1
|
Yang F, Li X, Liu S, Lyu J, Ge Z, Bai MY. TabHLH489 suppresses nitrate signaling by inhibiting the function of TaNLP7-3A in wheat. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1162-1178. [PMID: 39737613 DOI: 10.1111/jipb.13832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025]
Abstract
Nitrate not only serves as the primary nitrogen source for terrestrial plants but also serves as a critical signal in regulating plant growth and development. Understanding how plant responses to nitrate availability is essential for improving nitrogen use efficiency in crops. Herein, we demonstrated that the basic helix-loop-helix (bHLH) transcription factor TabHLH489 plays a crucial negative regulatory role in wheat nitrate signaling. Overexpressing TabHLH489 significantly reduced nitrate-promoted wheat growth and grain yield. Transcriptomic analysis showed that approximately 75% of nitrate-responsive genes were no longerregulated by nitrate in the TabHLH489 overexpression lines. TabHLH489 directly interacts with TaNLP7-3A, the wheat homolog protein of NIN-like protein 7 (NLP7), a central transcription factor in nitrate signaling. This interaction impairs TaNLP7-3A's ability to bind DNA, thereby inhibiting its transcriptional activity. Moreover, TabHLH489 induces the accumulation of reactive oxygen species (ROS) to reduce the nuclear localization of TaNLP7-3A, thereby diminishing its effectiveness in regulating the plant nitrogen response. These findings highlight the intricate regulatory mechanism by which TabHLH489 modulates TaNLP7-3A activity through direct interaction and ROS-mediated inhibition of nuclear localization. Our research highlights the critical roles of TabHLH489 and TaNLP7-3A in modulating nitrate signaling, providing new gene targets for developing wheat varieties with enhanced nitrogen use efficiency.
Collapse
Affiliation(s)
- Fan Yang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Xuepeng Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Songyu Liu
- State Key Laboratory of Maize Bio-breeding, National Maize Improvement Center, Frontiers Science Center for Molecular Design Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Jinyang Lyu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Zixuan Ge
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao, 266237, China
| |
Collapse
|
2
|
Mao J, Tian Z, Sun J, Wang D, Yu Y, Li S. The crosstalk between nitrate signaling and other signaling molecules in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2025; 16:1546011. [PMID: 40129740 PMCID: PMC11932153 DOI: 10.3389/fpls.2025.1546011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/05/2025] [Indexed: 03/26/2025]
Abstract
Nitrate signaling coordinates the expression of a broad range of genes involved in nitrate uptake, transport, and assimilation, playing a crucial role in plant growth and development. Notably, nitrate signaling interacts extensively with various messenger molecules, including phytohormones, calcium ions (Ca2+), reactive oxygen species (ROS), peptides, and sucrose. This crosstalk amplifies nitrate signaling and optimizes nutrient uptake, coordinating developmental processes and enhancing stress tolerance. Understanding the interactions between nitrate and these signaling molecules offers valuable insights into improving crop nutrient use efficiency (NUE), stress resilience, and agricultural sustainability. Using Arabidopsis thaliana as a model, this review consolidates current knowledge on nitrate signaling and its interplay with other signaling pathways that regulate plant development and adaptation. Finally, the review highlights potential genetic strategies for enhancing NUE, contributing to more sustainable agricultural practices.
Collapse
Affiliation(s)
- Jingjing Mao
- Technology Centre, China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, China
| | | | | | | | | | - Shaopeng Li
- Technology Centre, China Tobacco Jiangsu Industrial Co., Ltd., Nanjing, China
| |
Collapse
|
3
|
Huang Z, Han X, He K, Ye J, Yu C, Xu T, Zhang J, Du J, Fu Q, Hu Y. Nitrate attenuates abscisic acid signaling via NIN-LIKE PROTEIN8 in Arabidopsis seed germination. THE PLANT CELL 2025; 37:koaf046. [PMID: 40123384 PMCID: PMC11952927 DOI: 10.1093/plcell/koaf046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/15/2025] [Indexed: 03/25/2025]
Abstract
Abscisic acid (ABA) suppresses Arabidopsis (Arabidopsis thaliana) seed germination and post-germinative growth. Nitrate stimulates seed germination, but whether it directly regulates ABA signaling and the associated underlying molecular mechanisms remain unknown. Here, we showed that nitrate alleviates the repressive effects of ABA on seed germination independently of the nitric oxide (NO) pathway. Moreover, nitrate attenuates ABA signaling activated by ABSCISIC ACID INSENSITIVE3 (ABI3) and ABI5, two critical transcriptional regulators of the ABA pathway. Mechanistic analyses demonstrated that ABI3 and ABI5 physically interact with the nitrate signaling-related core transcription factor NIN-LIKE PROTEIN 8 (NLP8). After ABA treatment, NLP8 suppresses ABA responses during seed germination without affecting ABA content. Notably, nitrate represses ABA signaling mainly through NLP8. Genetic analyses showed that NLP8 acts upstream of ABI3 and ABI5. Specifically, NLP8 inhibits the transcriptional functions of ABI3 and ABI5, as well as their ABA-induced accumulation. Additionally, NLP8 overexpression largely suppresses the ABA hypersensitivity of mutant plants exhibiting impaired NO biosynthesis or signaling. Collectively, our study reveals that nitrate counteracts the inhibitory effects of ABA signaling on seed germination and provides mechanistic insights into the NLP8-ABI3/ABI5 interactions and their antagonistic relationships in ABA signaling.
Collapse
Affiliation(s)
- Zhichong Huang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Xiao Han
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Kunrong He
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Jingwen Ye
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Chunlan Yu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Tingting Xu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Juping Zhang
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Jiancan Du
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Qiantang Fu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Yanru Hu
- CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
- State Key Laboratory of Chemo and Biosensing and Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha 410082, China
- Yuelushan Laboratory, Changsha 410128, China
| |
Collapse
|
4
|
Wang Q, Liu K, Li J, Huang D. Overexpression of apple MdNRT1.7 enhances low nitrogen tolerance via the regulation of ROS scavenging. Int J Biol Macromol 2025; 293:139358. [PMID: 39743106 DOI: 10.1016/j.ijbiomac.2024.139358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/01/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Low nitrogen stress significantly limits crop production. The role of NRT1.7 as a nitrate transporter in alleviating low nitrogen stress in apple (Malus domestica) remains unclear. This study investigates how MdNRT1.7 regulates the low nitrogen response in apple using Agrobacterium-mediated transformation of tobacco (Nicotiana benthamiana). The transcription factor (TF) regulating MdNRT1.7 was identified through yeast one-hybrid (Y1H) and dual-luciferase (LUC) reporter assays. MdNRT1.7 was located in the tonoplast and expressed in various growth sites, including leaves, seeds, and young anthers. Overexpressing MdNRT1.7 in tobacco enhanced low nitrogen stress tolerance by exhibiting significantly higher proline content, soluble protein content, superoxide dismutase activity, peroxidase activity, and total nitrogen accumulation compared to wild-type (WT) plants. In contrast, the malondialdehyde and hydrogen peroxide content were significantly lower in transgenic plants than in WT plants. Additionally, the expression of nitrogen metabolism-related genes in transgenic tobacco was significantly higher than in WT tobacco under low nitrogen conditions. Y1H, LUC reporter assays and electrophoretic mobility shift assays (EMSA) demonstrated that a H2O2-mediated NAC TF MdJUB1 binds to the MdNRT1.7 promoter and represses its expression. These results suggested that MdNRT1.7, as a crucial nitrate transporter gene, improved the nitrogen metabolism-related enzymes' activity, reduced reactive oxygen species (ROS) accumulation, and thus enhanced low nitrogen stress tolerance.
Collapse
Affiliation(s)
- Qian Wang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Ke Liu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Junrong Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China
| | - Dong Huang
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, Guizhou Province, China; College of Agriculture, Guizhou Engineering Research Center for Fruit Crops, Guizhou University, Guiyang 550025, Guizhou Province, China.
| |
Collapse
|
5
|
Nejamkin A, Del Castello F, Lamattina L, Correa-Aragunde N, Foresi N. Nitric Oxide Is Required for Primary Nitrate Response in Arabidopsis: Evidence for S-Nitrosation of NLP7. Antioxid Redox Signal 2025; 42:280-291. [PMID: 37597195 DOI: 10.1089/ars.2022.0210] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Aims: Nitrogen (N) is a necessary nutrient for plant development and seed production, with nitrate (NO3-) serving as the primary source of N in soils. Although several molecular players in plant responses to NO3- signaling were unraveled, it is still a complex process with gaps that require further investigation. The aim of our study is to analyze the role of nitric oxide (NO) in the primary nitrate response (PNR). Results: Using a combination of genetic and pharmacological approaches, we demonstrate that NO is required for the expression of the NO3--regulated genes nitrate reductase 1 (NIA1), nitrite reductase (NIR), and nitrate transporters (nitrate transporter 1.1 [NRT1.1] and nitrate transporter 2.1 [NRT2.1]) in Arabidopsis. The PNR is impaired in the Arabidopsis mutant noa1, defective in NO production. Our results also show that PHYTOGLOBIN 1 (PHYTOGLB1), involved in NO homeostasis, is rapidly induced during PNR in wild type (wt) but not in the mutants of the nitrate transceptor NTR1.1 and the transcription factor nodule inception-like protein 7 (NLP7), suggesting that the NRT1.1-NLP7 cascade modulates PHYTOGLB1 gene expression. Biotin switch experiments demonstrate that NLP7, the PNR-master regulator, is S-nitrosated in vitro. Depletion of NO during PNR intensifies the decrease in reactive oxygen species levels and the rise of catalase (CAT) and ascorbate peroxidase (APX) enzyme activity. Conclusion and Innovation: NO, a by-product of NO3- metabolism and a well-characterized signal molecule in plants, is an important player in the PNR.
Collapse
Affiliation(s)
- Andrés Nejamkin
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Fiorella Del Castello
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Natalia Correa-Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| |
Collapse
|
6
|
Pandey A, Devi LL, Gupta S, Prasad P, Agrwal K, Asif MH, Pandey AK, Bandyopadhyay K, Singh AP. Jasmonate signaling modulates root growth by suppressing iron accumulation during ammonium stress. PLANT PHYSIOLOGY 2024; 196:2213-2231. [PMID: 39046110 DOI: 10.1093/plphys/kiae390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 07/25/2024]
Abstract
Plants adapt to changing environmental conditions by adjusting their growth physiology. Nitrate (NO3-) and ammonium (NH4+) are the major inorganic nitrogen forms for plant uptake. However, high NH4+ inhibits plant growth, and roots undergo striking changes, such as inhibition of cell expansion and division, leading to reduced root elongation. In this work, we show that high NH4+ modulates nitrogen metabolism and root developmental physiology by inhibiting iron (Fe)-dependent Jasmonate (JA) signaling and response in Arabidopsis (Arabidopsis thaliana). Transcriptomic data suggested that NH4+ availability regulates Fe and JA-responsive genes. High NH4+ levels led to enhanced root Fe accumulation, which impaired nitrogen balance and growth by suppressing JA biosynthesis and signaling response. Integrating pharmacological, physiological, and genetic experiments revealed the involvement of NH4+ and Fe-derived responses in regulating root growth and nitrogen metabolism through modulation of the JA pathway during NH4+ stress. The JA signaling transcription factor MYC2 directly bound the promoter of the NITRATE TRANSPORTER 1.1 (NRT1.1) and repressed it to optimize the NH4+/Fe-JA balance for plant adaptation during NH4+ stress. Our findings illustrate the intricate balance between nutrient and hormone-derived signaling pathways that appear essential for optimizing plant growth by adjusting physiological and metabolic responses during NH4+/Fe stress.
Collapse
Affiliation(s)
- Anshika Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | - Shreya Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Priti Prasad
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Kanupriya Agrwal
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar 140306, India
| | - Mehar Hasan Asif
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow 226001, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Ajay Kumar Pandey
- Department of Biotechnology, National Agri-Food Biotechnology Institute, Sector 81, Sahibzada Ajit Singh Nagar 140306, India
| | | | - Amar Pal Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
7
|
Yao XL, Wang YZ, Meng HX, Zhang MH, Zhou X, Kang XT, Dong S, Yuan X, Li X, Gao L, Yang G, Chu X, Wang JG. Identification of systemic nitrogen signaling in foxtail millet (Setaria italica) roots based on split-root system and transcriptome analysis. PLANT CELL REPORTS 2024; 43:243. [PMID: 39340664 DOI: 10.1007/s00299-024-03338-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
KEY MESSAGE The study established split-root system (SRS) in foxtail millet, and identified the molecular regulatory mechanisms and metabolic pathways related to systemic nitrogen signaling based on this system and transcriptome analysis. The growth of crops is primarily constrained by the availability of nitrogen (N), an essential nutrient. Foxtail millet (Setaria italica L.) is a significant orphan crop known for its strong tolerance to barren conditions. Despite this, the signaling pathway of nitrogen in foxtail millet remains largely unexplored. Identifying the candidate genes responsible for nitrogen response in foxtail millet is crucial for enhancing its agricultural productivity. This study utilized the split-root system (SRS) in foxtail millet to uncover genes associated with Systemic Nitrogen Signaling (SNS). Transcriptome analysis of the SRS revealed 2158 differentially expressed genes (DEGs) implicated in SNS, including those involved in cytokinin synthesis, transcription factors, E3 ubiquitin ligase, and ROS metabolism. Silencing of SiIPT5 and SiATL31 genes through RNAi in transgenic plants resulted in reduced SNS response, indicating their role in the nitrogen signaling pathway of foxtail millet. Furthermore, the induction of ROS metabolism-related genes in response to KNO3 of the split-root System (Sp.KNO3) suggests a potential involvement of ROS signaling in the SNS of foxtail millet. Overall, this study sheds light on the molecular regulatory mechanisms and metabolic pathways of foxtail millet in relation to SNS.
Collapse
Affiliation(s)
- Xin-Li Yao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China
| | - Yu-Ze Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Hui-Xin Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Ming-Hua Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xuan Zhou
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xue-Ting Kang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
- Houji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
8
|
Denjalli I, Knieper M, Uthoff J, Vogelsang L, Kumar V, Seidel T, Dietz KJ. The centrality of redox regulation and sensing of reactive oxygen species in abiotic and biotic stress acclimatization. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4494-4511. [PMID: 38329465 DOI: 10.1093/jxb/erae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 02/06/2024] [Indexed: 02/09/2024]
Abstract
During land plant evolution, the number of genes encoding for components of the thiol redox regulatory network and the generator systems of reactive oxygen species (ROS) expanded, tentatively indicating that they have a role in tailored environmental acclimatization. This hypothesis has been validated both experimentally and theoretically during the last few decades. Recent developments of dynamic redox-sensitive GFP (roGFP)-based in vivo sensors for H2O2 and the redox potential of the glutathione pool have paved the way for dissecting the kinetics changes that occur in these crucial parameters in response to environmental stressors. The versatile cellular redox sensory and response regulatory system monitors alterations in redox metabolism and controls the activity of redox target proteins, and thereby affects most, if not all, cellular processes ranging from transcription to translation and metabolism. This review uses examples to describe the role of the redox- and ROS-dependent regulatory network in realising the appropriate responses to diverse environmental stresses. The selected case studies concern different environmental challenges, namely excess excitation energy, the heavy metal cadmium and the metalloid arsenic, nitrogen or phosphate shortages as examples for nutrient deficiency, wounding, and nematode infestation. Each challenge affects the redox-regulatory and ROS network, but our present state of knowledge also points toward pressing questions that remain open in relation to the translation of redox regulation to environmental acclimatization.
Collapse
Affiliation(s)
- Ibadete Denjalli
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Madita Knieper
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Jana Uthoff
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Lara Vogelsang
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Vijay Kumar
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
| | - Karl-Josef Dietz
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, 33615 Bielefeld, Germany
- Center of Biotechnology, CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
9
|
Liu J, Zhang M, Xu J, Yao X, Lou L, Hou Q, Zhu L, Yang X, Liu G, Xu J. A Transcriptomic Analysis of Bottle Gourd-Type Rootstock Roots Identifies Novel Transcription Factors Responsive to Low Root Zone Temperature Stress. Int J Mol Sci 2024; 25:8288. [PMID: 39125858 PMCID: PMC11313094 DOI: 10.3390/ijms25158288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
The bottle gourd [Lagenaria siceraria (Molina) Standl.] is often utilized as a rootstock for watermelon grafting. This practice effectively mitigates the challenges associated with continuous cropping obstacles in watermelon cultivation. The lower ground temperature has a direct impact on the rootstocks' root development and nutrient absorption, ultimately leading to slower growth and even the onset of yellowing. However, the mechanisms underlying the bottle gourd's regulation of root growth in response to low root zone temperature (LRT) remain elusive. Understanding the dynamic response of bottle gourd roots to LRT stress is crucial for advancing research regarding its tolerance to low temperatures. In this study, we compared the physiological traits of bottle gourd roots under control and LRT treatments; root sample transcriptomic profiles were monitored after 0 h, 48 h and 72 h of LRT treatment. LRT stress increased the malondialdehyde (MDA) content, relative electrolyte permeability and reactive oxygen species (ROS) levels, especially H2O2 and O2-. Concurrently, LRT treatment enhanced the activities of antioxidant enzymes like superoxide dismutase (SOD) and peroxidase (POD). RNA-Seq analysis revealed the presence of 2507 and 1326 differentially expressed genes (DEGs) after 48 h and 72 h of LRT treatment, respectively. Notably, 174 and 271 transcription factors (TFs) were identified as DEGs compared to the 0 h control. We utilized quantitative real-time polymerase chain reaction (qRT-PCR) to confirm the expression patterns of DEGs belonging to the WRKY, NAC, bHLH, AP2/ERF and MYB families. Collectively, our study provides a robust foundation for the functional characterization of LRT-responsive TFs in bottle gourd roots. Furthermore, these insights may contribute to the enhancement in cold tolerance in bottle gourd-type rootstocks, thereby advancing molecular breeding efforts.
Collapse
Affiliation(s)
- Jinqiu Liu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Man Zhang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Jian Xu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Xiefeng Yao
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Lina Lou
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Qian Hou
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Lingli Zhu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Xingping Yang
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Guang Liu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| | - Jinhua Xu
- Institute of Vegetable Crop, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (J.L.); (M.Z.); (J.X.); (X.Y.); (L.L.); (Q.H.); (L.Z.); (X.Y.)
- Laboratory for Genetic Improvement of High Efficiency Horticultural Crops in Jiangsu Province, Nanjing 210014, China
| |
Collapse
|
10
|
Tiwari K, Tripathi S, Mahra S, Mathew S, Rana S, Tripathi DK, Sharma S. Carrier-based delivery system of phytohormones in plants: stepping outside of the ordinary. PHYSIOLOGIA PLANTARUM 2024; 176:e14387. [PMID: 38925551 DOI: 10.1111/ppl.14387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 06/28/2024]
Abstract
Climate change is increasing the stresses on crops, resulting in reduced productivity and further augmenting global food security issues. The dynamic climatic conditions are a severe threat to the sustainability of the ecosystems. The role of technology in enhancing agricultural produce with the minimum environmental impact is hence crucial. Active molecule/Plant growth regulators (PGRs) are molecules helping plants' growth, development, and tolerance to abiotic and biotic stresses. However, their degradation, leaching in surrounding soil and ground water, as well as the assessment of the correct dose of application etc., are some of the technical disadvantages faced. They can be resolved by encapsulation/loading of PGRs on polymer matrices. Micro/nanoencapsulation is a revolutionary tool to deliver bioactive compounds in an economically affordable and environmentally friendly way. Carrier-based smart delivery systems could be a better alternative to PGRs application in the agriculture field than conventional methods (e.g., spraying). The physiochemical properties and release kinetics of PGRs from the encapsulating system are being explored. Therefore, the present review emphasizes the current status of PGRs encapsulation approach and their potential benefits to plants. This review also addressed the mechanistic action of carrier-based delivery systems for release, which may aid in developing smart delivery systems with specific tailored properties in future research.
Collapse
Affiliation(s)
- Kavita Tiwari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| | - Sneha Tripathi
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| | - Shivani Mahra
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| | - Sobhitha Mathew
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| | - Shweta Rana
- Department of Physical and Natural Sciences, FLAME University Pune, India
| | - Durgesh Kumar Tripathi
- Crop Nanobiology and Molecular Stress Physiology Lab, Amity Institute of Organic Agriculture, Amity University Uttar Pradesh, Noida, India
| | - Shivesh Sharma
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Prayagraj, UP, India
| |
Collapse
|
11
|
Nejamkin A, Del Castello F, Lamattina L, Foresi N, Correa Aragunde N. Redox regulation in primary nitrate response: Nitric oxide in the spotlight. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108625. [PMID: 38643539 DOI: 10.1016/j.plaphy.2024.108625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/02/2024] [Accepted: 04/09/2024] [Indexed: 04/23/2024]
Abstract
Nitrogen (N) is the main macronutrient of plants that determines growth and productivity. Nitrate is the major source form of N in soils and its uptake and assimilatory pathway has been extensively studied. The early events that occur after the perception of nitrate is known as primary nitrate response (PNR). In this review, new findings on the redox signal that impacts PNR are discussed. We will focus on the novel role of Nitric Oxide (NO) as a signal molecule and the mechanisms that are involved to control NO homeostasis during PNR. Moreover, the role of Reactive Oxygen Species (ROS) and the possible interplay with NO in the PNR are discussed. The sources of NO during PNR will be analyzed as well as the regulation of its intracellular levels. Furthermore, we explored the relevance of the direct action of NO through the S-nitrosation of the transcription factor NLP7, one of the master regulators in the nitrate signaling cascade. This review gives rise to an interesting field with new actors to mark future research directions. This allows us to increase the knowledge of the physiological and molecular fine-tuned modulation during nitrate signaling processes in plants. The discussion of new experimental data will stimulate efforts to further refine our understanding of the redox regulation of nitrate signaling.
Collapse
Affiliation(s)
- Andrés Nejamkin
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Fiorella Del Castello
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Lorenzo Lamattina
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Noelia Foresi
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina
| | - Natalia Correa Aragunde
- Instituto de Investigaciones Biológicas-CONICET, Universidad Nacional de Mar Del Plata, Argentina.
| |
Collapse
|
12
|
Song N, Wu J. NaWRKY70 is a key regulator of Nicotiana attenuata resistance to Alternaria alternata through regulation of phytohormones and phytoalexins biosynthesis. THE NEW PHYTOLOGIST 2024; 242:1289-1306. [PMID: 38426573 DOI: 10.1111/nph.19647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024]
Abstract
Jasmonate (JA) and abscisic acid (ABA) are two major phytohormones involved in pathogen resistance. However, how their biosynthesis is regulated is not well understood. We silenced NaWRKY70 in wild tobacco Nicotiana attenuata and determined its role in regulating genes involved in the production of JA, ABA and the phytoalexin capsidiol in response to the fungal pathogen Alternaria alternata using techniques including electrophoretic mobility shift, chromatin immunoprecipitation, transient overexpression and virus-induced gene silencing. Silencing NaWRKY70 dramatically reduced both basal and A. alternata-induced jasmonoyl-isoleucine (JA-Ile) and ABA. Further evidence showed that NaWRKY70 directly binds to the W-boxes of the promoters of NaAOS and NaJAR4 (JA biosynthesis), NaNCED1 and NaXD1-like (ABA biosynthesis), and NaMPK4 (ABA signaling) to activate their expression, while binding but repressing the expression of NaCYP707A4-like3 (ABA degradation). Additionally, NaWRKY70 regulates capsidiol production through its key enzyme genes NaEASs and NaEAHs, and interacts with its regulator NaERF2-like to enhance their expression, whereas ABA negatively regulates capsidiol biosynthesis. Our results highlight the key role of NaWRKY70 in controlling both JA-Ile and ABA production, as well as capsidiol production, thus providing new insight into the defense mechanism of plant resistance to A. alternata.
Collapse
Affiliation(s)
- Na Song
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Yunnan Key Laboratory for Fungal Diversity and Green Development, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Jinsong Wu
- Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| |
Collapse
|
13
|
Meng HX, Wang YZ, Yao XL, Xie XR, Dong S, Yuan X, Li X, Gao L, Yang G, Chu X, Wang JG. Reactive oxygen species (ROS) modulate nitrogen signaling using temporal transcriptome analysis in foxtail millet. PLANT MOLECULAR BIOLOGY 2024; 114:37. [PMID: 38602592 DOI: 10.1007/s11103-024-01435-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.
Collapse
Affiliation(s)
- Hui-Xin Meng
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Yu-Ze Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xin-Li Yao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Xin-Ran Xie
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Shuqi Dong
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangyang Yuan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Xiaorui Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
- State Key Laboratory of Sustainable Dryland Agriculture (in Preparation), Shanxi Agricultural University, Taigu, 030801, China
| | - Lulu Gao
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China
| | - Guanghui Yang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Xiaoqian Chu
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
| | - Jia-Gang Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, China.
- Hou Ji Laboratory in Shanxi Province, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
14
|
Li S, Ji M, Liu F, Zhu M, Yang Y, Zhang W, Liu S, Wang Y, Lv W, Qi S. NRG2 family members of Arabidopsis and maize regulate nitrate signalling and promote nitrogen use efficiency. PHYSIOLOGIA PLANTARUM 2024; 176:e14251. [PMID: 38472740 DOI: 10.1111/ppl.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/21/2024] [Indexed: 03/14/2024]
Abstract
Nitrogen (N) is an essential nutrient for plant growth, and most plants absorb it as nitrate. AtNRG2 has been reported to play an important role in nitrate regulation. In this study, we investigated the functions of AtNRG2 family members of Arabidopsis thaliana and maize in nitrate signalling and metabolism. Our results showed that both AtNRG2.10 and AtNRG2.15 regulated nitrate signalling and metabolism. Overexpression of AtNRG2.11 (AtNRG2) could promote plant growth and improve nitrogen use efficiency (NUE). In addition, the maize genome harbors 23 ZmNRG2 members. We detected the expression of these genes treated with nitrate and the expression of four genes was strongly induced with ZmNRG2.7 having the highest levels. Overexpression of ZmNRG2.7 in the atnrg2 mutant could restore the defects of atnrg2, suggesting that ZmNRG2.7 is involved in nitrate signalling and metabolism. Moreover, the overexpression lines of ZmNRG2.7 showed increased biomass and NUE. These findings demonstrate that at least a part of NRG2 family genes in Arabidopsis and maize regulate nitrate signalling and provide a molecular basis for improving the NUE of crops.
Collapse
Affiliation(s)
- Shuna Li
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
- College of Agronomy, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Meiling Ji
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Fei Liu
- College of Life Sciences, Jining Medical University
| | - Mingyue Zhu
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Yi Yang
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Wenjing Zhang
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Shubing Liu
- College of Agronomy, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Yong Wang
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Wei Lv
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| | - Shengdong Qi
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University
| |
Collapse
|
15
|
Dai ZC, Kong FL, Li YF, Ullah R, Ali EA, Gul F, Du DL, Zhang YF, Jia H, Qi SS, Uddin N, Khan IU. Strong Invasive Mechanism of Wedelia trilobata via Growth and Physiological Traits under Nitrogen Stress Condition. PLANTS (BASEL, SWITZERLAND) 2024; 13:355. [PMID: 38337888 PMCID: PMC10857574 DOI: 10.3390/plants13030355] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024]
Abstract
Nitrogen (N) is one of the most crucial elements for plant growth. However, a deficiency of N affects plant growth and development. Wedelia trilobata is a notorious invasive plant species that exhibits superior tolerance to adapt to environmental stresses. Yet, research on the growth and antioxidant defensive system of invasive Wedelia under low N stress, which could contribute to understanding invasion mechanisms, is still limited. Therefore, this study aims to investigate and compare the tolerance capability of invasive and native Wedelia under low and normal N conditions. Native and invasive Wedelia species were grown in normal and low-N conditions using a hydroponic nutrient solution for 8 weeks to assess the photosynthetic parameters, antioxidant activity, and localization of reactive oxygen species (ROS). The growth and biomass of W. trilobata were significantly (p < 0.05) higher than W. chinensis under low N. The leaves of W. trilobata resulted in a significant increase in chlorophyll a, chlorophyll b, and total chlorophyll content by 40.2, 56.2, and 46%, respectively, compared with W. chinensis. W. trilobata significantly enhanced antioxidant defense systems through catalase, peroxidase, and superoxide dismutase by 18.6%, 20%, and 36.3%, respectively, providing a positive response to oxidative stress caused by low N. The PCA analysis showed that W. trilobata was 95.3% correlated with physiological traits by Dim1 (79.1%) and Dim2 (16.3%). This study provides positive feedback on W. trilobata with respect to its comprehensive invasion mechanism to improve agricultural systems via eco-friendly approaches in N deficit conditions, thereby contributing to the reclamation of barren land.
Collapse
Affiliation(s)
- Zhi-Cong Dai
- School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Z.-C.D.); (D.-L.D.)
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
- Jingjiang College, Jiangsu University, Zhenjiang 212018, China
| | - Fang-Li Kong
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
| | - Yi-Fan Li
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
| | - Riaz Ullah
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Essam A. Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Farrukh Gul
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
| | - Dao-Lin Du
- School of Emergency Management, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, China; (Z.-C.D.); (D.-L.D.)
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yi-Fan Zhang
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
| | - Hui Jia
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
| | - Shan-Shan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Nisar Uddin
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China;
| | - Irfan Ullah Khan
- Institute of Environment and Ecology, School of the Environmental and Safety Engineering, Zhenjiang 212013, China; (F.-L.K.); (Y.-F.L.); (F.G.); (Y.-F.Z.); (H.J.)
| |
Collapse
|
16
|
Yang S, Chen N, Qi J, Salam A, Khan AR, Azhar W, Yang C, Xu N, Wu J, Liu Y, Liu B, Gan Y. OsUGE2 Regulates Plant Growth through Affecting ROS Homeostasis and Iron Level in Rice. RICE (NEW YORK, N.Y.) 2024; 17:6. [PMID: 38212485 PMCID: PMC10784444 DOI: 10.1186/s12284-024-00685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/04/2024] [Indexed: 01/13/2024]
Abstract
BACKGROUND The growth and development of rice (Oryza sativa L.) are affected by multiple factors, such as ROS homeostasis and utilization of iron. Here, we demonstrate that OsUGE2, a gene encoding a UDP-glucose 4-epimerase, controls growth and development by regulating reactive oxygen species (ROS) and iron (Fe) level in rice. Knockout of this gene resulted in impaired growth, such as dwarf phenotype, weakened root growth and pale yellow leaves. Biochemical analysis showed that loss of function of OsUGE2 significantly altered the proportion and content of UDP-Glucose (UDP-Glc) and UDP-Galactose (UDP-Gal). Cellular observation indicates that the impaired growth may result from decreased cell length. More importantly, RNA-sequencing analysis showed that knockout of OsUGE2 significantly influenced the expression of genes related to oxidoreductase process and iron ion homeostasis. Consistently, the content of ROS and Fe are significantly decreased in OsUGE2 knockout mutant. Furthermore, knockout mutants of OsUGE2 are insensitive to both Fe deficiency and hydrogen peroxide (H2O2) treatment, which further confirmed that OsUGE2 control rice growth possibly through Fe and H2O2 signal. Collectively, these results reveal a new pathway that OsUGE2 could affect growth and development via influencing ROS homeostasis and Fe level in rice.
Collapse
Affiliation(s)
- Shuaiqi Yang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Nana Chen
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Jiaxuan Qi
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Abdul Salam
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Ali Raza Khan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Wardah Azhar
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Chunyan Yang
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Nuo Xu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Junyu Wu
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China
| | - Yihua Liu
- College of Agriculture and Forestry Sciences, Linyi University, Linyi, 276000, Shandong, China
| | - Bohan Liu
- College of Agriculture, Hunan Agricultural University, Changsha, 410128, China
| | - Yinbo Gan
- Zhejiang Key Lab of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
17
|
Singh T, Bisht N, Ansari MM, Chauhan PS. The hidden harmony: Exploring ROS-phytohormone nexus for shaping plant root architecture in response to environmental cues. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108273. [PMID: 38103339 DOI: 10.1016/j.plaphy.2023.108273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 12/19/2023]
Abstract
Root system architecture, encompassing lateral roots and root hairs, plays a vital in overall plant growth and stress tolerance. Reactive oxygen species (ROS) and plant hormones intricately regulate root growth and development, serving as signaling molecules that govern processes such as cell proliferation and differentiation. Manipulating the interplay between ROS and hormones has the potential to enhance nutrient absorption, stress tolerance, and agricultural productivity. In this review, we delve into how studying these processes provides insights into how plants respond to environmental changes and optimize growth patterns to better control cellular processes and stress responses in crops. We discuss various factors and complex signaling networks that may exist among ROS and phytohormones during root development. Additionally, the review highlights possible role of reactive nitrogen species (RNS) in ROS-phytohormone interactions and in shaping root system architecture according to environmental cues.
Collapse
Affiliation(s)
- Tanya Singh
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nikita Bisht
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India
| | - Mohd Mogees Ansari
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Puneet Singh Chauhan
- CSIR-National Botanical Research Institute (CSIR-NBRI), Rana Pratap Marg, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|
18
|
Wu J, Yang S, Chen N, Jiang Q, Huang L, Qi J, Xu G, Shen L, Yu H, Fan X, Gan Y. Nuclear translocation of OsMADS25 facilitated by OsNAR2.1 in reponse to nitrate signals promotes rice root growth by targeting OsMADS27 and OsARF7. PLANT COMMUNICATIONS 2023; 4:100642. [PMID: 37353931 PMCID: PMC10721473 DOI: 10.1016/j.xplc.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Nitrate is an important nitrogen source and signaling molecule that regulates plant growth and development. Although several components of the nitrate signaling pathway have been identified, the detailed mechanisms are still unclear. Our previous results showed that OsMADS25 can regulate root development in response to nitrate signals, but the mechanism is still unknown. Here, we try to answer two key questions: how does OsMADS25 move from the cytoplasm to the nucleus, and what are the direct target genes activated by OsMADS25 to regulate root growth after it moves to the nucleus in response to nitrate? Our results demonstrated that OsMADS25 moves from the cytoplasm to the nucleus in the presence of nitrate in an OsNAR2.1-dependent manner. Chromatin immunoprecipitation sequencing, chromatin immunoprecipitation qPCR, yeast one-hybrid, and luciferase experiments showed that OsMADS25 directly activates the expression of OsMADS27 and OsARF7, which are reported to be associated with root growth. Finally, OsMADS25-RNAi lines, the Osnar2.1 mutant, and OsMADS25-RNAi Osnar2.1 lines exhibited significantly reduced root growth compared with the wild type in response to nitrate supply, and expression of OsMADS27 and OsARF7 was significantly suppressed in these lines. Collectively, these results reveal a new mechanism by which OsMADS25 interacts with OsNAR2.1. This interaction is required for nuclear accumulation of OsMADS25, which promotes OsMADS27 and OsARF7 expression and root growth in a nitrate-dependent manner.
Collapse
Affiliation(s)
- Junyu Wu
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Shuaiqi Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Nana Chen
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Qining Jiang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Linli Huang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Jiaxuan Qi
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lisha Shen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
19
|
Liu Y, Xu G. Nitrogen-iron interaction as an emerging factor influencing crop productivity and nutrient use efficiency. MOLECULAR PLANT 2023; 16:1727-1729. [PMID: 37803824 DOI: 10.1016/j.molp.2023.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Affiliation(s)
- Ying Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China; MOA Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
20
|
Yan D, Nambara E. Conserved and unique functions of NIN-like proteins in nitrate sensing and signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 336:111842. [PMID: 37633494 DOI: 10.1016/j.plantsci.2023.111842] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
Nitrogen is the most abundant element in the atmosphere and serves as the foundation block of life, including plants on earth. Unlike carbon fixation through photosynthesis, plants rely heavily on external supports to acquire nitrogen. To this end, plants have adapted various strategies such as forming mutualistic relationships with nitrogen-fixing bacteria and evolving a large regulatory network that includes multiple transporters, sensors, and transcription factors for fine-tuning nitrate sensing and signaling. Nodule Inception (NIN) and NIN-like protein (NLP) are central in this network by executing multiple functions such as initiating and regulating the nodule symbiosis for nitrogen fixation, acting as the intracellular sensor to monitor the nitrate fluctuations in the environment, and activating the transcription of nitrate-responsive genes for optimal nitrogen uptake, assimilation, and usage. The involvement of NLPs in intracellular nitrate binding and early nitrate responses highlight their pivotal role in the primary nitrate response (PNR). Genome-wide reprogramming in response to nitrate by NLP is highly transient and rapid, requiring regulation in a precise and dynamic manner. This review aims to summarize recent progress in the study of NIN/NLP for a better understanding of the molecular basis of their roles and regulations in nitrate sensing and signaling, with the hope of shedding light on increasing biological nitrogen fixation and improving nitrogen use efficiency (NUE) to minimize fertilizer input in agriculture.
Collapse
Affiliation(s)
- Dawei Yan
- Department of Cell & Systems Biology, University of Toronto, Toronto M5S3B2, Ontario, Canada.
| | - Eiji Nambara
- Department of Cell & Systems Biology, University of Toronto, Toronto M5S3B2, Ontario, Canada
| |
Collapse
|
21
|
Song Y, Wan GY, Wang JX, Zhang ZS, Xia JQ, Sun LQ, Lu J, Ma CX, Yu LH, Xiang CB, Wu J. Balanced nitrogen-iron sufficiency boosts grain yield and nitrogen use efficiency by promoting tillering. MOLECULAR PLANT 2023; 16:1661-1677. [PMID: 37674316 DOI: 10.1016/j.molp.2023.09.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/19/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023]
Abstract
Crop yield plays a critical role in global food security. For optimal plant growth and maximal crop yields, nutrients must be balanced. However, the potential significance of balanced nitrogen-iron (N-Fe) for improving crop yield and nitrogen use efficiency (NUE) has not previously been addressed. Here, we show that balanced N-Fe sufficiency significantly increases tiller number and boosts yield and NUE in rice and wheat. NIN-like protein 4 (OsNLP4) plays a pivotal role in maintaining the N-Fe balance by coordinately regulating the expression of multiple genes involved in N and Fe metabolism and signaling. OsNLP4 also suppresses OsD3 expression and strigolactone (SL) signaling, thereby promoting tillering. Balanced N-Fe sufficiency promotes the nuclear localization of OsNLP4 by reducing H2O2 levels, reinforcing the functions of OsNLP4. Interestingly, we found that OsNLP4 upregulates the expression of a set of H2O2-scavenging genes to promote its own accumulation in the nucleus. Furthermore, we demonstrated that foliar spraying of balanced N-Fe fertilizer at the tillering stage can effectively increase tiller number, yield, and NUE of both rice and wheat in the field. Collectively, these findings reveal the previously unrecognized effects of N-Fe balance on grain yield and NUE as well as the molecular mechanism by which the OsNLP4-OsD3 module integrates N-Fe nutrient signals to downregulate SL signaling and thereby promote rice tillering. Our study sheds light on how N-Fe nutrient signals modulate rice tillering and provide potential innovative approaches that improve crop yield with reduced N fertilizer input for benefitting sustainable agriculture worldwide.
Collapse
Affiliation(s)
- Ying Song
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Guang-Yu Wan
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jing-Xian Wang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Zi-Sheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jin-Qiu Xia
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Liang-Qi Sun
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China
| | - Jie Lu
- School of Agronomy, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Chuan-Xi Ma
- School of Agronomy, Anhui Agricultural University, Hefei, Anhui Province 230036, China
| | - Lin-Hui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| | - Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Interdisciplinary Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, Anhui Province 230027, China.
| |
Collapse
|
22
|
Khan IU, Zhang YF, Shi XN, Qi SS, Zhang HY, Du DL, Gul F, Wang JH, Naz M, Shah SWA, Jia H, Li J, Dai ZC. Dose dependent effect of nitrogen on the phyto extractability of Cd in metal contaminated soil using Wedelia trilobata. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115419. [PMID: 37651793 DOI: 10.1016/j.ecoenv.2023.115419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/23/2023] [Accepted: 08/27/2023] [Indexed: 09/02/2023]
Abstract
Cadmium (Cd) is one of the toxic heavy metal that negatively affect plant growth and compromise food safety for human consumption. Nitrogen (N) is an essential macronutrient for plant growth and development. It may enhance Cd tolerance of invasive plant species by maintaining biochemical and physiological characteristics during phytoextraction of Cd. A comparative study was conducted to evaluate the phenotypical and physiological responses of invasive W. trilobata and native W. chinensis under low Cd (10 µM) and high Cd (80 µM) stress, along with different N levels (i.e., normal 91.05 mg kg-1 and low 0.9105 mg kg-1). Under low-N and Cd stress, the growth of leaves, stem and roots in W. trilobata was significantly increased by 35-23%, 25-28%, and 35-35%, respectively, compared to W. chinensis. Wedelia trilobata exhibited heightened antioxidant activities of catalase and peroxidase were significantly increased under Cd stress to alleviate oxidative stress. Similarly, flavonoid content was significantly increased by 40-50% in W. trilobata to promote Cd tolerance via activation of the secondary metabolites. An adverse effect of Cd in the leaves of W. chinensis was further verified by a novel hyperspectral imaging technology in the form of normalized differential vegetation index (NDVI) and photochemical reflectance index (PRI) compared to W. trilobata. Additionally, W. trilobata increased the Cd tolerance by regulating Cd accumulation in the shoots and roots, bolstering its potential for phytoextraction potential. This study demonstrated that W. trilobata positively responds to Cd with enhanced growth and antioxidant capabilities, providing a new platform for phytoremediation in agricultural lands to protect the environment from heavy metals pollution.
Collapse
Affiliation(s)
- Irfan Ullah Khan
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi-Fan Zhang
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xin-Ning Shi
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Shan-Shan Qi
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hai-Yan Zhang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; School of Inspection and Testing Certification, Changzhou Vocational Institute of Engineering, Changzhou 213164, China
| | - Dao-Lin Du
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Farrukh Gul
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jia-Hao Wang
- School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Syed Waqas Ali Shah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hui Jia
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jian Li
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhi-Cong Dai
- School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu Province, China.
| |
Collapse
|
23
|
Li N, Duan Y, Ye Q, Ma Y, Ma R, Zhao L, Zhu S, Yu F, Qi S, Wang Y. The Arabidopsis eIF4E1 regulates NRT1.1-mediated nitrate signaling at both translational and transcriptional levels. THE NEW PHYTOLOGIST 2023; 240:338-353. [PMID: 37424317 DOI: 10.1111/nph.19129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023]
Abstract
Identifying new nitrate regulatory genes and illustrating their mechanisms in modulating nitrate signaling are of great significance for achieving the high yield and nitrogen use efficiency (NUE) of crops. Here, we screened a mutant with defects in nitrate response and mapped the mutation to the gene eIF4E1 in Arabidopsis. Our results showed that eIF4E1 regulated nitrate signaling and metabolism. Ribo-seq and polysome profiling analysis revealed that eIF4E1 modulated the amount of some nitrogen (N)-related mRNAs being translated, especially the mRNA of NRT1.1 was reduced in the eif4e1 mutant. RNA-Seq results enriched some N-related genes, supporting that eIF4E1 is involved in nitrate regulation. The genetic analysis indicated that eIF4E1 worked upstream of NRT1.1 in nitrate signaling. In addition, an eIF4E1-interacting protein GEMIN2 was identified and found to be involved in nitrate signaling. Further investigation showed that overexpression of eIF4E1 promoted plant growth and enhanced yield and NUE. These results demonstrate that eIF4E1 regulates nitrate signaling by modulating NRT1.1 at both translational and transcriptional levels, laying the foundation for future research on the regulation of mineral nutrition at the translational level.
Collapse
Affiliation(s)
- Na Li
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yawen Duan
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Qing Ye
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yuhan Ma
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Rongjie Ma
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Lufei Zhao
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng, Shandong, 252000, China
| | - Sirui Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan, 410082, China
| | - Feng Yu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan University, Changsha, Hunan, 410082, China
| | - Shengdong Qi
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yong Wang
- College of Life Sciences, National Key Laboratory of Wheat Improvement, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| |
Collapse
|
24
|
Jia Y, Qin D, Zheng Y, Wang Y. Finding Balance in Adversity: Nitrate Signaling as the Key to Plant Growth, Resilience, and Stress Response. Int J Mol Sci 2023; 24:14406. [PMID: 37833854 PMCID: PMC10572113 DOI: 10.3390/ijms241914406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
To effectively adapt to changing environments, plants must maintain a delicate balance between growth and resistance or tolerance to various stresses. Nitrate, a significant inorganic nitrogen source in soils, not only acts as an essential nutrient but also functions as a critical signaling molecule that regulates multiple aspects of plant growth and development. In recent years, substantial advancements have been made in understanding nitrate sensing, calcium-dependent nitrate signal transmission, and nitrate-induced transcriptional cascades. Mounting evidence suggests that the primary response to nitrate is influenced by environmental conditions, while nitrate availability plays a pivotal role in stress tolerance responses. Therefore, this review aims to provide an overview of the transcriptional and post-transcriptional regulation of key components in the nitrate signaling pathway, namely, NRT1.1, NLP7, and CIPK23, under abiotic stresses. Additionally, we discuss the specificity of nitrate sensing and signaling as well as the involvement of epigenetic regulators. A comprehensive understanding of the integration between nitrate signaling transduction and abiotic stress responses is crucial for developing future crops with enhanced nitrogen-use efficiency and heightened resilience.
Collapse
Affiliation(s)
- Yancong Jia
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Debin Qin
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China;
| | - Yulu Zheng
- College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| | - Yang Wang
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China;
- College of Biological Sciences, China Agricultural University, Beijing 100193, China;
| |
Collapse
|
25
|
Han C, Wang L, Lyu J, Shi W, Yao L, Fan M, Bai MY. Brassinosteroid signaling and molecular crosstalk with nutrients in plants. J Genet Genomics 2023; 50:541-553. [PMID: 36914050 DOI: 10.1016/j.jgg.2023.03.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/25/2023] [Accepted: 03/02/2023] [Indexed: 03/15/2023]
Abstract
As sessile organisms, plants have evolved sophisticated mechanisms to optimize their growth and development in response to fluctuating nutrient levels. Brassinosteroids (BRs) are a group of plant steroid hormones that play critical roles in plant growth and developmental processes as well as plant responses to environmental stimuli. Recently, multiple molecular mechanisms have been proposed to explain the integration of BRs with different nutrient signaling processes to coordinate gene expression, metabolism, growth, and survival. Here, we review recent advances in understanding the molecular regulatory mechanisms of the BR signaling pathway and the multifaceted roles of BR in the intertwined sensing, signaling, and metabolic processes of sugar, nitrogen, phosphorus, and iron. Further understanding and exploring these BR-related processes and mechanisms will facilitate advances in crop breeding for higher resource efficiency.
Collapse
Affiliation(s)
- Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lingyan Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Jinyang Lyu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
26
|
Kumar N, Caldwell C, Iyer-Pascuzzi AS. The NIN-LIKE PROTEIN 7 transcription factor modulates auxin pathways to regulate root cap development in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:3047-3059. [PMID: 36787214 DOI: 10.1093/jxb/erad058] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 02/10/2023] [Indexed: 05/21/2023]
Abstract
The root cap is a small tissue located at the tip of the root with critical functions for root growth. Present in nearly all vascular plants, the root cap protects the root meristem, influences soil penetration, and perceives and transmits environmental signals that are critical for root branching patterns. To perform these functions, the root cap must remain relatively stable in size and must integrate endogenous developmental pathways with environmental signals, yet the mechanism is not clear. We previously showed that low pH conditions altered root cap development, and these changes are mediated by the NIN LIKE PROTEIN 7 (NLP7) transcription factor, a master regulator of nitrate signaling. Here we show that in Arabidopsis NLP7 integrates nitrate signaling with auxin pathways to regulate root cap development. We found that low nitrate conditions promote aberrant release of root cap cells. Nitrate deficiency impacts auxin pathways in the last layer of the root cap, and this is mediated in part by NLP7. Mutations in NLP7 abolish the auxin minimum in the last layer of the root cap and alter root cap expression of the auxin carriers PIN-LIKES 3 (PILS3) and PIN-FORMED 7 (PIN7) as well as transcription factors that regulate PIN expression. Together, our data reveal NLP7 as a link between endogenous auxin pathways and nitrate signaling in the root cap.
Collapse
Affiliation(s)
- Narender Kumar
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Chloe Caldwell
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| | - Anjali S Iyer-Pascuzzi
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, 915 W. State Street, West Lafayette, IN 47907, USA
| |
Collapse
|
27
|
Choi SJ, Lee Z, Jeong E, Kim S, Seo JS, Um T, Shim JS. Signaling pathways underlying nitrogen transport and metabolism in plants. BMB Rep 2023; 56:56-64. [PMID: 36658636 PMCID: PMC9978367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 01/21/2023] Open
Abstract
Nitrogen (N) is an essential macronutrient required for plant growth and crop production. However, N in soil is usually insufficient for plant growth. Thus, chemical N fertilizer has been extensively used to increase crop production. Due to negative effects of N rich fertilizer on the environment, improving N usage has been a major issue in the field of plant science to achieve sustainable production of crops. For that reason, many efforts have been made to elucidate how plants regulate N uptake and utilization according to their surrounding habitat over the last 30 years. Here, we provide recent advances focusing on regulation of N uptake, allocation of N by N transporting system, and signaling pathway controlling N responses in plants. [BMB Reports 2023; 56(2): 56-64].
Collapse
Affiliation(s)
- Su Jeong Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Zion Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Eui Jeong
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Sohyun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Jun Sung Seo
- Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Taeyoung Um
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea,Corresponding author. Tel: +82-62-530-0507; Fax: +82-62-530-2199; E-mail:
| |
Collapse
|
28
|
Yang H, Zhou J, Fei J, Ci K, Li D, Fan J, Wei C, Liang J, Xia R, Zhou J. Soil ammonium (NH 4+) toxicity thresholds for restoration grass species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120869. [PMID: 36528204 DOI: 10.1016/j.envpol.2022.120869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Ionic rare earth mining has resulted in large amounts of bare soils, and revegetation success plays an important role in mine site rehabilitation and environmental management. However, the mining soils still maintain high NH4+ concentrations that inhibit plant growth and NH4+ toxicity thresholds for restoration plants have not been established. Here we investigated the NH4+ toxicological effects and provided toxicity thresholds for grasses (Lolium perenne L. and Medicago sativa L.) commonly used in restoration. The results show that high NH4+ concentration not only reduces the plant biomass and soluble sugars in leaves but also increases the H2O2 and MDA content, and SOD, POD, and GPX activities in roots. The SOD activities and root biomass can be adopted as the most NH4+ sensitive biomarkers. Six ecotoxicological endpoints (root biomass, soluble sugars, proline, H2O2, MDA, and GSH) of ryegrass, eight ecotoxicological endpoints (root biomass, soluble sugars, proline, MDA, SOD, POD, GPX, and GSH) of alfalfa were selected to determine the threshold concentrations. The toxicity thresholds of NH4+ concentrations were proposed as 171.9 (EC5), 207.8 (EC10), 286.6 (EC25), 382.3 (EC50) mg kg-1 for ryegrass and 171.9 (EC5), 193.2 (EC10), 234.7 (EC25), 289.6 (EC50) mg kg-1 for alfalfa. The toxicity thresholds and the relation between plant physiological indicators and NH4+ concentrations can be used to assess the suitability of the investigated plants for ecological restoration strategies.
Collapse
Affiliation(s)
- Huixian Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China.
| | - Jiasai Fei
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaidong Ci
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Demin Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Jianbo Fan
- National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Chaoyang Wei
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiani Liang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| | - Ruizhi Xia
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; National Engineering and Technology Research Center for Red Soil Improvement, Red Soil Ecological Experiment Station, Chinese Academy of Sciences, Yingtan, 335211, China
| |
Collapse
|
29
|
Tarkowski ŁP, Signorelli S, Considine MJ, Montrichard F. Integration of reactive oxygen species and nutrient signalling to shape root system architecture. PLANT, CELL & ENVIRONMENT 2023; 46:379-390. [PMID: 36479711 PMCID: PMC10107350 DOI: 10.1111/pce.14504] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/30/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Yield losses due to nutrient deficiency are estimated as the primary cause of the yield gap worldwide. Understanding how plant roots perceive external nutrient status and elaborate morphological adaptations in response to it is necessary to develop reliable strategies to increase crop yield. In the last decade, reactive oxygen species (ROS) were shown to be key players of the mechanisms underlying root responses to nutrient limitation. ROS contribute in multiple ways to shape the root system in response to nutritional cues, both as direct effectors acting on cell wall architecture and as second messengers in signalling pathways. Here, we review the mutual interconnections existing between perception and signalling of the most common forms of the major macronutrients (nitrogen, phosphorus and potassium), and ROS in shaping plant root system architecture. We discuss recent advances in dissecting the integration of these elements and their impact on morphological traits of the root system, highlighting the functional ductility of ROS and enzymes implied in ROS metabolism, such as class III peroxidases.
Collapse
Affiliation(s)
| | - Santiago Signorelli
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Food and Plant Biology group, Departamento de Biología Vegetal, Facultad de AgronomíaUniversidad de la RepúblicaMontevideoUruguay
| | - Michael J. Considine
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular SciencesUniversity of Western AustraliaPerthWestern AustraliaAustralia
- Department of Primary Industries and Regional DevelopmentPerthWestern AustraliaAustralia
| | | |
Collapse
|
30
|
Zhu Y, Narsai R, He C, Wang Y, Berkowitz O, Whelan J, Liew LC. Coordinated regulation of the mitochondrial retrograde response by circadian clock regulators and ANAC017. PLANT COMMUNICATIONS 2023; 4:100501. [PMID: 36463409 PMCID: PMC9860193 DOI: 10.1016/j.xplc.2022.100501] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/10/2022] [Accepted: 11/30/2022] [Indexed: 06/16/2023]
Abstract
Mitochondrial retrograde signaling (MRS) supports photosynthetic function under a variety of conditions. Induction of mitochondrial dysfunction with myxothiazol (a specific inhibitor of the mitochondrial bc1 complex) or antimycin A (an inhibitor of the mitochondrial bc1 complex and cyclic electron transport in the chloroplast under light conditions) in the light and dark revealed diurnal control of MRS. This was evidenced by (1) significantly enhanced binding of ANAC017 to promoters in the light compared with the dark in Arabidopsis plants treated with myxothiazol (but not antimycin A), (2) overlap in the experimentally determined binding sites for ANAC017 and circadian clock regulators in the promoters of ANAC013 and AOX1a, (3) a diurnal expression pattern for ANAC017 and transcription factors it regulates, (4) altered expression of ANAC017-regulated genes in circadian clock mutants with and without myxothiazol treatment, and (5) a decrease in the magnitude of LHY and CCA1 expression in an ANAC017-overexpressing line and protein-protein interaction between ANAC017 and PIF4. This study also shows a large difference in transcriptome responses to antimycin A and myxothiazol in the dark: these responses are ANAC017 independent, observed in shoots and roots, similar to biotic challenge and salicylic acid responses, and involve ERF and ZAT transcription factors. This suggests that antimycin A treatment stimulates a second MRS pathway that is mediated or converges with salicylic acid signaling and provides a merging point with chloroplast retrograde signaling.
Collapse
Affiliation(s)
- Yanqiao Zhu
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Cunman He
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Yan Wang
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - James Whelan
- College of Life Science, Zhejiang University, Hangzhou, Zhejiang 310058, P.R. China; Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia
| | - Lim Chee Liew
- Department of Animal, Plant and Soil Science, ARC Centre of Excellence in Plant Energy Biology, La Trobe University, Bundoora, VIC 3086, Australia.
| |
Collapse
|
31
|
Melicher P, Dvořák P, Šamaj J, Takáč T. Protein-protein interactions in plant antioxidant defense. FRONTIERS IN PLANT SCIENCE 2022; 13:1035573. [PMID: 36589041 PMCID: PMC9795235 DOI: 10.3389/fpls.2022.1035573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The regulation of reactive oxygen species (ROS) levels in plants is ensured by mechanisms preventing their over accumulation, and by diverse antioxidants, including enzymes and nonenzymatic compounds. These are affected by redox conditions, posttranslational modifications, transcriptional and posttranscriptional modifications, Ca2+, nitric oxide (NO) and mitogen-activated protein kinase signaling pathways. Recent knowledge about protein-protein interactions (PPIs) of antioxidant enzymes advanced during last decade. The best-known examples are interactions mediated by redox buffering proteins such as thioredoxins and glutaredoxins. This review summarizes interactions of major antioxidant enzymes with regulatory and signaling proteins and their diverse functions. Such interactions are important for stability, degradation and activation of interacting partners. Moreover, PPIs of antioxidant enzymes may connect diverse metabolic processes with ROS scavenging. Proteins like receptor for activated C kinase 1 may ensure coordination of antioxidant enzymes to ensure efficient ROS regulation. Nevertheless, PPIs in antioxidant defense are understudied, and intensive research is required to define their role in complex regulation of ROS scavenging.
Collapse
|
32
|
Berry HM, Argueso CT. More than growth: Phytohormone-regulated transcription factors controlling plant immunity, plant development and plant architecture. CURRENT OPINION IN PLANT BIOLOGY 2022; 70:102309. [PMID: 36344376 DOI: 10.1016/j.pbi.2022.102309] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/10/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Activation of immunity by exogenous signals or mutations leading to autoimmunity has long been associated with decreased plant growth, known as the growth-defense tradeoff. Originally thought to be a redirection of metabolic resources towards defense and away from growth, recent studies have demonstrated that growth and defense can be uncoupled, indicating that metabolic regulation is not solely responsible for the growth-defense tradeoff. Immunity activation has effects on plant development beyond the reduction of plant biomass, including changes in plant architecture. Phytohormone signaling pathways, and crosstalk between these pathways, are responsible for regulating plant growth and development, and plant defense responses. Here we review the hormonal regulation of transcription factors that play roles in both defense and development, with a focus on their effects on plant architecture, and suggest the targeting of these transcription factors to increase plant immunity and change plant growth and form for enhancement of agronomical traits.
Collapse
Affiliation(s)
- Hannah M Berry
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Cristiana T Argueso
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA; Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
33
|
SnRK1 connects photosynthesis and nitrate signalling. NATURE PLANTS 2022; 8:992-993. [PMID: 36076074 DOI: 10.1038/s41477-022-01241-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
|
34
|
Wang H, Han C, Wang JG, Chu X, Shi W, Yao L, Chen J, Hao W, Deng Z, Fan M, Bai MY. Regulatory functions of cellular energy sensor SnRK1 for nitrate signalling through NLP7 repression. NATURE PLANTS 2022; 8:1094-1107. [PMID: 36050463 DOI: 10.1038/s41477-022-01236-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The coordinated metabolism of carbon and nitrogen is essential for optimal plant growth and development. Nitrate is an important molecular signal for plant adaptation to a changing environment, but how nitrate regulates plant growth under carbon deficiency conditions remains unclear. Here we show that the evolutionarily conserved energy sensor SnRK1 negatively regulates the nitrate signalling pathway. Nitrate promoted plant growth and downstream gene expression, but such effects were repressed when plants were grown under carbon deficiency conditions. Mutation of KIN10, the α-catalytic subunit of SnRK1, partially suppressed the inhibitory effects of carbon deficiency on nitrate-mediated plant growth. KIN10 phosphorylated NLP7, the master regulator of the nitrate signalling pathway, to promote its cytoplasmic localization and degradation. Furthermore, nitrate depletion induced KIN10 accumulation, whereas nitrate treatment promoted KIN10 degradation. Such KIN10-mediated NLP7 regulation allows carbon and nitrate availability to control optimal nitrate signalling and ensures the coordination of carbon and nitrogen metabolism in plants.
Collapse
Affiliation(s)
- Honglei Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jia-Gang Wang
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Xiaoqian Chu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
- Shanxi Key Laboratory of Minor Crops Germplasm Innovation and Molecular Breeding, College of Agriculture, Shanxi Agricultural University, Taigu, China
| | - Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Jie Chen
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Wei Hao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Zhiping Deng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, China.
| |
Collapse
|
35
|
Wu J, Song Y, Zhang ZS, Wang JX, Zhang X, Zang JY, Bai MY, Yu LH, Xiang CB. GAF domain is essential for nitrate-dependent AtNLP7 function. BMC PLANT BIOLOGY 2022; 22:366. [PMID: 35871642 PMCID: PMC9310391 DOI: 10.1186/s12870-022-03755-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Nitrate is an essential nutrient and an important signaling molecule in plants. However, the molecular mechanisms by which plants perceive nitrate deficiency signaling are still not well understood. Here we report that AtNLP7 protein transport from the nucleus to the cytoplasm in response to nitrate deficiency is dependent on the N-terminal GAF domain. With the deletion of the GAF domain, AtNLP7ΔGAF always remains in the nucleus regardless of nitrate availability. AtNLP7 ΔGAF also shows reduced activation of nitrate-induced genes due to its impaired binding to the nitrate-responsive cis-element (NRE) as well as decreased growth like nlp7-1 mutant. In addition, AtNLP7ΔGAF is unable to mediate the reduction of reactive oxygen species (ROS) accumulation upon nitrate treatment. Our investigation shows that the GAF domain of AtNLP7 plays a critical role in the sensing of nitrate deficiency signal and in the nitrate-triggered ROS signaling process.
Collapse
Affiliation(s)
- Jie Wu
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China.
| | - Ying Song
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China
| | - Zi-Sheng Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China
| | - Jing-Xian Wang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China
| | - Xuan Zhang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China
| | - Jian-Ye Zang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, Shandong Province, China
| | - Lin-Hui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and Institute of Future Agriculture, Northwest A&F University, Yangling, 712100, Shanxi, China
| | - Cheng-Bin Xiang
- Division of Life Sciences and Medicine, Division of Molecular & Cell Biophysics, Hefei National Science Center for Physical Sciences at the Microscale, MOE Key Laboratory for Membraneless Organelles and Cellular Dynamics, University of Science and Technology of China, The Innovation Academy of Seed Design, Chinese Academy of Sciences, Hefei, 230027, Anhui Province, China.
| |
Collapse
|
36
|
Sakuraba Y, Zhuo M, Yanagisawa S. RWP-RK domain-containing transcription factors in the Viridiplantae: biology and phylogenetic relationships. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4323-4337. [PMID: 35605260 DOI: 10.1093/jxb/erac229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
The RWP-RK protein family is a group of transcription factors containing the RWP-RK DNA-binding domain. This domain is an ancient motif that emerged before the establishment of the Viridiplantae-the green plants, consisting of green algae and land plants. The domain is mostly absent in other kingdoms but widely distributed in Viridiplantae. In green algae, a liverwort, and several angiosperms, RWP-RK proteins play essential roles in nitrogen responses and sexual reproduction-associated processes, which are seemingly unrelated phenomena but possibly interdependent in autotrophs. Consistent with related but diversified roles of the RWP-RK proteins in these organisms, the RWP-RK protein family appears to have expanded intensively, but independently, in the algal and land plant lineages. Thus, bryophyte RWP-RK proteins occupy a unique position in the evolutionary process of establishing the RWP-RK protein family. In this review, we summarize current knowledge of the RWP-RK protein family in the Viridiplantae, and discuss the significance of bryophyte RWP-RK proteins in clarifying the relationship between diversification in the RWP-RK protein family and procurement of sophisticated mechanisms for adaptation to the terrestrial environment.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mengna Zhuo
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shuichi Yanagisawa
- Plant Functional Biotechnology, Agro-Biotechnology Research Center, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
37
|
Liu Y, Maniero RA, Giehl RFH, Melzer M, Steensma P, Krouk G, Fitzpatrick TB, von Wirén N. PDX1.1-dependent biosynthesis of vitamin B 6 protects roots from ammonium-induced oxidative stress. MOLECULAR PLANT 2022; 15:820-839. [PMID: 35063660 DOI: 10.1016/j.molp.2022.01.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 11/05/2021] [Accepted: 01/17/2022] [Indexed: 05/10/2023]
Abstract
Despite serving as a major inorganic nitrogen source for plants, ammonium causes toxicity at elevated concentrations, inhibiting root elongation early on. While previous studies have shown that ammonium-inhibited root development relates to ammonium uptake and formation of reactive oxygen species (ROS) in roots, it remains unclear about the mechanisms underlying the repression of root growth and how plants cope with this inhibitory effect of ammonium. In this study, we demonstrate that ammonium-induced apoplastic acidification co-localizes with Fe precipitation and hydrogen peroxide (H2O2) accumulation along the stele of the elongation and differentiation zone in root tips, indicating Fe-dependent ROS formation. By screening ammonium sensitivity in T-DNA insertion lines of ammonium-responsive genes, we identified PDX1.1, which is upregulated by ammonium in the root stele and whose product catalyzes de novo biosynthesis of vitamin B6. Root growth of pdx1.1 mutants is hypersensitive to ammonium, while chemical complementation or overexpression of PDX1.1 restores root elongation. This salvage strategy requires non-phosphorylated forms of vitamin B6 that are able to quench ROS and rescue root growth from ammonium inhibition. Collectively, these results suggest that PDX1.1-mediated synthesis of non-phosphorylated B6 vitamers acts as a primary strategy to protect roots from ammonium-dependent ROS formation.
Collapse
Affiliation(s)
- Ying Liu
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Rodolfo A Maniero
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Ricardo F H Giehl
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Michael Melzer
- Structural Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany
| | - Priscille Steensma
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Gabriel Krouk
- BPMP, Université de Montpellier, CNRS, INRA, SupAgro, Montpellier, France
| | - Teresa B Fitzpatrick
- Department of Botany and Plant Biology, University of Geneva, 1211 Geneva, Switzerland
| | - Nicolaus von Wirén
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstrasse 3, 06466 Gatersleben, Germany.
| |
Collapse
|
38
|
Zang L, Tarkowski ŁP, Morère-Le Paven MC, Zivy M, Balliau T, Clochard T, Bahut M, Balzergue S, Pelletier S, Landès C, Limami AM, Montrichard F. The Nitrate Transporter MtNPF6.8 Is a Master Sensor of Nitrate Signal in the Primary Root Tip of Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2022; 13:832246. [PMID: 35371178 PMCID: PMC8971838 DOI: 10.3389/fpls.2022.832246] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/22/2022] [Indexed: 06/12/2023]
Abstract
Nitrate is not only an essential nutrient for plants, but also a signal involved in plant development. We have previously shown in the model legume Medicago truncatula, that the nitrate signal, which restricts primary root growth, is mediated by MtNPF6.8, a nitrate transporter. Nitrate signal also induces changes in reactive oxygen species accumulation in the root tip due to changes in cell wall peroxidase (PODs) activity. Thus, it was interesting to determine the importance of the role of MtNPF6.8 in the regulation of the root growth by nitrate and identify the POD isoforms responsible for the changes in POD activity. For this purpose, we compared in M. truncatula a npf6.8 mutant and nitrate insensitive line deficient in MtNPF6.8 and the corresponding wild and sensitive genotype for their transcriptomic and proteomic responses to nitrate. Interestingly, only 13 transcripts and no protein were differently accumulated in the primary root tip of the npf6.8-3 mutant line in response to nitrate. The sensitivity of the primary root tip to nitrate appeared therefore to be strongly linked to the integrity of MtNPF6.8 which acts as a master mediator of the nitrate signal involved in the control of the root system architecture. In parallel, 7,259 and 493 genes responded, respectively, at the level of transcripts or proteins in the wild type, 196 genes being identified by both their transcript and protein. By focusing on these 196 genes, a concordance of expression was observed for most of them with 143 genes being up-regulated and 51 being down-regulated at the two gene expression levels. Their ontology analysis uncovered a high enrichment in POD genes, allowing the identification of POD candidates involved in the changes in POD activity previously observed in response to nitrate.
Collapse
Affiliation(s)
- Lili Zang
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | | | | | - Michel Zivy
- PAPPSO, GQE – Le Moulon, INRA, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thierry Balliau
- PAPPSO, GQE – Le Moulon, INRA, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Thibault Clochard
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | | | - Sandrine Balzergue
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | - Sandra Pelletier
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | - Claudine Landès
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | - Anis M. Limami
- Institut Agro, INRAE, IRHS, SFR QUASAV, Université d’Angers, Angers, France
| | | |
Collapse
|
39
|
Feng ZQ, Li T, Wang X, Sun WJ, Zhang TT, You CX, Wang XF. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111158. [PMID: 35151440 DOI: 10.1016/j.plantsci.2021.111158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen is an essential nutrient for plant growth and development. Low utilization of nitrogen fertilizer during agricultural production causes a series of environmental problems, such as water eutrophication, soil acidity, and air pollution. Investigating the patterns and mechanisms of crop NO3- absorption and utilization therefore key to fully improving crop nitrogen utilization rates and promoting sustainable agricultural development. Apple is one of the most important horticultural crops in the world. Its nitrogen demand by apple during the growth period is very high, but few studies have been performed on apple genes, that regulate the NO3- response. Here, we found that the apple transcription factor MdNLP7 promoted nitrogen absorption and assimilation by activating the expression of MdNIA2 and MdNRT1.1. MdNLP7 also regulated H2O2 content by increasing catalase activity, which may also influence nitrate utilization. Our findings provide insight into the mechanisms by which MdNLP7 controls nitrate utilization in apple.
Collapse
Affiliation(s)
- Zi-Quan Feng
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Tong Li
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wei-Jian Sun
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Ting-Ting Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
40
|
Huang P, Shen F, Abbas A, Wang H, Du Y, Du D, Hussain S, Javed T, Alamri S. Effects of Different Nitrogen Forms and Competitive Treatments on the Growth and Antioxidant System of Wedelia trilobata and Wedelia chinensis Under High Nitrogen Concentrations. FRONTIERS IN PLANT SCIENCE 2022; 13:851099. [PMID: 35401616 PMCID: PMC8988914 DOI: 10.3389/fpls.2022.851099] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 02/01/2022] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) is one of the essential nutrients for plant growth. Appropriate application of N can improve the N use efficiency (NUE) and significantly promote plants' growth. However, under N toxic conditions, the relationship between the growth and antioxidant system of invasive plants under different N forms and competitive treatments is not fully understood. Therefore, in this study, the performance of invasive species Wedelia trilobata and its native species Wedelia chinensis was evaluated under two sets of N forms and ratios, namely, NH4 +-N(AN)/NO3 --N(NN) = 2:1 and NH4 +-N(AN)/NO3 --N(NN) = 1:2 along with two intraspecific and interspecific competitions under without N and high N level of 15 g N⋅m-2 year-1, respectively. Data regarding the growth indices, antioxidant enzyme activities, including peroxidase (POD) and catalase (CAT), malondialdehyde (MDA), and proline contents were determined. Results showed that for competitive treatments, growth status was better for interspecific competition than intraspecific competition. The plant biomass of W. trilobata was significantly higher than that of W. chinensis. N significantly promoted the plants' growth in terms of leaf area and biomass yield, and the antioxidant enzyme activities were significantly increased under a high N treatment than that of the control. Among N forms/ratios, ammonium N (AN)/nitrate N (NN) = 2:1 significantly enhanced the enzyme activity, particularly in W. trilobata. Furthermore, for intraspecific competition, MDA contents of W. trilobata were significantly decreased compared to that of W. chinensis. In conclusion, our results showed that W. trilobata adapted well under competitive conditions through better growth and antioxidant defense system.
Collapse
Affiliation(s)
- Ping Huang
- School of Environment and Safety Engineering, Institute of Environment and Ecology, Jiangsu University, Zhenjiang, China
- *Correspondence: Ping Huang,
| | - Fangyuan Shen
- School of Environment and Safety Engineering, Institute of Environment and Ecology, Jiangsu University, Zhenjiang, China
| | - Adeel Abbas
- School of Environment and Safety Engineering, Institute of Environment and Ecology, Jiangsu University, Zhenjiang, China
| | - Hao Wang
- School of Environment and Safety Engineering, Institute of Environment and Ecology, Jiangsu University, Zhenjiang, China
| | - Yizhou Du
- Faculty of Engineering, School of Computer Science, University of Sydney, Sydney, NSW, Australia
| | - Daolin Du
- School of Environment and Safety Engineering, Institute of Environment and Ecology, Jiangsu University, Zhenjiang, China
- Daolin Du,
| | - Sadam Hussain
- College of Agronomy, Northwest A&F University, Yangling, China
| | - Talha Javed
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad, Pakistan
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Yin X, Tang M, Xia X, Yu J. BRASSINAZOLE RESISTANT 1 Mediates Brassinosteroid-Induced Calvin Cycle to Promote Photosynthesis in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:811948. [PMID: 35126434 PMCID: PMC8810641 DOI: 10.3389/fpls.2021.811948] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
Calvin cycle is a sequence of enzymatic reactions that assimilate atmospheric CO2 in photosynthesis. Multiple components are known to participate in the induction or suppression of the Calvin cycle but the mechanism of its regulation by phytohormones is still unclear. Brassinosteroids (BRs) are steroid phytohormones that promote photosynthesis and crop yields. In this study, we study the role of BRs in regulating Calvin cycle genes to further understand the regulation of the Calvin cycle by phytohormones in tomatoes. BRs and their signal effector BRASSINAZOLE RESISTANT 1 (BZR1) can enhance the Calvin cycle activity and improve the photosynthetic ability. BRs increased the accumulation of dephosphorylated form of BZR1 by 94% and induced an 88-126% increase in the transcription of key genes in Calvin cycle FBA1, RCA1, FBP5, and PGK1. BZR1 activated the transcription of these Calvin cycle genes by directly binding to their promoters. Moreover, silencing these Calvin cycle genes impaired 24-epibrassinolide (EBR)-induced enhancement of photosynthetic rate, the quantum efficiency of PSII, and V c,max and J max . Taken together, these results strongly suggest that BRs regulate the Calvin cycle in a BZR1-dependent manner in tomatoes. BRs that mediate coordinated regulation of photosynthetic genes are potential targets for increasing crop yields.
Collapse
Affiliation(s)
- Xiaowei Yin
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Mingjia Tang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Xiaojian Xia
- Department of Horticulture, Zhejiang University, Hangzhou, China
- *Correspondence: Xiaojian Xia,
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth, Development, and Quality Improvement, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|