1
|
Contador-Álvarez L, Rojas-Rocco T, Rodríguez-Gómez T, Rubio-Meléndez ME, Riedelsberger J, Michard E, Dreyer I. Dynamics of homeostats: the basis of electrical, chemical, hydraulic, pH and calcium signaling in plants. QUANTITATIVE PLANT BIOLOGY 2025; 6:e8. [PMID: 40160509 PMCID: PMC11950792 DOI: 10.1017/qpb.2025.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 12/24/2024] [Accepted: 02/13/2025] [Indexed: 04/02/2025]
Abstract
Homeostats are important to control homeostatic conditions. Here, we have analyzed the theoretical basis of their dynamic properties by bringing the K homeostat out of steady state (i) by an electrical stimulus, (ii) by an external imbalance in the K+ or H+ gradient or (iii) by a readjustment of transporter activities. The reactions to such changes can be divided into (i) a short-term response (tens of milliseconds), where the membrane voltage changed along with the concentrations of ions that are not very abundant in the cytosol (H+ and Ca2+), and (ii) a long-term response (minutes and longer) caused by the slow changes in K+ concentrations. The mechanistic insights into its dynamics are not limited to the K homeostat but can be generalized, providing a new perspective on electrical, chemical, hydraulic, pH and Ca2+ signaling in plants. The results presented here also provide a theoretical background for optogenetic experiments in plants.
Collapse
Affiliation(s)
- Leslie Contador-Álvarez
- Programa de Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, Talca, Chile
| | - Tamara Rojas-Rocco
- Programa de Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, Talca, Chile
| | - Talía Rodríguez-Gómez
- Programa de Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, Talca, Chile
| | - María Eugenia Rubio-Meléndez
- Electrical Signaling in Plants (ESP) Laboratory–Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Janin Riedelsberger
- Electrical Signaling in Plants (ESP) Laboratory–Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| | - Erwan Michard
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Ingo Dreyer
- Electrical Signaling in Plants (ESP) Laboratory–Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, Talca, Chile
| |
Collapse
|
2
|
Ranade SS, García‐Gil MR. Metabolomic profiling of shade response and in silico analysis of PAL homologs imply the potential presence of bifunctional ammonia lyases in conifers. PHYSIOLOGIA PLANTARUM 2025; 177:e70175. [PMID: 40148258 PMCID: PMC11949857 DOI: 10.1111/ppl.70175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/14/2025] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Norway spruce and Scots pine show enhanced lignin synthesis under shade, along with differential expression of defense-related genes that render disease resilience. In general, phenylalanine (Phe) is the precursor for lignin synthesis in plants, and tyrosine (Tyr) forms an additional lignin precursor specifically in grasses. Phenylalanine ammonia-lyase (PAL) and tyrosine ammonia-lyase (TAL) from the lignin biosynthesis pathway use either Phe or Tyr as precursors for lignin production, respectively. Grasses possess a bifunctional phenylalanine/tyrosine ammonia-lyase (PTAL) that potentially can use both Phe and Tyr for lignin biosynthesis. Metabolomic profiles of seedlings revealed higher levels of Phe and Tyr under shade in Scots pine, while Norway spruce showed differential regulation of only Tyr under shade. Sequence analysis and phylogeny of PAL homologs in the two conifers, coupled with correlation of up-regulation of precursors for lignin synthesis (Phe/Tyr) and enhanced lignin synthesis along with differential expression of PAL homologs under shade, suggest the potential presence of a bifunctional ammonia-lyases (BAL) in conifers. This finding is novel and comparable to PTALs in grasses. Exome sequence analysis revealed a latitudinal variation in allele frequencies of SNPs from coding regions of putative PAL and BAL in Norway spruce, which may impact enzyme activity affecting lignin synthesis. Metabolomic analysis additionally identified metabolites involved in plant immunity, defense and stress response.
Collapse
Affiliation(s)
- Sonali Sachin Ranade
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| | - María Rosario García‐Gil
- Umeå Plant Science Centre (UPSC), Department of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeåSweden
| |
Collapse
|
3
|
Gu H, He Z, Lu Z, Liao S, Zhang Y, Li X, Cong R, Ren T, Lu J. Growth and survival strategies of oilseed rape (Brassica napus L.) leaves under potassium deficiency stress: trade-offs in potassium ion distribution between vacuoles and chloroplasts. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70009. [PMID: 39993150 DOI: 10.1111/tpj.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 02/26/2025]
Abstract
Potassium (K) is a prevalent limiting factor in terrestrial ecosystems, with approximately one-eighth of the world's soils undergoing K+ deficiency stress. Upon encountering K+ deficiency stress, leaf area (LA) declines before the net photosynthetic rate (An). The sequential alterations fundamentally represent the adaptive trade-off between survival and growth in plants subjected to K+ deficiency stress. This trade-off is hypothesized to be linked to the differences in the subcellular distribution of limited K+ resources. Thus, the K+ distribution and apparent concentration in subcellular compartments, along with the LA and An characteristics of rapeseed leaves at various developmental stages and K+ supply conditions were quantified to elucidate the mechanisms by which subcellular K+ regulates leaf growth and survival. The results revealed that during the early stages of K+ deficiency, leaves actively downregulate growth to sustain normal physiological functions. This is primarily accomplished by lowering the K+ distribution and apparent concentration in vacuoles, restricting LA expansion, and enhancing K+ distribution to chloroplasts to ensure An. Prolonged K+ deficiency decreased the apparent K+ concentration in chloroplasts below the critical threshold (37.8 mm), disrupting chloroplast structure and function, impairing An, and ultimately threatening the survival of rapeseed. Hence, sustaining an adequate concentration of K+ within chloroplasts is crucial for preserving leaf photosynthetic efficiency and ensuring survival under K+ deficiency stress. In conclusion, under K+ deficiency stress, leaves regulate LA and An by trade-offs in the K+ distribution between vacuoles and chloroplasts to coordinate growth and survival.
Collapse
Affiliation(s)
- Hehe Gu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ziyao He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhifeng Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shipeng Liao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yangyang Zhang
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaokun Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Rihuan Cong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Microelement Research Center, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
4
|
Cakmak I, Rengel Z. Humboldt Review: Potassium may mitigate drought stress by increasing stem carbohydrates and their mobilization into grains. JOURNAL OF PLANT PHYSIOLOGY 2024; 303:154325. [PMID: 39142140 DOI: 10.1016/j.jplph.2024.154325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/26/2024] [Accepted: 08/07/2024] [Indexed: 08/16/2024]
Abstract
Potassium (K) deficiency occurs commonly in crop plants. Optimal K nutrition is particularly important when plants are exposed to stress conditions (especially drought and heat) because a cellular demand for K increases. Low K in plant tissues is known to aggravate the effects of drought stress by impairing the osmoregulation process and the photosynthetic carbon metabolism. However, despite numerous publications about the role of K in enhancing tolerance to drought stress in crop plants, our understanding of the major mechanisms underlying the stress-mitigating effects of K is still limited. This paper summarizes and appraises the current knowledge on the major protective effects of K under drought stress, and then proposes a new K-related drought stress-mitigating mechanism, whereby optimal K nutrition may promote partitioning of carbohydrates in stem tissues and subsequent mobilization of these carbohydrates into developing grain under drought stress. The importance of stem reserves of carbohydrates is based on limited photosynthetic capacity during the grain-filling period under drought conditions due to premature leaf senescence as well as due to impaired assimilate transport from leaves to the developing grains. Plants with a high capacity to store large amounts of soluble carbohydrates in stems before anthesis and mobilize them into grain post-anthesis have a high potential to yield well in dry and hot environments. In practice, particular attention needs to be paid to the K nutritional status of plants grown with limited water supply, especially during grain filling. Because K is the mineral nutrient deposited mainly in stem, a special consideration should be given to stems of crop plants in research dealing with the effects of K on yield formation and stress mitigation.
Collapse
Affiliation(s)
- Ismail Cakmak
- Sabanci University, Faculty of Engineering and Natural Sciences, 34956 Istanbul, Turkey.
| | - Zed Rengel
- UWA School of Agriculture and Environment, The University of Western Australia, 35 Stirling Highway, Perth WA 6009, Australia
| |
Collapse
|
5
|
Geisler M, Dreyer I. An auxin homeostat allows plant cells to establish and control defined transmembrane auxin gradients. THE NEW PHYTOLOGIST 2024; 244:1422-1436. [PMID: 39279032 DOI: 10.1111/nph.20120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 08/25/2024] [Indexed: 09/18/2024]
Abstract
Extracellular auxin maxima and minima are important to control plant developmental programs. Auxin gradients are provided by the concerted action of proteins from the three major plasma membrane (PM) auxin transporter classes AUX1/LAX, PIN and ATP-BINDING CASSETTE subfamily B (ABCB) transporters. But neither genetic nor biochemical nor modeling approaches have been able to reliably assign the individual roles and interplay of these transporter types. Based on the thermodynamic properties of the transporters, we show here by mathematical modeling and computational simulations that the concerted action of different auxin transporter types allows the adjustment of specific transmembrane auxin gradients. The dynamic flexibility of the 'auxin homeostat' comes at the cost of an energy-consuming 'auxin cycling' across the membrane. An unexpected finding was that potential functional ABCB-PIN synchronization appears to allow an optimization of the trade-off between the speed of PM auxin gradient adjustment on the one hand and ATP consumption and disturbance of general anion homeostasis on the other. In conclusion, our analyses provide fundamental insights into the thermodynamic constraints and flexibility of transmembrane auxin transport in plants.
Collapse
Affiliation(s)
- Markus Geisler
- Department of Biology, University of Fribourg, Fribourg, CH-1700, Switzerland
| | - Ingo Dreyer
- Faculty of Engineering, Electrical Signaling in Plants (ESP) Laboratory - Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, Talca, CL-3460000, Chile
| |
Collapse
|
6
|
Dreyer I, Hernández-Rojas N, Bolua-Hernández Y, Tapia-Castillo VDLA, Astola-Mariscal SZ, Díaz-Pico E, Mérida-Quesada F, Vergara-Valladares F, Arrey-Salas O, Rubio-Meléndez ME, Riedelsberger J, Michard E. Homeostats: The hidden rulers of ion homeostasis in plants. QUANTITATIVE PLANT BIOLOGY 2024; 5:e8. [PMID: 39777030 PMCID: PMC11706688 DOI: 10.1017/qpb.2024.8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 01/11/2025]
Abstract
Ion homeostasis is a crucial process in plants that is closely linked to the efficiency of nutrient uptake, stress tolerance and overall plant growth and development. Nevertheless, our understanding of the fundamental processes of ion homeostasis is still incomplete and highly fragmented. Especially at the mechanistic level, we are still in the process of dissecting physiological systems to analyse the different parts in isolation. However, modelling approaches have shown that it is not individual transporters but rather transporter networks (homeostats) that control membrane transport and associated homeostatic processes in plant cells. To facilitate access to such theoretical approaches, the modelling of the potassium homeostat is explained here in detail to serve as a blueprint for other homeostats. The unbiased approach provided strong arguments for the abundant existence of electroneutral H+/K+ antiporters in plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Naomí Hernández-Rojas
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Yasnaya Bolua-Hernández
- Programa de Doctorado en Ciencias mención Biología Vegetal y Biotecnología, Universidad de Talca, Talca, Chile
| | | | | | - Erbio Díaz-Pico
- Programa de Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, Talca, Chile
| | - Franko Mérida-Quesada
- Programa de Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, Talca, Chile
| | - Fernando Vergara-Valladares
- Programa de Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, Talca, Chile
| | - Oscar Arrey-Salas
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - María E. Rubio-Meléndez
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Janin Riedelsberger
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Talca, Chile
| | - Erwan Michard
- Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
7
|
Su D, Li W, Zhang Z, Cai H, Zhang L, Sun Y, Liu X, Tian Z. Discrepancy of Growth Toxicity of Polystyrene Nanoplastics on Soybean ( Glycine max) and Mung Bean ( Vigna radiata). TOXICS 2024; 12:155. [PMID: 38393250 PMCID: PMC10892715 DOI: 10.3390/toxics12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 02/25/2024]
Abstract
Nanoplastics, as a hot topic of novel contaminants, lack extensive concern in higher plants; especially the potential impact and mechanism of nanoplastics on legume crops remains elusive. In this study, the toxicity of polystyrene nanoplastics (PS-NPs, 200 nm) with diverse doses (control, 10, 50, 100, 200, 500 mg/L) to soybean and mung bean plants grown hydroponically for 7 d was investigated at both the macroscopic and molecular levels. The results demonstrated that the root length of both plants was markedly suppressed to varying degrees. Similarly, mineral elements (Fe, Zn) were notably decreased in soybean roots, consistent with Cu alteration in mung bean. Moreover, PS-NPs considerably elevated malondialdehyde (MDA) levels only in soybean roots. Enzyme activity data indicated mung bean exhibited significant damage only at higher doses of PS-NPs stress than soybean, implying mung bean is more resilient. Transcriptome analysis showed that PS-NPs stimulated the expression of genes associated with the antioxidant system in plant roots. Furthermore, starch and sucrose metabolism might play a key role in coping with PS-NPs to enhance soybean resistance, but the MAPK pathway was enriched in mung bean. Our findings provide valuable perspectives for an in-depth understanding of the performance of plants growing in waters contaminated by nanoplastics.
Collapse
Affiliation(s)
- Dan Su
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Wangwang Li
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Zhaowei Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Bioengineering and Health, Wuhan Textile University, Wuhan 430200, China
| | - Hui Cai
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Le Zhang
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Yuanlong Sun
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Xiaoning Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China
| | - Zhiquan Tian
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| |
Collapse
|
8
|
Li K, Grauschopf C, Hedrich R, Dreyer I, Konrad KR. K + and pH homeostasis in plant cells is controlled by a synchronized K + /H + antiport at the plasma and vacuolar membrane. THE NEW PHYTOLOGIST 2024; 241:1525-1542. [PMID: 38017688 DOI: 10.1111/nph.19436] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023]
Abstract
Stomatal movement involves ion transport across the plasma membrane (PM) and vacuolar membrane (VM) of guard cells. However, the coupling mechanisms of ion transporters in both membranes and their interplay with Ca2+ and pH changes are largely unclear. Here, we investigated transporter networks in tobacco guard cells and mesophyll cells using multiparametric live-cell ion imaging and computational simulations. K+ and anion fluxes at both, PM and VM, affected H+ and Ca2+ , as changes in extracellular KCl or KNO3 concentrations were accompanied by cytosolic and vacuolar pH shifts and changes in [Ca2+ ]cyt and the membrane potential. At both membranes, the K+ transporter networks mediated an antiport of K+ and H+ . By contrast, net transport of anions was accompanied by parallel H+ transport, with differences in transport capacity for chloride and nitrate. Guard and mesophyll cells exhibited similarities in K+ /H+ transport but cell type-specific differences in [H+ ]cyt and pH-dependent [Ca2+ ]cyt signals. Computational cell biology models explained mechanistically the properties of transporter networks and the coupling of transport across the PM and VM. Our integrated approach indicates fundamental principles of coupled ion transport at membrane sandwiches to control H+ /K+ homeostasis and points to transceptor-like Ca2+ /H+ -based ion signaling in plant cells.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Christina Grauschopf
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Ingo Dreyer
- Faculty of Engineering, Center of Bioinformatics, Simulation and Modeling (CBSM), University of Talca, 3460000, Talca, Chile
| | - Kai R Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| |
Collapse
|
9
|
Lu J, Dreyer I, Dickinson MS, Panzer S, Jaślan D, Navarro-Retamal C, Geiger D, Terpitz U, Becker D, Stroud RM, Marten I, Hedrich R. Vicia faba SV channel VfTPC1 is a hyperexcitable variant of plant vacuole Two Pore Channels. eLife 2023; 12:e86384. [PMID: 37991833 PMCID: PMC10665017 DOI: 10.7554/elife.86384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 10/12/2023] [Indexed: 11/23/2023] Open
Abstract
To fire action-potential-like electrical signals, the vacuole membrane requires the two-pore channel TPC1, formerly called SV channel. The TPC1/SV channel functions as a depolarization-stimulated, non-selective cation channel that is inhibited by luminal Ca2+. In our search for species-dependent functional TPC1 channel variants with different luminal Ca2+ sensitivity, we found in total three acidic residues present in Ca2+ sensor sites 2 and 3 of the Ca2+-sensitive AtTPC1 channel from Arabidopsis thaliana that were neutral in its Vicia faba ortholog and also in those of many other Fabaceae. When expressed in the Arabidopsis AtTPC1-loss-of-function background, wild-type VfTPC1 was hypersensitive to vacuole depolarization and only weakly sensitive to blocking luminal Ca2+. When AtTPC1 was mutated for these VfTPC1-homologous polymorphic residues, two neutral substitutions in Ca2+ sensor site 3 alone were already sufficient for the Arabidopsis At-VfTPC1 channel mutant to gain VfTPC1-like voltage and luminal Ca2+ sensitivity that together rendered vacuoles hyperexcitable. Thus, natural TPC1 channel variants exist in plant families which may fine-tune vacuole excitability and adapt it to environmental settings of the particular ecological niche.
Collapse
Affiliation(s)
- Jinping Lu
- Julius-Maximilians-Universität (JMU), Biocenter, Department of Molecular Plant Physiology and BiophysicsWürzburgGermany
- School of Life Sciences, Zhengzhou UniversityZhengzhouChina
| | - Ingo Dreyer
- Universidad de Talca, Faculty of Engineering, Center of Bioinformatics, Simulation and ModelingTalcaChile
| | - Miles Sasha Dickinson
- University of California San Francisco, Department of Biochemistry and BiophysicsSan FranciscoUnited States
| | - Sabine Panzer
- Julius-Maximilians-Universität (JMU), Biocenter, Theodor-Boveri-Institute, Department of Biotechnology and BiophysicsWürzburgGermany
| | - Dawid Jaślan
- Julius-Maximilians-Universität (JMU), Biocenter, Department of Molecular Plant Physiology and BiophysicsWürzburgGermany
- Ludwig Maximilians-Universität, Faculty of Medicine, Walther Straub Institute of Pharmacology and ToxicologyMunichGermany
| | - Carlos Navarro-Retamal
- Universidad de Talca, Faculty of Engineering, Center of Bioinformatics, Simulation and ModelingTalcaChile
- Department of Cell Biology and Molecular Genetics, University of MarylandCollege ParkUnited States
| | - Dietmar Geiger
- Julius-Maximilians-Universität (JMU), Biocenter, Department of Molecular Plant Physiology and BiophysicsWürzburgGermany
| | - Ulrich Terpitz
- Julius-Maximilians-Universität (JMU), Biocenter, Theodor-Boveri-Institute, Department of Biotechnology and BiophysicsWürzburgGermany
| | - Dirk Becker
- Julius-Maximilians-Universität (JMU), Biocenter, Department of Molecular Plant Physiology and BiophysicsWürzburgGermany
| | - Robert M Stroud
- University of California San Francisco, Department of Biochemistry and BiophysicsSan FranciscoUnited States
| | - Irene Marten
- Julius-Maximilians-Universität (JMU), Biocenter, Department of Molecular Plant Physiology and BiophysicsWürzburgGermany
| | - Rainer Hedrich
- Julius-Maximilians-Universität (JMU), Biocenter, Department of Molecular Plant Physiology and BiophysicsWürzburgGermany
| |
Collapse
|
10
|
Xu D, Sanden NCH, Hansen LL, Belew ZM, Madsen SR, Meyer L, Jørgensen ME, Hunziker P, Veres D, Crocoll C, Schulz A, Nour-Eldin HH, Halkier BA. Export of defensive glucosinolates is key for their accumulation in seeds. Nature 2023; 617:132-138. [PMID: 37076627 DOI: 10.1038/s41586-023-05969-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 03/17/2023] [Indexed: 04/21/2023]
Abstract
Plant membrane transporters controlling metabolite distribution contribute key agronomic traits1-6. To eliminate anti-nutritional factors in edible parts of crops, the mutation of importers can block the accumulation of these factors in sink tissues7. However, this often results in a substantially altered distribution pattern within the plant8-12, whereas engineering of exporters may prevent such changes in distribution. In brassicaceous oilseed crops, anti-nutritional glucosinolate defence compounds are translocated to the seeds. However, the molecular targets for export engineering of glucosinolates remain unclear. Here we identify and characterize members of the USUALLY MULTIPLE AMINO ACIDS MOVE IN AND OUT TRANSPORTER (UMAMIT) family-UMAMIT29, UMAMIT30 and UMAMIT31-in Arabidopsis thaliana as glucosinolate exporters with a uniport mechanism. Loss-of-function umamit29 umamit30 umamit31 triple mutants have a very low level of seed glucosinolates, demonstrating a key role for these transporters in translocating glucosinolates into seeds. We propose a model in which the UMAMIT uniporters facilitate glucosinolate efflux from biosynthetic cells along the electrochemical gradient into the apoplast, where the high-affinity H+-coupled glucosinolate importers GLUCOSINOLATE TRANSPORTERS (GTRs) load them into the phloem for translocation to the seeds. Our findings validate the theory that two differently energized transporter types are required for cellular nutrient homeostasis13. The UMAMIT exporters are new molecular targets to improve nutritional value of seeds of brassicaceous oilseed crops without altering the distribution of the defence compounds in the whole plant.
Collapse
Affiliation(s)
- Deyang Xu
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
| | - Niels Christian Holm Sanden
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Line Lykke Hansen
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Zeinu Mussa Belew
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Svend Roesen Madsen
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- The Danish Veterinary and Food Administration, Section for Chemistry and Food Quality, Ministry of Food, Agriculture and Fisheries, Glostrup, Denmark
| | - Lasse Meyer
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | | | - Pascal Hunziker
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
- Centre for Organismal Studies (COS), Universität Heidelberg, Heidelberg, Germany
| | - Dorottya Veres
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Christoph Crocoll
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Alexander Schulz
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Hussam Hassan Nour-Eldin
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark
| | - Barbara Ann Halkier
- DynaMo Center, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Frederiksberg, Denmark.
| |
Collapse
|
11
|
De Rosa A, McGaughey S, Magrath I, Byrt C. Molecular membrane separation: plants inspire new technologies. THE NEW PHYTOLOGIST 2023; 238:33-54. [PMID: 36683439 DOI: 10.1111/nph.18762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants draw up their surrounding soil solution to gain water and nutrients required for growth, development and reproduction. Obtaining adequate water and nutrients involves taking up both desired and undesired elements from the soil solution and separating resources from waste. Desirable and undesirable elements in the soil solution can share similar chemical properties, such as size and charge. Plants use membrane separation mechanisms to distinguish between different molecules that have similar chemical properties. Membrane separation enables distribution or retention of resources and efflux or compartmentation of waste. Plants use specialised membrane separation mechanisms to adapt to challenging soil solution compositions and distinguish between resources and waste. Coordination and regulation of these mechanisms between different tissues, cell types and subcellular membranes supports plant nutrition, environmental stress tolerance and energy management. This review considers membrane separation mechanisms in plants that contribute to specialised separation processes and highlights mechanisms of interest for engineering plants with enhanced performance in challenging conditions and for inspiring the development of novel industrial membrane separation technologies. Knowledge gained from studying plant membrane separation mechanisms can be applied to developing precision separation technologies. Separation technologies are needed for harvesting resources from industrial wastes and transitioning to a circular green economy.
Collapse
Affiliation(s)
- Annamaria De Rosa
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Samantha McGaughey
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Isobel Magrath
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Caitlin Byrt
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| |
Collapse
|
12
|
Lend Me Your EARs: A Systematic Review of the Broad Functions of EAR Motif-Containing Transcriptional Repressors in Plants. Genes (Basel) 2023; 14:genes14020270. [PMID: 36833197 PMCID: PMC9956375 DOI: 10.3390/genes14020270] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/22/2022] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motif, defined by the consensus sequence patterns LxLxL or DLNx(x)P, is found in a diverse range of plant species. It is the most predominant form of active transcriptional repression motif identified so far in plants. Despite its small size (5 to 6 amino acids), the EAR motif is primarily involved in the negative regulation of developmental, physiological and metabolic functions in response to abiotic and biotic stresses. Through an extensive literature review, we identified 119 genes belonging to 23 different plant species that contain an EAR motif and function as negative regulators of gene expression in various biological processes, including plant growth and morphology, metabolism and homeostasis, abiotic stress response, biotic stress response, hormonal pathways and signalling, fertility, and ripening. Positive gene regulation and transcriptional activation are studied extensively, but there remains much more to be discovered about negative gene regulation and the role it plays in plant development, health, and reproduction. This review aims to fill the knowledge gap and provide insights into the role that the EAR motif plays in negative gene regulation, and provoke further research on other protein motifs specific to repressors.
Collapse
|
13
|
Dreyer I, Vergara-Valladares F, Mérida-Quesada F, Rubio-Meléndez ME, Hernández-Rojas N, Riedelsberger J, Astola-Mariscal SZ, Heitmüller C, Yanez-Chávez M, Arrey-Salas O, San Martín-Davison A, Navarro-Retamal C, Michard E. The Surprising Dynamics of Electrochemical Coupling at Membrane Sandwiches in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:204. [PMID: 36616332 PMCID: PMC9824766 DOI: 10.3390/plants12010204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Transport processes across membranes play central roles in any biological system. They are essential for homeostasis, cell nutrition, and signaling. Fluxes across membranes are governed by fundamental thermodynamic rules and are influenced by electrical potentials and concentration gradients. Transmembrane transport processes have been largely studied on single membranes. However, several important cellular or subcellular structures consist of two closely spaced membranes that form a membrane sandwich. Such a dual membrane structure results in remarkable properties for the transport processes that are not present in isolated membranes. At the core of membrane sandwich properties, a small intermembrane volume is responsible for efficient coupling between the transport systems at the two otherwise independent membranes. Here, we present the physicochemical principles of transport coupling at two adjacent membranes and illustrate this concept with three examples. In the supplementary material, we provide animated PowerPoint presentations that visualize the relationships. They could be used for teaching purposes, as has already been completed successfully at the University of Talca.
Collapse
Affiliation(s)
- Ingo Dreyer
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Fernando Vergara-Valladares
- Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Franko Mérida-Quesada
- Doctorado en Ciencias mención Modelado de Sistemas Químicos y Biológicos, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - María Eugenia Rubio-Meléndez
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Naomí Hernández-Rojas
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Janin Riedelsberger
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Sadith Zobeida Astola-Mariscal
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Charlotte Heitmüller
- Electrical Signaling in Plants (ESP) Laboratory, Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
- Department of Plant Biotechnology, Institute of Plant Genetics, Leibniz Universität Hannover, 30419 Hannover, Germany
| | - Mónica Yanez-Chávez
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Oscar Arrey-Salas
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Alex San Martín-Davison
- Instituto de Investigación Interdisciplinaria, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Carlos Navarro-Retamal
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742–5815, USA
| | - Erwan Michard
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| |
Collapse
|
14
|
Pérez‐Alonso M, Guerrero‐Galán C, González Ortega‐Villaizán A, Ortiz‐García P, Scholz SS, Ramos P, Sakakibara H, Kiba T, Ludwig‐Müller J, Krapp A, Oelmüller R, Vicente‐Carbajosa J, Pollmann S. The calcium sensor CBL7 is required for Serendipita indica-induced growth stimulation in Arabidopsis thaliana, controlling defense against the endophyte and K + homoeostasis in the symbiosis. PLANT, CELL & ENVIRONMENT 2022; 45:3367-3382. [PMID: 35984078 PMCID: PMC9804297 DOI: 10.1111/pce.14420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/02/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Calcium is an important second messenger in plants. The activation of Ca2+ signalling cascades is critical in the activation of adaptive processes in response to environmental stimuli. Root colonization by the growth promoting endophyte Serendipita indica involves the increase of cytosolic Ca2+ levels in Arabidopsis thaliana. Here, we investigated transcriptional changes in Arabidopsis roots during symbiosis with S. indica. RNA-seq profiling disclosed the induction of Calcineurin B-like 7 (CBL7) during early and later phases of the interaction. Consistently, reverse genetic evidence highlighted the functional relevance of CBL7 and tested the involvement of a CBL7-CBL-interacting protein kinase 13 signalling pathway. The loss-of-function of CBL7 abolished the growth promoting effect and affected root colonization. The transcriptomics analysis of cbl7 revealed the involvement of this Ca2+ sensor in activating plant defense responses. Furthermore, we report on the contribution of CBL7 to potassium transport in Arabidopsis. We analysed K+ contents in wild-type and cbl7 plants and observed a significant increase of K+ in roots of cbl7 plants, while shoot tissues demonstrated K+ depletion. Taken together, our work associates CBL7 with an important role in the mutual interaction between Arabidopsis and S. indica and links CBL7 to K+ transport.
Collapse
Affiliation(s)
- Marta‐Marina Pérez‐Alonso
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoPozuelo de Alarcón (Madrid)Spain
- Umeå Plant Science CenterUmeå UniversityUmeåSweden
| | - Carmen Guerrero‐Galán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoPozuelo de Alarcón (Madrid)Spain
| | - Adrián González Ortega‐Villaizán
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoPozuelo de Alarcón (Madrid)Spain
| | - Paloma Ortiz‐García
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoPozuelo de Alarcón (Madrid)Spain
| | - Sandra S. Scholz
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich‐Schiller‐University JenaJenaGermany
| | - Patricio Ramos
- Centro de Investigación de Estudios Avanzados del MauleUniversidad Católica del MauleTalcaChile
| | - Hitoshi Sakakibara
- RIKEN Center for Sustainable Resource ScienceTsurumiYokohamaJapan
- Department of Applied Biosciences, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | - Takatoshi Kiba
- RIKEN Center for Sustainable Resource ScienceTsurumiYokohamaJapan
- Department of Applied Biosciences, Graduate School of Bioagricultural SciencesNagoya UniversityNagoyaJapan
| | | | - Anne Krapp
- Université Paris‐Saclay, INRAE, AgroParisTechInstitut Jean‐Pierre BourginVersaillesFrance
| | - Ralf Oelmüller
- Department of Plant Physiology, Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich‐Schiller‐University JenaJenaGermany
| | - Jesús Vicente‐Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)MadridSpain
| | - Stephan Pollmann
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentación (INIA/CSIC)Campus de MontegancedoPozuelo de Alarcón (Madrid)Spain
- Departamento de Biotecnología‐Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de BiosistemasUniversidad Politécnica de Madrid (UPM)MadridSpain
| |
Collapse
|
15
|
Xu Q, He H, He B, Li T, Liu Y, Zhu S, Zhang G. Nitrogen Allocation Tradeoffs Within-Leaf between Photosynthesis and High-Temperature Adaptation among Different Varieties of Pecan ( Carya illinoinensis [Wangenh.] K. Koch). PLANTS (BASEL, SWITZERLAND) 2022; 11:2828. [PMID: 36365281 PMCID: PMC9657520 DOI: 10.3390/plants11212828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/07/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
Interpreting leaf nitrogen (N) allocation is essential to understanding leaf N cycling and the economy of plant adaptation to environmental fluctuations, yet the way these mechanisms shift in various varieties under high temperatures remains unclear. Here, eight varieties of pecan (Carya illinoinensis [Wangenh.] K. Koch), Mahan, YLC10, YLC12, YLC13, YLC29, YLC35, YLJ042, and YLJ5, were compared to investigate the effects of high temperatures on leaf N, photosynthesis, N allocation, osmolytes, and lipid peroxidation and their interrelations. Results showed that YLC35 had a higher maximum net photosynthetic rate (Pmax) and photosynthetic N-use efficiency (PNUE), while YLC29 had higher N content per area (Na) and lower PNUE. YLC35, with lower malondialdehyde (MDA), had the highest proportions of N allocation in rubisco (Pr), bioenergetics (Pb), and photosynthetic apparatus (Pp), while YLC29, with the highest MDA, had the lowest Pr, Pb, and Pp, implying more leaf N allocated to the photosynthetic apparatus for boosting PNUE or to non-photosynthetic apparatus for alleviating damage. Structural equation modeling (SEM) demonstrated that N allocation was affected negatively by leaf N and positively by photosynthesis, and their combination indirectly affected lipid peroxidation through the reverse regulation of N allocation. Our results indicate that different varieties of pecan employ different resource-utilization strategies and growth-defense tradeoffs for homeostatic balance under high temperatures.
Collapse
|
16
|
Scherzer S, Böhm J, Huang S, Iosip AL, Kreuzer I, Becker D, Heckmann M, Al-Rasheid KAS, Dreyer I, Hedrich R. A unique inventory of ion transporters poises the Venus flytrap to fast-propagating action potentials and calcium waves. Curr Biol 2022; 32:4255-4263.e5. [PMID: 36087579 DOI: 10.1016/j.cub.2022.08.051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/20/2022] [Accepted: 08/17/2022] [Indexed: 12/14/2022]
Abstract
Since the 19th century, it has been known that the carnivorous Venus flytrap is electrically excitable. Nevertheless, the mechanism and the molecular entities of the flytrap action potential (AP) remain unknown. When entering the electrically excitable stage, the trap expressed a characteristic inventory of ion transporters, among which the increase in glutamate receptor GLR3.6 RNA was most pronounced. Trigger hair stimulation or glutamate application evoked an AP and a cytoplasmic Ca2+ transient that both propagated at the same speed from the site of induction along the entire trap lobe surface. A priming Ca2+ moiety entering the cytoplasm in the context of the AP was further potentiated by an organelle-localized calcium-induced calcium release (CICR)-like system prolonging the Ca2+ signal. While the Ca2+ transient persisted, SKOR K+ channels and AHA H+-ATPases repolarized the AP already. By counting the number of APs and long-lasting Ca2+ transients, the trap directs the different steps in the carnivorous plant's hunting cycle. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Sönke Scherzer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Wuerzburg University, Julius-von-Sachs-Platz 2, 97070 Wuerzburg, Germany.
| | - Jennifer Böhm
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Wuerzburg University, Julius-von-Sachs-Platz 2, 97070 Wuerzburg, Germany
| | - Shouguang Huang
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Wuerzburg University, Julius-von-Sachs-Platz 2, 97070 Wuerzburg, Germany
| | - Anda L Iosip
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Wuerzburg University, Julius-von-Sachs-Platz 2, 97070 Wuerzburg, Germany
| | - Ines Kreuzer
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Wuerzburg University, Julius-von-Sachs-Platz 2, 97070 Wuerzburg, Germany
| | - Dirk Becker
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Wuerzburg University, Julius-von-Sachs-Platz 2, 97070 Wuerzburg, Germany
| | - Manfred Heckmann
- Department of Neurophysiology, Institute of Physiology, Wuerzburg University, Röntgenring 9, 97070 Wuerzburg, Germany
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ingo Dreyer
- Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, Talca 3460000, Chile
| | - Rainer Hedrich
- Molecular Plant Physiology and Biophysics, Julius-von-Sachs Institute for Biosciences, Biocenter, Wuerzburg University, Julius-von-Sachs-Platz 2, 97070 Wuerzburg, Germany.
| |
Collapse
|
17
|
Dreyer I. Specialty grand challenge in plant biophysics and modeling. FRONTIERS IN PLANT SCIENCE 2022; 13:991526. [PMID: 36119613 PMCID: PMC9478854 DOI: 10.3389/fpls.2022.991526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
|
18
|
Wegner LH. Empowering roots-Some current aspects of root bioenergetics. FRONTIERS IN PLANT SCIENCE 2022; 13:853309. [PMID: 36051301 PMCID: PMC9424547 DOI: 10.3389/fpls.2022.853309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Roots of higher plants provide the shoot with nutrients and water. In exchange, they receive photosynthates, which serve both as energy source and building blocks for maintenance and growth. While studies in plant bioenergetics used to focus on photosynthesis, several more recent findings also aroused or renewed interest in energy conversion and allocation in roots. Root building costs were identified as a long-undervalued trait, which turned out to be highly relevant for stress tolerance and nutrient use efficiency. Reduced building costs per root length (e.g., by aerenchyma formation or by increasing the cell size) are beneficial for exploring the soil for nutrient-rich patches, especially in low-input agrosystems. Also, an apparent mismatch was frequently found between the root energy budget in the form of the ATP pool on the one side and the apparent costs on the other side, particularly the costs of membrane transport under stress conditions, e.g., the Na+ detoxification costs resulting from Na+ sequestration at the plasma membrane. Ion transport across the plasma membrane (and also endomembranes) is coupled to the proton motive force usually believed to be exclusively generated by H+ ATPases. Recently, an alternative mechanism, the biochemical pH clamp, was identified which relies on H+ formation and binding in the apoplast and the cytosol, respectively, driven by metabolism (so-called active buffering). On this background, several aspects of root bioenergetics are discussed. These are (1) root respiration in soil, with a critical view on calorimetric vs. gas exchange measurements; (2) processes of energy conversion in mitochondria with a special focus on the role of the alternative oxidases, which allow adjusting carbon flow through metabolic pathways to membrane transport processes; and (3) energy allocation, in particular to transport across the plasma membrane forming the interface to soil solution. A concluding remark is dedicated to modeling root bioenergetics for optimizing further breeding strategies. Apparent "energy spoilers" may bestow the plant with a yet unidentified advantage only unfolding their beneficial effect under certain environmental conditions.
Collapse
|
19
|
Kinoshita SN, Kinoshita T. A win-win scenario for photosynthesis and the plasma membrane H + pump. FRONTIERS IN PLANT SCIENCE 2022; 13:982485. [PMID: 36035713 PMCID: PMC9412029 DOI: 10.3389/fpls.2022.982485] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/28/2022] [Indexed: 05/27/2023]
Abstract
In plants, cytosolic and extracellular pH homeostasis are crucial for various physiological processes, including the uptake of macronutrients and micronutrients, cell elongation, cell expansion, and enzyme activity. Proton (H+) gradients and the membrane potential are generated by a H+ pump consisting of an active primary transporter. Plasma membrane (PM) H+-ATPase, a PM-localized H+ pump, plays a pivotal role in maintaining pH homeostasis in plant cells and extracellular regions. PM H+-ATPase activity is regulated by protein abundance and by post-translational modifications. Several stimuli have been found to activate the PM H+-ATPase through phosphorylation of the penultimate threonine (Thr) of the carboxy terminus. Light- and photosynthesis-induced phosphorylation of PM H+-ATPase are conserved phenomena among various plant species. In this work, we review recent findings related to PM H+-ATPase regulation in the photosynthetic tissues of plants, focusing on its mechanisms and physiological roles. The physiological roles of photosynthesis-dependent PM H+-ATPase activation are discussed in the context of nitrate uptake and cytoplasmic streaming in leaves.
Collapse
Affiliation(s)
| | - Toshinori Kinoshita
- Graduate School of Science, Nagoya University, Nagoya, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya, Japan
| |
Collapse
|
20
|
Dreyer I, Li K, Riedelsberger J, Hedrich R, Konrad KR, Michard E. Transporter networks can serve plant cells as nutrient sensors and mimic transceptor-like behavior. iScience 2022; 25:104078. [PMID: 35378857 PMCID: PMC8976136 DOI: 10.1016/j.isci.2022.104078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 02/03/2022] [Accepted: 03/11/2022] [Indexed: 12/25/2022] Open
Abstract
Sensing of external mineral nutrient concentrations is essential for plants to colonize environments with a large spectrum of nutrient availability. Here, we analyzed transporter networks in computational cell biology simulations to understand better the initial steps of this sensing process. The networks analyzed were capable of translating the information of changing external nutrient concentrations into cytosolic H+ and Ca2+ signals, two of the most ubiquitous cellular second messengers. The concept emerging from the computational simulations was confirmed in wet-lab experiments. We document in guard cells that alterations in the external KCl concentration were translated into cytosolic H+ and Ca2+ transients as predicted. We show that transporter networks do not only serve their primary task of transport, but can also take on the role of a receptor without requiring conformational changes of a transporter protein. Such transceptor-like phenomena may be quite common in plants.
Collapse
Affiliation(s)
- Ingo Dreyer
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Janin Riedelsberger
- Centro de Bioinformática, Simulación y Modelado (CBSM), Facultad de Ingeniería, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Kai R. Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Julius-von-Sachs-Platz 2, 97082 Wuerzburg, Germany
| | - Erwan Michard
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay, Talca 3460000, Chile
| |
Collapse
|
21
|
Monder H, Maillard M, Chérel I, Zimmermann SD, Paris N, Cuéllar T, Gaillard I. Adjustment of K + Fluxes and Grapevine Defense in the Face of Climate Change. Int J Mol Sci 2021; 22:10398. [PMID: 34638737 PMCID: PMC8508874 DOI: 10.3390/ijms221910398] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/18/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Grapevine is one of the most economically important fruit crops due to the high value of its fruit and its importance in winemaking. The current decrease in grape berry quality and production can be seen as the consequence of various abiotic constraints imposed by climate changes. Specifically, produced wines have become too sweet, with a stronger impression of alcohol and fewer aromatic qualities. Potassium is known to play a major role in grapevine growth, as well as grape composition and wine quality. Importantly, potassium ions (K+) are involved in the initiation and maintenance of the berry loading process during ripening. Moreover, K+ has also been implicated in various defense mechanisms against abiotic stress. The first part of this review discusses the main negative consequences of the current climate, how they disturb the quality of grape berries at harvest and thus ultimately compromise the potential to obtain a great wine. In the second part, the essential electrical and osmotic functions of K+, which are intimately dependent on K+ transport systems, membrane energization, and cell K+ homeostasis, are presented. This knowledge will help to select crops that are better adapted to adverse environmental conditions.
Collapse
Affiliation(s)
- Houssein Monder
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Morgan Maillard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Isabelle Chérel
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Sabine Dagmar Zimmermann
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Nadine Paris
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| | - Teresa Cuéllar
- CIRAD, UMR AGAP, Univ Montpellier, INRAE, Institut Agro, F-34398 Montpellier, France;
| | - Isabelle Gaillard
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, F-34060 Montpellier, France; (H.M.); (M.M.); (I.C.); (S.D.Z.); (N.P.)
| |
Collapse
|
22
|
Dreyer I. Potassium in plants - Still a hot topic. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153435. [PMID: 33965700 DOI: 10.1016/j.jplph.2021.153435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Affiliation(s)
- Ingo Dreyer
- Center of Bioinformatics, Simulation and Modeling (CBSM), Faculty of Engineering, Universidad de Talca, 2 Norte 685, CL-3460000, Talca, Chile.
| |
Collapse
|