culture media and the use of morphogenic regulators such as BABY BOOM and WUSCHEL2. Here, we show that the frequency can be increased using a pVS1-VIR2 virulence helper plasmid to improve T-DNA delivery, and/or expressing a fusion protein between a GROWTH-REGULATING FACTOR (GRF) and GRF-INTERACTING FACTOR (GIF) protein to improve regeneration. Using hygromycin as a selection agent to avoid escapes, the transformation frequency in the maize inbred line B104 significantly improved from 2.3 to 8.1% when using the pVS1-VIR2 helper vector with no effect on event quality regarding T-DNA copy number. Combined with a novel fusion protein between ZmGRF1 and ZmGIF1, transformation frequencies further improved another 3.5- to 6.5-fold with no obvious impact on plant growth, while simultaneously allowing efficient CRISPR-/Cas9-mediated gene editing. Our results demonstrate how a GRF-GIF chimera in conjunction with a ternary vector system has the potential to further improve the efficiency of gene-editing applications and molecular biology studies in maize.
Collapse
Affiliation(s)
- Wout Vandeputte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Griet Coussens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Stijn Aesaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Jari Haeghebaert
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Lennert Impens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Mansour Karimi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| | - Juan M Debernardi
- Plant Transformation Facility, University of California, Davis, Davis, California, USA
| | - Laurens Pauwels
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, B-9052, Belgium
- VIB Center for Plant Systems Biology, Ghent, B-9052, Belgium
| |
Collapse
|
13
|
Develtere W, Decaestecker W, Rombaut D, Anders C, Clicque E, Vuylsteke M, Jacobs TB. Continual improvement of CRISPR-induced multiplex mutagenesis in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1158-1172. [PMID: 38713824 DOI: 10.1111/tpj.16785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/09/2024]
Abstract
CRISPR/Cas9 is currently the most powerful tool to generate mutations in plant genomes and more efficient tools are needed as the scale of experiments increases. In the model plant Arabidopsis, the choice of the promoter driving Cas9 expression is critical to generate germline mutations. Several optimal promoters have been reported. However, it is unclear which promoter is ideal as they have not been thoroughly tested side by side. Furthermore, most plant vectors still use one of the two Cas9 nuclear localization sequence (NLS) configurations initially reported. We genotyped more than 6000 Arabidopsis T2 plants to test seven promoters and six types of NLSs across 14 targets to systematically improve the generation of single and multiplex inheritable mutations. We found that the RPS5A promoter and bipartite NLS were individually the most efficient components. When combined, 99% of T2 plants contained at least one knockout (KO) mutation and 84% contained 4- to 7-plex KOs, the highest multiplexing KO rate in Arabidopsis to date. These optimizations will be useful to generate higher-order KOs in the germline of Arabidopsis and will likely be applicable to other CRISPR systems as well.
Collapse
Affiliation(s)
- Ward Develtere
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Ward Decaestecker
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Debbie Rombaut
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Chantal Anders
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | - Elke Clicque
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| | | | - Thomas B Jacobs
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 71, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 71, 9052, Ghent, Belgium
| |
Collapse
|
14
|
Chen L, Liu G, Zhang T. Integrating machine learning and genome editing for crop improvement. ABIOTECH 2024; 5:262-277. [PMID: 38974863 PMCID: PMC11224061 DOI: 10.1007/s42994-023-00133-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/18/2023] [Indexed: 07/09/2024]
Abstract
Genome editing is a promising technique that has been broadly utilized for basic gene function studies and trait improvements. Simultaneously, the exponential growth of computational power and big data now promote the application of machine learning for biological research. In this regard, machine learning shows great potential in the refinement of genome editing systems and crop improvement. Here, we review the advances of machine learning to genome editing optimization, with emphasis placed on editing efficiency and specificity enhancement. Additionally, we demonstrate how machine learning bridges genome editing and crop breeding, by accurate key site detection and guide RNA design. Finally, we discuss the current challenges and prospects of these two techniques in crop improvement. By integrating advanced genome editing techniques with machine learning, progress in crop breeding will be further accelerated in the future.
Collapse
Affiliation(s)
- Long Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Guanqing Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| | - Tao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou, 225009 China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009 China
| |
Collapse
|
15
|
Bernal-Gallardo JJ, de Folter S. Plant genome information facilitates plant functional genomics. PLANTA 2024; 259:117. [PMID: 38592421 PMCID: PMC11004055 DOI: 10.1007/s00425-024-04397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
MAIN CONCLUSION In this review, we give an overview of plant sequencing efforts and how this impacts plant functional genomics research. Plant genome sequence information greatly facilitates the studies of plant biology, functional genomics, evolution of genomes and genes, domestication processes, phylogenetic relationships, among many others. More than two decades of sequencing efforts have boosted the number of available sequenced plant genomes. The first plant genome, of Arabidopsis, was published in the year 2000 and currently, 4604 plant genomes from 1482 plant species have been published. Various large sequence initiatives are running, which are planning to produce tens of thousands of sequenced plant genomes in the near future. In this review, we give an overview on the status of sequenced plant genomes and on the use of genome information in different research areas.
Collapse
Affiliation(s)
- Judith Jazmin Bernal-Gallardo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico.
| |
Collapse
|
16
|
Arndell T, Chen J, Sperschneider J, Upadhyaya NM, Blundell C, Niesner N, Outram MA, Wang A, Swain S, Luo M, Ayliffe MA, Figueroa M, Vanhercke T, Dodds PN. Pooled effector library screening in protoplasts rapidly identifies novel Avr genes. NATURE PLANTS 2024; 10:572-580. [PMID: 38409291 PMCID: PMC11035141 DOI: 10.1038/s41477-024-01641-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/31/2024] [Indexed: 02/28/2024]
Abstract
Crop breeding for durable disease resistance is challenging due to the rapid evolution of pathogen virulence. While progress in resistance (R) gene cloning and stacking has accelerated in recent years1-3, the identification of corresponding avirulence (Avr) genes in many pathogens is hampered by the lack of high-throughput screening options. To address this technology gap, we developed a platform for pooled library screening in plant protoplasts to allow rapid identification of interacting R-Avr pairs. We validated this platform by isolating known and novel Avr genes from wheat stem rust (Puccinia graminis f. sp. tritici) after screening a designed library of putative effectors against individual R genes. Rapid Avr gene identification provides molecular tools to understand and track pathogen virulence evolution via genotype surveillance, which in turn will lead to optimized R gene stacking and deployment strategies. This platform should be broadly applicable to many crop pathogens and could potentially be adapted for screening genes involved in other protoplast-selectable traits.
Collapse
Affiliation(s)
- Taj Arndell
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Jian Chen
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Jana Sperschneider
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | | | - Cheryl Blundell
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Nathalie Niesner
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Megan A Outram
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Aihua Wang
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Steve Swain
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Ming Luo
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Michael A Ayliffe
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Melania Figueroa
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Thomas Vanhercke
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia.
| | - Peter N Dodds
- CSIRO Agriculture and Food, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
17
|
Iiyama CM, Vilcherrez-Atoche JA, Germanà MA, Vendrame WA, Cardoso JC. Breeding of ornamental orchids with focus on Phalaenopsis: current approaches, tools, and challenges for this century. Heredity (Edinb) 2024; 132:163-178. [PMID: 38302667 PMCID: PMC10997592 DOI: 10.1038/s41437-024-00671-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 02/03/2024] Open
Abstract
Ornamental orchid breeding programs have been conducted to develop commercially valuable cultivars with improved characteristics of commercial interest, such as size, flower color, pattern, shape, and resistance to pathogens. Conventional breeding, including sexual hybridization followed by selection of desirable characteristics in plants, has so far been the main method for ornamental breeding, but other techniques, including mutation induction by polyploidization and gamma irradiation, and biotechnological techniques, such as genetic transformation, have also been studied and used in ornamental breeding programs. Orchids are one of the most commercially important families in floriculture industry, having very particular reproductive biology characteristics and being a well-studied group of ornamentals in terms of genetic improvement. The present review focuses on the conventional and biotechnological techniques and approaches specially employed in breeding Phalaenopsis orchids, the genus with highest worldwide importance as an ornamental orchid, highlighting the main limitations and strengths of the approaches. Furthermore, new opportunities and future prospects for ornamental breeding in the CRISPR/Cas9 genome editing era are also discussed. We conclude that conventional hybridization remains the most used method to obtain new cultivars in orchids. However, the emergence of the first biotechnology-derived cultivars, as well as the new biotechnological tools available, such as CRISPR-Cas9, rekindled the full potential of biotechnology approaches and their importance for improve ornamental orchid breeding programs.
Collapse
Affiliation(s)
- Carla Midori Iiyama
- Laboratory of Plant Physiology and Tissue Culture, Department of Biotechnology, Plant and Animal Production, Centro de Ciências Agrárias, Universidade Federal de São Carlos (CCA/UFSCar), Rodovia Anhanguera, km 174, CEP13600-970, Araras, SP, Brazil.
- Graduate Program in Plant Production and Associated Bioprocesses, CCA/UFSCar, Araras, Brazil.
| | - Joe Abdul Vilcherrez-Atoche
- Laboratory of Plant Physiology and Tissue Culture, Department of Biotechnology, Plant and Animal Production, Centro de Ciências Agrárias, Universidade Federal de São Carlos (CCA/UFSCar), Rodovia Anhanguera, km 174, CEP13600-970, Araras, SP, Brazil
- Graduate Program in Plant Production and Associated Bioprocesses, CCA/UFSCar, Araras, Brazil
| | - Maria Antonietta Germanà
- Dipartimento Scienze Agrarie, Alimentari e Forestali (SAAF), Università degli Studi di Palermo, Palermo, Italy
| | - Wagner Aparecido Vendrame
- Environmental Horticulture Department, University of Florida, 2550 Hull Rd., Gainesville, FL, 32611, USA
| | - Jean Carlos Cardoso
- Laboratory of Plant Physiology and Tissue Culture, Department of Biotechnology, Plant and Animal Production, Centro de Ciências Agrárias, Universidade Federal de São Carlos (CCA/UFSCar), Rodovia Anhanguera, km 174, CEP13600-970, Araras, SP, Brazil.
- Graduate Program in Plant Production and Associated Bioprocesses, CCA/UFSCar, Araras, Brazil.
| |
Collapse
|
18
|
He J, Zeng C, Li M. Plant Functional Genomics Based on High-Throughput CRISPR Library Knockout Screening: A Perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300203. [PMID: 38465224 PMCID: PMC10919289 DOI: 10.1002/ggn2.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Indexed: 03/12/2024]
Abstract
Plant biology studies in the post-genome era have been focused on annotating genome sequences' functions. The established plant mutant collections have greatly accelerated functional genomics research in the past few decades. However, most plant genome sequences' roles and the underlying regulatory networks remain substantially unknown. Clustered, regularly interspaced short palindromic repeat (CRISPR)-associated systems are robust, versatile tools for manipulating plant genomes with various targeted DNA perturbations, providing an excellent opportunity for high-throughput interrogation of DNA elements' roles. This study compares methods frequently used for plant functional genomics and then discusses different DNA multi-targeted strategies to overcome gene redundancy using the CRISPR-Cas9 system. Next, this work summarizes recent reports using CRISPR libraries for high-throughput gene knockout and function discoveries in plants. Finally, this work envisions the future perspective of optimizing and leveraging CRISPR library screening in plant genomes' other uncharacterized DNA sequences.
Collapse
Affiliation(s)
- Jianjie He
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Can Zeng
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| |
Collapse
|
19
|
Lim X, Zhang C, Chen X. Advances and applications of CRISPR/Cas-mediated interference in Escherichia coli. ENGINEERING MICROBIOLOGY 2024; 4:100123. [PMID: 39628789 PMCID: PMC11611006 DOI: 10.1016/j.engmic.2023.100123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/06/2024]
Abstract
The bacterium Escherichia coli (E. coli) is one of the most widely used chassis microbes employed for the biosynthesis of numerous valuable chemical compounds. In the past decade, the metabolic engineering of E. coli has undergone significant advances, although further productivity improvements will require extensive genome modification, multi-dimensional regulation, and multiple metabolic-pathway coordination. In this context, clustered regularly interspaced short palindromic repeats (CRISPR), along with CRISPR-associated protein (Cas) and its inactive variant (dCas), have emerged as notable recombination and transcriptional regulation tools that are particularly useful for multiplex metabolic engineering in E. coli. In this review, we briefly describe the CRISPR/Cas9 technology in E. coli, and then summarize the recent advances in CRISPR/dCas9 interference (CRISPRi) systems in E. coli, particularly the strategies designed to effectively regulate gene repression and overcome retroactivity during multiplexing. Moreover, we discuss recent applications of the CRISPRi system for enhancing metabolite production in E. coli, and finally highlight the major challenges and future perspectives of this technology.
Collapse
Affiliation(s)
- Xiaohui Lim
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science Technology and Research (A∗STAR), 31 Biopolis Way, Level 6, Nanos Building, Singapore 138669, Singapore
| |
Collapse
|
20
|
Bravo-Vázquez LA, Méndez-García A, Chamu-García V, Rodríguez AL, Bandyopadhyay A, Paul S. The applications of CRISPR/Cas-mediated microRNA and lncRNA editing in plant biology: shaping the future of plant non-coding RNA research. PLANTA 2023; 259:32. [PMID: 38153530 DOI: 10.1007/s00425-023-04303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/25/2023] [Indexed: 12/29/2023]
Abstract
MAIN CONCLUSION CRISPR/Cas technology has greatly facilitated plant non-coding RNA (ncRNA) biology research, establishing itself as a promising tool for ncRNA functional characterization and ncRNA-mediated plant improvement. Throughout the last decade, the promising genome editing tool clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated proteins (Cas; CRISPR/Cas) has allowed unprecedented advances in the field of plant functional genomics and crop improvement. Even though CRISPR/Cas-mediated genome editing system has been widely used to elucidate the biological significance of a number of plant protein-coding genes, this technology has been barely applied in the functional analysis of those non-coding RNAs (ncRNAs) that modulate gene expression, such as microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Nevertheless, compelling findings indicate that CRISPR/Cas-based ncRNA editing has remarkable potential for deciphering the biological roles of ncRNAs in plants, as well as for plant breeding. For instance, it has been demonstrated that CRISPR/Cas tool could overcome the challenges associated with other approaches employed in functional genomic studies (e.g., incomplete knockdown and off-target activity). Thus, in this review article, we discuss the current status and progress of CRISPR/Cas-mediated ncRNA editing in plant science in order to provide novel prospects for further assessment and validation of the biological activities of plant ncRNAs and to enhance the development of ncRNA-centered protocols for crop improvement.
Collapse
Affiliation(s)
- Luis Alberto Bravo-Vázquez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Andrea Méndez-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Verenice Chamu-García
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Puebla, Atlixcáyotl 5718, Reserva Territorial Atlixcáyotl, 72453, Puebla, Mexico
| | - Alma L Rodríguez
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico
| | - Anindya Bandyopadhyay
- International Rice Research Institute, 4031, Manila, Philippines.
- Reliance Industries Ltd., Navi Mumbai, Maharashtra, 400701, India.
| | - Sujay Paul
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Querétaro, Av. Epigmenio González, No. 500 Fracc. San Pablo, 76130, Querétaro, Mexico.
| |
Collapse
|
21
|
Bi M, Wang Z, Cheng K, Cui Y, He Y, Ma J, Qi M. Construction of transcription factor mutagenesis population in tomato using a pooled CRISPR/Cas9 plasmid library. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108094. [PMID: 37995578 DOI: 10.1016/j.plaphy.2023.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
Adequate mutant materials are the prerequisite for conducting gene function research or screening novel functional genes in plants. The strategy of constructing a large-scale mutant population using the pooled CRISPR/Cas9-sgRNA library has been implemented in several crops. However, the effective application of this CRISPR/Cas9 large-scale screening strategy to tomato remains to be attempted. Here, we identified 990 transcription factors in the tomato genome, designed and synthesized a CRISPR/Cas9 plasmid library containing 4379 sgRNAs. Using this pooled library, 487 T0 positive plants were obtained, among which 92 plants harbored a single sgRNA sequence, targeting 65 different transcription factors, with a mutation rate of 23%. In the T0 mutant population, the occurrence of homozygous and biallelic mutations was observed at higher frequencies. Additionally, the utilization of a small-scale CRISPR/Cas9 library targeting 30 transcription factors could enhance the efficacy of single sgRNA recognition in positive plants, increasing it from 19% to 42%. Phenotypic characterization of several mutants identified from the mutant population demonstrated the utility of our CRISPR/Cas9 mutant library. Taken together, our study offers insights into the implementation and optimization of CRISPR/Cas9-mediated large-scale knockout library in tomato.
Collapse
Affiliation(s)
- Mengxi Bi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Zhijun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Keyan Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Yiqing Cui
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Yi He
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Jian Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China.
| |
Collapse
|
22
|
Hodaei A, Werbrouck SPO. Unlocking Nature's Clock: CRISPR Technology in Flowering Time Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:4020. [PMID: 38068655 PMCID: PMC10708119 DOI: 10.3390/plants12234020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2024]
Abstract
Flowering is a crucial process in the life cycle of most plants as it is essential for the reproductive success and genetic diversity of the species. There are situations in which breeders want to expedite, delay, or prevent flowering, for example, to shorten or prolong vegetative growth, to prevent unwanted pollination, to reduce the risk of diseases or pests, or to modify the plant's phenotypes. This review aims to provide an overview of the current state of knowledge to use CRISPR/Cas9, a powerful genome-editing technology to modify specific DNA sequences related to flowering induction. We discuss the underlying molecular mechanisms governing the regulation of the photoperiod, autonomous, vernalization, hormonal, sugar, aging, and temperature signal pathways regulating the flowering time. In addition, we are investigating the most effective strategies for nominating target genes. Furthermore, we have collected a dataset showing successful applications of CRISPR technology to accelerate flowering in several plant species from 2015 up to date. Finally, we explore the opportunities and challenges of using the potential of CRISPR technology in flowering time engineering.
Collapse
Affiliation(s)
| | - Stefaan P. O. Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
23
|
Jhu MY, Ellison EE, Sinha NR. CRISPR gene editing to improve crop resistance to parasitic plants. Front Genome Ed 2023; 5:1289416. [PMID: 37965302 PMCID: PMC10642197 DOI: 10.3389/fgeed.2023.1289416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 10/16/2023] [Indexed: 11/16/2023] Open
Abstract
Parasitic plants pose a significant threat to global agriculture, causing substantial crop losses and hampering food security. In recent years, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology has emerged as a promising tool for developing resistance against various plant pathogens. Its application in combating parasitic plants, however, remains largely unexplored. This review aims to summarise current knowledge and research gaps in utilising CRISPR to develop resistance against parasitic plants. First, we outline recent improvements in CRISPR gene editing tools, and what has been used to combat various plant pathogens. To realise the immense potential of CRISPR, a greater understanding of the genetic basis underlying parasitic plant-host interactions is critical to identify suitable target genes for modification. Therefore, we discuss the intricate interactions between parasitic plants and their hosts, highlighting essential genes and molecular mechanisms involved in defence response and multilayer resistance. These include host resistance responses directly repressing parasitic plant germination or growth and indirectly influencing parasitic plant development via manipulating environmental factors. Finally, we evaluate CRISPR-mediated effectiveness and long-term implications for host resistance and crop improvement, including inducible resistance response and tissue-specific activity. In conclusion, this review highlights the challenges and opportunities CRISPR technology provides to combat parasitic plants and provides insights for future research directions to safeguard global agricultural productivity.
Collapse
Affiliation(s)
- Min-Yao Jhu
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Evan E. Ellison
- Crop Science Centre, Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Neelima R. Sinha
- Department of Plant Biology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
24
|
Angulo J, Astin CP, Bauer O, Blash KJ, Bowen NM, Chukwudinma NJ, DiNofrio AS, Faletti DO, Ghulam AM, Gusinde-Duffy CM, Horace KJ, Ingram AM, Isaack KE, Jeong G, Kiser RJ, Kobylanski JS, Long MR, Manning GA, Morales JM, Nguyen KH, Pham RT, Phillips MH, Reel TW, Seo JE, Vo HD, Wukoson AM, Yeary KA, Zheng GY, Lukowitz W. CRISPR/Cas9 mutagenesis of the Arabidopsis GROWTH-REGULATING FACTOR (GRF) gene family. Front Genome Ed 2023; 5:1251557. [PMID: 37908969 PMCID: PMC10613670 DOI: 10.3389/fgeed.2023.1251557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Genome editing in plants typically relies on T-DNA plasmids that are mobilized by Agrobacterium-mediated transformation to deliver the CRISPR/Cas machinery. Here, we introduce a series of CRISPR/Cas9 T-DNA vectors for minimal settings, such as teaching labs. Gene-specific targeting sequences can be inserted as annealed short oligonucleotides in a single straightforward cloning step. Fluorescent markers expressed in mature seeds enable reliable selection of transgenic or transgene-free individuals using a combination of inexpensive LED lamps and colored-glass alternative filters. Testing these tools on the Arabidopsis GROWTH-REGULATING FACTOR (GRF) genes, we were able to create a collection of predicted null mutations in all nine family members with little effort. We then explored the effects of simultaneously targeting two, four and eight GRF genes on the rate of induced mutations at each target locus. In our hands, multiplexing was associated with pronounced disparities: while mutation rates at some loci remained consistently high, mutation rates at other loci dropped dramatically with increasing number of single guide RNA species, thereby preventing a systematic mutagenesis of the family.
Collapse
Affiliation(s)
- Juan Angulo
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | | | - Olivia Bauer
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Kelan J. Blash
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Natalee M. Bowen
- Division of Biology, University of Georgia, Athens, GA, United States
| | | | | | - Donald O. Faletti
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Alexa M. Ghulam
- Division of Biology, University of Georgia, Athens, GA, United States
| | | | - Kamaria J. Horace
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Andrew M. Ingram
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Kylie E. Isaack
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Geon Jeong
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Randolph J. Kiser
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Jason S. Kobylanski
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Madeline R. Long
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Grace A. Manning
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Julie M. Morales
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Kevin H. Nguyen
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Robin T. Pham
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Monthip H. Phillips
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Tanner W. Reel
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Jenny E. Seo
- Division of Biology, University of Georgia, Athens, GA, United States
| | - Hiep D. Vo
- Division of Biology, University of Georgia, Athens, GA, United States
| | | | - Kathryn A. Yeary
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Grace Y. Zheng
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| | - Wolfgang Lukowitz
- Department of Plant Biology, University of Georgia, Athens, GA, United States
| |
Collapse
|
25
|
Cardi T, Murovec J, Bakhsh A, Boniecka J, Bruegmann T, Bull SE, Eeckhaut T, Fladung M, Galovic V, Linkiewicz A, Lukan T, Mafra I, Michalski K, Kavas M, Nicolia A, Nowakowska J, Sági L, Sarmiento C, Yıldırım K, Zlatković M, Hensel G, Van Laere K. CRISPR/Cas-mediated plant genome editing: outstanding challenges a decade after implementation. TRENDS IN PLANT SCIENCE 2023; 28:1144-1165. [PMID: 37331842 DOI: 10.1016/j.tplants.2023.05.012] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 06/20/2023]
Abstract
The discovery of the CRISPR/Cas genome-editing system has revolutionized our understanding of the plant genome. CRISPR/Cas has been used for over a decade to modify plant genomes for the study of specific genes and biosynthetic pathways as well as to speed up breeding in many plant species, including both model and non-model crops. Although the CRISPR/Cas system is very efficient for genome editing, many bottlenecks and challenges slow down further improvement and applications. In this review we discuss the challenges that can occur during tissue culture, transformation, regeneration, and mutant detection. We also review the opportunities provided by new CRISPR platforms and specific applications related to gene regulation, abiotic and biotic stress response improvement, and de novo domestication of plants.
Collapse
Affiliation(s)
- Teodoro Cardi
- Consiglio Nazionale delle Ricerche (CNR), Institute of Biosciences and Bioresources (IBBR), Portici, Italy; CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Jana Murovec
- University of Ljubljana, Biotechnical Faculty, Ljubljana, Slovenia
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde, Turkey; Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Justyna Boniecka
- Department of Genetics, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Toruń, Poland; Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | | | - Simon E Bull
- Molecular Plant Breeding, Institute of Agricultural Sciences, Eidgenössische Technische Hochschule (ETH) Zurich, Switzerland; Plant Biochemistry, Institute of Molecular Plant Biology, ETH, Zurich, Switzerland
| | - Tom Eeckhaut
- Flanders Research Institute for Agricultural, Fisheries and Food, Melle, Belgium
| | | | - Vladislava Galovic
- University of Novi Sad, Institute of Lowland Forestry and Environment (ILFE), Novi Sad, Serbia
| | - Anna Linkiewicz
- Molecular Biology and Genetics Department, Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Tjaša Lukan
- National Institute of Biology, Department of Biotechnology and Systems Biology, Ljubljana, Slovenia
| | - Isabel Mafra
- Rede de Química e Tecnologia (REQUIMTE) Laboratório Associado para a Química Verde (LAQV), Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Krzysztof Michalski
- Plant Breeding and Acclimatization Institute, National Research Institute, Błonie, Poland
| | - Musa Kavas
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Alessandro Nicolia
- CREA Research Centre for Vegetable and Ornamental Crops, Pontecagnano, Italy
| | - Justyna Nowakowska
- Molecular Biology and Genetics Department, Institute of Biological Sciences, Faculty of Biology and Environmental Sciences, Cardinal Stefan Wyszyński University, Warsaw, Poland
| | - Laszlo Sági
- Centre for Agricultural Research, Loránd Eötvös Research Network, Martonvásár, Hungary
| | - Cecilia Sarmiento
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Kubilay Yıldırım
- Department of Molecular Biology and Genetics, Faculty of Science, Ondokuz Mayis University, Samsun, Turkey
| | - Milica Zlatković
- University of Novi Sad, Institute of Lowland Forestry and Environment (ILFE), Novi Sad, Serbia
| | - Goetz Hensel
- Heinrich-Heine-University, Institute of Plant Biochemistry, Centre for Plant Genome Engineering, Düsseldorf, Germany; Division of Molecular Biology, Centre of the Region Hana for Biotechnological and Agriculture Research, Faculty of Science, Palacký University, Olomouc, Czech Republic
| | - Katrijn Van Laere
- Flanders Research Institute for Agricultural, Fisheries and Food, Melle, Belgium.
| |
Collapse
|
26
|
Farinati S, Draga S, Betto A, Palumbo F, Vannozzi A, Lucchin M, Barcaccia G. Current insights and advances into plant male sterility: new precision breeding technology based on genome editing applications. FRONTIERS IN PLANT SCIENCE 2023; 14:1223861. [PMID: 37521915 PMCID: PMC10382145 DOI: 10.3389/fpls.2023.1223861] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/20/2023] [Indexed: 08/01/2023]
Abstract
Plant male sterility (MS) represents the inability of the plant to generate functional anthers, pollen, or male gametes. Developing MS lines represents one of the most important challenges in plant breeding programs, since the establishment of MS lines is a major goal in F1 hybrid production. For these reasons, MS lines have been developed in several species of economic interest, particularly in horticultural crops and ornamental plants. Over the years, MS has been accomplished through many different techniques ranging from approaches based on cross-mediated conventional breeding methods, to advanced devices based on knowledge of genetics and genomics to the most advanced molecular technologies based on genome editing (GE). GE methods, in particular gene knockout mediated by CRISPR/Cas-related tools, have resulted in flexible and successful strategic ideas used to alter the function of key genes, regulating numerous biological processes including MS. These precision breeding technologies are less time-consuming and can accelerate the creation of new genetic variability with the accumulation of favorable alleles, able to dramatically change the biological process and resulting in a potential efficiency of cultivar development bypassing sexual crosses. The main goal of this manuscript is to provide a general overview of insights and advances into plant male sterility, focusing the attention on the recent new breeding GE-based applications capable of inducing MS by targeting specific nuclear genic loci. A summary of the mechanisms underlying the recent CRISPR technology and relative success applications are described for the main crop and ornamental species. The future challenges and new potential applications of CRISPR/Cas systems in MS mutant production and other potential opportunities will be discussed, as generating CRISPR-edited DNA-free by transient transformation system and transgenerational gene editing for introducing desirable alleles and for precision breeding strategies.
Collapse
|
27
|
Fakhar AZ, Liu J, Pajerowska-Mukhtar KM, Mukhtar MS. The Lost and Found: Unraveling the Functions of Orphan Genes. J Dev Biol 2023; 11:27. [PMID: 37367481 PMCID: PMC10299390 DOI: 10.3390/jdb11020027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/19/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Orphan Genes (OGs) are a mysterious class of genes that have recently gained significant attention. Despite lacking a clear evolutionary history, they are found in nearly all living organisms, from bacteria to humans, and they play important roles in diverse biological processes. The discovery of OGs was first made through comparative genomics followed by the identification of unique genes across different species. OGs tend to be more prevalent in species with larger genomes, such as plants and animals, and their evolutionary origins remain unclear but potentially arise from gene duplication, horizontal gene transfer (HGT), or de novo origination. Although their precise function is not well understood, OGs have been implicated in crucial biological processes such as development, metabolism, and stress responses. To better understand their significance, researchers are using a variety of approaches, including transcriptomics, functional genomics, and molecular biology. This review offers a comprehensive overview of the current knowledge of OGs in all domains of life, highlighting the possible role of dark transcriptomics in their evolution. More research is needed to fully comprehend the role of OGs in biology and their impact on various biological processes.
Collapse
Affiliation(s)
| | | | | | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA
| |
Collapse
|
28
|
Selma S, Ntelkis N, Nguyen TH, Goossens A. Engineering the plant metabolic system by exploiting metabolic regulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1149-1163. [PMID: 36799285 DOI: 10.1111/tpj.16157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/10/2023] [Accepted: 02/15/2023] [Indexed: 05/31/2023]
Abstract
Plants are the most sophisticated biofactories and sources of food and biofuels present in nature. By engineering plant metabolism, the production of desired compounds can be increased and the nutritional or commercial value of the plant species can be improved. However, this can be challenging because of the complexity of the regulation of multiple genes and the involvement of different protein interactions. To improve metabolic engineering (ME) capabilities, different tools and strategies for rerouting the metabolic pathways have been developed, including genome editing and transcriptional regulation approaches. In addition, cutting-edge technologies have provided new methods for understanding uncharacterized biosynthetic pathways, protein degradation mechanisms, protein-protein interactions, or allosteric feedback, enabling the design of novel ME approaches.
Collapse
Affiliation(s)
- Sara Selma
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nikolaos Ntelkis
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Trang Hieu Nguyen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Alain Goossens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
29
|
Zhang F, Neik TX, Thomas WJW, Batley J. CRISPR-Based Genome Editing Tools: An Accelerator in Crop Breeding for a Changing Future. Int J Mol Sci 2023; 24:8623. [PMID: 37239967 PMCID: PMC10218198 DOI: 10.3390/ijms24108623] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Genome editing is an important strategy to maintain global food security and achieve sustainable agricultural development. Among all genome editing tools, CRISPR-Cas is currently the most prevalent and offers the most promise. In this review, we summarize the development of CRISPR-Cas systems, outline their classification and distinctive features, delineate their natural mechanisms in plant genome editing and exemplify the applications in plant research. Both classical and recently discovered CRISPR-Cas systems are included, detailing the class, type, structures and functions of each. We conclude by highlighting the challenges that come with CRISPR-Cas and offer suggestions on how to tackle them. We believe the gene editing toolbox will be greatly enriched, providing new avenues for a more efficient and precise breeding of climate-resilient crops.
Collapse
Affiliation(s)
- Fangning Zhang
- College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ting Xiang Neik
- School of Biosciences, University of Nottingham Malaysia, Semenyih 43500, Malaysia
| | - William J. W. Thomas
- School of Biological Sciences, University of Western Australia, Perth, WA 6009, Australia
| | - Jacqueline Batley
- School of Biological Sciences, Institute of Agriculture, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
30
|
Gajardo HA, Gómez-Espinoza O, Boscariol Ferreira P, Carrer H, Bravo LA. The Potential of CRISPR/Cas Technology to Enhance Crop Performance on Adverse Soil Conditions. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091892. [PMID: 37176948 PMCID: PMC10181257 DOI: 10.3390/plants12091892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
Worldwide food security is under threat in the actual scenery of global climate change because the major staple food crops are not adapted to hostile climatic and soil conditions. Significant efforts have been performed to maintain the actual yield of crops, using traditional breeding and innovative molecular techniques to assist them. However, additional strategies are necessary to achieve the future food demand. Clustered regularly interspaced short palindromic repeat/CRISPR-associated protein (CRISPR/Cas) technology, as well as its variants, have emerged as alternatives to transgenic plant breeding. This novelty has helped to accelerate the necessary modifications in major crops to confront the impact of abiotic stress on agriculture systems. This review summarizes the current advances in CRISPR/Cas applications in crops to deal with the main hostile soil conditions, such as drought, flooding and waterlogging, salinity, heavy metals, and nutrient deficiencies. In addition, the potential of extremophytes as a reservoir of new molecular mechanisms for abiotic stress tolerance, as well as their orthologue identification and edition in crops, is shown. Moreover, the future challenges and prospects related to CRISPR/Cas technology issues, legal regulations, and customer acceptance will be discussed.
Collapse
Affiliation(s)
- Humberto A Gajardo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| | - Olman Gómez-Espinoza
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
- Centro de Investigación en Biotecnología, Escuela de Biología, Instituto Tecnológico de Costa Rica, Cartago 30101, Costa Rica
| | - Pedro Boscariol Ferreira
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo, Piracicaba 13418-900, Brazil
| | - León A Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Instituto de Agroindustria, Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente & Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 1145, Chile
| |
Collapse
|
31
|
A genome-scale CRISPR tool for targeting multiple gene family members at once. NATURE PLANTS 2023; 9:511-512. [PMID: 36973416 DOI: 10.1038/s41477-023-01388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
|
32
|
Hu Y, Patra P, Pisanty O, Shafir A, Belew ZM, Binenbaum J, Ben Yaakov S, Shi B, Charrier L, Hyams G, Zhang Y, Trabulsky M, Caldararu O, Weiss D, Crocoll C, Avni A, Vernoux T, Geisler M, Nour-Eldin HH, Mayrose I, Shani E. Multi-Knock-a multi-targeted genome-scale CRISPR toolbox to overcome functional redundancy in plants. NATURE PLANTS 2023; 9:572-587. [PMID: 36973414 PMCID: PMC7615256 DOI: 10.1038/s41477-023-01374-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Plant genomes are characterized by large and complex gene families that often result in similar and partially overlapping functions. This genetic redundancy severely hampers current efforts to uncover novel phenotypes, delaying basic genetic research and breeding programmes. Here we describe the development and validation of Multi-Knock, a genome-scale clustered regularly interspaced short palindromic repeat toolbox that overcomes functional redundancy in Arabidopsis by simultaneously targeting multiple gene-family members, thus identifying genetically hidden components. We computationally designed 59,129 optimal single-guide RNAs that each target two to ten genes within a family at once. Furthermore, partitioning the library into ten sublibraries directed towards a different functional group allows flexible and targeted genetic screens. From the 5,635 single-guide RNAs targeting the plant transportome, we generated over 3,500 independent Arabidopsis lines that allowed us to identify and characterize the first known cytokinin tonoplast-localized transporters in plants. With the ability to overcome functional redundancy in plants at the genome-scale level, the developed strategy can be readily deployed by scientists and breeders for basic research and to expedite breeding efforts.
Collapse
Affiliation(s)
- Yangjie Hu
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Priyanka Patra
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Odelia Pisanty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Anat Shafir
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Zeinu Mussa Belew
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Jenia Binenbaum
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Shir Ben Yaakov
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Bihai Shi
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Laurence Charrier
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Gal Hyams
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Yuqin Zhang
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Maor Trabulsky
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Omer Caldararu
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Daniela Weiss
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Teva Vernoux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, CNRS, INRAE, Lyon, France
| | - Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, Switzerland
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Itay Mayrose
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
33
|
Wu Y, Sexton W, Yang B, Xiao S. Genetic approaches to dissect plant nonhost resistance mechanisms. MOLECULAR PLANT PATHOLOGY 2023; 24:272-283. [PMID: 36617319 PMCID: PMC9923397 DOI: 10.1111/mpp.13290] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 10/17/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Nonhost resistance (NHR) refers to the immunity of most tested genotypes of a plant species to most tested variants of a pathogen species. Thus, NHR is broad spectrum and durable in nature and constitutes a major safety barrier against invasion of a myriad of potentially pathogenic microbes in any plants including domesticated crops. Genetic study of NHR is generally more difficult compared to host resistance mainly because NHR is genetically more complicated and often lacks intraspecific polymorphisms. Nevertheless, substantial progress has been made towards the understanding of the molecular basis of NHR in the past two decades using various approaches. Not surprisingly, molecular mechanisms of NHR revealed so far encompasses pathogen-associated molecular pattern-triggered immunity and effector-triggered immunity. In this review, we briefly discuss the inherent difficulty in genetic studies of NHR and summarize the main approaches that have been taken to identify genes contributing to NHR. We also discuss new enabling strategies for dissecting multilayered NHR in model plants with a focus on NHR against filamentous pathogens, especially biotrophic pathogens such as powdery mildew and rust fungi.
Collapse
Affiliation(s)
- Ying Wu
- Institute for Bioscience and Biotechnology ResearchUniversity of Maryland College ParkRockvilleMarylandUSA
| | - William Sexton
- Institute for Bioscience and Biotechnology ResearchUniversity of Maryland College ParkRockvilleMarylandUSA
| | - Bing Yang
- Division of Plant Science and Technology, Bond Life Sciences CenterUniversity of MissouriColumbiaMissouriUSA
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology ResearchUniversity of Maryland College ParkRockvilleMarylandUSA
- Department of Plant Science and Landscape ArchitectureUniversity of MarylandCollege ParkMarylandUSA
| |
Collapse
|
34
|
Zhang A, He H, Li Y, Wang L, Liu Y, Luan X, Wang J, Liu H, Liu S, Zhang J, Yao D. MADS-Box Subfamily Gene GmAP3 from Glycine max Regulates Early Flowering and Flower Development. Int J Mol Sci 2023; 24:ijms24032751. [PMID: 36769078 PMCID: PMC9917172 DOI: 10.3390/ijms24032751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 12/30/2022] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
AP3 has been studied and is reported to affect structural changes in floral organs in various plants. However, the function of the soybean AP3 genes in flower development is unknown. Here, the full-length cDNA sequence of GmAP3 was obtained by RACE and it was verified that it belongs to the MADS-box subfamily by a bioinformatics analysis. The expression of GmAP3 is closely related to the expression of essential enzyme genes related to flower development. Yeast two-hybrid assays demonstrated that GmAP3 interacts with AP1 to determine the identity of flower organ development. A follow-up analysis showed that overexpression of the GmAP3 gene advanced flowering time and resulted in changes in floral organ morphology. The average flowering time of overexpressed soybean and tobacco plants was 6-8 days earlier than that of wild-type plants, and the average flowering time of gene-edited soybean and tobacco plants was 6-11 days later than that of wild-type plants. In conclusion, GmAP3 may directly or indirectly affect the flower development of soybean. The results of this study lay the foundation for further research on the biological functions of MADS transcriptional factors in soybeans.
Collapse
Affiliation(s)
- Aijing Zhang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Haobo He
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Yue Li
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Lixue Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Yixuan Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Xinchao Luan
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Jiaxin Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Huijing Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Shuying Liu
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
| | - Jun Zhang
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (J.Z.); (D.Y.)
| | - Dan Yao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Correspondence: (J.Z.); (D.Y.)
| |
Collapse
|
35
|
Pan C, Li G, Bandyopadhyay A, Qi Y. Guide RNA library-based CRISPR screens in plants: opportunities and challenges. Curr Opin Biotechnol 2023; 79:102883. [PMID: 36603502 DOI: 10.1016/j.copbio.2022.102883] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/21/2022] [Accepted: 12/08/2022] [Indexed: 01/04/2023]
Abstract
Next-generation sequencing technologies have revolutionized our ability to read sequence information at the genome and transcriptome levels in a high-throughput manner. However, genetic screening at a large or genomic scale remains challenging in plants. Recently, the RNA-guided CRISPR-Cas nucleases have been optimized for high-throughput functional genomic screens combined with guide RNA (gRNA) libraries in plants. This approach has shown great promise in facilitating genetic screening, directed evolution, and quantitative trait engineering. However, this technology is still in its infancy. In this short review, we describe the recent progress in gRNA library-based CRISPR screens in plants. We provide a critical assessment of the current approaches and emerging delivery methods for CRISPR screens. We also highlight the challenges and present future perspectives on CRISPR screens in plants.
Collapse
Affiliation(s)
- Changtian Pan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Gen Li
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | | | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA; Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA.
| |
Collapse
|
36
|
Ma Z, Ma L, Zhou J. Applications of CRISPR/Cas genome editing in economically important fruit crops: recent advances and future directions. MOLECULAR HORTICULTURE 2023; 3:1. [PMID: 37789479 PMCID: PMC10515014 DOI: 10.1186/s43897-023-00049-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/10/2023] [Indexed: 10/05/2023]
Abstract
Fruit crops, consist of climacteric and non-climacteric fruits, are the major sources of nutrients and fiber for human diet. Since 2013, CRISPR/Cas (Clustered Regularly Interspersed Short Palindromic Repeats and CRISPR-Associated Protein) genome editing system has been widely employed in different plants, leading to unprecedented progress in the genetic improvement of many agronomically important fruit crops. Here, we summarize latest advancements in CRISPR/Cas genome editing of fruit crops, including efforts to decipher the mechanisms behind plant development and plant immunity, We also highlight the potential challenges and improvements in the application of genome editing tools to fruit crops, including optimizing the expression of CRISPR/Cas cassette, improving the delivery efficiency of CRISPR/Cas reagents, increasing the specificity of genome editing, and optimizing the transformation and regeneration system. In addition, we propose the perspectives on the application of genome editing in crop breeding especially in fruit crops and highlight the potential challenges. It is worth noting that efforts to manipulate fruit crops with genome editing systems are urgently needed for fruit crops breeding and demonstration.
Collapse
Affiliation(s)
- Zhimin Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Lijing Ma
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China
| | - Junhui Zhou
- Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, Shandong, China.
| |
Collapse
|
37
|
Abstract
The advent of clustered regularly interspaced short palindromic repeat (CRISPR) genome editing, coupled with advances in computing and imaging capabilities, has initiated a new era in which genetic diseases and individual disease susceptibilities are both predictable and actionable. Likewise, genes responsible for plant traits can be identified and altered quickly, transforming the pace of agricultural research and plant breeding. In this Review, we discuss the current state of CRISPR-mediated genetic manipulation in human cells, animals, and plants along with relevant successes and challenges and present a roadmap for the future of this technology.
Collapse
Affiliation(s)
- Joy Y Wang
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Jennifer A Doudna
- Department of Chemistry, University of California, Berkeley, Berkeley, CA, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.,Molecular Biophysics & Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.,Gladstone Institutes, University of California, San Francisco, San Francisco, CA, USA.,Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| |
Collapse
|
38
|
Kong X, Pan W, Zhang T, Liu L, Zhang H. A simple and efficient strategy to produce transgene-free gene edited plants in one generation using paraquat resistant 1 as a selection marker. FRONTIERS IN PLANT SCIENCE 2023; 13:1051991. [PMID: 36733591 PMCID: PMC9888365 DOI: 10.3389/fpls.2022.1051991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION DNA integration is a key factor limiting the marketing of CRISPR/Cas9-mediated gene edited crops. Several strategies have been established to obtain transgene-free gene edited plants; however, these strategies are usually time-consuming, technically difficult, providing low mutagenesis efficiency, and/or including a narrow host range. METHOD To overcome such issues, we established a paraquat resistant 1 (PAR1)-based positive screening (PARS) strategy, which achieved efficient screening of transgene-free gene edited plants. RESULTS With PARS, the screening efficiency of mutant increased by 2.81-fold on average, and approximately 10% of T1 plants selected via PARS were transgenefree. Moreover, heritable transgene-free mutations at target loci were identified in the T1 generation. DISCUSSION Based on the previous reports and our data, we know that paraquat is toxic to all green plants, PAR1 is conserved among all plant species tested, and the transient expression of Cas9 editor can produce transgene-free gene edited plants. Thus, we assume that the PARS strategy established here has the potential to be widely used to screen transgene-free mutants in various crops using diverse CRISPR/Cas9 delivery approaches.
Collapse
Affiliation(s)
- Xiangjiu Kong
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Wenbo Pan
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
- Shandong Laboratory of Advanced Agricultural Sciences, Weifang, China
| | - Tingyu Zhang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Huawei Zhang
- Peking University Institute of Advanced Agricultural Sciences, Weifang, China
- Shandong Laboratory of Advanced Agricultural Sciences, Weifang, China
| |
Collapse
|
39
|
Osnato M. BREEDIT: Fast breeding tools to match the fast pace of climate change. THE PLANT CELL 2023; 35:4-5. [PMID: 36433789 PMCID: PMC9806623 DOI: 10.1093/plcell/koac328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Michela Osnato
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- Institut de Ciencia i Tecnologia Ambientals, Universitat Autónoma de Barcelona (ICTA-UAB), 08193 Cerdanyola del Valle′s, Barcelona, Spain
| |
Collapse
|
40
|
Lorenzo CD, Debray K, Herwegh D, Develtere W, Impens L, Schaumont D, Vandeputte W, Aesaert S, Coussens G, De Boe Y, Demuynck K, Van Hautegem T, Pauwels L, Jacobs TB, Ruttink T, Nelissen H, Inzé D. BREEDIT: a multiplex genome editing strategy to improve complex quantitative traits in maize. THE PLANT CELL 2023; 35:218-238. [PMID: 36066192 PMCID: PMC9806654 DOI: 10.1093/plcell/koac243] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 07/30/2022] [Indexed: 05/04/2023]
Abstract
Ensuring food security for an ever-growing global population while adapting to climate change is the main challenge for agriculture in the 21st century. Although new technologies are being applied to tackle this problem, we are approaching a plateau in crop improvement using conventional breeding. Recent advances in CRISPR/Cas9-mediated gene engineering have paved the way to accelerate plant breeding to meet this increasing demand. However, many traits are governed by multiple small-effect genes operating in complex interactive networks. Here, we present the gene discovery pipeline BREEDIT, which combines multiplex genome editing of whole gene families with crossing schemes to improve complex traits such as yield and drought tolerance. We induced gene knockouts in 48 growth-related genes into maize (Zea mays) using CRISPR/Cas9 and generated a collection of over 1,000 gene-edited plants. The edited populations displayed (on average) 5%-10% increases in leaf length and up to 20% increases in leaf width compared with the controls. For each gene family, edits in subsets of genes could be associated with enhanced traits, allowing us to reduce the gene space to be considered for trait improvement. BREEDIT could be rapidly applied to generate a diverse collection of mutants to identify promising gene modifications for later use in breeding programs.
Collapse
Affiliation(s)
| | | | - Denia Herwegh
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Ward Develtere
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Lennert Impens
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Dries Schaumont
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9820 Merelbeke, Belgium
| | - Wout Vandeputte
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Stijn Aesaert
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Griet Coussens
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Yara De Boe
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Kirin Demuynck
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Tom Van Hautegem
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Laurens Pauwels
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Thomas B Jacobs
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), B-9820 Merelbeke, Belgium
| | - Hilde Nelissen
- Center for Plant Systems Biology, VIB, B-9052 Gent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Gent, Belgium
| | | |
Collapse
|
41
|
Naz M, Benavides-Mendoza A, Tariq M, Zhou J, Wang J, Qi S, Dai Z, Du D. CRISPR/Cas9 technology as an innovative approach to enhancing the phytoremediation: Concepts and implications. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 323:116296. [PMID: 36261968 DOI: 10.1016/j.jenvman.2022.116296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/03/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Phytoremediation is currently an active field of research focusing chiefly on identifying and characterizing novel and high chelation action super-accumulators. In the last few years, molecular tools have been widely exploited to understand better metal absorption, translocation, cation, and tolerance mechanisms in plants. Recently more advanced CRISPR-Cas9 genome engineering technology is also employed to enhance detoxification efficiency. Further, advances in molecular science will trigger the understanding of adaptive phytoremediation ability plant production in current global warming conditions. The enhanced abilities of nucleases for genome modification can improve plant repair capabilities by modifying the genome, thereby achieving a sustainable ecosystem. The purpose of this manuscript focuses on biotechnology's fundamental principles and application to promote climate-resistant metal plants, especially the CRISPR-Cas9 genome editing system for enhancing the phytoremediation of harmful contamination and pollutants.
Collapse
Affiliation(s)
- Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 21201, Jiangsu Province, PR China
| | - Adalberto Benavides-Mendoza
- Department of Horticulture, Autonomous Agricultural University Antonio Narro, 1923 Saltillo, C.P. 25315, Mexico
| | - Muhammad Tariq
- Department of Pharmacology, Lahore Pharmacy College, 54000, Lahore, Pakistan
| | - Jianyu Zhou
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 21201, Jiangsu Province, PR China
| | - Jiahao Wang
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 21201, Jiangsu Province, PR China
| | - Shanshan Qi
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 21201, Jiangsu Province, PR China
| | - Zhicong Dai
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 21201, Jiangsu Province, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, 99 Xuefu Road, Suzhou, 215009, Jiangsu Province, PR China.
| | - Daolin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, 21201, Jiangsu Province, PR China
| |
Collapse
|
42
|
Luo G, Najafi J, Correia PMP, Trinh MDL, Chapman EA, Østerberg JT, Thomsen HC, Pedas PR, Larson S, Gao C, Poland J, Knudsen S, DeHaan L, Palmgren M. Accelerated Domestication of New Crops: Yield is Key. PLANT & CELL PHYSIOLOGY 2022; 63:1624-1640. [PMID: 35583202 PMCID: PMC9680862 DOI: 10.1093/pcp/pcac065] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/17/2022] [Accepted: 05/17/2022] [Indexed: 05/05/2023]
Abstract
Sustainable agriculture in the future will depend on crops that are tolerant to biotic and abiotic stresses, require minimal input of water and nutrients and can be cultivated with a minimal carbon footprint. Wild plants that fulfill these requirements abound in nature but are typically low yielding. Thus, replacing current high-yielding crops with less productive but resilient species will require the intractable trade-off of increasing land area under cultivation to produce the same yield. Cultivating more land reduces natural resources, reduces biodiversity and increases our carbon footprint. Sustainable intensification can be achieved by increasing the yield of underutilized or wild plant species that are already resilient, but achieving this goal by conventional breeding programs may be a long-term prospect. De novo domestication of orphan or crop wild relatives using mutagenesis is an alternative and fast approach to achieve resilient crops with high yields. With new precise molecular techniques, it should be possible to reach economically sustainable yields in a much shorter period of time than ever before in the history of agriculture.
Collapse
Affiliation(s)
- Guangbin Luo
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| | - Javad Najafi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| | - Pedro M P Correia
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| | - Mai Duy Luu Trinh
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| | - Elizabeth A Chapman
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V DK-1799, Denmark
| | | | | | - Pai Rosager Pedas
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V DK-1799, Denmark
| | - Steve Larson
- US Department of Agriculture (USDA), USDA–ARS Forage & Range Research Lab, Utah State University Logan, Logan, UT 84322, USA
| | - Caixia Gao
- Center for Genome Editing, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Jesse Poland
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Makkah 23955, Saudi Arabia
| | - Søren Knudsen
- Carlsberg Research Laboratory, J.C. Jacobsens Gade 4, Copenhagen V DK-1799, Denmark
| | - Lee DeHaan
- The Land Institute, Salina, KS 67401, USA
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg C DK-1871, Denmark
| |
Collapse
|
43
|
Biohacking the food chain: using CRISPR to combat the global food crisis. Biotechniques 2022; 73:159-161. [PMID: 36205133 DOI: 10.2144/btn-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
[Formula: see text] Standfirst: To feed an ever-growing population in an increasingly volatile climate, new technologies are required; is CRISPR the key to reducing food waste and creating climate change-proof crops?
Collapse
|
44
|
Han H, Zhuang K, Qiu Z. CLE peptides join the plant longevity club. TRENDS IN PLANT SCIENCE 2022; 27:961-963. [PMID: 35843831 DOI: 10.1016/j.tplants.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Leaf senescence, the final step of leaf development, is an essential adaptive process that involves intricate regulatory networks mediated by various developmental and environmental clues. Two recent reports, by Zhang Z. et al. and Zhang Y. et al., shed light on how CLE peptides recruit reactive oxygen species (ROS) and ethylene signaling to promote plant leaf longevity.
Collapse
Affiliation(s)
- Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China.
| | - Keqing Zhuang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| | - Ziwen Qiu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi, Nanchang, 330045, China
| |
Collapse
|
45
|
Moon KB, Park SJ, Park JS, Lee HJ, Shin SY, Lee SM, Choi GJ, Kim SG, Cho HS, Jeon JH, Kim YS, Park YI, Kim HS. Editing of StSR4 by Cas9-RNPs confers resistance to Phytophthora infestans in potato. FRONTIERS IN PLANT SCIENCE 2022; 13:997888. [PMID: 36212382 PMCID: PMC9539116 DOI: 10.3389/fpls.2022.997888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/06/2022] [Indexed: 06/10/2023]
Abstract
Potato (Solanum tuberosum L.) cultivation is threatened by various environmental stresses, especially disease. Genome editing technologies are effective tools for generating pathogen-resistant potatoes. Here, we established an efficient RNP-mediated CRISPR/Cas9 genome editing protocol in potato to develop Phytophthora infestans resistant mutants by targeting the susceptibility gene, Signal Responsive 4 (SR4), in protoplasts. Mutations in StSR4 were efficiently introduced into the regenerated potato plants, with a maximum efficiency of 34%. High co-expression of StEDS1 and StPAD4 in stsr4 mutants induced the accumulation of salicylic acid (SA), and enhanced the expression of the pathogen resistance marker StPR1. In addition, increased SA content in the stsr4 mutant enhanced its resistance to P. infestans more than that in wild type. However, the growth of stsr4_3-19 and stsr4_3-698 mutants with significantly high SA was strongly inhibited, and a dwarf phenotype was induced. Therefore, it is important to adequate SA accumulation in order to overcome StSR4 editing-triggered growth inhibition and take full advantages of the improved pathogen resistance of stsr4 mutants. This RNP-mediated CRISPR/Cas9-based potato genome editing protocol will accelerate the development of pathogen-resistant Solanaceae crops via molecular breeding.
Collapse
Affiliation(s)
- Ki-Beom Moon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Su-Jin Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Ji-Sun Park
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Hyo-Jun Lee
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Seung Young Shin
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Soo Min Lee
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-Friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Sang-Gyu Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology, Daejeon, Republic of Korea
| | - Hye Sun Cho
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| | - Jae-Heung Jeon
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- GenKOre, Daejeon, Republic of Korea
| | - Youn-Il Park
- Department of Biological Sciences, Chungnam National University, Daejeon, Republic of Korea
| | - Hyun-Soon Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Department of Biosystems and Bioengineering, KRIBB School of Biotechnology, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
46
|
Liu D, Shen Z, Zhuang K, Qiu Z, Deng H, Ke Q, Liu H, Han H. Systematic Annotation Reveals CEP Function in Tomato Root Development and Abiotic Stress Response. Cells 2022; 11:2935. [PMID: 36230896 PMCID: PMC9562649 DOI: 10.3390/cells11192935] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/11/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Tomato (Solanum lycopersicum) is one of the most important vegetable crops worldwide; however, environmental stressors severely restrict tomato growth and yield. Therefore, it is of great interest to discover novel regulators to improve tomato growth and environmental stress adaptions. Here, we applied a comprehensive bioinformatics approach to identify putative tomato C-TERMINALLY ENCODED PEPTIDE (CEP) genes and to explore their potential physiological function in tomato root development and abiotic stress responses. A total of 17 tomato CEP genes were identified and grouped into two subgroups based on the similarity of CEP motifs. The public RNA-Seq data revealed that tomato CEP genes displayed a diverse expression pattern in tomato tissues. Additionally, CEP genes expression was differentially regulated by nitrate or ammonium status in roots and shoots, respectively. The differences in expression levels of CEP genes induced by nitrogen indicate a potential involvement of CEPs in tomato nitrogen acquisition. The synthetic CEP peptides promoted tomato primary root growth, which requires nitric oxide (NO) and calcium signaling. Furthermore, we also revealed that CEP peptides improved tomato root resistance to salinity. Overall, our work will contribute to provide novel genetic breeding strategies for tomato cultivation under adverse environments.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Huibin Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, China
| |
Collapse
|
47
|
Liu H, Chen W, Li Y, Sun L, Chai Y, Chen H, Nie H, Huang C. CRISPR/Cas9 Technology and Its Utility for Crop Improvement. Int J Mol Sci 2022; 23:10442. [PMID: 36142353 PMCID: PMC9499353 DOI: 10.3390/ijms231810442] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
The rapid growth of the global population has resulted in a considerable increase in the demand for food crops. However, traditional crop breeding methods will not be able to satisfy the worldwide demand for food in the future. New gene-editing technologies, the most widely used of which is CRISPR/Cas9, may enable the rapid improvement of crop traits. Specifically, CRISPR/Cas9 genome-editing technology involves the use of a guide RNA and a Cas9 protein that can cleave the genome at specific loci. Due to its simplicity and efficiency, the CRISPR/Cas9 system has rapidly become the most widely used tool for editing animal and plant genomes. It is ideal for modifying the traits of many plants, including food crops, and for creating new germplasm materials. In this review, the development of the CRISPR/Cas9 system, the underlying mechanism, and examples of its use for editing genes in important crops are discussed. Furthermore, certain limitations of the CRISPR/Cas9 system and potential solutions are described. This article will provide researchers with important information regarding the use of CRISPR/Cas9 gene-editing technology for crop improvement, plant breeding, and gene functional analyses.
Collapse
Affiliation(s)
- Hua Liu
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wendan Chen
- Beijing Key Laboratory of Forest Food Processing and Safety, Department of Food Science and Engineering, College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing 100083, China
| | - Yushu Li
- Beijing Vocational College of Agriculture, Beijing 100097, China
| | - Lei Sun
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yuhong Chai
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haixia Chen
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haochen Nie
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Conglin Huang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
48
|
Deng F, Zeng F, Shen Q, Abbas A, Cheng J, Jiang W, Chen G, Shah AN, Holford P, Tanveer M, Zhang D, Chen ZH. Molecular evolution and functional modification of plant miRNAs with CRISPR. TRENDS IN PLANT SCIENCE 2022; 27:890-907. [PMID: 35165036 DOI: 10.1016/j.tplants.2022.01.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/06/2022] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Gene editing using clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) has revolutionized biotechnology and provides genetic tools for medicine and life sciences. However, the application of this technology to miRNAs, with the function as negative gene regulators, has not been extensively reviewed in plants. Here, we summarize the evolution, biogenesis, and structure of miRNAs, as well as their interactions with mRNAs and computational models for predicting target genes. In addition, we review current advances in CRISPR/Cas for functional analysis and for modulating miRNA genes in plants. Extending our knowledge of miRNAs and their manipulation with CRISPR will provide fundamental understanding of the functions of plant miRNAs and facilitate more sustainable and publicly acceptable genetic engineering of crops.
Collapse
Affiliation(s)
- Fenglin Deng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Fanrong Zeng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Qiufang Shen
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Asad Abbas
- School of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Jianhui Cheng
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Wei Jiang
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Adnan Noor Shah
- Department of Agricultural Engineering, Khawaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Paul Holford
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mohsin Tanveer
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS 7004, Australia.
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food, and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia; Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia.
| |
Collapse
|
49
|
Xia K, Zhang D, Xu X, Liu G, Yang Y, Chen Z, Wang X, Zhang GQ, Sun HX, Gu Y. Protoplast technology enables the identification of efficient multiplex genome editing tools in Phalaenopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 322:111368. [PMID: 35780949 DOI: 10.1016/j.plantsci.2022.111368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 06/26/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Phalaenopsis orchids are popular ornamental plants worldwide. The application and optimization of efficient CRISPR-Cas genome editing toolkits in Phalaenopsis greatly accelerate the development of orchid gene function and breeding research. However, these methods are greatly hindered by the deficiency of a rapid screening system. In this study, we established a fast and convenient Phalaenopsis protoplast technology for the identification of functional genome editing tools. Two multiplex genome editing tools, PTG-Cas9-HPG (PTG, polycistronic tRNA-gRNA) system and RMC-Cpf1-HPG (RMC, ribozyme-based multi-crRNA) system, were developed for Phalaenopsis genome editing and further evaluated by established protoplast technology. We successfully detected various editing events comprising substitution and indel at designed target sites of the PDS gene and MADS gene, showing that both PTG-Cas9-HPG and RMC-Cpf1-HPG multiplex genome editing systems are functional in Phalaenopsis. Additionally, by optimizing the promoter that drives Cpf1 expression, we found that Super promoter can significantly improve the editing efficiency of the RMC-Cpf1-HPG system. Altogether, we successfully developed two efficient multiplex genome editing systems, PTG-Cas9-HPG and RMC-Cpf1-HPG, for Phalaenopsis, and the established protoplast-based screening technology provides a valuable foundation for developing more diverse and efficient genome editing toolkits and facilitating the development of orchid precision breeding.
Collapse
Affiliation(s)
- Keke Xia
- BGI-Shenzhen, Shenzhen 518083, China.
| | | | - Xiaojing Xu
- BGI-Shenzhen, Shenzhen 518083, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Yong Yang
- BGI-Shenzhen, Shenzhen 518083, China
| | | | | | - Guo-Qiang Zhang
- Laboratory for Orchid Conservation and Utilization, The Orchid Conservation and Research Center of Shenzhen, The National Orchid Conservation Center of China, Shenzhen 518114, China
| | - Hai-Xi Sun
- BGI-Shenzhen, Shenzhen 518083, China; BGI-Beijing, Beijing 100101, China.
| | - Ying Gu
- BGI-Shenzhen, Shenzhen 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen 518120, China.
| |
Collapse
|
50
|
Jiang M, Li X, Dong X, Zu Y, Zhan Z, Piao Z, Lang H. Research Advances and Prospects of Orphan Genes in Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:947129. [PMID: 35874010 PMCID: PMC9305701 DOI: 10.3389/fpls.2022.947129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Orphan genes (OGs) are defined as genes having no sequence similarity with genes present in other lineages. OGs have been regarded to play a key role in the development of lineage-specific adaptations and can also serve as a constant source of evolutionary novelty. These genes have often been found related to various stress responses, species-specific traits, special expression regulation, and also participate in primary substance metabolism. The advancement in sequencing tools and genome analysis methods has made the identification and characterization of OGs comparatively easier. In the study of OG functions in plants, significant progress has been made. We review recent advances in the fast evolving characteristics, expression modulation, and functional analysis of OGs with a focus on their role in plant biology. We also emphasize current challenges, adoptable strategies and discuss possible future directions of functional study of OGs.
Collapse
Affiliation(s)
- Mingliang Jiang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| | - Xiaonan Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Xiangshu Dong
- School of Agriculture, Yunnan University, Kunming, China
| | - Ye Zu
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zongxiang Zhan
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhongyun Piao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Hong Lang
- School of Agriculture, Jilin Agricultural Science and Technology College, Jilin, China
| |
Collapse
|