1
|
Fañanás‐Pueyo I, Carrera‐Castaño G, Pernas M, Oñate‐Sánchez L. Signalling and regulation of plant development by carbon/nitrogen balance. PHYSIOLOGIA PLANTARUM 2025; 177:e70228. [PMID: 40269445 PMCID: PMC12018728 DOI: 10.1111/ppl.70228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 03/13/2025] [Indexed: 04/25/2025]
Abstract
The two most abundant macronutrients in plant cells are carbon (C) and nitrogen (N). Coordination of their cellular metabolism is a fundamental factor in guaranteeing the optimal growth and development of plants. N availability and assimilation profoundly affect plant gene expression and modulate root and stem architecture, thus affecting whole plant growth and crop yield. N status also affects C fixation, as it is an important component of the photosynthetic machinery in leaves. Reciprocally, increasing C supply promotes N uptake and assimilation. There is extensive knowledge of the different mechanisms that plants use for sensing and signalling their nutritional status to regulate the assimilation, metabolism and transport of C and N. However, the crosstalk between C and N pathways has received much less attention. Plant growth and development are greatly affected by suboptimal C/N balance, which can arise from nutrient deficiencies or/and environmental cues. Mechanisms that integrate and respond to changes in this specific nutritional balance have started to arise. This review will examine the specific responses to C/N imbalance in plants by focusing on the main inorganic and organic metabolites involved, how they are sensed and transported, and the interconnection between the early signalling components and hormonal networks that underlies plants' adaptive responses.
Collapse
Affiliation(s)
- Iris Fañanás‐Pueyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Gerardo Carrera‐Castaño
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Mónica Pernas
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
| | - Luis Oñate‐Sánchez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) ‐ Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPMPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología VegetalEscuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPMMadridSpain
| |
Collapse
|
2
|
Zhou T, Chang F, Li X, Yang W, Huang X, Yan J, Wu Q, Wen F, Pei J, Ma Y, Xu B. Role of auxin and gibberellin under low light in enhancing saffron corm starch degradation during sprouting. Int J Biol Macromol 2024; 279:135234. [PMID: 39218189 DOI: 10.1016/j.ijbiomac.2024.135234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
The mechanisms by which low light accelerates starch macromolecules degradation by auxin and gibberellin (GA) in geophytes during sprouting remain largely unknown. This study investigated these mechanisms in saffron, grown under low light (50 μmol m-2 s-1) and optimal light (200 μmol m-2 s-1) during the sprouting phase. Low light reduced starch concentration in corms by 34.0 % and increased significantly sucrose levels in corms, leaves, and leaf sheaths by 19.2 %, 9.8 %, and 134.5 %, respectively. This was associated with a 33.3 % increase in GA3 level and enhanced auxin signaling. Leaves synthesized IAA under low light, which was transported to the corms to promote GA synthesis, facilitating starch degradation through a 228.7 % increase in amylase activity. Exogenous applications of GA and IAA, as well as the use of their synthesis or transport inhibitors, confirmed the synergistic role of these phytohormones in starch metabolism. The unigenes associated with GA biosynthesis and auxin signaling were upregulated under low light, highlighting the IAA-GA module role in starch degradation. Moreover, increased respiration rate and invertase activity, crucial for ATP biosynthesis and the tricarboxylic acid cycle, were consistent with the upregulation of related unigenes, suggesting that auxin signaling accelerates starch degradation by promoting energy metabolism. Upregulated of auxin signaling (CsSAUR32) and starch metabolism (CsSnRK1) genes under low light suggests that auxin directly regulate starch degradation in saffron corms. This study elucidates that low light modulates auxin and GA interactions to accelerate starch degradation in saffron corms during sprouting, offering insights for optimizing agricultural practices under suboptimal light conditions.
Collapse
Affiliation(s)
- Tao Zhou
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Fei Chang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xin Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Weijing Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Xulong Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jie Yan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Qinghua Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Feiyan Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China
| | - Jin Pei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Yuntong Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| | - Binjie Xu
- Innovative institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, Sichuan, China.
| |
Collapse
|
3
|
Persyn F, Smagghe W, Eeckhout D, Mertens T, Smorscek T, De Winne N, Persiau G, Van De Slijke E, Crepin N, Gadeyne A, Van Leene J, De Jaeger G. A Nitrogen-specific Interactome Analysis Sheds Light on the Role of the SnRK1 and TOR Kinases in Plant Nitrogen Signaling. Mol Cell Proteomics 2024; 23:100842. [PMID: 39307424 PMCID: PMC11526089 DOI: 10.1016/j.mcpro.2024.100842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/05/2024] [Accepted: 08/23/2024] [Indexed: 10/18/2024] Open
Abstract
Nitrogen (N) is of utmost importance for plant growth and development. Multiple studies have shown that N signaling is tightly coupled with carbon (C) levels, but the interplay between C/N metabolism and growth remains largely an enigma. Nonetheless, the protein kinases Sucrose Non-fermenting 1 (SNF1)-Related Kinase 1 (SnRK1) and Target Of Rapamycin (TOR), two ancient central metabolic regulators, are emerging as key integrators that link C/N status with growth. Despite their pivotal importance, the exact mechanisms behind the sensing of N status and its integration with C availability to drive metabolic decisions are largely unknown. Especially for SnRK1, it is not clear how this kinase responds to altered N levels. Therefore, we first monitored N-dependent SnRK1 kinase activity with an in vivo Separation of Phase-based Activity Reporter of Kinase (SPARK) sensor, revealing a contrasting N-dependency in Arabidopsis thaliana (Arabidopsis) shoot and root tissues. Next, using affinity purification (AP) and proximity labeling (PL) coupled to mass spectrometry (MS) experiments, we constructed a comprehensive SnRK1 and TOR interactome in Arabidopsis cell cultures during N-starved and N-repleted growth conditions. To broaden our understanding of the N-specificity of the TOR/SnRK1 signaling events, the resulting network was compared to corresponding C-related networks, identifying a large number of novel, N-specific interactors. Moreover, through integration of N-dependent transcriptome and phosphoproteome data, we were able to pinpoint additional N-dependent network components, highlighting for instance SnRK1 regulatory proteins that might function at the crosstalk of C/N signaling. Finally, confirmation of known and identification of novel SnRK1 interactors, such as Inositol-Requiring 1 (IRE1A) and the RAB GTPase RAB18, indicate that SnRK1, present at the ER, is involved in N signaling and autophagy induction.
Collapse
Affiliation(s)
- Freya Persyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Wouter Smagghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Toon Mertens
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Thomas Smorscek
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Nathalie Crepin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Astrid Gadeyne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
4
|
Liew LC, You Y, Auroux L, Oliva M, Peirats-Llobet M, Ng S, Tamiru-Oli M, Berkowitz O, Hong UVT, Haslem A, Stuart T, Ritchie ME, Bassel GW, Lister R, Whelan J, Gouil Q, Lewsey MG. Establishment of single-cell transcriptional states during seed germination. NATURE PLANTS 2024; 10:1418-1434. [PMID: 39256563 PMCID: PMC11410669 DOI: 10.1038/s41477-024-01771-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 07/25/2024] [Indexed: 09/12/2024]
Abstract
Germination involves highly dynamic transcriptional programs as the cells of seeds reactivate and express the functions necessary for establishment in the environment. Individual cell types have distinct roles within the embryo, so must therefore have cell type-specific gene expression and gene regulatory networks. We can better understand how the functions of different cell types are established and contribute to the embryo by determining how cell type-specific transcription begins and changes through germination. Here we describe a temporal analysis of the germinating Arabidopsis thaliana embryo at single-cell resolution. We define the highly dynamic cell type-specific patterns of gene expression and how these relate to changing cellular function as germination progresses. Underlying these are unique gene regulatory networks and transcription factor activity. We unexpectedly discover that most embryo cells transition through the same initial transcriptional state early in germination, even though cell identity has already been established during embryogenesis. Cells later transition to cell type-specific gene expression patterns. Furthermore, our analyses support previous findings that the earliest events leading to the induction of seed germination take place in the vasculature. Overall, our study constitutes a general framework with which to characterize Arabidopsis cell transcriptional states through seed germination, allowing investigation of different genotypes and other plant species whose seed strategies may differ.
Collapse
Affiliation(s)
- Lim Chee Liew
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Yue You
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lucas Auroux
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Marina Oliva
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
| | - Marta Peirats-Llobet
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Sophia Ng
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Muluneh Tamiru-Oli
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Oliver Berkowitz
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Uyen Vu Thuy Hong
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Asha Haslem
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia
| | - Tim Stuart
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Genome Institute of Singapore, Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Matthew E Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Ryan Lister
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Australian Research Council Centre of Excellence in Plants for Space, School of Molecular Sciences, The University of Western Australia, Perth, Western Australia, Australia
- Harry Perkins Institute of Medical Research, Queen Elizabeth II Medical Centre and Centre for Medical Research, The University of Western Australia, Perth, Western Australia, Australia
| | - James Whelan
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Centre of Excellence in Plant Energy Biology, AgriBio Building, La Trobe University, Melbourne, Victoria, Australia.
- College of Life Sciences, Zhejiang University, Hangzhou, People's Republic of China.
| | - Quentin Gouil
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia.
| | - Mathew G Lewsey
- La Trobe Institute for Sustainable Agriculture and Food, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Research Hub for Medicinal Agriculture, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
- Australian Research Council Centre of Excellence in Plants for Space, AgriBio, La Trobe University, Melbourne, Victoria, Australia.
| |
Collapse
|
5
|
Angermann C, Heinemann B, Hansen J, Töpfer N, Braun HP, Hildebrandt TM. Proteome reorganization and amino acid metabolism during germination and seedling establishment in Lupinus albus. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4891-4903. [PMID: 38686677 DOI: 10.1093/jxb/erae197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/29/2024] [Indexed: 05/02/2024]
Abstract
During germination plants rely entirely on their seed storage compounds to provide energy and precursors for the synthesis of macromolecular structures until the seedling has emerged from the soil and photosynthesis can be established. Lupin seeds use proteins as their major storage compounds, accounting for up to 40% of the seed dry weight. Lupins are therefore a valuable complement to soy as a source of plant protein for human and animal nutrition. The aim of this study was to elucidate how storage protein metabolism is coordinated with other metabolic processes to meet the requirements of the growing seedling. In a quantitative approach, we analysed seedling growth, as well as alterations in biomass composition, the proteome, and metabolite profiles during germination and seedling establishment in Lupinus albus. The reallocation of nitrogen resources from seed storage proteins to functional seed proteins was mapped based on a manually curated functional protein annotation database. Although classified as a protein crop, Lupinus albus does not use amino acids as a primary substrate for energy metabolism during germination. However, fatty acid and amino acid metabolism may be integrated at the level of malate synthase to combine stored carbon from lipids and proteins into gluconeogenesis.
Collapse
Affiliation(s)
- Cecile Angermann
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Björn Heinemann
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| | - Jule Hansen
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Nadine Töpfer
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Luxemburger Str. 90, 50939 Cologne, Germany
| | - Hans-Peter Braun
- Institute for Plant Genetics, Department of Plant Proteomics, Leibniz University Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Tatjana M Hildebrandt
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Zülpicher Straße 47a, 50674 Cologne, Germany
| |
Collapse
|
6
|
Artins A, Martins MCM, Meyer C, Fernie AR, Caldana C. Sensing and regulation of C and N metabolism - novel features and mechanisms of the TOR and SnRK1 signaling pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1268-1280. [PMID: 38349940 DOI: 10.1111/tpj.16684] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/25/2024] [Accepted: 02/02/2024] [Indexed: 02/15/2024]
Abstract
Carbon (C) and nitrogen (N) metabolisms are tightly integrated to allow proper plant growth and development. Photosynthesis is dependent on N invested in chlorophylls, enzymes, and structural components of the photosynthetic machinery, while N uptake and assimilation rely on ATP, reducing equivalents, and C-skeletons provided by photosynthesis. The direct connection between N availability and photosynthetic efficiency allows the synthesis of precursors for all metabolites and building blocks in plants. Thus, the capacity to sense and respond to sudden changes in C and N availability is crucial for plant survival and is mediated by complex yet efficient signaling pathways such as TARGET OF RAPAMYCIN (TOR) and SUCROSE-NON-FERMENTING-1-RELATED PROTEIN KINASE 1 (SnRK1). In this review, we present recent advances in mechanisms involved in sensing C and N status as well as identifying current gaps in our understanding. We finally attempt to provide new perspectives and hypotheses on the interconnection of diverse signaling pathways that will allow us to understand the integration and orchestration of the major players governing the regulation of the CN balance.
Collapse
Affiliation(s)
- Anthony Artins
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Marina C M Martins
- in Press - Scientific Consulting and Communication Services, 05089-030, São Paulo, São Paulo, Brazil
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000, Versailles, France
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| | - Camila Caldana
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Golm, Germany
| |
Collapse
|
7
|
Yang T, Huang Y, Liao L, Wang S, Zhang H, Pan J, Huang Y, Li X, Chen D, Liu T, Lu X, Wu Y. Sucrose-associated SnRK1a1-mediated phosphorylation of Opaque2 modulates endosperm filling in maize. MOLECULAR PLANT 2024; 17:788-806. [PMID: 38615195 DOI: 10.1016/j.molp.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/29/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
During maize endosperm filling, sucrose not only serves as a source of carbon skeletons for storage-reserve synthesis but also acts as a stimulus to promote this process. However, the molecular mechanisms underlying sucrose and endosperm filling are poorly understood. In this study, we found that sucrose promotes the expression of endosperm-filling hub gene Opaque2 (O2), coordinating with storage-reserve accumulation. We showed that the protein kinase SnRK1a1 can attenuate O2-mediated transactivation, but sucrose can release this suppression. Biochemical assays revealed that SnRK1a1 phosphorylates O2 at serine 41 (S41), negatively affecting its protein stability and transactivation ability. We observed that mutation of SnRK1a1 results in larger seeds with increased kernel weight and storage reserves, while overexpression of SnRK1a1 causes the opposite effect. Overexpression of the native O2 (O2-OE), phospho-dead (O2-SA), and phospho-mimetic (O2-SD) variants all increased 100-kernel weight. Although O2-SA seeds exhibit smaller kernel size, they have higher accumulation of starch and proteins, resulting in larger vitreous endosperm and increased test weight. O2-SD seeds display larger kernel size but unchanged levels of storage reserves and test weight. O2-OE seeds show elevated kernel dimensions and nutrient storage, like a mixture of O2-SA and O2-SD seeds. Collectively, our study discovers a novel regulatory mechanism of maize endosperm filling. Identification of S41 as a SnRK1-mediated phosphorylation site in O2 offers a potential engineering target for enhancing storage-reserve accumulation and yield in maize.
Collapse
Affiliation(s)
- Tao Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yunqin Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Longyu Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Shanshan Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Haoyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jingying Pan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yongcai Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Xiaoling Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Di Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Tao Liu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Xiaoduo Lu
- Institute of Molecular Breeding for Maize, Qilu Normal University, Jinan, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
8
|
Wu HYL, Jen J, Hsu PY. What, where, and how: Regulation of translation and the translational landscape in plants. THE PLANT CELL 2024; 36:1540-1564. [PMID: 37437121 PMCID: PMC11062462 DOI: 10.1093/plcell/koad197] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 07/14/2023]
Abstract
Translation is a crucial step in gene expression and plays a vital role in regulating various aspects of plant development and environmental responses. It is a dynamic and complex program that involves interactions between mRNAs, transfer RNAs, and the ribosome machinery through both cis- and trans-regulation while integrating internal and external signals. Translational control can act in a global (transcriptome-wide) or mRNA-specific manner. Recent advances in genome-wide techniques, particularly ribosome profiling and proteomics, have led to numerous exciting discoveries in both global and mRNA-specific translation. In this review, we aim to provide a "primer" that introduces readers to this fascinating yet complex cellular process and provide a big picture of how essential components connect within the network. We begin with an overview of mRNA translation, followed by a discussion of the experimental approaches and recent findings in the field, focusing on unannotated translation events and translational control through cis-regulatory elements on mRNAs and trans-acting factors, as well as signaling networks through 3 conserved translational regulators TOR, SnRK1, and GCN2. Finally, we briefly touch on the spatial regulation of mRNAs in translational control. Here, we focus on cytosolic mRNAs; translation in organelles and viruses is not covered in this review.
Collapse
Affiliation(s)
- Hsin-Yen Larry Wu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Joey Jen
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Polly Yingshan Hsu
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
9
|
Tao B, Ma Y, Wang L, He C, Chen J, Ge X, Zhao L, Wen J, Yi B, Tu J, Fu T, Shen J. Developmental pleiotropy of SDP1 from seedling to mature stages in B. napus. PLANT MOLECULAR BIOLOGY 2024; 114:49. [PMID: 38642182 DOI: 10.1007/s11103-024-01447-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024]
Abstract
Rapeseed, an important oil crop, relies on robust seedling emergence for optimal yields. Seedling emergence in the field is vulnerable to various factors, among which inadequate self-supply of energy is crucial to limiting seedling growth in early stage. SUGAR-DEPENDENT1 (SDP1) initiates triacylglycerol (TAG) degradation, yet its detailed function has not been determined in B. napus. Here, we focused on the effects of plant growth during whole growth stages and energy mobilization during seedling establishment by mutation in BnSDP1. Protein sequence alignment and haplotypic analysis revealed the conservation of SDP1 among species, with a favorable haplotype enhancing oil content. Investigation of agronomic traits indicated bnsdp1 had a minor impact on vegetative growth and no obvious developmental defects when compared with wild type (WT) across growth stages. The seed oil content was improved by 2.0-2.37% in bnsdp1 lines, with slight reductions in silique length and seed number per silique. Furthermore, bnsdp1 resulted in lower seedling emergence, characterized by a shrunken hypocotyl and poor photosynthetic capacity in the early stages. Additionally, impaired seedling growth, especially in yellow seedlings, was not fully rescued in medium supplemented with exogenous sucrose. The limited lipid turnover in bnsdp1 was accompanied by induced amino acid degradation and PPDK-dependent gluconeogenesis pathway. Analysis of the metabolites in cotyledons revealed active amino acid metabolism and suppressed lipid degradation, consistent with the RNA-seq results. Finally, we proposed strategies for applying BnSDP1 in molecular breeding. Our study provides theoretical guidance for understanding trade-off between oil accumulation and seedling energy mobilization in B. napus.
Collapse
Affiliation(s)
- Baolong Tao
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Yina Ma
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Liqin Wang
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Chao He
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Junlin Chen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Xiaoyu Ge
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Lun Zhao
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jing Wen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Bin Yi
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jinxing Tu
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Tingdong Fu
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China
| | - Jinxiong Shen
- Huazhong Agricultural University, National Key Laboratory of Crop Genetic Improvement/National Engineering Research Center of Rapeseed, Wuhan, 430070, China.
| |
Collapse
|
10
|
Bortlik J, Lühle J, Alseekh S, Weiste C, Fernie AR, Dröge-Laser W, Börnke F. DOMAIN OF UNKNOWN FUNCTION581-9 negatively regulates SnRK1 kinase activity. PLANT PHYSIOLOGY 2024; 194:1853-1869. [PMID: 37936321 PMCID: PMC10904321 DOI: 10.1093/plphys/kiad594] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 11/09/2023]
Abstract
In plants, sucrose nonfermenting 1 (SNF1)-related protein kinase 1 (SnRK1) is a key energy sensor that orchestrates large-scale transcriptional reprograming to maintain cellular homeostasis under energy deficit. SnRK1 activity is under tight negative control, although the exact mechanisms leading to its activation are not well understood. We show that the Arabidopsis (Arabidopsis thaliana) DOMAIN OF UNKNOWN FUNCTION (DUF581) protein DUF581-9/FCS-like zinc finger 3 binds to the catalytic SnRK1.1 α subunit (KIN10) to inhibit its activation by geminivirus rep-interacting kinase (GRIK)-dependent T-loop phosphorylation. Overexpression of DUF581-9 in Arabidopsis dampens SnRK1 signaling and interferes with adaptation to dark-induced starvation. The presence of DUF581-9 significantly reduced SnRK1 activity in protoplasts and in vitro. This was accompanied by a reduction in T175 T-loop phosphorylation and also diminished KIN10 auto-phosphorylation. Furthermore, DUF581-9 reduced binding of the upstream activating kinase GRIK2 to KIN10, explaining the reduced KIN10 T-loop phosphorylation. Ectopically expressed DUF581-9 protein was rapidly turned over by the proteasome when Arabidopsis plants were subjected to starvation treatment, likely releasing its inhibitory activity on the SnRK1 complex. Taken together, our results support a model in which DUF581-9 negatively regulates SnRK1 activity under energy sufficient conditions. Turnover of the protein provides a rapid way for SnRK1 activation under energy deficit without the need of de novo protein synthesis.
Collapse
Affiliation(s)
- Jennifer Bortlik
- Plant Metabolism Group, Department of Plant Adaptation, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
| | - Jost Lühle
- Plant Metabolism Group, Department of Plant Adaptation, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
| | - Saleh Alseekh
- Department Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Julius-von-Sachs-Institut, Biozentrum, Julius-Maximilians-Universität Würzburg, Würzburg 97082, Germany
| | - Alisdair R Fernie
- Department Root Biology and Symbiosis, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Center for Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | | | - Frederik Börnke
- Plant Metabolism Group, Department of Plant Adaptation, Leibniz-Institute of Vegetable and Ornamental Crops (IGZ), Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
11
|
Kreisz P, Hellens AM, Fröschel C, Krischke M, Maag D, Feil R, Wildenhain T, Draken J, Braune G, Erdelitsch L, Cecchino L, Wagner TC, Ache P, Mueller MJ, Becker D, Lunn JE, Hanson J, Beveridge CA, Fichtner F, Barbier FF, Weiste C. S 1 basic leucine zipper transcription factors shape plant architecture by controlling C/N partitioning to apical and lateral organs. Proc Natl Acad Sci U S A 2024; 121:e2313343121. [PMID: 38315839 PMCID: PMC10873608 DOI: 10.1073/pnas.2313343121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/21/2023] [Indexed: 02/07/2024] Open
Abstract
Plants tightly control growth of their lateral organs, which led to the concept of apical dominance. However, outgrowth of the dormant lateral primordia is sensitive to the plant's nutritional status, resulting in an immense plasticity in plant architecture. While the impact of hormonal regulation on apical dominance is well characterized, the prime importance of sugar signaling to unleash lateral organ formation has just recently emerged. Here, we aimed to identify transcriptional regulators, which control the trade-off between growth of apical versus lateral organs. Making use of locally inducible gain-of-function as well as single and higher-order loss-of-function approaches of the sugar-responsive S1-basic-leucine-zipper (S1-bZIP) transcription factors, we disclosed their largely redundant function in establishing apical growth dominance. Consistently, comprehensive phenotypical and analytical studies of S1-bZIP mutants show a clear shift of sugar and organic nitrogen (N) allocation from apical to lateral organs, coinciding with strong lateral organ outgrowth. Tissue-specific transcriptomics reveal specific clade III SWEET sugar transporters, crucial for long-distance sugar transport to apical sinks and the glutaminase GLUTAMINE AMIDO-TRANSFERASE 1_2.1, involved in N homeostasis, as direct S1-bZIP targets, linking the architectural and metabolic mutant phenotypes to downstream gene regulation. Based on these results, we propose that S1-bZIPs control carbohydrate (C) partitioning from source leaves to apical organs and tune systemic N supply to restrict lateral organ formation by C/N depletion. Knowledge of the underlying mechanisms controlling plant C/N partitioning is of pivotal importance for breeding strategies to generate plants with desired architectural and nutritional characteristics.
Collapse
Affiliation(s)
- Philipp Kreisz
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Alicia M. Hellens
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Christian Fröschel
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Markus Krischke
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Daniel Maag
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Regina Feil
- Group System Regulation, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm14476, Germany
| | - Theresa Wildenhain
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Jan Draken
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Gabriel Braune
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Leon Erdelitsch
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Laura Cecchino
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Tobias C. Wagner
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Peter Ache
- Department of Molecular Plant Physiology and Biophysics, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Martin J. Mueller
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - Dirk Becker
- Department of Molecular Plant Physiology and Biophysics, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| | - John E. Lunn
- Group System Regulation, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm14476, Germany
| | - Johannes Hanson
- Department of Plant Physiology, Umeå Plant Science Center, Umeå University, UmeåSE-901 87, Sweden
| | - Christine A. Beveridge
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
| | - Franziska Fichtner
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- Department of Plant Biochemistry, Institute for Plant Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf40225, Germany
| | - Francois F. Barbier
- Australian Research Council Centre of Excellence for Plant Success in Nature and Agriculture, School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD4072, Australia
- Institute for Plant Sciences of Montpellier, University of Montpellier, CNRS, INRAe, Institut Agro, Montpellier34060, France
| | - Christoph Weiste
- Department of Pharmaceutical Biology, Faculty of Biology, Biocenter, Julius-von-Sachs-Institute, Julius-Maximilians-Universität Würzburg, Würzburg97082, Germany
| |
Collapse
|
12
|
Safi A, Smagghe W, Gonçalves A, Wang Q, Xu K, Fernandez AI, Cappe B, Riquet FB, Mylle E, Eeckhout D, De Winne N, Van De Slijke E, Persyn F, Persiau G, Van Damme D, Geelen D, De Jaeger G, Beeckman T, Van Leene J, Vanneste S. Phase separation-based visualization of protein-protein interactions and kinase activities in plants. THE PLANT CELL 2023; 35:3280-3302. [PMID: 37378595 PMCID: PMC10473206 DOI: 10.1093/plcell/koad188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/23/2023] [Accepted: 06/23/2023] [Indexed: 06/29/2023]
Abstract
Protein activities depend heavily on protein complex formation and dynamic posttranslational modifications, such as phosphorylation. The dynamic nature of protein complex formation and posttranslational modifications is notoriously difficult to monitor in planta at cellular resolution, often requiring extensive optimization. Here, we generated and exploited the SYnthetic Multivalency in PLants (SYMPL)-vector set to assay protein-protein interactions (PPIs) (separation of phases-based protein interaction reporter) and kinase activities (separation of phases-based activity reporter of kinase) in planta, based on phase separation. This technology enabled easy detection of inducible, binary and ternary PPIs among cytoplasmic and nuclear proteins in plant cells via a robust image-based readout. Moreover, we applied the SYMPL toolbox to develop an in vivo reporter for SNF1-related kinase 1 activity, allowing us to visualize tissue-specific, dynamic SnRK1 activity in stable transgenic Arabidopsis (Arabidopsis thaliana) plants. The SYMPL cloning toolbox provides a means to explore PPIs, phosphorylation, and other posttranslational modifications with unprecedented ease and sensitivity.
Collapse
Affiliation(s)
- Alaeddine Safi
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Wouter Smagghe
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Amanda Gonçalves
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- VIB, Bioimaging Core, B-9052 Ghent, Belgium
| | - Qing Wang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ke Xu
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ana Ibis Fernandez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Benjamin Cappe
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
| | - Franck B Riquet
- Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Ghent, Belgium
- Department of Biomedical Molecular Biology (DBMB), Ghent University, Ghent, Belgium
- Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Evelien Mylle
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Nancy De Winne
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Eveline Van De Slijke
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Freya Persyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Geert Persiau
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Danny Geelen
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Steffen Vanneste
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plants and Crops, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Saile J, Wießner-Kroh T, Erbstein K, Obermüller DM, Pfeiffer A, Janocha D, Lohmann J, Wachter A. SNF1-RELATED KINASE 1 and TARGET OF RAPAMYCIN control light-responsive splicing events and developmental characteristics in etiolated Arabidopsis seedlings. THE PLANT CELL 2023; 35:3413-3428. [PMID: 37338062 PMCID: PMC10473197 DOI: 10.1093/plcell/koad168] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 06/21/2023]
Abstract
The kinases SNF1-RELATED KINASE 1 (SnRK1) and TARGET OF RAPAMYCIN (TOR) are central sensors of the energy status, linking this information via diverse regulatory mechanisms to plant development and stress responses. Despite the well-studied functions of SnRK1 and TOR under conditions of limited or ample energy availability, respectively, little is known about the extent to which the 2 sensor systems function and how they are integrated in the same molecular process or physiological context. Here, we demonstrate that both SnRK1 and TOR are required for proper skotomorphogenesis in etiolated Arabidopsis (Arabidopsis thaliana) seedlings, light-induced cotyledon opening, and regular development in light. Furthermore, we identify SnRK1 and TOR as signaling components acting upstream of light- and sugar-regulated alternative splicing events, expanding the known action spectra for these 2 key players in energy signaling. Our findings imply that concurring SnRK1 and TOR activities are required throughout various phases of plant development. Based on the current knowledge and our findings, we hypothesize that turning points in the activities of these sensor kinases, as expected to occur upon illumination of etiolated seedlings, instead of signaling thresholds reflecting the nutritional status may modulate developmental programs in response to altered energy availability.
Collapse
Affiliation(s)
- Jennifer Saile
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Theresa Wießner-Kroh
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Katarina Erbstein
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Dominik M Obermüller
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Anne Pfeiffer
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Denis Janocha
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Jan Lohmann
- Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Andreas Wachter
- Institute for Molecular Physiology (imP), University of Mainz, Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| |
Collapse
|
14
|
Rojas BE, Iglesias AA. Integrating multiple regulations on enzyme activity: the case of phospho enolpyruvate carboxykinases. AOB PLANTS 2023; 15:plad053. [PMID: 37608926 PMCID: PMC10441589 DOI: 10.1093/aobpla/plad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Data on protein post-translational modifications (PTMs) increased exponentially in the last years due to the refinement of mass spectrometry techniques and the development of databases to store and share datasets. Nevertheless, these data per se do not create comprehensive biochemical knowledge. Complementary studies on protein biochemistry are necessary to fully understand the function of these PTMs at the molecular level and beyond, for example, designing rational metabolic engineering strategies to improve crops. Phosphoenolpyruvate carboxykinases (PEPCKs) are critical enzymes for plant metabolism with diverse roles in plant development and growth. Multiple lines of evidence showed the complex regulation of PEPCKs, including PTMs. Herein, we present PEPCKs as an example of the integration of combined mechanisms modulating enzyme activity and metabolic pathways. PEPCK studies strongly advanced after the production of the recombinant enzyme and the establishment of standardized biochemical assays. Finally, we discuss emerging open questions for future research and the challenges in integrating all available data into functional biochemical models.
Collapse
Affiliation(s)
- Bruno E Rojas
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| | - Alberto A Iglesias
- Instituto de Agrobiotecnología del Litoral, UNL, CONICET, FBCB, Santa Fe, Argentina
| |
Collapse
|
15
|
Considine MJ, Foyer CH. Metabolic regulation of quiescence in plants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:1132-1148. [PMID: 36994639 PMCID: PMC10952390 DOI: 10.1111/tpj.16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 05/31/2023]
Abstract
Quiescence is a crucial survival attribute in which cell division is repressed in a reversible manner. Although quiescence has long been viewed as an inactive state, recent studies have shown that it is an actively monitored process that is influenced by environmental stimuli. Here, we provide a perspective of the quiescent state and discuss how this process is tuned by energy, nutrient and oxygen status, and the pathways that sense and transmit these signals. We not only highlight the governance of canonical regulators and signalling mechanisms that respond to changes in nutrient and energy status, but also consider the central significance of mitochondrial functions and cues as key regulators of nuclear gene expression. Furthermore, we discuss how reactive oxygen species and the associated redox processes, which are intrinsically linked to energy carbohydrate metabolism, also play a key role in the orchestration of quiescence.
Collapse
Affiliation(s)
- Michael J. Considine
- The UWA Institute of Agriculture and the School of Molecular SciencesThe University of Western AustraliaPerthWestern Australia6009Australia
- The Department of Primary Industries and Regional DevelopmentPerthWestern Australia6000Australia
| | - Christine H. Foyer
- School of Biosciences, College of Life and Environmental SciencesUniversity of BirminghamEdgbastonB15 2TTUK
| |
Collapse
|
16
|
Avidan O, Moraes TA, Mengin V, Feil R, Rolland F, Stitt M, Lunn JE. In vivo protein kinase activity of SnRK1 fluctuates in Arabidopsis rosettes during light-dark cycles. PLANT PHYSIOLOGY 2023; 192:387-408. [PMID: 36725081 PMCID: PMC10152665 DOI: 10.1093/plphys/kiad066] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 01/09/2023] [Indexed: 05/03/2023]
Abstract
Sucrose-nonfermenting 1 (SNF1)-related kinase 1 (SnRK1) is a central hub in carbon and energy signaling in plants, and is orthologous with SNF1 in yeast and the AMP-activated protein kinase (AMPK) in animals. Previous studies of SnRK1 relied on in vitro activity assays or monitoring of putative marker gene expression. Neither approach gives unambiguous information about in vivo SnRK1 activity. We have monitored in vivo SnRK1 activity using Arabidopsis (Arabidopsis thaliana) reporter lines that express a chimeric polypeptide with an SNF1/SnRK1/AMPK-specific phosphorylation site. We investigated responses during an equinoctial diel cycle and after perturbing this cycle. As expected, in vivo SnRK1 activity rose toward the end of the night and rose even further when the night was extended. Unexpectedly, although sugars rose after dawn, SnRK1 activity did not decline until about 12 h into the light period. The sucrose signal metabolite, trehalose 6-phosphate (Tre6P), has been shown to inhibit SnRK1 in vitro. We introduced the SnRK1 reporter into lines that harbored an inducible trehalose-6-phosphate synthase construct. Elevated Tre6P decreased in vivo SnRK1 activity in the light period, but not at the end of the night. Reporter polypeptide phosphorylation was sometimes negatively correlated with Tre6P, but a stronger and more widespread negative correlation was observed with glucose-6-phosphate. We propose that SnRK1 operates within a network that controls carbon utilization and maintains diel sugar homeostasis, that SnRK1 activity is regulated in a context-dependent manner by Tre6P, probably interacting with further inputs including hexose phosphates and the circadian clock, and that SnRK1 signaling is modulated by factors that act downstream of SnRK1.
Collapse
Affiliation(s)
- Omri Avidan
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Thiago A Moraes
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Virginie Mengin
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Filip Rolland
- Laboratory of Molecular Plant Biology, KU Leuven, B-3001 Leuven, Belgium
- KU Leuven Plant Institute (LPI), B-3001 Leuven, Belgium
| | - Mark Stitt
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| |
Collapse
|
17
|
Huang J, Zhao J, Wang X, Ma L, Ma Z, Meng X, Fan H. SnRK1 signaling regulates cucumber growth and resistance to Corynespora cassiicola. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 332:111716. [PMID: 37086974 DOI: 10.1016/j.plantsci.2023.111716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
Energy metabolism is one of the key factors determining the growth and development of plants and the response to biotic and abiotic stresses. Sucrose non-fermentation 1 related protein kinase 1 (SnRK1) is an important energy-sensitive regulator that plays a key role in the overall control of carbohydrate metabolism. However, little is known about the function of SnRK1 in cucumber. In this study, metformin (an SnRK1 activator) and trehalose (an SnRK1 inhibitor) were used to investigate the role of SnRK1 signaling in cucumber. The results showed that SnRK1 activation could inhibit the growth of cucumber, slow down the net photosynthetic rate (Pn), reduce the contents of photosynthetic pigments and soluble sugars, and suppress the expression of genes related to sucrose metabolism. By contrast, SnRK1 inhibition yielded opposite results. Furthermore, SnRK1 activation and CsSnRK1 over-expression improved cucumber resistance to Corynespora cassiicola. While, SnRK1 inhibition and CsSnRK1 silencing reduced the resistance of cucumber to C. cassiicola. The results indicated that CsSnRK1 gene can positively regulate the resistance of cucumber to C. cassiicola. We conclude that CsSnRK1 signaling plays an important role in balancing the growth and immune response of cucumber. These results can be applied to the improvement of disease-resistant cucumber varieties.
Collapse
Affiliation(s)
- Jingnan Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Juyong Zhao
- Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Xue Wang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Lifeng Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Zhangtong Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiangnan Meng
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| | - Haiyan Fan
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning 110866, China; Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang Agricultural University, Shenyang, Liaoning 110866, China.
| |
Collapse
|
18
|
Tabeta H, Gunji S, Kawade K, Ferjani A. Leaf-size control beyond transcription factors: Compensatory mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 13:1024945. [PMID: 36756231 PMCID: PMC9901582 DOI: 10.3389/fpls.2022.1024945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Plant leaves display abundant morphological richness yet grow to characteristic sizes and shapes. Beginning with a small number of undifferentiated founder cells, leaves evolve via a complex interplay of regulatory factors that ultimately influence cell proliferation and subsequent post-mitotic cell enlargement. During their development, a sequence of key events that shape leaves is both robustly executed spatiotemporally following a genomic molecular network and flexibly tuned by a variety of environmental stimuli. Decades of work on Arabidopsis thaliana have revisited the compensatory phenomena that might reflect a general and primary size-regulatory mechanism in leaves. This review focuses on key molecular and cellular events behind the organ-wide scale regulation of compensatory mechanisms. Lastly, emerging novel mechanisms of metabolic and hormonal regulation are discussed, based on recent advances in the field that have provided insights into, among other phenomena, leaf-size regulation.
Collapse
Affiliation(s)
- Hiromitsu Tabeta
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Shizuka Gunji
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| | - Kensuke Kawade
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- National Institute for Basic Biology, Okazaki, Japan
- Department of Basic Biology, School of Life Science, Graduate University for Advanced Studies (SOKENDAI), Okazaki, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
19
|
Gao S, Li C, Chen X, Li S, Liang N, Wang H, Zhan Y, Zeng F. Basic helix-loop-helix transcription factor PxbHLH02 enhances drought tolerance in Populus (Populus simonii × P. nigra). TREE PHYSIOLOGY 2023; 43:185-202. [PMID: 36054366 DOI: 10.1093/treephys/tpac107] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
The basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in plant morphogenesis and various abiotic and biotic stress responses. However, further exploration is required of drought-responsive bHLH family members and their detailed regulatory mechanisms in Populus. Two bHLH TF genes, PxbHLH01/02, were identified in Populus simonii × P. nigra and cloned. The aim of this study was to examine the role of bHLH TFs in drought tolerance in P. simonii × P. nigra. The results showed that the amino acid sequences of the two genes were homologous to Arabidopsis thaliana UPBEAT1 (AtUPB1) and overexpression of PxbHLH01/02 restored normal root length in the AtUPB1 insertional mutant (upb1-1). The PxbHLH01/02 gene promoter activity analysis suggested that they were involved in stress responses and hormone signaling. Furthermore, Arabidopsis transgenic lines overexpressing PxbHLH01/02 exhibited higher stress tolerance compared with the wild-type. Populus simonii × P. nigra overexpressing PxbHLH02 increased drought tolerance and exhibited higher superoxide dismutase and peroxidase activities, lower H2O2 and malondialdehyde content, and lower relative conductivity. The results of transcriptome sequencing (RNA-seq) and quantitative real-time PCR suggested that the response of PxbHLH02 to drought stress was related to abscisic acid (ABA) signal transduction. Overall, the findings of this study suggest that PxbHLH02 from P. simonii × P. nigra functions as a positive regulator of drought stress responses by regulating stomatal aperture and promoting ABA signal transduction.
Collapse
Affiliation(s)
- Shangzhu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Caihua Li
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, 050041, China
| | - Xiaohui Chen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Sida Li
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Nansong Liang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Hengtao Wang
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Yaguang Zhan
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| | - Fansuo Zeng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Science, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
20
|
Tabeta H, Higashi Y, Okazaki Y, Toyooka K, Wakazaki M, Sato M, Saito K, Hirai MY, Ferjani A. Skotomorphogenesis exploits threonine to promote hypocotyl elongation. QUANTITATIVE PLANT BIOLOGY 2022; 3:e26. [PMID: 37077988 PMCID: PMC10095960 DOI: 10.1017/qpb.2022.19] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 05/02/2023]
Abstract
Mobilisation of seed storage reserves is important for seedling establishment in Arabidopsis. In this process, sucrose is synthesised from triacylglycerol via core metabolic processes. Mutants with defects in triacylglycerol-to-sucrose conversion display short etiolated seedlings. We found that whereas sucrose content in the indole-3-butyric acid response 10 (ibr10) mutant was significantly reduced, hypocotyl elongation in the dark was unaffected, questioning the role of IBR10 in this process. To dissect the metabolic complexity behind cell elongation, a quantitative-based phenotypic analysis combined with a multi-platform metabolomics approach was applied. We revealed that triacylglycerol and diacylglycerol breakdown were disrupted in ibr10, resulting in low sugar content and poor photosynthetic ability. Importantly, batch-learning self-organised map clustering revealed that threonine level was correlated with hypocotyl length. Consistently, exogenous threonine supply stimulated hypocotyl elongation, indicating that sucrose levels are not always correlated with etiolated seedling length, suggesting the contribution of amino acids in this process.
Collapse
Affiliation(s)
- Hiromitsu Tabeta
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Yozo Okazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Bioresources, Mie University, Tsu, Japan
| | | | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Kazuki Saito
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Masami Y Hirai
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ali Ferjani
- Department of Biology, Tokyo Gakugei University, Tokyo, Japan
| |
Collapse
|
21
|
Peixoto B, Baena-González E. Management of plant central metabolism by SnRK1 protein kinases. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:7068-7082. [PMID: 35708960 PMCID: PMC9664233 DOI: 10.1093/jxb/erac261] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/14/2022] [Indexed: 05/07/2023]
Abstract
SUCROSE NON-FERMENTING1 (SNF1)-RELATED KINASE 1 (SnRK1) is an evolutionarily conserved protein kinase with key roles in plant stress responses. SnRK1 is activated when energy levels decline during stress, reconfiguring metabolism and gene expression to favour catabolism over anabolism, and ultimately to restore energy balance and homeostasis. The capacity to efficiently redistribute resources is crucial to cope with adverse environmental conditions and, accordingly, genetic manipulations that increase SnRK1 activity are generally associated with enhanced tolerance to stress. In addition to its well-established function in stress responses, an increasing number of studies implicate SnRK1 in the homeostatic control of metabolism during the regular day-night cycle and in different organs and developmental stages. Here, we review how the genetic manipulation of SnRK1 alters central metabolism in several plant species and tissue types. We complement this with studies that provide mechanistic insight into how SnRK1 modulates metabolism, identifying changes in transcripts of metabolic components, altered enzyme activities, or direct regulation of enzymes or transcription factors by SnRK1 via phosphorylation. We identify patterns of response that centre on the maintenance of sucrose levels, in an analogous manner to the role described for its mammalian orthologue in the control of blood glucose homeostasis. Finally, we highlight several knowledge gaps and technical limitations that will have to be addressed in future research aiming to fully understand how SnRK1 modulates metabolism at the cellular and whole-plant levels.
Collapse
Affiliation(s)
- Bruno Peixoto
- Instituto Gulbenkian de Ciência, Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB NOVA, Oeiras, Portugal
| | | |
Collapse
|
22
|
Henriques R, Calderan-Rodrigues MJ, Luis Crespo J, Baena-González E, Caldana C. Growing of the TOR world. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6987-6992. [PMID: 36377640 PMCID: PMC9664224 DOI: 10.1093/jxb/erac401] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Indexed: 06/16/2023]
Affiliation(s)
- Rossana Henriques
- School of Biological, Earth and Environmental Sciences, University College Cork, Cork, T23 TK30, Ireland
- Environmental Research Institute, Lee Road, Cork, T23 XE10, Ireland
| | | | - José Luis Crespo
- Instituto de Bioquimica Vegetal y Fotosintesis, Consejo Superior de Investigaciones Cientificas (CSIC)-Universidad de Sevilla, Sevilla, Spain
| | - Elena Baena-González
- Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal and GREEN-IT Bioresources for Sustainability, ITQB-NOVA, 2780-157 Oeiras, Portugal
| | - Camila Caldana
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
23
|
Siqueira JA, da Fonseca-Pereira P, Fernie AR, Nunes-Nesi A, Araújo WL. Recycling amino acids ensures meiosis and seed development. TRENDS IN PLANT SCIENCE 2022; 27:1084-1086. [PMID: 35973903 DOI: 10.1016/j.tplants.2022.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/05/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) nutrition and meiosis demand large amounts of energy and widely affect crop yield. Recently, Yang and colleagues connected both processes by demonstrating that meiosis initiation depends on the electron-transfer flavoprotein/electron-transfer flavoprotein:ubiquinone oxidoreductase (ETF/ETFQO) system, whereas meiotic defects of the etfβ mutant can be rescued using N supplementation.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | | | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, MG, 36570-900, Brazil.
| |
Collapse
|
24
|
Li R, Radani Y, Ahmad B, Movahedi A, Yang L. Identification and characteristics of SnRK genes and cold stress-induced expression profiles in Liriodendron chinense. BMC Genomics 2022; 23:708. [PMID: 36253733 PMCID: PMC9578244 DOI: 10.1186/s12864-022-08902-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/09/2022] [Indexed: 12/23/2022] Open
Abstract
Background The sucrose non-fermenting 1 (SNF1)-related protein kinases (SnRKs) play a vivid role in regulating plant metabolism and stress response, providing a pathway for regulation between metabolism and stress signals. Conducting identification and stress response studies on SnRKs in plants contributes to the development of strategies for tree species that are more tolerant to stress conditions. Results In the present study, a total of 30 LcSnRKs were identified in Liriodendron chinense (L. chinense) genome, which was distributed across 15 chromosomes and 4 scaffolds. It could be divided into three subfamilies: SnRK1, SnRK2, and SnRK3 based on phylogenetic analysis and domain types. The LcSnRK of the three subfamilies shared the same Ser/Thr kinase structure in gene structure and motif composition, while the functional domains, except for the kinase domain, showed significant differences. A total of 13 collinear gene pairs were detected in L. chinense and Arabidopsis thaliana (A. thaliana), and 18 pairs were detected in L. chinense and rice, suggesting that the LcSnRK family genes may be evolutionarily more closely related to rice. Cis-regulation element analysis showed that LcSnRKs were LTR and TC-rich, which could respond to different environmental stresses. Furthermore, the expression patterns of LcSnRKs are different at different times under low-temperature stress. LcSnRK1s expression tended to be down-regulated under low-temperature stress. The expression of LcSnRK2s tended to be up-regulated under low-temperature stress. The expression trend of LcSnRK3s under low-temperature stress was mainly up-or down-regulated. Conclusion The results of this study will provide valuable information for the functional identification of the LcSnRK gene in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08902-0.
Collapse
Affiliation(s)
- Rongxue Li
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Yasmina Radani
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Baseer Ahmad
- Muhammad Nawaz Sharif University of Agriculture, Multan, Punjab, 25000, Pakistan
| | - Ali Movahedi
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
25
|
Wingler A, Henriques R. Sugars and the speed of life-Metabolic signals that determine plant growth, development and death. PHYSIOLOGIA PLANTARUM 2022; 174:e13656. [PMID: 35243645 PMCID: PMC9314607 DOI: 10.1111/ppl.13656] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 05/27/2023]
Abstract
Plant growth and development depend on the availability of carbohydrates synthesised in photosynthesis (source activity) and utilisation of these carbohydrates for growth (sink activity). External conditions, such as temperature, nutrient availability and stress, can affect source as well as sink activity. Optimal utilisation of resources is under circadian clock control. This molecular timekeeper ensures that growth responses are adjusted to different photoperiod and temperature settings by modulating starch accumulation and degradation accordingly. For example, during the night, starch degradation is required to provide sugars for growth. Under favourable growth conditions, high sugar availability stimulates growth and development, resulting in an overall accelerated life cycle of annual plants. Key signalling components include trehalose-6-phosphate (Tre6P), which reflects sucrose availability and stimulates growth and branching when the conditions are favourable. Under sink limitation, Tre6P does, however, inhibit night-time starch degradation. Tre6P interacts with Sucrose-non-fermenting1-Related Kinase1 (SnRK1), a protein kinase that inhibits growth under starvation and stress conditions and delays development (including flowering and senescence). Tre6P inhibits SnRK1 activity, but SnRK1 increases the Tre6P to sucrose ratio under favourable conditions. Alongside Tre6P, Target of Rapamycin (TOR) stimulates processes such as protein synthesis and growth when sugar availability is high. In annual plants, an accelerated life cycle results in early leaf and plant senescence, thus shortening the lifespan. While the availability of carbohydrates in the form of sucrose and other sugars also plays an important role in seasonal life cycle events (phenology) of perennial plants, the sugar signalling pathways in perennials are less well understood.
Collapse
Affiliation(s)
- Astrid Wingler
- School of Biological, Earth & Environmental Sciences and Environmental Research InstituteUniversity College Cork, Distillery FieldsCork
| | - Rossana Henriques
- School of Biological, Earth & Environmental Sciences and Environmental Research InstituteUniversity College Cork, Distillery FieldsCork
| |
Collapse
|
26
|
O’Leary BM. Survival or starvation: SnRK1 controls rate of resource use in pre-photosynthetic seedlings. THE PLANT CELL 2022; 34:501-502. [PMID: 35226745 PMCID: PMC8774042 DOI: 10.1093/plcell/koab271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Brendan M O’Leary
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, USA
- Saskatoon Research Development Centre, Agriculture and Agri-food Canada, Saskatchewan S7N 0X2, Canada
| |
Collapse
|