1
|
Liu X, Tian C, Xiong D. A putative elicitor CcHE1 from Cytospora chrysosperma enhances plant resistance to phytopathogenic fungi. PEST MANAGEMENT SCIENCE 2025. [PMID: 40357689 DOI: 10.1002/ps.8900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 04/23/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025]
Abstract
BACKGROUND Plant pathogens secrete a large number of effectors to host cells during the infection processes, which will manipulate plant immunity and promote fungal infection. Contrarily, some of the effectors can be recognized by the host plants, and then activate the immunity reactions. Therefore, unveiling the critical roles of effectors during the pathogen-plant interactions will benefit disease control. RESULTS In this study, we screened and identified a candidate effector, CcHE1, from Cytospora chrysosperma, the main agent of wood canker disease and causes serious loss annually in China. Transient expression of CcHE1 in N. benthamiana leaves showed that it triggered plant cell death in a dose-dependent manner. Subsequently, we found that infiltration injection of 5 μM CcHE1 into N. benthamiana and poplar leaves could not cause cell necrosis but triggered strong defense responses, including reactive oxygen species accumulation, callose deposition, and up-regulated expression of defense-related genes, and NbBAK1 and NbSOBIR1 are needed for plant defense response induced by CcHE1. Importantly, the CcHE1 could enhance the plant resistance to several tested pathogenic fungal species such as Botrytis cinerea, Colletotrichum gloeosporioides, C. chrysosperma, Botryosphaeria dothidea and Cryphonectria parasitica, but had no antifungal activity. Remarkably, deletion of CcHE1 did not affect the growth and pathogenicity of C. chrysosperma. CONCLUSION Our results found a putative elicitor CcHE1 which can induce plant immunity, and therefore improve plant broad-spectrum disease resistance. These results provide a new insight into disease control. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xinru Liu
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing, China
| | - Chengming Tian
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing, China
| | - Dianguang Xiong
- State Key Laboratory of Efficient Production of Forest Resources, College of Forestry, Beijing Forestry University, Beijing, China
| |
Collapse
|
2
|
Liu S, Xing T, Liu R, Gao S, Yang J, Tian T, Zhang C, Sun S, Zhao C. Interaction Between Glycoside Hydrolase FsGH28c from Fusarium solani and PnPUB35 Confers Resistance in Piper nigrum. Int J Mol Sci 2025; 26:4189. [PMID: 40362427 PMCID: PMC12071851 DOI: 10.3390/ijms26094189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/10/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Pathogens deploy various molecular mechanisms to overcome host defenses, among which glycoside hydrolases (GHs) play a critical role as virulence factors. Understanding the functional roles of these enzymes is essential for uncovering pathogen-host interactions and developing strategies for disease management. Fusarium wilt has occurred in the main Piper nigrum cultivation regions, which seriously affects the yield and quality of P. nigrum. Here, we identified and characterized FsGH28c, a GH28 family member in Fusarium solani. Its expression was significantly upregulated during the infection of black pepper (Piper nigrum) roots by F. solani cv. WN-1, indicating its potential role in pathogenicity. FsGH28c elicited cell death in Nicotiana benthamiana and modulated the expression of genes related to pathogenesis. FsGH28c exerts a positive influence on the pathogenicity of F. solani. The knockout of FsGH28c mutant strains markedly attenuated F. solani 's virulence in black pepper plants. The knockout mutant strains decrease the ability of F. solani to utilize carbon sources. The FsGH28c deletion did not affect mycelial growth on PDA but did impact spore development. We identified a U-box protein, PnPUB35, interacting with FsGH28c using yeast two-hybrid and bimolecular fluorescence complementation assays. PnPUB35 conferred enhanced resistance to F. solani in black pepper through positive regulation. These findings suggest that FsGH28c may function as a virulence factor by modulating host immune responses through its interaction with PnPUB35.
Collapse
Affiliation(s)
- Shichao Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (S.L.); (R.L.); (S.G.); (J.Y.); (T.T.)
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning 571533, China
| | - Tianci Xing
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (T.X.); (C.Z.)
| | - Ruibing Liu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (S.L.); (R.L.); (S.G.); (J.Y.); (T.T.)
| | - Shengfeng Gao
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (S.L.); (R.L.); (S.G.); (J.Y.); (T.T.)
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning 571533, China
| | - Jianfeng Yang
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (S.L.); (R.L.); (S.G.); (J.Y.); (T.T.)
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning 571533, China
| | - Tian Tian
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (S.L.); (R.L.); (S.G.); (J.Y.); (T.T.)
| | - Chong Zhang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, China; (T.X.); (C.Z.)
| | - Shiwei Sun
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, China; (S.L.); (R.L.); (S.G.); (J.Y.); (T.T.)
- Key Laboratory of Genetic Improvement and Quality Regulation for Tropical Spice and Beverage Crops of Hainan Province, Wanning 571533, China
| | - Chenchen Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
3
|
Zhang X, Wen J, Jia S, He Y, Yang W, Chen W, Li D, Liu R, Liu Q, Cai Y, Cheng K, Zhang X. Glutamine synthetase GhGLN1.5 regulates arbuscular mycorrhizal symbiosis and Verticillium wilt resistance in cotton by modulating inorganic nitrogen assimilation. THE NEW PHYTOLOGIST 2025; 246:702-717. [PMID: 40007156 DOI: 10.1111/nph.70035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 02/05/2025] [Indexed: 02/27/2025]
Abstract
Arbuscular mycorrhizal (AM) fungi play a crucial role in the nitrogen uptake and Verticillium wilt resistance of cotton. The absorbed inorganic nitrogen is converted into organic nitrogen through nitrogen assimilation mediated by glutamine synthetase (GS). However, the role of GS in AM symbiosis and Verticillium wilt resistance remains unclear. We identified an AM fungus-induced GS gene, GhGLN1.5, which participated in AM symbiosis. Both in vivo and in vitro analyses demonstrated that GhGLN1.5 exhibits catalytic activity of GS. The knockdown of GhGLN1.5 resulted in a reduction of AM colonization, nitrogen uptake capacity, and AM symbiosis-dependent resistance to Verticillium wilt. Heterologous expression of GhGLN1.5 enhanced AM symbiosis, increased GS activity, and promoted plant growth. The knockout of GhGLN1.5 in cotton inhibited AM symbiosis. Furthermore, we identified an AM fungus-induced ethylene response factor gene GhWRI3 through yeast one-hybrid library screening and found that GhWRI3 activates the expression of GhGLN1.5 via AW-box element. These findings provide valuable insights into the molecular mechanisms of GhGLN1.5 expression in AM symbiosis, nitrogen assimilation, and Verticillium wilt resistance in cotton, suggesting potential strategies for regulating AM symbiosis in cotton through the WRI3-GLN1.5 module.
Collapse
Affiliation(s)
- Xiangyu Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jingshang Wen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Shuangjie Jia
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yiming He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Wan Yang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Wenbo Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Dongxiao Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Ruojun Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Qian Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yingfan Cai
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Kai Cheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xiao Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
- School of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450001, China
| |
Collapse
|
4
|
Miao G, Xie J, Fu Y, Li B, Chen T, Lin Y, Yu X, Hsiang T, Jiang D, Cheng J. A Necrotrophic Phytopathogen-Derived GPI-Anchored Protein Functions as an Elicitor to Activate Plant Immunity and Enhance Resistance. MOLECULAR PLANT PATHOLOGY 2025; 26:e70072. [PMID: 40151048 PMCID: PMC11950629 DOI: 10.1111/mpp.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/20/2025] [Accepted: 02/27/2025] [Indexed: 03/29/2025]
Abstract
GPI-anchored proteins are widely distributed in eukaryotic cells. However, their functions are still poorly understood in necrotrophic pathogenic fungi. Here, based on Agrobacterium tumefaciens-mediated transient expression screening, a novel secreted GPI-anchored protein, SsGP1, that induces plant cell death was characterised in Sclerotinia sclerotiorum. The homologues of SsGP1 are broadly distributed among ascomycetes. SsGP1 can activate plant immune responses, including reactive oxygen species (ROS) burst and the up-regulated expression of immunity genes, in a manner that is dependent on BAK1 but independent of SOBIR1. Treatment of plants with SsGP1 protein enhanced the resistance of Nicotiana benthamiana and Arabidopsis thaliana to S. sclerotiorum. Our findings reveal that SsGP1 functions as a pathogen-associated molecular pattern (PAMP) and is recognised by plants in a BAK1-dependent manner.
Collapse
Affiliation(s)
- Guangxing Miao
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiatao Xie
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yanping Fu
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Bo Li
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tao Chen
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Yang Lin
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Xiao Yu
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Tom Hsiang
- School of Environmental SciencesUniversity of GuelphGuelphOntarioCanada
| | - Daohong Jiang
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| | - Jiasen Cheng
- National Key Laboratory of Agricultural MicrobiologyHuazhong Agricultural UniversityWuhanHubeiChina
- The Provincial Key Lab of Plant Pathology of Hubei Province, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanHubeiChina
| |
Collapse
|
5
|
Zhang S, Liu L, Li W, Yin M, Hu Q, Chen S, Chen F, Liu Y, Guan Z, Jiang J. Alternaria alternata effector AaAlta1 targets CmWD40 and participates in regulating disease resistance in Chrysanthemum morifolium. PLoS Pathog 2025; 21:e1012942. [PMID: 40163540 PMCID: PMC11957361 DOI: 10.1371/journal.ppat.1012942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 01/28/2025] [Indexed: 04/02/2025] Open
Abstract
Black spot diseases caused by the necrotrophic fungal pathogen Alternaria alternata adversely affect the growth and yield of many plants worldwide. However, the molecular mechanisms underlying the virulence and pathogenicity of A. alternata remain largely unknown. In this study, we report the identification of a novel effector Alta1, secreted by A. alternata, which not only contributes to its virulence but also triggers the cell death and defense of the host plant. The expression of Alta1 in Chrysanthemum morifolium activated jasmonic acid (JA) signaling, which, in turn, enhanced plant resistance to A. alternata. Moreover, we found that Alta1 targeted the WD40-repeat protein of chrysanthemum (CmWD40) after entering host cells. Notably, the CmWD40 gene showed rhythmic basal expression, and the overexpression of CmWD40 increased the resistance of chrysanthemum leaves against A. alternata, whereas its loss of function led to a decrease in this resistance. The results of the comparative transcriptomics and JA content analyses indicated that CmWD40 is possibly involved in the accumulation and signaling of JA. The transcript levels of the MYC2 gene were significantly upregulated in lines overexpressing the CmWD40 gene compared with that in the wild type. Further, the results of the infection assay revealed that CmWD40 positively modulated Alta1-induced defense response by activating MYC2 transcription. Overall, the results obtained in this study demonstrate that identified effector Alta1, recognized by the circadian rhythm gene CmWD40, triggers JA-induced immune response and enhances disease resistance in chrysanthemum plants.
Collapse
Affiliation(s)
- Shuhuan Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Lina Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Wenjie Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Mengru Yin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Qian Hu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Ye Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, P. R. China
- Zhongshan Biological Breeding Laboratory, Nanjing, Jiangsu, P. R. China
| |
Collapse
|
6
|
Zhang D, Zhou H, Zhang Y, Zhao Y, Zhang Y, Feng X, Lin H. Diverse roles of MYB transcription factors in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:539-562. [PMID: 40013511 DOI: 10.1111/jipb.13869] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 01/25/2025] [Indexed: 02/28/2025]
Abstract
MYB transcription factors (TFs), one of the largest TF families in plants, are involved in various plant-specific processes as the central regulators, such as in phenylpropanoid metabolism, cell cycle, formation of root hair and trichome, phytohormones responses, reproductive growth and abiotic or biotic stress responses. Here we summarized multiple roles and explained the molecular mechanisms of MYB TFs in plant development and stress adaptation. The exploration of MYB TFs contributes to a better comprehension of molecular regulation in plant development and environmental adaptability.
Collapse
Affiliation(s)
- Dawei Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Huapeng Zhou
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yang Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yuqing Zhao
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Yiyi Zhang
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Xixian Feng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| | - Honghui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
7
|
Gao L, Wang P, Yan X, Li J, Ma L, Hu M, Ge X, Li F, Hou Y. Feruloyl-CoA 6'-hydroxylase-mediated scopoletin accumulation enhances cotton resistance to Verticillium dahliae. PLANT PHYSIOLOGY 2024; 196:3007-3022. [PMID: 39324621 DOI: 10.1093/plphys/kiae508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/19/2024] [Accepted: 08/22/2024] [Indexed: 09/27/2024]
Abstract
Verticillium dahliae is a widespread and destructive soilborne fungus that can cause vascular wilt disease and substantially reduce cotton (Gossypium hirsutum) yield and quality. Scopoletin, a natural coumarin, exhibits antifungal activity against V. dahliae; however, the mechanisms of action remain unclear. In this study, we reveal the regulatory activities of feruloyl-CoA 6'-hydroxylase 1 (GhF6'H1) in enhancing V. dahliae resistance by modulating scopoletin accumulation. Silencing GhF6'H1, encoding the pivotal enzyme in scopoletin biosynthesis, through virus-induced silencing resulted in increased susceptibility to V. dahliae and decreased scopoletin accumulation. In transgenic cotton plants expressing GhF6'H1 under the CaMV 35S promoter, GhF6'H1 modulated scopoletin accumulation, affecting cotton resistance to V. dahliae, with increased resistance associated with increased scopoletin accumulation. GhF6'H1 has been identified as a direct target of the transcription factor GhWRKY33-like, indicating that GhWRKY33-like can bind to and activate the GhF6'H1 promoter. Moreover, GhWRKY33-like overexpression in cotton-enhanced resistance to V. dahliae through scopoletin accumulation, phenylpropanoid pathway activation, and upregulation of defense response genes. Ectopic expression of GhF6'H1 resulted in effective catalysis of scopoletin synthesis in enzyme assays using substrates like feruloyl coenzyme A, while molecular docking analysis revealed specific amino acid residues playing crucial roles in establishing salt-bridge interactions with the substrate. These findings suggest that GhF6'H1, regulated by GhWRKY33-like, plays a crucial role in enhancing cotton resistance to V. dahliae by modulating scopoletin accumulation.
Collapse
Affiliation(s)
- Linying Gao
- College of Science, China Agricultural University, Beijing 100193, China
| | - Ping Wang
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xin Yan
- College of Science, China Agricultural University, Beijing 100193, China
| | - Jingmin Li
- College of Science, China Agricultural University, Beijing 100193, China
| | - Li Ma
- College of Science, China Agricultural University, Beijing 100193, China
| | - Menghui Hu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Xiaoyang Ge
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan 455000, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Yuxia Hou
- College of Science, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Chun J, Wan M, Guo H, Zhang Q, Feng Y, Tang Y, Zhu B, Sang Y, Jing S, Chen T, Zeng Z. Cytokinin-mediated enhancement of potato growth and yield by Verticillium Dahliae effector VDAL under low temperature stress. BMC PLANT BIOLOGY 2024; 24:1115. [PMID: 39578722 PMCID: PMC11585244 DOI: 10.1186/s12870-024-05840-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/18/2024] [Indexed: 11/24/2024]
Abstract
The pathogen Verticillium dahliae secreted effector V. dahliae Aspf2-like protein (VDAL) has been found to cause leaf wilting in cotton, but the ectopic expression of VDAL-encoding gene enhances the resistance to V. dahliae in cotton and Arabidopsis. The application of the VDAL protein powder with optimal dosage promotes the growth and yield in multiple crop species, such as rice and wheat. However, the promotive effects of VDAL on these aspects are sporadically reported in asexually propagated species, including potato, while the molecular regulatory network involved in the process remains unclear. In this study, we observed that VDAL promotes sprouting of the potato pre-basic seed (PBS) tubers and enhances the development of both above-ground and below-ground tissues. Strikingly, VDAL increases the tuber yield in both greenhouse and field trials by up to 18.97%. The time-course transcriptomic analysis and the endogenous phytohormone detection revealed that cytokinin may play an important role in response to VDAL-promoted growth. Interestingly, VDAL-treated PBS tubers show higher resistance to cold temperature (late-spring cold), a phenomenon that is diminished when the lovastatin, a cytokinin inhibitor is applied, indicating that the VDAL-promoted potato growth, particularly under low temperature, is associated with cytokinin.
Collapse
Affiliation(s)
- Jun Chun
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Min Wan
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Hongwei Guo
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Qingpei Zhang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Yan Feng
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Yunchuan Tang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, 610101, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Youshun Sang
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, 611130, China
| | - Shenglin Jing
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, 610101, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, Sichuan, 610101, China
| | - Tao Chen
- Chengdu Academy of Agricultural and Forestry Sciences, Chengdu, Sichuan, 611130, China.
| | - Zixian Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, Sichuan, 610101, China.
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, Sichuan, 610101, China.
| |
Collapse
|
9
|
Zhao T, Li N, Kong J, Li X, Huang C, Wang Y, Zhang C, Li Y. An activator-represssor complex of VvWRKYs regulate proanthocyanidins biosynthesis through co-targeting VvLAR in grape. Int J Biol Macromol 2024; 281:136653. [PMID: 39423972 DOI: 10.1016/j.ijbiomac.2024.136653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/09/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Proanthocyanidins (PAs) are vital polyphenolic compounds in plants with various biological functions. Although WRKY transcription factors are known to play important roles, their specific involvement in regulating PAs metabolism in grapes remains underexplored. In this study, we identified six candidate WRKY genes potentially involved in PAs synthesis by transiently overexpressing them in Nicotiana tabacum leaves. Among these, VvWRKY57 was found to enhance PAs synthesis. Further functional analysis, achieved by overexpressing of VvWRKY57 in grape calli, confirmed its positive role in PAs biosynthesis. Using yeast one-hybrid (Y1H), dual-luciferase reporter (DLR) assays, and electrophoretic mobility shift assay (EMSA), we demonstrated that VvWRKY57 binds to the promoter of leucocyanidin reductase (VvLAR2) and stimulates its activity. Additionally, yeast two-hybrid (Y2H), bimolecular fluorescence complementary (BiFC), and pull-down assays revealed that VvWRKY57 forms heterodimers with VvWRKY20, while VvWTKY20 also forms homodimers. Interestingly, overexpression of VvWRKY20 was found to inhibit PAs synthesis. Y1H, DLR, and EMSA further showed that VvWRKY20 binds to the promoters of VvLAR1 and VvLAR2, repressing their transcription activity. When VvWRKY57 and VvWRKY20 were co-expressed, VvLAR2 promoter activity and PAs synthesis were suppressed. Moreover, we discovered that VvPUB26, an E3 ubiquitin ligase physically interacts with both VvWRKY57 and VvWRKY20. VvPUB26 mediated the degradation of VvWRKY20 but did not influence the degradation of VvWRKY57. In conclusion, this study highlights the regulatory interplay between WRKY transcription factors in PAs biosynthesis, offering insights into their distinct roles in modulating this important metabolic pathway in grapes.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Na Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Jixiang Kong
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China
| | - Xiaohan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Congbo Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yuejin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Chaohong Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
10
|
Tian Z, Chen B, Li H, Pei X, Sun Y, Sun G, Pan Z, Dai P, Gao X, Geng X, Peng Z, Jia Y, Hu D, Wang L, Pang B, Zhang A, Du X, He S. Strigolactone-gibberellin crosstalk mediated by a distant silencer fine-tunes plant height in upland cotton. MOLECULAR PLANT 2024; 17:1539-1557. [PMID: 39169630 DOI: 10.1016/j.molp.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 08/23/2024]
Abstract
Optimal plant height is crucial in modern agriculture, influencing lodging resistance and facilitating mechanized crop production. Upland cotton (Gossypium hirsutum) is the most important fiber crop globally; however, the genetic basis underlying plant height remains largely unexplored. In this study, we conducted a genome-wide association study to identify a major locus controlling plant height (PH1) in upland cotton. This locus encodes gibberellin 2-oxidase 1A (GhPH1) and features a 1133-bp structural variation (PAVPH1) located approximately 16 kb upstream. The presence or absence of PAVPH1 influences the expression of GhPH1, thereby affecting plant height. Further analysis revealed that a gibberellin-regulating transcription factor (GhGARF) recognizes and binds to a specific CATTTG motif in both the GhPH1 promoter and PAVPH1. This interaction downregulates GhPH1, indicating that PAVPH1 functions as a distant upstream silencer. Intriguingly, we found that DWARF53 (D53), a key repressor of the strigolactone (SL) signaling pathway, directly interacts with GhGARF to inhibit its binding to targets. Moreover, we identified a previously unrecognized gibberellin-SL crosstalk mechanism mediated by the GhD53-GhGARF-GhPH1/PAVPH1 module, which is crucial for regulating plant height in upland cotton. These findings shed light on the genetic basis and gene interaction network underlying plant height, providing valuable insights for the development of semi-dwarf cotton varieties through precise modulation of GhPH1 expression.
Collapse
Affiliation(s)
- Zailong Tian
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Baojun Chen
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongge Li
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Xinxin Pei
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Yaru Sun
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Gaofei Sun
- School of Computer Science & Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Panhong Dai
- School of Computer Science & Information Engineering, Anyang Institute of Technology, Anyang, China
| | - Xu Gao
- National Supercomputing Center in Zhengzhou, Zhengzhou University, Zhengzhou, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhen Peng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Daowu Hu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Liru Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Baoyin Pang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Ai Zhang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiongming Du
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China; National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China.
| | - Shoupu He
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China; Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
11
|
Su Y, Ngea GLN, Wang K, Lu Y, Godana EA, Ackah M, Yang Q, Zhang H. Deciphering the mechanism of E3 ubiquitin ligases in plant responses to abiotic and biotic stresses and perspectives on PROTACs for crop resistance. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2811-2843. [PMID: 38864414 PMCID: PMC11536463 DOI: 10.1111/pbi.14407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/12/2024] [Accepted: 05/27/2024] [Indexed: 06/13/2024]
Abstract
With global climate change, it is essential to find strategies to make crops more resistant to different stresses and guarantee food security worldwide. E3 ubiquitin ligases are critical regulatory elements that are gaining importance due to their role in selecting proteins for degradation in the ubiquitin-proteasome proteolysis pathway. The role of E3 Ub ligases has been demonstrated in numerous cellular processes in plants responding to biotic and abiotic stresses. E3 Ub ligases are considered a class of proteins that are difficult to control by conventional inhibitors, as they lack a standard active site with pocket, and their biological activity is mainly due to protein-protein interactions with transient conformational changes. Proteolysis-targeted chimeras (PROTACs) are a new class of heterobifunctional molecules that have emerged in recent years as relevant alternatives for incurable human diseases like cancer because they can target recalcitrant proteins for destruction. PROTACs interact with the ubiquitin-proteasome system, principally the E3 Ub ligase in the cell, and facilitate proteasome turnover of the proteins of interest. PROTAC strategies harness the essential functions of E3 Ub ligases for proteasomal degradation of proteins involved in dysfunction. This review examines critical advances in E3 Ub ligase research in plant responses to biotic and abiotic stresses. It highlights how PROTACs can be applied to target proteins involved in plant stress response to mitigate pathogenic agents and environmental adversities.
Collapse
Affiliation(s)
- Yingying Su
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Guillaume Legrand Ngolong Ngea
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
- Institute of Fisheries Sciences, University of DoualaDoualaCameroon
| | - Kaili Wang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Yuchun Lu
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Esa Abiso Godana
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Michael Ackah
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Qiya Yang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| | - Hongyin Zhang
- School of Food and Biological EngineeringJiangsu UniversityZhenjiangChina
| |
Collapse
|
12
|
Wang Y, Qin J, Wei M, Liao X, Shang W, Chen J, Subbarao KV, Hu X. Verticillium dahliae Elicitor VdSP8 Enhances Disease Resistance Through Increasing Lignin Biosynthesis in Cotton. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39327679 DOI: 10.1111/pce.15170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/22/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024]
Abstract
Verticillium wilt caused by the soil-borne fungus Verticillium dahliae Kleb., is a destructive plant disease that instigates severe losses in many crops. Improving plant resistance to Verticillium wilt has been a challenge in most crops. In this study, a V. dahliae secreted protein VdSP8 was identified and shown to activate hyper-sensitive response (HR) and systemic acquired resistance (SAR) to Pseudomonas syringae pv. tomato DC3000 (Pst DC3000) and Botrytis cinerea in tobacco plants. We identified a β-glucosidase named GhBGLU46 as a cotton plant target of VdSP8. VdSP8 interacts with GhBGLU46 both in vivo and in vitro and promotes the β-glucosidase activity of GhBGLU46. Silencing of GhBGLU46 reduced the expression of genes involved in lignin biosynthesis, such as GhCCR4, GhCCoAOMT2, GhCAD3 and GhCAD6, thus decreasing lignin deposition and increasing Verticillium wilt susceptibility. We have shown that GhBGLU46 is indispensable for the function of VdSP8 in plant resistance. These results suggest that plants have also evolved a strategy to exploit the invading effector protein VdSP8 to enhance plant resistance.
Collapse
Affiliation(s)
- Yajuan Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jun Qin
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Mengmeng Wei
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiwen Liao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Wenjing Shang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, c/o Sam Farr United States Crop Improvement and Protection Research Center, Salinas, California, USA
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs, and College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
13
|
Wang J, Liao Z, Jin X, Liao L, Zhang Y, Zhang R, Zhao X, Qin H, Chen J, He Y, Zhuang C, Tang J, Huang S. Xanthomonas oryzae pv. oryzicola effector Tal10a directly activates rice OsHXK5 expression to facilitate pathogenesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2423-2436. [PMID: 38995679 DOI: 10.1111/tpj.16929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/17/2024] [Accepted: 07/01/2024] [Indexed: 07/13/2024]
Abstract
Bacterial leaf streak (BLS), caused by Xanthomonas oryzae pv. oryzicola (Xoc), is a major bacterial disease in rice. Transcription activator-like effectors (TALEs) from Xanthomonas can induce host susceptibility (S) genes and facilitate infection. However, knowledge of the function of Xoc TALEs in promoting bacterial virulence is limited. In this study, we demonstrated the importance of Tal10a for the full virulence of Xoc. Through computational prediction and gene expression analysis, we identified the hexokinase gene OsHXK5 as a host target of Tal10a. Tal10a directly binds to the gene promoter region and activates the expression of OsHXK5. CRISPR/Cas9-mediated gene editing in the effector binding element (EBE) of OsHXK5 significantly increases rice resistance to Xoc, while OsHXK5 overexpression enhances the susceptibility of rice plants and impairs rice defense responses. Moreover, simultaneous editing of the promoters of OsSULTR3;6 and OsHXK5 confers robust resistance to Xoc in rice. Taken together, our findings highlight the role of Tal10a in targeting OsHXK5 to promote infection and suggest that OsHXK5 represents a potential target for engineering rice resistance to Xoc.
Collapse
Affiliation(s)
- Jiuxiang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Zhouxiang Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
- School of Public Health, Guangxi Medical University, Nanning, 530021, China
| | - Xia Jin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Lindong Liao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Yaqi Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Rongbo Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Xiyao Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Huajun Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Jianghong Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Yongqiang He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, 530004, Guangxi, China
| | - Chuxiong Zhuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Jiliang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Sheng Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| |
Collapse
|
14
|
Zhao T, Huang C, Li N, Ge Y, Wang L, Tang Y, Wang Y, Li Y, Zhang C. Ubiquitin ligase VvPUB26 in grapevine promotes proanthocyanidin synthesis and resistance to powdery mildew. PLANT PHYSIOLOGY 2024; 195:2891-2910. [PMID: 38688011 DOI: 10.1093/plphys/kiae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 05/02/2024]
Abstract
Proanthocyanidins (PAs) are an important group of flavonoids that contribute to astringency, color, and flavor in grapes (Vitis vinifera) and wines. They also play a crucial role in enhancing plant resistance to various stresses. However, the underlying regulatory mechanism governing PAs biosynthesis, particularly in relation to conferring resistance to powdery mildew, has not been extensively explored. This study focused on identifying a key player in PAs biosynthesis, namely the plant U-box (PUB) E3 ubiquitin ligase VvPUB26. We discovered that overexpression of VvPUB26 in grapes leads to a significant increase in PAs content, whereas interfering with VvPUB26 has the opposite effect. Additionally, our findings demonstrated that overexpression of VvPUB26 in transgenic grapevines enhances defense against powdery mildew while interfering with VvPUB26 results in increased susceptibility to the pathogen. Interestingly, we observed that VvPUB26 interacts with the WRKY transcription factor VvWRKY24, thereby facilitating ubiquitination and degradation processes. Through RNA-Seq analysis, we found that VvWRKY24 primarily participates in secondary metabolites biosynthesis, metabolic pathways, and plant-pathogen interaction. Notably, VvWRKY24 directly interacts with the promoters of dihydroflavonol-4-reductase (DFR) and leucoanthocyanidin reductase (LAR) to inhibit PAs biosynthesis. Meanwhile, VvWRKY24 also influences the expression of MYB transcription factor genes related to PAs synthesis. In conclusion, our results unveil a regulatory module involving VvPUB26-VvWRKY24-VvDFR/VvLAR that plays a fundamental role in governing PAs biosynthesis in grapevines. These findings enhance our understanding of the relationship between PAs biosynthesis and defense mechanisms against powdery mildew.
Collapse
Affiliation(s)
- Ting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yaqi Ge
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, P.R. China, Yangling, Shaanxi 712100, China
| |
Collapse
|
15
|
Miao F, Chen W, Zhao Y, Zhao P, Sang X, Lu J, Wang H. The RING-Type E3 Ubiquitin Ligase Gene GhDIRP1 Negatively Regulates Verticillium dahliae Resistance in Cotton ( Gossypium hirsutum). PLANTS (BASEL, SWITZERLAND) 2024; 13:2047. [PMID: 39124165 PMCID: PMC11314081 DOI: 10.3390/plants13152047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024]
Abstract
Cotton is one of the world's most important economic crops. Verticillium wilt is a devastating cotton disease caused by Verticillium dahliae, significantly impacting cotton yield and quality. E3 ubiquitin ligases are essential components of the ubiquitin-mediated 26S proteasome system, responsible for recognizing ubiquitinated target proteins and promoting their degradation, which play a crucial regulatory role in plant immune responses. In this study, on the basis of the confirmation of differential expression of GhDIRP1, a RING-type E3 ubiquitin ligase encoding gene, in two cotton varieties resistant (Zhongzhimian 2) or susceptible (Jimian 11) to V. dahliae, we demonstrated that GhDIRP1 is a negative regulator of V. dahliae resistance because silencing GhDIRP1 in cotton and heterogeneously overexpressing the gene in Arabidopsis enhanced and compromised resistance to V. dahliae, respectively. The GhDIRP1-mediated immune response seemed to be realized through multiple physiological pathways, including hormone signaling, reactive oxygen species, and lignin biosynthesis. Based on the sequences of GhDIRP1 isolated from Zhongzhimian 2 and Jimian 11, we found that GhDIRP1 had identical coding but different promoter sequences in the two varieties, with the promoter of Zhongzhimian 2 being more active than that of Jimian 11 because the former drove a stronger expression of GUS and LUC reporter genes. The results link the ubiquitination pathway to multiple physiological pathways acting in the cotton immune response and provide a candidate gene for breeding cotton varieties resistant to V. dahliae.
Collapse
Affiliation(s)
- Fenglin Miao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Wei Chen
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Yunlei Zhao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| | - Pei Zhao
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Xiaohui Sang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Jianhua Lu
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
| | - Hongmei Wang
- State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China; (F.M.); (Y.Z.); (P.Z.); (X.S.)
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University, Zhengzhou 450000, China
| |
Collapse
|
16
|
Tian Z, Qin H, Chen B, Pan Z, Jia Y, Du X, He S. GhMAX2 Contributes to Auxin-Mediated Fiber Elongation in Cotton ( Gossypium hirsutum). PLANTS (BASEL, SWITZERLAND) 2024; 13:2041. [PMID: 39124159 PMCID: PMC11314591 DOI: 10.3390/plants13152041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
Strigolactones (SLs) represent a new group of phytohormones that play a pivotal role in the regulation of plant shoot branching and the development of adventitious roots. In cotton (Gossypium hirsutum, Gh), SLs play a crucial role in the regulation of fiber cell elongation and secondary cell wall thickness. However, the underlying molecular mechanisms of SL signaling involved in fiber cell development are largely unknown. In this study, we report two SL-signaling genes, GhMAX2-3 and GhMAX2-6, which positively regulate cotton fiber elongation. Further protein-protein interaction and degradation assays showed that the repressor of the auxin cascade GhIAA17 serves as a substrate for the F-box E3 ligase GhMAX2. The in vivo ubiquitination assay suggested that GhMAX2-3 and GhMAX2-6 ubiquitinate GhIAA17 and coordinately degrade GhIAA17 with GhTIR1. The findings of this investigation offer valuable insights into the roles of GhMAX2-mediated SL signaling in cotton and establish a solid foundation for future endeavors aimed at optimizing cotton plant cultivation.
Collapse
Affiliation(s)
- Zailong Tian
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China; (Z.T.); (X.D.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (B.C.); (Y.J.)
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455099, China; (H.Q.); (Z.P.)
| | - Haijin Qin
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455099, China; (H.Q.); (Z.P.)
| | - Baojun Chen
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (B.C.); (Y.J.)
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455099, China; (H.Q.); (Z.P.)
| | - Zhaoe Pan
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455099, China; (H.Q.); (Z.P.)
| | - Yinhua Jia
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (B.C.); (Y.J.)
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455099, China; (H.Q.); (Z.P.)
| | - Xiongming Du
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China; (Z.T.); (X.D.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (B.C.); (Y.J.)
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455099, China; (H.Q.); (Z.P.)
| | - Shoupu He
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China; (Z.T.); (X.D.)
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (B.C.); (Y.J.)
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455099, China; (H.Q.); (Z.P.)
| |
Collapse
|
17
|
Zhang X, Jia S, He Y, Wen J, Li D, Yang W, Yue Y, Li H, Cheng K, Zhang X. Wall-associated kinase GhWAK13 mediates arbuscular mycorrhizal symbiosis and Verticillium wilt resistance in cotton. THE NEW PHYTOLOGIST 2024; 242:2180-2194. [PMID: 38095050 DOI: 10.1111/nph.19468] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/22/2023] [Indexed: 05/14/2024]
Abstract
The cell wall is the major interface for arbuscular mycorrhizal (AM) symbiosis. However, the roles of cell wall proteins and cell wall synthesis in AM symbiosis remain unclear. We reported that a novel wall-associated kinase 13 (GhWAK13) positively regulates AM symbiosis and negatively regulates Verticillium wilt resistance in cotton. GhWAK13 transcription was induced by AM symbiosis and Verticillium dahliae (VD) infection. GhWAK13 is located in the plasma membrane and expressed in the arbuscule-containing cortical cells of mycorrhizal cotton roots. GhWAK13 silencing inhibited AM colonization and repressed gene expression of the mycorrhizal pathway. Moreover, GhWAK13 silencing improved Verticillium wilt resistance and triggered the expression of immunity genes. Therefore, GhWAK13 is considered an immune suppressor required for AM symbiosis and disease resistance. GhWAK7A, a positive regulator of Verticillium wilt resistance, was upregulated in GhWAK13-silenced cotton plants. Silencing GhWAK7A improved AM symbiosis. Oligogalacturonides application also suppressed AM symbiosis. Finally, GhWAK13 negatively affected the cellulose content by regulating the transcription of cellulose synthase genes. The results of this study suggest that immunity suppresses AM symbiosis in cotton. GhWAK13 affects AM symbiosis by suppressing immune responses.
Collapse
Affiliation(s)
- Xiangyu Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Shuangjie Jia
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Yiming He
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Jingshang Wen
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Dongxiao Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Wan Yang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Ying Yue
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Huiling Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Kai Cheng
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| | - Xiao Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, Henan University, Kaifeng, 475001, China
| |
Collapse
|
18
|
Sun Y, Tian Z, Zuo D, Wang Q, Song G. GhUBC10-2 mediates GhGSTU17 degradation to regulate salt tolerance in cotton (Gossypium hirsutum). PLANT, CELL & ENVIRONMENT 2024; 47:1606-1624. [PMID: 38282268 DOI: 10.1111/pce.14839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 01/30/2024]
Abstract
Ubiquitin-conjugating enzyme (UBC) is a crucial component of the ubiquitin-proteasome system, which contributes to plant growth and development. While some UBCs have been identified as potential regulators of abiotic stress responses, the underlying mechanisms of this regulation remain poorly understood. Here, we report a cotton (Gossypium hirsutum) UBC gene, GhUBC10-2, which negatively regulates the salt stress response. We found that the gain of function of GhUBC10-2 in both Arabidopsis (Arabidopsis thaliana) and cotton leads to reduced salinity tolerance. Additionally, GhUBC10-2 interacts with glutathione S-transferase (GST) U17 (GhGSTU17), forming a heterodimeric complex that promotes GhGSTU17 degradation. Intriguingly, GhUBC10-2 can be self-polyubiquitinated, suggesting that it possesses E3-independent activity. Our findings provide new insights into the PTM of plant GST-mediated salt response pathways. Furthermore, we found that the WRKY transcription factor GhWRKY13 binds to the GhUBC10-2 promoter and suppresses its expression under salt conditions. Collectively, our study unveils a regulatory module encompassing GhWRKY13-GhUBC10-2-GhGSTU17, which orchestrates the modulation of reactive oxygen species homeostasis to enhance salt tolerance.
Collapse
Affiliation(s)
- Yaru Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
| | - Dongyun Zuo
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiaolian Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Guoli Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
19
|
Wu S, Hu C, Zhu C, Fan Y, Zhou J, Xia X, Shi K, Zhou Y, Foyer CH, Yu J. The MYC2-PUB22-JAZ4 module plays a crucial role in jasmonate signaling in tomato. MOLECULAR PLANT 2024; 17:598-613. [PMID: 38341757 DOI: 10.1016/j.molp.2024.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/06/2023] [Accepted: 02/06/2024] [Indexed: 02/13/2024]
Abstract
Jasmonates (JAs), a class of lipid-derived stress hormones, play a crucial role across an array of plant physiological processes and stress responses. Although JA signaling is thought to rely predominantly on the degradation of specific JAZ proteins by SCFCOI1, it remains unclear whether other pathways are involved in the regulation of JAZ protein stability. Here, we report that PUB22, a plant U-box type E3 ubiquitin ligase, plays a critical role in the regulation of plant resistance against Helicoverpa armigera and other JA responses in tomato. Whereas COI1 physically interacts with JAZ1/2/5/7, PUB22 physically interacts with JAZ1/3/4/6. PUB22 ubiquitinates JAZ4 to promote its degradation via the 26S proteasome pathway. Importantly, we observed that pub22 mutants showreduced resistance to H. armigera, whereas jaz4 single mutants and jaz1 jaz3 jaz4 jaz6 quadruple mutants have enhanced resistance. The hypersensitivity of pub22 mutants to herbivores could be partially rescued by JAZ4 mutation. Moreover, we found that expression of PUB22 can be transcriptionally activated by MYC2, thus forming a positive feedback circuit in JA signaling. We noticed that the PUB22-JAZ4 module also regulates other JA responses, including defense against B. cinerea, inhibition of root elongation, and anthocyanin accumulation. Taken together, these results indicate that PUB22 plays a crucial role in plant growth and defense responses, together with COI1-regulated JA signaling, by targeting specific JAZs.
Collapse
Affiliation(s)
- Shaofang Wu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Chaoyi Hu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China
| | - Changan Zhu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanfen Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; College of Horticulture, Northwest Agriculture & Forestry University, Xianyang 712100, China
| | - Jie Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaojia Xia
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Kai Shi
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Yanhong Zhou
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston B15 2TT, UK
| | - Jingquan Yu
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou 310058, China; Hainan Institute, Zhejiang University, Yazhou Bay Science and Technology City, Sanya 572025, China; Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Zhou X, Li Y, Wang J, Zhao Y, Wang H, Han Y, Lin X. Genome-wide identification of U-box gene family and expression analysis in response to saline-alkali stress in foxtail millet ( Setaria italica L. Beauv). Front Genet 2024; 15:1356807. [PMID: 38435060 PMCID: PMC10904469 DOI: 10.3389/fgene.2024.1356807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
E3 ubiquitin ligases are central modifiers of plant signaling pathways that regulate protein function, localization, degradation, and other biological processes by linking ubiquitin to target proteins. E3 ubiquitin ligases include proteins with the U-box domain. However, there has been no report about the foxtail millet (Setaria italica L. Beauv) U-box gene family (SiPUB) to date. To explore the function of SiPUBs, this study performed genome-wide identification of SiPUBs and expression analysis of them in response to saline-alkali stress. A total of 70 SiPUBs were identified, which were unevenly distributed on eight chromosomes. Phylogenetic and conserved motif analysis demonstrated that SiPUBs could be clustered into six subfamilies (I-VI), and most SiPUBs were closely related to the homologues in rice. Twenty-eight types of cis-acting elements were identified in SiPUBs, most of which contained many light-responsive elements and plant hormone-responsive elements. Foxtail millet had 19, 78, 85, 18, and 89 collinear U-box gene pairs with Arabidopsis, rice, sorghum, tomato, and maize, respectively. Tissue specific expression analysis revealed great variations in SiPUB expression among different tissues, and most SiPUBs were relatively highly expressed in roots, indicating that SiPUBs may play important roles in root development or other growth and development processes of foxtail millet. Furthermore, the responses of 15 SiPUBs to saline-alkali stress were detected by qRT-PCR. The results showed that saline-alkali stress led to significantly differential expression of these 15 SiPUBs, and SiPUB20/48/70 may play important roles in the response mechanism against saline-alkali stress. Overall, this study provides important information for further exploration of the biological function of U-box genes.
Collapse
Affiliation(s)
- Xiaoke Zhou
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yun Li
- Research Center of Rural Vitalization, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jian Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yuxue Zhao
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Huimin Wang
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Yucui Han
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Xiaohu Lin
- Hebei Key Laboratory of Crop Stress Biology, College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
21
|
Fu Q, Yang J, Zhang K, Yin K, Xiang G, Yin X, Liu G, Xu Y. Plasmopara viticola effector PvCRN11 induces disease resistance to downy mildew in grapevine. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:873-891. [PMID: 37950600 DOI: 10.1111/tpj.16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/09/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
The downy mildew of grapevine (Vitis vinifera L.) is caused by Plasmopara viticola and is a major production problem in most grape-growing regions. The vast majority of effectors act as virulence factors and sabotage plant immunity. Here, we describe in detail one of the putative P. viticola Crinkler (CRN) effector genes, PvCRN11, which is highly transcribed during the infection stages in the downy mildew-susceptible grapevine V. vinifera cv. 'Pinot Noir' and V. vinifera cv. 'Thompson Seedless'. Cell death-inducing activity analyses reveal that PvCRN11 was able to induce spot cell death in the leaves of Nicotiana benthamiana but did not induce cell death in the leaves of the downy mildew-resistant V. riparia accession 'Beaumont' or of the downy mildew-susceptible 'Thompson Seedless'. Unexpectedly, stable expression of PvCRN11 inhibited the colonization of P. viticola in grapevine and Phytophthora capsici in Arabidopsis. Both transgenic grapevine and Arabidopsis constitutively expressing PvCRN11 promoted plant immunity. PvCRN11 is localized in the nucleus and cytoplasm, whereas PvCRN11-induced plant immunity is nucleus-independent. The purified protein PvCRN11Opt initiated significant plant immunity extracellularly, leading to enhanced accumulations of reactive oxygen species, activation of MAPK and up-regulation of the defense-related genes PR1 and PR2. Furthermore, PvCRN11Opt induces BAK1-dependent immunity in the apoplast, whereas PvCRN11 overexpression in intracellular induces BAK1-independent immunity. In conclusion, the PvCRN11 protein triggers resistance against P. viticola in grapevine, suggesting a potential for the use of PvCRN11 in grape production as a protectant against downy mildew.
Collapse
Affiliation(s)
- Qingqing Fu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Jing Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Kangzhuang Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Kaixin Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Guotian Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling, Shaanxi, P.R. China
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, P.R. China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, P.R. China
| |
Collapse
|
22
|
Qiu P, Zheng B, Yuan H, Yang Z, Lindsey K, Wang Y, Ming Y, Zhang L, Hu Q, Shaban M, Kong J, Zhang X, Zhu L. The elicitor VP2 from Verticillium dahliae triggers defence response in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:497-511. [PMID: 37883523 PMCID: PMC10826990 DOI: 10.1111/pbi.14201] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/25/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023]
Abstract
Verticillium dahliae is a widespread and destructive soilborne vascular pathogenic fungus that causes serious diseases in dicot plants. Here, comparative transcriptome analysis showed that the number of genes upregulated in defoliating pathotype V991 was significantly higher than in the non-defoliating pathotype 1cd3-2 during the early response of cotton. Combined with analysis of the secretome during the V991-cotton interaction, an elicitor VP2 was identified, which was highly upregulated at the early stage of V991 invasion, but was barely expressed during the 1cd3-2-cotton interaction. Full-length VP2 could induce cell death in several plant species, and which was dependent on NbBAK1 but not on NbSOBIR1 in N. benthamiana. Knock-out of VP2 attenuated the pathogenicity of V991. Furthermore, overexpression of VP2 in cotton enhanced resistance to V. dahliae without causing abnormal plant growth and development. Several genes involved in JA, SA and lignin synthesis were significantly upregulated in VP2-overexpressing cotton. The contents of JA, SA, and lignin were also significantly higher than in the wild-type control. In summary, the identified elicitor VP2, recognized by the receptor in the plant membrane, triggers the cotton immune response and enhances disease resistance.
Collapse
Affiliation(s)
- Ping Qiu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Baoxin Zheng
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Hang Yuan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Zhaoguang Yang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | | | - Yan Wang
- College of Plant Protection, Nanjing Agricultural UniversityNanjingPeople's Republic of China
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Qin Hu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Muhammad Shaban
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Department of Plant Breeding and GeneticsUniversity of Agriculture FaisalabadFaisalabadPakistan
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural SciencesUrumqiPeople's Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanPeople's Republic of China
- Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanPeople's Republic of China
| |
Collapse
|
23
|
Wang Y, Liao X, Shang W, Qin J, Xu X, Hu X. The secreted feruloyl esterase of Verticillium dahliae modulates host immunity via degradation of GhDFR. MOLECULAR PLANT PATHOLOGY 2024; 25:e13431. [PMID: 38353627 PMCID: PMC10866084 DOI: 10.1111/mpp.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Feruloyl esterase (ferulic acid esterase, FAE) is an essential component of many biological processes in both eukaryotes and prokaryotes. This research aimed to investigate the role of FAE and its regulation mechanism in plant immunity. We identified a secreted feruloyl esterase VdFAE from the hemibiotrophic plant pathogen Verticillium dahliae. VdFAE acted as an important virulence factor during V. dahliae infection, and triggered plant defence responses, including cell death in Nicotiana benthamiana. Deletion of VdFAE led to a decrease in the degradation of ethyl ferulate. VdFAE interacted with Gossypium hirsutum protein dihydroflavanol 4-reductase (GhDFR), a positive regulator in plant innate immunity, and promoted the degradation of GhDFR. Furthermore, silencing of GhDFR led to reduced resistance of cotton plants against V. dahliae. The results suggested a fungal virulence strategy in which a fungal pathogen secretes FAE to interact with host DFR and interfere with plant immunity, thereby promoting infection.
Collapse
Affiliation(s)
- Yajuan Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiwen Liao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Wenjing Shang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jun Qin
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB East MallingWest MallingUK
| | - Xiaoping Hu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
24
|
Liu K, Shi L, Luo H, Zhang K, Liu J, Qiu S, Li X, He S, Liu Z. Ralstonia solanacearum effector RipAK suppresses homodimerization of the host transcription factor ERF098 to enhance susceptibility and the sensitivity of pepper plants to dehydration. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:121-144. [PMID: 37738430 DOI: 10.1111/tpj.16479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 08/03/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
Plants have evolved a sophisticated immune system to defend against invasion by pathogens. In response, pathogens deploy copious effectors to evade the immune responses. However, the molecular mechanisms used by pathogen effectors to suppress plant immunity remain unclear. Herein, we report that an effector secreted by Ralstonia solanacearum, RipAK, modulates the transcriptional activity of the ethylene-responsive factor ERF098 to suppress immunity and dehydration tolerance, which causes bacterial wilt in pepper (Capsicum annuum L.) plants. Silencing ERF098 enhances the resistance of pepper plants to R. solanacearum infection not only by inhibiting the host colonization of R. solanacearum but also by increasing the immunity and tolerance of pepper plants to dehydration and including the closure of stomata to reduce the loss of water in an abscisic acid signal-dependent manner. In contrast, the ectopic expression of ERF098 in Nicotiana benthamiana enhances wilt disease. We also show that RipAK targets and inhibits the ERF098 homodimerization to repress the expression of salicylic acid-dependent PR1 and dehydration tolerance-related OSR1 and OSM1 by cis-elements in their promoters. Taken together, our study reveals a regulatory mechanism used by the R. solanacearum effector RipAK to increase virulence by specifically inhibiting the homodimerization of ERF098 and reprogramming the transcription of PR1, OSR1, and OSM1 to boost susceptibility and dehydration sensitivity. Thus, our study sheds light on a previously unidentified strategy by which a pathogen simultaneously suppresses plant immunity and tolerance to dehydration by secreting an effector to interfere with the activity of a transcription factor and manipulate plant transcriptional programs.
Collapse
Affiliation(s)
- Kaisheng Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lanping Shi
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongli Luo
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Kan Zhang
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jianxin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shanshan Qiu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xia Li
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shuilin He
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhiqin Liu
- Key Laboratory of Applied Genetics of Universities in Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
25
|
Liu F, Cai S, Wu P, Dai L, Li X, Ai N, Feng G, Wang N, Zhou B. General Regulatory Factor7 regulates innate immune signalling to enhance Verticillium wilt resistance in cotton. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:468-482. [PMID: 37776224 DOI: 10.1093/jxb/erad385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/28/2023] [Indexed: 10/02/2023]
Abstract
Sessile growing plants are always vulnerable to microbial pathogen attacks throughout their lives. To fend off pathogen invasion, plants have evolved a sophisticated innate immune system that consists of cell surface receptors and intracellular receptors. Somatic embryogenesis receptor kinases (SERKs) belong to a small group of leucine-rich repeat receptor-like kinases (LRR-RLKs) that function as co-receptors regulating diverse physiological processes. GENRAL REGULATORY FACTOR (GRF) proteins play an important role in physiological signalling transduction. However, the function of GRF proteins in plant innate immune signalling remains elusive. Here, we identified a GRF gene, GauGRF7, that is expressed both constitutively and in response to fungal pathogen infection. Intriguingly, silencing of GRF7 compromised plant innate immunity, resulting in susceptibility to Verticillium dahliae infection. Both transgenic GauGRF7 cotton and transgenic GauGRF7 Arabidopsis lines enhanced the innate immune response to V. dahliae infection, leading to high expression of two helper NLRs (hNLR) genes (ADR1 and NRG1) and pathogenesis-related genes, and increased ROS production and salicylic acid level. Moreover, GauGRF7 interacted with GhSERK1, which positively regulated GRF7-mediated innate immune response in cotton and Arabidopsis. Our findings revealed the molecular mechanism of the GRF protein in plant immune signaling and offer potential opportunities for improving plant resistance to V. dahliae infection.
Collapse
Affiliation(s)
- Fujie Liu
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Sheng Cai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
- Nanjing Forestry University, 159 Longpan Road, Nanjing 210095, Jiangsu, People's Republic of China
| | - Peng Wu
- College of Plant Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Lingjun Dai
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| | - Xinyi Li
- College of Plant Science, Huazhong Agricultural University, Wuhan 430070, Hubei, People's Republic of China
| | - Nijiang Ai
- Shihezi Agricultural Science Research Institute, Shihezi 832000, Xinjiang, People's Republic of China
| | - Guoli Feng
- Shihezi Agricultural Science Research Institute, Shihezi 832000, Xinjiang, People's Republic of China
| | - Ningshan Wang
- Shihezi Agricultural Science Research Institute, Shihezi 832000, Xinjiang, People's Republic of China
| | - Baoliang Zhou
- National Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, and Collaborative Innovation Center for Modern Crop Production co-sponsored by Province and Ministry, Cotton Germplasm Enhancement and Application Engineering Research Center (Ministry of Education), Nanjing Agricultural University, Nanjing 210095, Jiangsu, People's Republic of China
| |
Collapse
|
26
|
Zhao H, Huang J, Zhao X, Yu L, Wang X, Zhao C, nasab HR, Tang C, Wang X. Stripe Rust Effector Pst_9302 Inhibits Wheat Immunity to Promote Susceptibility. PLANTS (BASEL, SWITZERLAND) 2023; 13:94. [PMID: 38202402 PMCID: PMC10780974 DOI: 10.3390/plants13010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Puccinia striiformis f. sp. tritici is an obligate biotrophic fungus that causes destructive stripe rust disease in wheat. During infection, Pst secretes virulence effectors via a specific infection structure-the haustorium-inside host cells to disturb host immunity and promote fungal colonization and expansion. Hence, the identification and functional analyses of Pst effectors are of great significance in deciphering the Pst pathogenicity mechanism. Here, we identified one candidate Pst effector Pst_9302 that could suppress Bax-triggered cell death in Nicotiana benthamiana. qRT-PCR analyses showed that the transcript levels of Pst_9302 were highly increased during the early infection stages of Pst. The transient expression of Pst_9302 in wheat via the type-three secretion system (T3SS) significantly inhibited the callose deposition induced by Pseudomonas syringae EtHAn. During wheat-Pst interaction, Pst_9302 overexpression suppressed reactive oxygen species (ROS) accumulation and cell death caused by the avirulent Pst race CYR23. The host-induced gene silencing (HIGS) of Pst_9302 resulted in decreased Pst pathogenicity with reduced infection area. The results suggest that Pst_9302 plays a virulence role in suppressing plant immunity and promoting Pst pathogenicity. Moreover, wheat voltage-dependent anion channel 1 protein (TaVDAC1) was identified as candidate Pst_9302-interacting proteins by yeast two-hybrid (Y2H) screening. Pull-down assays using the His-Pst_9302 and GST-TaVDAC1 protein verified their interactions. These results suggest that Pst_9302 may modulate wheat TaVDAC1 to regulate plant immunity.
Collapse
Affiliation(s)
- Haibin Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Jiangyu Huang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Xiaoyan Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Ligang Yu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Xiaodong Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Congcong Zhao
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Hojjatollah Rabbani nasab
- State Key Laboratory of Crop Stress, Plant Protection Department, Golestan Agricultural and Natural Resource Research and Education Center, Gorgan P.O. Box 49156-77555, Iran;
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Xianyang 712100, China; (H.Z.); (J.H.); (X.Z.); (L.Y.); (X.W.); (C.Z.)
| |
Collapse
|
27
|
Zhu Z, Xiong J, Shi H, Liu Y, Yin J, He K, Zhou T, Xu L, Zhu X, Lu X, Tang Y, Song L, Hou Q, Xiong Q, Wang L, Ye D, Qi T, Zou L, Li G, Sun C, Wu Z, Li P, Liu J, Bi Y, Yang Y, Jiang C, Fan J, Gong G, He M, Wang J, Chen X, Li W. Magnaporthe oryzae effector MoSPAB1 directly activates rice Bsr-d1 expression to facilitate pathogenesis. Nat Commun 2023; 14:8399. [PMID: 38110425 PMCID: PMC10728069 DOI: 10.1038/s41467-023-44197-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/04/2023] [Indexed: 12/20/2023] Open
Abstract
Fungal pathogens typically use secreted effector proteins to suppress host immune activators to facilitate invasion. However, there is rarely evidence supporting the idea that fungal secretory proteins contribute to pathogenesis by transactivating host genes that suppress defense. We previously found that pathogen Magnaporthe oryzae induces rice Bsr-d1 to facilitate infection and hypothesized that a fungal effector mediates this induction. Here, we report that MoSPAB1 secreted by M. oryzae directly binds to the Bsr-d1 promoter to induce its expression, facilitating pathogenesis. Amino acids 103-123 of MoSPAB1 are required for its binding to the Bsr-d1 promoter. Both MoSPAB1 and rice MYBS1 compete for binding to the Bsr-d1 promoter to regulate Bsr-d1 expression. Furthermore, MoSPAB1 homologues are highly conserved among fungi. In particular, Colletotrichum fructicola CfSPAB1 and Colletotrichum sublineola CsSPAB1 activate kiwifruit AcBsr-d1 and sorghum SbBsr-d1 respectively, to facilitate pathogenesis. Taken together, our findings reveal a conserved module that may be widely utilized by fungi to enhance pathogenesis.
Collapse
Affiliation(s)
- Ziwei Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
- Institute for Advanced Study, Chengdu University, Chengdu, Sichuan, 610106, China
| | - Jun Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Hao Shi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yuchen Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Junjie Yin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Kaiwei He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tianyu Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Liting Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiaobo Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xiang Lu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yongyan Tang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Li Song
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qingqing Hou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Qing Xiong
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Long Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Daihua Ye
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Tuo Qi
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, Sichuan, 621000, China
| | - Lijuan Zou
- Ecological Security and Protection Key Laboratory of Sichuan Province, Mianyang Teachers' College, Mianyang, Sichuan, 621000, China
| | - Guobang Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Zhiyue Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Peili Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jiali Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yu Bi
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Yihua Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Chunxian Jiang
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Guoshu Gong
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Min He
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Jing Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China
| | - Xuewei Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Weitao Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| |
Collapse
|
28
|
Qiu P, Li J, Zhang L, Chen K, Shao J, Zheng B, Yuan H, Qi J, Yue L, Hu Q, Ming Y, Liu S, Long L, Gu J, Zhang X, Lindsey K, Gao W, Wu H, Zhu L. Polyethyleneimine-coated MXene quantum dots improve cotton tolerance to Verticillium dahliae by maintaining ROS homeostasis. Nat Commun 2023; 14:7392. [PMID: 37968319 PMCID: PMC10651998 DOI: 10.1038/s41467-023-43192-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Verticillium dahliae is a soil-borne hemibiotrophic fungal pathogen that threatens cotton production worldwide. In this study, we assemble the genomes of two V. dahliae isolates: the more virulence and defoliating isolate V991 and nondefoliating isolate 1cd3-2. Transcriptome and comparative genomics analyses show that genes associated with pathogen virulence are mostly induced at the late stage of infection (Stage II), accompanied by a burst of reactive oxygen species (ROS), with upregulation of more genes involved in defense response in cotton. We identify the V991-specific virulence gene SP3 that is highly expressed during the infection Stage II. V. dahliae SP3 knock-out strain shows attenuated virulence and triggers less ROS production in cotton plants. To control the disease, we employ polyethyleneimine-coated MXene quantum dots (PEI-MQDs) that possess the ability to remove ROS. Cotton seedlings treated with PEI-MQDs are capable of maintaining ROS homeostasis with enhanced peroxidase, catalase, and glutathione peroxidase activities and exhibit improved tolerance to V. dahliae. These results suggest that V. dahliae trigger ROS production to promote infection and scavenging ROS is an effective way to manage this disease. This study reveals a virulence mechanism of V. dahliae and provides a means for V. dahliae resistance that benefits cotton production.
Collapse
Affiliation(s)
- Ping Qiu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jiayue Li
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lin Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Kun Chen
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jianmin Shao
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Baoxin Zheng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Hang Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Jie Qi
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lin Yue
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Qin Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Yuqing Ming
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Shiming Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Lu Long
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475004, People's Republic of China
| | - Jiangjiang Gu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- School of Science, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China
| | - Keith Lindsey
- Department of Biosciences, Durham University, Durham, DH1 3LE, UK
| | - Wei Gao
- State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress Biology, Henan University, Kaifeng, 475004, People's Republic of China.
| | - Honghong Wu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, The Center of Crop Nanobiotechnology, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, People's Republic of China.
| | - Longfu Zhu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
- Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
29
|
Patel S, Patel J, Bowen K, Koebernick J. Deciphering the genetic architecture of resistance to Corynespora cassiicola in soybean ( Glycine max L.) by integrating genome-wide association mapping and RNA-Seq analysis. FRONTIERS IN PLANT SCIENCE 2023; 14:1255763. [PMID: 37828935 PMCID: PMC10565807 DOI: 10.3389/fpls.2023.1255763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
Target spot caused by Corynespora cassiicola is a problematic disease in tropical and subtropical soybean (Glycine max) growing regions. Although resistant soybean genotypes have been identified, the genetic mechanisms underlying target spot resistance has not yet been studied. To address this knowledge gap, this is the first genome-wide association study (GWAS) conducted using the SoySNP50K array on a panel of 246 soybean accessions, aiming to unravel the genetic architecture of resistance. The results revealed significant associations of 14 and 33 loci with resistance to LIM01 and SSTA C. cassiicola isolates, respectively, with six loci demonstrating consistent associations across both isolates. To identify potential candidate genes within GWAS-identified loci, dynamic transcriptome profiling was conducted through RNA-Seq analysis. The analysis involved comparing gene expression patterns between resistant and susceptible genotypes, utilizing leaf tissue collected at different time points after inoculation. Integrating results of GWAS and RNA-Seq analyses identified 238 differentially expressed genes within a 200 kb region encompassing significant quantitative trait loci (QTLs) for disease severity ratings. These genes were involved in defense response to pathogen, innate immune response, chitinase activity, histone H3-K9 methylation, salicylic acid mediated signaling pathway, kinase activity, and biosynthesis of flavonoid, jasmonic acid, phenylpropanoid, and wax. In addition, when combining results from this study with previous GWAS research, 11 colocalized regions associated with disease resistance were identified for biotic and abiotic stress. This finding provides valuable insight into the genetic resources that can be harnessed for future breeding programs aiming to enhance soybean resistance against target spot and other diseases simultaneously.
Collapse
Affiliation(s)
- Sejal Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Jinesh Patel
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Kira Bowen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| | - Jenny Koebernick
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
30
|
Langin G, González-Fuente M, Üstün S. The Plant Ubiquitin-Proteasome System as a Target for Microbial Manipulation. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:351-375. [PMID: 37253695 DOI: 10.1146/annurev-phyto-021622-110443] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The plant immune system perceives pathogens to trigger defense responses. In turn, pathogens secrete effector molecules to subvert these defense responses. The initiation and maintenance of defense responses involve not only de novo synthesis of regulatory proteins and enzymes but also their regulated degradation. The latter is achieved through protein degradation pathways such as the ubiquitin-proteasome system (UPS). The UPS regulates all stages of immunity, from the perception of the pathogen to the execution of the response, and, therefore, constitutes an ideal candidate for microbial manipulation of the host. Pathogen effector molecules interfere with the plant UPS through several mechanisms. This includes hijacking general UPS functions or perturbing its ability to degrade specific targets. In this review, we describe how the UPS regulates different immunity-related processes and how pathogens subvert this to promote disease.
Collapse
Affiliation(s)
- Gautier Langin
- Centre for Plant Molecular Biology (ZMBP), University of Tübingen, Tübingen, Germany;
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| | | | - Suayib Üstün
- Faculty of Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany
| |
Collapse
|
31
|
Wang X, Zhang X, Song CP, Gong Z, Yang S, Ding Y. PUB25 and PUB26 dynamically modulate ICE1 stability via differential ubiquitination during cold stress in Arabidopsis. THE PLANT CELL 2023; 35:3585-3603. [PMID: 37279565 PMCID: PMC10473228 DOI: 10.1093/plcell/koad159] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 05/09/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
Ubiquitination modulates protein turnover or activity depending on the number and location of attached ubiquitin (Ub) moieties. Proteins marked by a lysine 48 (K48)-linked polyubiquitin chain are usually targeted to the 26S proteasome for degradation; however, other polyubiquitin chains, such as those attached to K63, usually regulate other protein properties. Here, we show that 2 PLANT U-BOX E3 ligases, PUB25 and PUB26, facilitate both K48- and K63-linked ubiquitination of the transcriptional regulator INDUCER OF C-REPEAT BINDING FACTOR (CBF) EXPRESSION1 (ICE1) during different periods of cold stress in Arabidopsis (Arabidopsis thaliana), thus dynamically modulating ICE1 stability. Moreover, PUB25 and PUB26 attach both K48- and K63-linked Ub chains to MYB15 in response to cold stress. However, the ubiquitination patterns of ICE1 and MYB15 mediated by PUB25 and PUB26 differ, thus modulating their protein stability and abundance during different stages of cold stress. Furthermore, ICE1 interacts with and inhibits the DNA-binding activity of MYB15, resulting in an upregulation of CBF expression. This study unravels a mechanism by which PUB25 and PUB26 add different polyubiquitin chains to ICE1 and MYB15 to modulate their stability, thereby regulating the timing and degree of cold stress responses in plants.
Collapse
Affiliation(s)
- Xi Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiaoyan Zhang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chun-Peng Song
- Institute of Plant Stress Biology, Collaborative Innovation Center of Crop Stress Biology, Henan University, Kaifeng 475004, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
- School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Shuhua Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
32
|
Su T, Wang W, Wang Z, Li P, Xin X, Yu Y, Zhang D, Zhao X, Wang J, Sun L, Jin G, Zhang F, Yu S. BrMYB108 confers resistance to Verticillium wilt by activating ROS generation in Brassica rapa. Cell Rep 2023; 42:112938. [PMID: 37552600 DOI: 10.1016/j.celrep.2023.112938] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 04/12/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
Increasing plant resistance to Verticillium wilt (VW), which causes massive losses of Brassica rapa crops, is a challenge worldwide. However, few causal genes for VW resistance have been identified by forward genetic approaches, resulting in limited application in breeding. We combine a genome-wide association study in a natural population and quantitative trait locus mapping in an F2 population and identify that the MYB transcription factor BrMYB108 regulates plant resistance to VW. A 179 bp insertion in the BrMYB108 promoter alters its expression pattern during Verticillium longisporum (VL) infection. High BrMYB108 expression leads to high VL resistance, which is confirmed by disease resistance tests using BrMYB108 overexpression and loss-of-function mutants. Furthermore, we verify that BrMYB108 confers VL resistance by regulating reactive oxygen species (ROS) generation through binding to the promoters of respiratory burst oxidase genes (Rboh). A loss-of-function mutant of AtRbohF in Arabidopsis shows significant susceptibility to VL. Thus, BrMYB108 and its target ROS genes could be used as targets for genetic engineering for VL resistance of B. rapa.
Collapse
Affiliation(s)
- Tongbing Su
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Weihong Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Zheng Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Peirong Li
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Xiaoyun Xin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Yangjun Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Deshuang Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Xiuyun Zhao
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Jiao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Liling Sun
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Guihua Jin
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China
| | - Fenglan Zhang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China.
| | - Shuancang Yu
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China; Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China.
| |
Collapse
|
33
|
Farias KS, Ferreira MM, Amaral GV, Zugaib M, Santos AS, Gomes FP, Rezende RP, Gramacho KP, Aguiar ERGR, Pirovani CP. BASIDIN as a New Protein Effector of the Phytopathogen Causing Witche's Broom Disease in Cocoa. Int J Mol Sci 2023; 24:11714. [PMID: 37511472 PMCID: PMC10380501 DOI: 10.3390/ijms241411714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
The fungus Moniliophthora perniciosa secretes protein effectors that manipulate the physiology of the host plant, but few effectors of this fungus have had their functions confirmed. We performed functional characterization of a promising candidate effector of M. perniciosa. The inoculation of rBASIDIN at 4 µmol L-1 in the mesophyll of leaflets of Solanum lycopersicum caused symptoms of shriveling within 6 h without the presence of necrosis. However, when sprayed on the plant at a concentration of 11 µmol L-1, it caused wilting symptoms only 2 h after application, followed by necrosis and cell death at 48 h. rBASIDIN applied to Theobroma cacao leaves at the same concentration caused milder symptoms. rBASIDIN caused hydrogen peroxide production in leaf tissue, damaging the leaf membrane and negatively affecting the photosynthetic rate of Solanum lycopersicum plants. Phylogenetic analysis indicated that BASIDIN has orthologs in other phytopathogenic basidiomycetes. Analysis of the transcripts revealed that BASIDIN and its orthologs are expressed in different fungal species, suggesting that this protein is differentially regulated in these basidiomycetes. Therefore, the results of applying BASIDIN allow the inference that it is an effector of the fungus M. perniciosa, with a strong potential to interfere in the defense system of the host plant.
Collapse
Affiliation(s)
- Keilane Silva Farias
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Monaliza Macêdo Ferreira
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Geiseane Veloso Amaral
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Maria Zugaib
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Ariana Silva Santos
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Fábio Pinto Gomes
- Fisiologia Vegetal, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Rachel Passos Rezende
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Karina Peres Gramacho
- Comissão Executiva do Plano da Lavoura Cacaueira, Centro de Pesquisas do Cacau-MAPA, Laboratório de Fitopatologia Molecular, km 22 Rodovia Ilhéus Itabuna, Ilhéus 45600-970, Bahia, Brazil
| | - Eric Roberto Guimarães Rocha Aguiar
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Carlos Priminho Pirovani
- Centro de Biotecnologia e Genética, Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, Rodovia Ilhéus-Itabuna, km 16, Ilhéus 45662-900, Bahia, Brazil
| |
Collapse
|
34
|
Zhang YS, Xu Y, Xing WT, Wu B, Huang DM, Ma FN, Zhan RL, Sun PG, Xu YY, Song S. Identification of the passion fruit ( Passiflora edulis Sims) MYB family in fruit development and abiotic stress, and functional analysis of PeMYB87 in abiotic stresses. FRONTIERS IN PLANT SCIENCE 2023; 14:1124351. [PMID: 37215287 PMCID: PMC10196401 DOI: 10.3389/fpls.2023.1124351] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/21/2023] [Indexed: 05/24/2023]
Abstract
Environmental stresses are ubiquitous in agricultural cultivation, and they affect the healthy growth and development of edible tissues in passion fruit. The study of resistance mechanisms is important in understanding the adaptation and resistance of plants to environmental stresses. In this work, two differently resistant passion fruit varieties were selected, using the expression characteristics of the transcription factor MYB, to explore the resistance mechanism of the MYB gene under various environmental stresses. A total of 174 MYB family members were identified using high-quality passion fruit genomes: 98 2R-MYB, 5 3R-MYB, and 71 1R-MYB (MYB-relate). Their family information was systematically analyzed, including subcellular localization, physicochemical properties, phylogeny at the genomic level, promoter function, encoded proteins, and reciprocal regulation. In this study, bioinformatics and transcriptome sequencing were used to identify members of the PeMYB genes in passion fruit whole-genome data, and biological techniques, such as qPCR, gene clone, and transient transformation of yeast, were used to determine the function of the passion fruit MYB genes in abiotic stress tolerance. Transcriptomic data were obtained for differential expression characteristics of two resistant and susceptible varieties, three expression patterns during pulp development, and four induced expression patterns under abiotic stress conditions. We further focused on the resistance mechanism of PeMYB87 in environmental stress, and we selected 10 representative PeMYB genes for quantitative expression verification. Most of the genes were differentially induced by four abiotic stresses, among which PeMYB87 responded significantly to high-temperature-induced expression and overexpression of the PeMYB87 gene in the yeast system. The transgenic PeMYB87 in yeast showed different degrees of stress resistance under exposure to cold, high temperatures, drought, and salt stresses. These findings lay the foundation for further analysis of the biological functions of PeMYBs involved in stress resistance in passion fruit.
Collapse
Affiliation(s)
- Yan-shu Zhang
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, Yunnan, China
| | - Yi Xu
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Wen-ting Xing
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Bin Wu
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Dong-mei Huang
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Fu-ning Ma
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Ru-lin Zhan
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Pei-guang Sun
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| | - Yong-yan Xu
- College of Landscape and Horticulture, Southwest Forestry University, Kunming, Yunnan, China
| | - Shun Song
- National Key Laboratory for Tropical Crop Breeding, Haikou Experimental Station, Tropical Crops Genetic Resources Institute, CATAS/ Germplasm Repository of Passiflora, Haikou, Hainan, China
- Hainan Key Laboratory for Biosafety Monitoring and Molecular Breeding in Off-Season Reproduction Regions, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China
| |
Collapse
|
35
|
Singh G, Ambreen H, Jain P, Chakraborty A, Singh B, Manivannan A, Bhatia S. Comparative transcriptomic and metabolite profiling reveals genotype-specific responses to Fe starvation in chickpea. PHYSIOLOGIA PLANTARUM 2023; 175:e13897. [PMID: 36960640 DOI: 10.1111/ppl.13897] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Iron deficiency is a major nutritional stress that severely impacts crop productivity worldwide. However, molecular intricacies and subsequent physiological and metabolic changes in response to Fe starvation, especially in leguminous crops like chickpea, remain elusive. In the present study, we investigated physiological, transcriptional, and metabolic reprogramming in two chickpea genotypes (H6013 and L4958) with contrasting seed iron concentrations upon Fe deficiency. Our findings revealed that iron starvation affected growth and physiological parameters of both chickpea genotypes. Comparative transcriptome analysis led to the identification of differentially expressed genes between the genotypes related to strategy I uptake, metal ions transporters, reactive oxygen species-associated genes, transcription factors, and protein kinases that could mitigate Fe deficiency. Our gene correlation network discovered several putative candidate genes like CIPK25, CKX3, WRKY50, NAC29, MYB4, and PAP18, which could facilitate the investigation of the molecular rationale underlying Fe tolerance in chickpea. Furthermore, the metabolite analysis also illustrated the differential accumulation of organic acids, amino acids and other metabolites associated with Fe mobilization in chickpea genotypes. Overall, our study demonstrated the comparative transcriptional dynamics upon Fe starvation. The outcomes of the current endeavor will enable the development of Fe deficiency tolerant chickpea cultivars.
Collapse
Affiliation(s)
- Gourav Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Heena Ambreen
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Priyanka Jain
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Anirban Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Baljinder Singh
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Abinaya Manivannan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, PO Box No. 10531, New Delhi, 110067, India
| |
Collapse
|
36
|
Yang S, Ge Q, Wan S, Sun Z, Chen Y, Li Y, Liu Q, Gong J, Xiao X, Lu Q, Shi Y, Peng R, Shang H, Chen G, Li P. Genome-Wide Identification and Characterization of the PPO Gene Family in Cotton ( Gossypium) and Their Expression Variations Responding to Verticillium Wilt Infection. Genes (Basel) 2023; 14:477. [PMID: 36833403 PMCID: PMC9957175 DOI: 10.3390/genes14020477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Polyphenol oxidases (PPOs) are copper-binding metalloproteinases encoded by nuclear genes, ubiquitously existing in the plastids of microorganisms, plants, and animals. As one of the important defense enzymes, PPOs have been reported to participate in the resistant processes that respond to diseases and insect pests in multiple plant species. However, PPO gene identification and characterization in cotton and their expression patterns under Verticillium wilt (VW) treatment have not been clearly studied. In this study, 7, 8, 14, and 16 PPO genes were separately identified from Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense, respectively, which were distributed within 23 chromosomes, though mainly gathered in chromosome 6. The phylogenetic tree manifested that all the PPOs from four cotton species and 14 other plants were divided into seven groups, and the analyses of the conserved motifs and nucleotide sequences showed highly similar characteristics of the gene structure and domains in the cotton PPO genes. The dramatically expressed differences were observed among the different organs at various stages of growth and development or under the diverse stresses referred to in the published RNA-seq data. Quantitative real-time PCR (qRT-PCR) experiments were also performed on the GhPPO genes in the roots, stems, and leaves of VW-resistant MBI8255 and VW-susceptible CCRI36 infected with Verticillium dahliae V991, proving the strong correlation between PPO activity and VW resistance. A comprehensive analysis conducted on cotton PPO genes contributes to the screening of the candidate genes for subsequent biological function studies, which is also of great significance for the in-depth understanding of the molecular genetic basis of cotton resistance to VW.
Collapse
Affiliation(s)
- Shuhan Yang
- College of Agriculture, Tarim University, Alar 843300, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Sumei Wan
- College of Agriculture, Tarim University, Alar 843300, China
| | - Zhihao Sun
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yu Chen
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yanfang Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Qiankun Liu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xianghui Xiao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guodong Chen
- College of Agriculture, Tarim University, Alar 843300, China
| | - Pengtao Li
- College of Agriculture, Tarim University, Alar 843300, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| |
Collapse
|
37
|
Yang Z, Gao C, Zhang Y, Yan Q, Hu W, Yang L, Wang Z, Li F. Recent progression and future perspectives in cotton genomic breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:548-569. [PMID: 36226594 DOI: 10.1111/jipb.13388] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/11/2022] [Indexed: 05/26/2023]
Abstract
Upland cotton is an important global cash crop for its long seed fibers and high edible oil and protein content. Progress in cotton genomics promotes the advancement of cotton genetics, evolutionary studies, functional genetics, and breeding, and has ushered cotton research and breeding into a new era. Here, we summarize high-impact genomics studies for cotton from the last 10 years. The diploid Gossypium arboreum and allotetraploid Gossypium hirsutum are the main focus of most genetic and genomic studies. We next review recent progress in cotton molecular biology and genetics, which builds on cotton genome sequencing efforts, population studies, and functional genomics, to provide insights into the mechanisms shaping abiotic and biotic stress tolerance, plant architecture, seed oil content, and fiber development. We also suggest the application of novel technologies and strategies to facilitate genome-based crop breeding. Explosive growth in the amount of novel genomic data, identified genes, gene modules, and pathways is now enabling researchers to utilize multidisciplinary genomics-enabled breeding strategies to cultivate "super cotton", synergistically improving multiple traits. These strategies must rise to meet urgent demands for a sustainable cotton industry.
Collapse
Affiliation(s)
- Zhaoen Yang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chenxu Gao
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Yihao Zhang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Qingdi Yan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Wei Hu
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
| | - Lan Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhi Wang
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, 572000, China
- Sanya Institute, Zhengzhou University, Sanya, 572000, China
| | - Fuguang Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450000, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of the Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| |
Collapse
|
38
|
Lv J, Zhou J, Chang B, Zhang Y, Feng Z, Wei F, Zhao L, Zhang Y, Feng H. Two Metalloproteases VdM35-1 and VdASPF2 from Verticillium dahliae Are Required for Fungal Pathogenicity, Stress Adaptation, and Activating Immune Response of Host. Microbiol Spectr 2022; 10:e0247722. [PMID: 36222688 PMCID: PMC9769895 DOI: 10.1128/spectrum.02477-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 09/13/2022] [Indexed: 01/06/2023] Open
Abstract
Verticillium dahliae is a soilborne fungus that causes destructive vascular wilt diseases in a wide range of plant hosts. In this study, we identified two M35 family metalloproteinases: VdM35-1 and VdASPF2, and investigated their function in vitro and in vivo. The results showed that VdM35-1 and VdASPF2 were located in the cell membrane, as secreted proteins depended on signal peptide, and two histidine residues (H) induced cell death and activated plant immune response. VdM35-1 depended on membrane receptor proteins NbBAK1 and NbSOBIR1 in the process of inducing cell death, while VdASPF2 did not depend on them. The deletion of VdM35-1 and VdASPF2 led to the decrease of sporulation and the slow shortening of mycelial branch growth, and the spore morphology of VdM35-1-deficient strain became malformed. In addition, ΔVdM35-1 and ΔVdASPF2 showed more sensitive to osmotic stress, SDS, Congo red (CR), and high temperature. In terms of the utilization of carbon sources, the knockout mutants exhibited decreased utilization of carbon sources, and the growth rates on the medium containing sucrose, starch, and pectin were lower than the wild type strain, with significantly limited growth, especially on galactose-containing medium. Furthermore, ΔVdM35-1 and ΔVdASPF2 showed a significant reduction in pathogenicity. Collectively, these results suggested that VdM35-1 and VdASPF2 were important multifunction factors in the pathogenicity of V. dahliae and relative to stress adaptation and activated plant immune response. IMPORTANCE Verticillium wilt, caused by the notorious fungal pathogen V. dahliae, is one of the main limiting factors for agricultural production. Metalloproteases played an important role in the pathogenic mechanism of pathogens. Our research found that M35 family metalloproteases VdM35-1 and VdASPF2 played an important role in the development, adaptability, and pathogenicity of V. dahliae, providing a new perspective for further understanding the molecular mechanism of virulence of fungal pathogens.
Collapse
Affiliation(s)
- Junyuan Lv
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Jinglong Zhou
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - BaiYang Chang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Yihao Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Zili Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Feng Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Lihong Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| | - Yalin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
| | - Hongjie Feng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, Henan, China
- Western Agricultural Research Center of Chinese Academy of Agricultural Sciences, Changji, Xinjiang, China
| |
Collapse
|
39
|
Jiang S, Zheng W, Li Z, Tan J, Wu M, Li X, Hong SB, Deng J, Zhu Z, Zang Y. Enhanced Resistance to Sclerotinia sclerotiorum in Brassica rapa by Activating Host Immunity through Exogenous Verticillium dahliae Aspf2-like Protein (VDAL) Treatment. Int J Mol Sci 2022; 23:13958. [PMID: 36430439 PMCID: PMC9694685 DOI: 10.3390/ijms232213958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
Sclerotinia stem rot caused by Sclerotinia sclerotiorum is one of the most destructive diseases in Brassica rapa. Verticillium dahliae Aspf2-like protein (VDAL) is a secretory protein of V. dahliae which has been shown to enhance the resistance against fungal infections in several plants. Nonetheless, the molecular mechanisms of VDAL-primed disease resistance are still poorly understood. In this study, we performed physiological, biochemical, and transcriptomic analyses of Brassica rapa in order to understand how VDAL confers resistance to S. sclerotiorumn infections in plants. The results showed that foliar application of VDAL significantly reduced the plaque area on leaves inoculated with S. sclerotiorum. It also enhanced antioxidant capacity by increasing activities of superoxide dismutase (SOD), peroxidase (POD), peroxidase (APX), glutathione reductase (GR), protoporphyrinogen oxidase (PPO), and defense-related enzymes β-1,3-glucanase and chitinase during the infection periods. This occurred in parallel with significantly reduced relative conductivity at different periods and lower malondialdehyde (MDA) content as compared to sole S. sclerotiorum inoculation. Transcriptomic analysis showed a total of 146 (81 up-regulated and 65 down-regulated) differentially expressed genes (DEGs) in VDAL-treated leaves compared to the control. The most enriched three Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were the mitogen-activated protein kinase (MAPK) signaling pathway, plant hormone signal transduction, and plant-pathogen interaction, all of which were associated with plant immunity. DEGs associated with MAPK and hormone signal transduction pathways were ethylene response sensor ERS2, EIN3 (Ethylene Insensitive3)-binding F-box protein 2 (EBF2), ethylene-responsive transcription factor ERF94, MAPK 9 (MKK9), protein phosphatase 2C (PP2C37), auxin-responsive proteins (AUX/IAA1 and 19), serine/threonine-protein kinase CTR1, and abscisic acid receptors (PLY 4 and 5). Among the DEGs linked with the plant-pathogen interaction pathway were calmodulin-like proteins (CML5, 24, 27), PTI1-like tyrosine protein kinase 3 (Pti13) and transcription factor MYB30, all of which are known to play key roles in pathogen-associated molecular pattern (PAMP)-triggered immunity and effector-triggered immunity (ETI) for hypersensitive response (HR), cell wall reinforcement, and stomatal closure in plants. Overall, VDLA treatment triggered repression of the auxin and ABA signaling pathways and de-repression of the ethylene signaling pathways in young B. rapa seedlings to increase plant innate immunity. Our results showed that VDAL holds great potential to enhance fungal disease resistance in B. rapa crop.
Collapse
Affiliation(s)
- Shufang Jiang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Weiwei Zheng
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Zewei Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Jingru Tan
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Meifang Wu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Xinyuan Li
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Seung-Beom Hong
- Department of Biotechnology, University of Houston Clear Lake, Houston, TX 77058-1098, USA
| | - Jianyu Deng
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Zhujun Zhu
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Yunxiang Zang
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
40
|
Gao C, Tang D, Wang W. The Role of Ubiquitination in Plant Immunity: Fine-Tuning Immune Signaling and Beyond. PLANT & CELL PHYSIOLOGY 2022; 63:1405-1413. [PMID: 35859340 DOI: 10.1093/pcp/pcac105] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is an essential posttranslational modification and plays a crucial role in regulating plant immunity by modulating protein activity, stability, abundance and interaction. Recently, major breakthroughs have been made in understanding the mechanisms associated with the regulation of immune signaling by ubiquitination. In this mini review, we highlight the recent advances in the role of ubiquitination in fine-tuning the resistance activated by plant pattern recognition receptors (PRRs) and intracellular nucleotide-binding site and leucine-rich repeat domain receptors (NLRs). We also discuss current understanding of the positive regulation of plant immunity by ubiquitination, including the modification of immune negative regulators and of the guardee proteins monitored by NLRs.
Collapse
Affiliation(s)
- Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
41
|
Kong WL, Ni H, Wang WY, Wu XQ. Antifungal effects of volatile organic compounds produced by Trichoderma koningiopsis T2 against Verticillium dahliae. Front Microbiol 2022; 13:1013468. [PMID: 36212874 PMCID: PMC9533717 DOI: 10.3389/fmicb.2022.1013468] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Volatile organic compounds (VOCs) produced by microorganisms are considered promising environmental-safety fumigants for controlling soil-borne diseases. Verticillium dahliae, a notorious fungal pathogen, causes economically important wilt diseases in agriculture and forestry industries. Here, we determined the antifungal activity of VOCs produced by Trichoderma koningiopsis T2. The VOCs from T. koningiopsis T2 were trapped by solid-phase microextraction (SPME) and tentatively identified through gas chromatography–mass spectrometry (GC/MS). The microsclerotia formation, cell wall-degrading enzymes and melanin synthesis of V. dahliae exposed to the VOC mixtures and selected single standards were examined. The results showed that the VOCs produced by strain T2 significantly inhibited the growth of V. dahliae mycelium and reduced the severity of Verticillium wilt in tobacco and cotton. Six individual compounds were identified in the volatilome of T. koningiopsis T2, and the dominant compounds were 3-octanone, 3-methyl-1-butanol, butanoic acid ethyl ester and 2-hexyl-furan. The VOCs of strain T2 exert a significant inhibitory effect on microsclerotia formation and decreased the activities of pectin lyase and endo-β-1,4-glucanase in V. dahliae. VOCs also downregulated the VdT3HR, VdT4HR, and VdSCD genes related to melanin synthesis by 29. 41-, 10. 49-, and 3.11-fold, respectively. Therefore, T. koningiopsis T2 has potential as a promising biofumigant for the biocontrol of Verticillium wilt disease.
Collapse
Affiliation(s)
- Wei-Liang Kong
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Hang Ni
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Wei-Yu Wang
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
| | - Xiao-Qin Wu
- Co-innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for Prevention and Management of Invasive Species, Nanjing Forestry University, Nanjing, China
- *Correspondence: Xiao-Qin Wu,
| |
Collapse
|
42
|
Ren H, Li X, Li Y, Li M, Sun J, Wang F, Zeng J, Chen Y, Wang L, Yan X, Fan Y, Jin D, Pei Y. Loss of function of VdDrs2, a P4-ATPase, impairs the toxin secretion and microsclerotia formation, and decreases the pathogenicity of Verticillium dahliae. FRONTIERS IN PLANT SCIENCE 2022; 13:944364. [PMID: 36072318 PMCID: PMC9443849 DOI: 10.3389/fpls.2022.944364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/25/2022] [Indexed: 06/15/2023]
Abstract
Four P4-ATPase flippase genes, VdDrs2, VdNeo1, VdP4-4, and VdDnf1 were identified in Verticillium dahliae, one of the most devastating phytopathogenic fungi in the world. Knock out of VdDrs2, VdNeo1, and VdP4-4, or knock down of VdDnf1 significantly decreased the pathogenicity of the mutants in cotton. Among the mutants, the greatest decrease in pathogenicity was observed in ΔVdDrs2. VdDrs2 was localized to plasma membrane, vacuoles, and trans-Golgi network (TGN). In vivo observation showed that the infection of the cotton by ΔVdDrs2 was significantly delayed. The amount of two known Verticillium toxins, sulfacetamide, and fumonisin B1 in the fermentation broth produced by the ΔVdDrs2 strain was significantly reduced, and the toxicity of the crude Verticillium wilt toxins to cotton cells was attenuated. In addition, the defect of VdDrs2 impaired the synthesis of melanin and the formation of microsclerotia, and decreased the sporulation of V. dahliae. Our data indicate a key role of P4 ATPases-associated vesicle transport in toxin secretion of disease fungi and support the importance of mycotoxins in the pathogenicity of V. dahliae.
Collapse
|
43
|
Wang DR, Zhang XW, Xu RR, Wang GL, You CX, An JP. Apple U-box-type E3 ubiquitin ligase MdPUB23 reduces cold-stress tolerance by degrading the cold-stress regulatory protein MdICE1. HORTICULTURE RESEARCH 2022; 9:uhac171. [PMID: 36247364 PMCID: PMC9557189 DOI: 10.1093/hr/uhac171] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/27/2022] [Indexed: 06/16/2023]
Abstract
Cold stress limits plant growth, geographical distribution, and crop yield. The MYC-type bHLH transcription factor ICE1 is recognized as the core positive regulator of the cold-stress response. However, how ICE1 protein levels are regulated remains to be further studied. In this study, we observed that a U-box-type E3 ubiquitin ligase, MdPUB23, positively regulated the cold-stress response in apple. The expression of MdPUB23 increased at both the transcriptional and post-translational levels in response to cold stress. Overexpression of MdPUB23 in transgenic apple enhanced sensitivity to cold stress. Further study showed that MdPUB23 directly interacted with MdICE1, promoting the ubiquitination-mediated degradation of the MdICE1 protein through the 26S-proteasome pathway and reducing the MdICE1-improved cold-stress tolerance in apple. Our results reveal that MdPUB23 regulates the cold-stress response by directly mediating the stability of the positive regulator MdICE1. The PUB23-ICE1 ubiquitination module may play a role in maintaining ICE1 protein homeostasis and preventing overreactions from causing damage to plants. The discovery of the ubiquitination regulatory pathway of ICE1 provides insights for the further exploration of plant cold-stress-response mechanisms.
Collapse
Affiliation(s)
| | | | - Rui-Rui Xu
- Key Laboratory of Biochemistry and Molecular Biology in Universities of Shandong, College of Biology and Oceanography, Weifang University, Weifang 261061, Shandong, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | | | | |
Collapse
|
44
|
Wilson RA, McDowell JM. Recent advances in understanding of fungal and oomycete effectors. CURRENT OPINION IN PLANT BIOLOGY 2022; 68:102228. [PMID: 35605341 DOI: 10.1016/j.pbi.2022.102228] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/15/2023]
Abstract
Fungal and oomycete pathogens secrete complex arrays of proteins and small RNAs to interface with plant-host targets and manipulate plant regulatory networks to the microbes' advantage. Research on these important virulence factors has been accelerated by improved genome sequences, refined bioinformatic prediction tools, and exploitation of efficient platforms for understanding effector gene expression and function. Recent studies have validated the expectation that oomycetes and fungi target many of the same sectors in immune signaling networks, but the specific host plant targets and modes of action are diverse. Effector research has also contributed to deeper understanding of the mechanisms of effector-triggered immunity.
Collapse
Affiliation(s)
- Richard A Wilson
- Department of Plant Pathology, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, USA.
| |
Collapse
|
45
|
Silencing of a Cotton Actin-Binding Protein GhWLIM1C Decreases Resistance against Verticillium dahliae Infection. PLANTS 2022; 11:plants11141828. [PMID: 35890462 PMCID: PMC9316592 DOI: 10.3390/plants11141828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/09/2022] [Accepted: 07/09/2022] [Indexed: 11/16/2022]
Abstract
LIM proteins are widely spread in various types of plant cells and play diversely crucial cellular roles through actin cytoskeleton assembly and gene expression regulation. Till now, it has not been clear whether LIM proteins function in plant pathogen defense. In this study, we characterized a LIM protein, GhWLIM1C, in upland cotton (Gossypium hirsutum). We found that GhWLIM1C could bind and bundle the actin cytoskeleton, and it contains two LIM domains (LIM1 and LIM2). Both the two domains could bind directly to the actin filaments. Moreover, the LIM2 domain additionally bundles the actin cytoskeleton, indicating that it possesses a different biochemical activity than LIM1. The expression of GhWLIM1C responds to the infection of the cotton fungal pathogen Verticillium dahliae (V. dahliae). Silencing of GhWLIM1C decreased cotton resistance to V. dahliae. These may be associated with the down regulated plant defense response, including the PR genes expression and ROS accumulation in the infected cotton plants. In all, these results provide new evidence that a plant LIM protein functions in plant pathogen resistance and the assembly of the actin cytoskeleton are closely related to the triggering of the plant defense response.
Collapse
|
46
|
Sun Z, Feng Z, Ding Y, Qi Y, Jiang S, Li Z, Wang Y, Qi J, Song C, Yang S, Gong Z. RAF22, ABI1 and OST1 form a dynamic interactive network that optimizes plant growth and responses to drought stress in Arabidopsis. MOLECULAR PLANT 2022; 15:1192-1210. [PMID: 35668674 DOI: 10.1016/j.molp.2022.06.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/27/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Plants adapt to their ever-changing environment via positive and negative signals induced by environmental stimuli. Drought stress, for instance, induces accumulation of the plant hormone abscisic acid (ABA), triggering ABA signal transduction. However, the molecular mechanisms for switching between plant growth promotion and stress response remain poorly understood. Here we report that RAF (rapidly accelerated fibrosarcoma)-LIKE MITOGEN-ACTIVATED PROTEIN KINASE KINASE KINASE 22 (RAF22) in Arabidopsis thaliana physically interacts with ABA INSENSITIVE 1 (ABI1) and phosphorylates ABI1 at Ser416 residue to enhance its phosphatase activity. Interestingly, ABI1 can also enhance the activity of RAF22 through dephosphorylation, reciprocally inhibiting ABA signaling and promoting the maintenance of plant growth under normal conditions. Under drought stress, however, the ABA-activated OPEN STOMATA1 (OST1) phosphorylates the Ser81 residue of RAF22 and inhibits its kinase activity, restraining its enhancement of ABI1 activity. Taken together, our study reveals that RAF22, ABI1, and OST1 form a dynamic regulatory network that plays crucial roles in optimizing plant growth and environmental adaptation under drought stress.
Collapse
Affiliation(s)
- Zhihui Sun
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhenkai Feng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yanglin Ding
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuanpeng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shan Jiang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yu Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Junsheng Qi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chunpeng Song
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng 475001, China
| | - Shuhua Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zhizhong Gong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China; School of Life Sciences, Institute of Life Science and Green Development, Hebei University, Baoding 100193, China.
| |
Collapse
|
47
|
Zhang DD, Dai XF, Klosterman SJ, Subbarao KV, Chen JY. The secretome of Verticillium dahliae in collusion with plant defence responses modulates Verticillium wilt symptoms. Biol Rev Camb Philos Soc 2022; 97:1810-1822. [PMID: 35478378 PMCID: PMC9542920 DOI: 10.1111/brv.12863] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/12/2022]
Abstract
Verticillium dahliae is a notorious soil‐borne pathogen that enters hosts through the roots and proliferates in the plant water‐conducting elements to cause Verticillium wilt. Historically, Verticillium wilt symptoms have been explained by vascular occlusion, due to the accumulation of mycelia and plant biomacromolecule aggregation, and also by phytotoxicity caused by pathogen‐secreted toxins. Beyond the direct cytotoxicity of some members of the secretome, this review systematically discusses the roles of the V. dahliae secretome in vascular occlusion, including the deposition of polysaccharides as an outcome of plant cell wall destruction, the accumulation of fungal mycelia, and modulation of plant defence responses. By modulating plant defences and hormone levels, the secretome manipulates the vascular environment to induce Verticillium wilt. Thus, the secretome of V. dahliae colludes with plant defence responses to modulate Verticillium wilt symptoms, and thereby bridges the historical concepts of both toxin production by the pathogen and vascular occlusion as the cause of wilting symptoms.
Collapse
Affiliation(s)
- Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA, 93905, USA
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis, CA, 95616, USA
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
48
|
Identification and Functional Analysis of a Novel Hydrophobic Protein VdHP1 from Verticillium dahliae. Microbiol Spectr 2022; 10:e0247821. [PMID: 35377232 PMCID: PMC9045179 DOI: 10.1128/spectrum.02478-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Verticillium dahliae could cause destructive vascular wilt disease on hundreds of plant species around the world, including cotton. In this study, we characterized the function of a hydrophobin gene VdHP1 in pathogen development and pathogenicity. Results showed that VdHP1 could induce cell death and activate plant immune responses. The VdHP1 deletion mutants (ΔVdHP1) and the complement mutants (C-ΔVdHP1) were obtained by the homologous recombination method. The VdHP1 deletion mutants exhibited increased hydrophilicity, inhibited microsclerotial formation, and reduced spore smoothness. In addition, the deletion mutants were more sensitive to NaCl, while relatively insensitive to KCl and sorbitol. Mutants also had greater resistance to Congo red, UV radiation, and high temperature, which suggested that ΔVdHP1 strains have stronger resistance to abiotic stress in general. Different carbon source assays showed that the utilization ability of skim milk, cellulose, and starch was greatly enhanced in ΔVdHP1, compared with that of WT and complemented strains. Furthermore, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The pathogenicity test found that the crude toxin content, colonization, and dispersal of ΔVdHP1 was significantly increased compared with the WT and complementary strains. In addition, cotton seedlings showed more severe wilting symptoms after inoculation with ΔVdHP1 strains. These results suggested that the hydrophobin VdHP1 negatively regulated the virulence of V. dahliae, and played an important role in development, adaptability, and pathogenicity in V. dahliae, which maybe provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence. IMPORTANCE Verticillium dahliae is a soilborne fungal pathogen that causes a destructive vascular disease on a large number of plant hosts, resulting in great threat to agricultural production. In this study, it was illustrated that the hydrophobin VdHP1 could induce cell death and activate plant immune responses. VdHP1 affected the hydrophobicity of V. dahliae, and negatively regulated the strains resistant to stress, and the utilization ability of different carbon sources. In addition, VdHP1 did not affect mycelium penetration on cellophane but contributed to mycelium growth on surface of the living plant cells. The VdHP1 gene negatively regulated the total virulence, colonization, and dispersal of V. dahliae, with enhanced pathogenicity of mutant strains in this gene. These results suggested that the hydrophobin VdHP1 played an importance in development, adaptability, and pathogenicity in V. dahliae, and would provide a new viewpoint to further understand the molecular mechanisms of pathogen virulence.
Collapse
|
49
|
Li Y, Li R, Han Z, Wang H, Zhou S, Li Y, Wang Y, Qi J, Ow DW. Recombinase-mediated gene stacking in cotton. PLANT PHYSIOLOGY 2022; 188:1852-1865. [PMID: 35088863 PMCID: PMC8968315 DOI: 10.1093/plphys/kiac005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 12/08/2021] [Indexed: 05/24/2023]
Abstract
Site-specific gene stacking could reduce the number of segregating loci and expedite the introgression of transgenes from experimental lines to field lines. Recombinase-mediated site-specific gene stacking provides a flexible and efficient solution, but this approach requires a recombinase recognition site in the genome. Here, we describe several cotton (Gossypium hirsutum cv. Coker 312) target lines suitable for Mycobacteriophage Bxb1 recombinase-mediated gene stacking. Obtained through the empirical screening of random insertion events, each of these target lines contains a single intact copy of the target construct with precise sequences of RS2, lox, and attP sites that is not inserted within or close to a known gene or near a centromere and shows good expression of the reporter gene gfp. Gene stacking was tested with insertion of different combinations of three candidate genes for resistance to verticillium wilt into three cotton target lines: CTS1, CTS3, and CTS4. Nine site-specific integration events were recovered from 95 independently transformed embryogenic calluses. Southern and DNA sequence analyses of regenerated plants confirmed precise site-specific integration, and resistance to verticillium wilt was observed for plant CTS1i3, which has a single precise copy of site-specifically integrated DNA. These cotton target lines can serve as foundation lines for recombinase-mediated gene stacking to facilitate precise DNA integration and introgression to field cultivars.
Collapse
Affiliation(s)
- Yamei Li
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyu Li
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Zhiguo Han
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Haitang Wang
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Sixian Zhou
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongqing Li
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yumei Wang
- Plant Gene Engineering Center, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junsheng Qi
- Department of Plant Science, State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | |
Collapse
|
50
|
Wu Q, Liu Y, Huang J. CRISPR-Cas9 Mediated Mutation in OsPUB43 Improves Grain Length and Weight in Rice by Promoting Cell Proliferation in Spikelet Hull. Int J Mol Sci 2022; 23:ijms23042347. [PMID: 35216463 PMCID: PMC8877319 DOI: 10.3390/ijms23042347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 12/27/2022] Open
Abstract
Grain weight, a crucial trait that determines the grain yield in rice, is influenced by grain size. Although a series of regulators that control grain size have been identified in rice, the mechanisms underlying grain development are not yet well understood. In this study, we identified OsPUB43, a U-box E3 ubiquitin ligase, as an important negative regulator determining the gain size and grain weight in rice. Phenotypes of large grain are observed in ospub43 mutants, whereas overexpression of OsPUB43 results in short grains. Scanning electron microscopy analysis reveals that OsPUB43 modulates the grain size mainly by inhibiting cell proliferation in the spikelet hull. The OsPUB43 protein is localized in the cytoplasm and nucleus. The ospub43 mutants display high sensitivity to exogenous BR, while OsPUB43-OE lines are hyposensitive to BR. Furthermore, the transient transcriptional activity assay shows that OsBZR1 can activate the expression of OsPUB43. Collectively, our results indicate that OsPUB43 negatively controls the gain size by modulating the expression of BR-responsive genes as well as MADS-box genes that are required for lemma/palea specification, suggesting that OsPUB43 has a potential valuable application in the enlargement of grain size in rice.
Collapse
|