1
|
Walker CH, Bennett T. Cytokinin and reproductive shoot architecture: bigger and better? Biochem Soc Trans 2024; 52:1885-1893. [PMID: 39083016 PMCID: PMC11668285 DOI: 10.1042/bst20231565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/18/2024] [Accepted: 07/18/2024] [Indexed: 08/29/2024]
Abstract
Cytokinin (CK) is a key plant hormone, but one whose effects are often misunderstood, partly due to reliance on older data from before the molecular genetic age of plant science. In this mini-review, we examine the role of CK in controlling the reproductive shoot architecture of flowering plants. We begin with a long overdue re-examination of the role of CK in shoot branching, and discuss the relatively paucity of genetic evidence that CK does play a major role in this process. We then examine the role of CK in determining the number of inflorescences, flowers, fruit and seed that plants initiate during reproductive development, and how these are arranged in space and time. The genetic evidence for a major role of CK in controlling these processes is much clearer, and CK has profound effects in boosting the size and number of most reproductive structures. Conversely, the attenuation of CK levels during the reproductive phase likely contributes to reduced organ size seen later in flowering, and the ultimate arrest of inflorescence meristems during end-of-flowering. We finish by discussing how this information can potentially be used to improve crop yields.
Collapse
Affiliation(s)
- Catriona H. Walker
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, U.K
| |
Collapse
|
2
|
González-Suárez P, Walker CH, Lock T, Bennett T. FLOWERING LOCUS T-mediated thermal signalling regulates age-dependent inflorescence development in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4400-4414. [PMID: 38442244 PMCID: PMC11263484 DOI: 10.1093/jxb/erae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/04/2024] [Indexed: 03/07/2024]
Abstract
Many plants show strong heteroblastic changes in the shape and size of organs as they transition from juvenile to reproductive age. Most attention has been focused on heteroblastic development in leaves, but we wanted to understand heteroblastic changes in reproductive organ size. We therefore studied the progression of reproductive development in the model plant Arabidopsis thaliana, and found strong reductions in the size of flowers, fruit, seed, and internodes during development. These did not arise from correlative inhibition by older fruits, or from changes in inflorescence meristem size, but seemed to stem from changes in the size of floral organ primordia themselves. We hypothesized that environmental conditions might influence this heteroblastic pattern and found that the ambient temperature during organ initiation strongly influences organ size. We show that this temperature-dependent heteroblasty is dependent on FLOWERING LOCUS T (FT)-mediated signal integration, adding to the repertoire of developmental processes regulated by this pathway. Our results demonstrate that rising global temperatures will not affect just fertility, as is widely described, but also the size and seed number of fruits produced. However, we also show that such effects are not hard-wired, and that selective breeding for FT expression during reproductive development could mitigate such effects.
Collapse
Affiliation(s)
- Pablo González-Suárez
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Catriona H Walker
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas Lock
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | - Tom Bennett
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Dölfors F, Ilbäck J, Bejai S, Fogelqvist J, Dixelius C. Nitrate transporter protein NPF5.12 and major latex-like protein MLP6 are important defense factors against Verticillium longisporum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4148-4164. [PMID: 38666306 PMCID: PMC11233413 DOI: 10.1093/jxb/erae185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 04/23/2024] [Indexed: 07/11/2024]
Abstract
Plant defense responses to the soil-borne fungus Verticillium longisporum causing stem stripe disease on oilseed rape (Brassica napus) are poorly understood. In this study, a population of recombinant inbred lines (RILs) using the Arabidopsis accessions Sei-0 and Can-0 was established. Composite interval mapping, transcriptome data, and T-DNA mutant screening identified the NITRATE/PEPTIDE TRANSPORTER FAMILY 5.12 (AtNPF5.12) gene as being associated with disease susceptibility in Can-0. Co-immunoprecipitation revealed interaction between AtNPF5.12 and the MAJOR LATEX PROTEIN family member AtMLP6, and fluorescence microscopy confirmed this interaction in the plasma membrane and endoplasmic reticulum. CRISPR/Cas9 technology was applied to mutate the NPF5.12 and MLP6 genes in B. napus. Elevated fungal growth in the npf5.12 mlp6 double mutant of both oilseed rape and Arabidopsis demonstrated the importance of these genes in defense against V. longisporum. Colonization of this fungus depends also on available nitrates in the host root. Accordingly, the negative effect of nitrate depletion on fungal growth was less pronounced in Atnpf5.12 plants with impaired nitrate transport. In addition, suberin staining revealed involvement of the NPF5.12 and MLP6 genes in suberin barrier formation. Together, these results demonstrate a dependency on multiple plant factors that leads to successful V. longisporum root infection.
Collapse
Affiliation(s)
- Fredrik Dölfors
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Jonas Ilbäck
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Sarosh Bejai
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Johan Fogelqvist
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| | - Christina Dixelius
- Swedish University of Agricultural Sciences, Department of Plant Biology, Uppsala BioCenter, Linnean Center for Plant Biology, P.O. Box 7080, S-75007 Uppsala, Sweden
| |
Collapse
|
4
|
Sadka A, Walker CH, Haim D, Bennett T. Just enough fruit: understanding feedback mechanisms during sexual reproductive development. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2448-2461. [PMID: 36724082 PMCID: PMC10112685 DOI: 10.1093/jxb/erad048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
The fruit and seed produced by a small number of crop plants provide the majority of food eaten across the world. Given the growing global population, there is a pressing need to increase yields of these crops without using more land or more chemical inputs. Many of these crops display prominent 'fruit-flowering feedbacks', in which fruit produced early in sexual reproductive development can inhibit the production of further fruit by a range of mechanisms. Understanding and overcoming these feedbacks thus presents a plausible route to increasing crop yields 'for free'. In this review, we define three key types of fruit-flowering feedback, and examine how frequent they are and their effects on reproduction in a wide range of both wild and cultivated species. We then assess how these phenomenologically distinct phenomena might arise from conserved phytohormonal signalling events, particularly the export of auxin from growing organs. Finally, we offer some thoughts on the evolutionary basis for these self-limiting sexual reproductive patterns, and whether they are also present in the cereal crops that fundamentally underpin global diets.
Collapse
Affiliation(s)
| | - Catriona H Walker
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Dor Haim
- Department of Fruit Tree Sciences, Institute of Plant Sciences, ARO, The Volcani Institute, Rishon Le’Zion 7528809, Israel
- The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | | |
Collapse
|
5
|
Walker CH, Ware A, Šimura J, Ljung K, Wilson Z, Bennett T. Cytokinin signaling regulates two-stage inflorescence arrest in Arabidopsis. PLANT PHYSIOLOGY 2023; 191:479-495. [PMID: 36331332 PMCID: PMC9806609 DOI: 10.1093/plphys/kiac514] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/20/2022] [Indexed: 05/19/2023]
Abstract
To maximize reproductive success, flowering plants must correctly time entry and exit from the reproductive phase. While much is known about mechanisms that regulate initiation of flowering, end-of-flowering remains largely uncharacterized. End-of-flowering in Arabidopsis (Arabidopsis thaliana) consists of quasi-synchronous arrest of inflorescences, but it is unclear how arrest is correctly timed with respect to environmental stimuli and reproductive success. Here, we showed that Arabidopsis inflorescence arrest is a complex developmental phenomenon, which includes the arrest of the inflorescence meristem (IM), coupled with a separable "floral arrest" of all unopened floral primordia; these events occur well before visible inflorescence arrest. We showed that global inflorescence removal delays both IM and floral arrest, but that local fruit removal only delays floral arrest, emphasizing their separability. We tested whether cytokinin regulates inflorescence arrest, and found that cytokinin signaling dynamics mirror IM activity, while cytokinin treatment can delay both IM and floral arrest. We further showed that gain-of-function cytokinin receptor mutants can delay IM and floral arrest; conversely, loss-of-function mutants prevented the extension of flowering in response to inflorescence removal. Collectively, our data suggest that the dilution of cytokinin among an increasing number of sink organs leads to end-of-flowering in Arabidopsis by triggering IM and floral arrest.
Collapse
Affiliation(s)
- Catriona H Walker
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Alexander Ware
- School of Biosciences, University of Nottingham, Loughborough, UK
| | - Jan Šimura
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Karin Ljung
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Zoe Wilson
- School of Biosciences, University of Nottingham, Loughborough, UK
| | | |
Collapse
|
6
|
Pierik R, Fankhauser C, Strader LC, Sinha N. Architecture and plasticity: optimizing plant performance in dynamic environments. PLANT PHYSIOLOGY 2021; 187:1029-1032. [PMID: 34734285 PMCID: PMC8566305 DOI: 10.1093/plphys/kiab402] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Plasticity in plant architecture drives plant performance through dedicated molecular networks.
Collapse
Affiliation(s)
- Ronald Pierik
- Plant Ecophysiology, Department of Biology, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Lucia C Strader
- Department of Biology, Duke University, Durham, North Carolina 27278, USA
| | - Neelima Sinha
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, California 95616, USA
| |
Collapse
|
7
|
Seale M. Shoot dominance relationships lead to robust reproductive outputs. PLANT PHYSIOLOGY 2021; 186:1750-1751. [PMID: 34618116 PMCID: PMC8331125 DOI: 10.1093/plphys/kiab234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Madeleine Seale
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford, OX1 3RB, UK
| |
Collapse
|