1
|
Medina Pérez VM, Baselga M, Schuhmacher AJ. Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review. Cancers (Basel) 2024; 16:2681. [PMID: 39123409 PMCID: PMC11311928 DOI: 10.3390/cancers16152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.
Collapse
Affiliation(s)
- Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Marta Baselga
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
2
|
Glassman PM. Development of a predictive algorithm for the efficacy of half-life extension strategies. Int J Pharm 2024; 660:124382. [PMID: 38917959 PMCID: PMC11389361 DOI: 10.1016/j.ijpharm.2024.124382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/18/2024] [Accepted: 06/22/2024] [Indexed: 06/27/2024]
Abstract
A challenge in development of peptide and protein therapeutics is rapid elimination from the body, necessitating frequent dosing that may lead to toxicities and/or poor patient compliance. To solve this issue, there has been great investment into half-life extension of rapidly eliminated drugs using approaches such as albumin binding, fusion to albumin or Fc, or conjugation to polyethylene glycol. Despite clinical successes of half-life extension products, no clear relationship has been drawn between properties of drugs and the pharmacokinetic parameters of their half-life extended analogues. In this study, non-compartmentally derived pharmacokinetic parameters (half-life, clearance, volume of distribution) were collected for 186 half-life extended drugs and their unmodified parent molecules. Statistical testing and regression analysis was performed to evaluate relationships between pharmacokinetic parameters and a matrix of variables. Multivariate linear regression models were developed for each of the three pharmacokinetic parameters and model predictions were in good agreement with observed data with r2 values for each parameter being: half-life: 0.879, clearance: 0.820, volume of distribution: 0.937. Significant predictors for each parameter included the corresponding pharmacokinetic parameter of the parent drug and descriptors related to molecular weight. This model represents a useful tool for prediction of the potential benefits of half-life extension.
Collapse
Affiliation(s)
- Patrick M Glassman
- Department of Pharmaceutical Sciences, Temple University School of Pharmacy, 3307 N. Broad Street, 559B Pharmacy and Allied Health Building, Philadelphia, PA 19140, United States.
| |
Collapse
|
3
|
Board NL, Yuan Z, Wu F, Moskovljevic M, Ravi M, Sengupta S, Mun SS, Simonetti FR, Lai J, Tebas P, Lynn K, Hoh R, Deeks SG, Siliciano JD, Montaner LJ, Siliciano RF. Bispecific antibodies promote natural killer cell-mediated elimination of HIV-1 reservoir cells. Nat Immunol 2024; 25:462-470. [PMID: 38278966 PMCID: PMC10907297 DOI: 10.1038/s41590-023-01741-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 12/28/2023] [Indexed: 01/28/2024]
Abstract
The persistence of CD4+ T cells carrying latent human immunodeficiency virus-1 (HIV-1) proviruses is the main barrier to a cure. New therapeutics to enhance HIV-1-specific immune responses and clear infected cells will probably be necessary to achieve reduction of the latent reservoir. In the present study, we report two single-chain diabodies (scDbs) that target the HIV-1 envelope protein (Env) and the human type III Fcγ receptor (CD16). We show that the scDbs promoted robust and HIV-1-specific natural killer (NK) cell activation and NK cell-mediated lysis of infected cells. Cocultures of CD4+ T cells from people with HIV-1 on antiretroviral therapy (ART) with autologous NK cells and the scDbs resulted in marked elimination of reservoir cells that was dependent on latency reversal. Treatment of human interleukin-15 transgenic NSG mice with one of the scDbs after ART initiation enhanced NK cell activity and reduced reservoir size. Thus, HIV-1-specific scDbs merit further evaluation as potential therapeutics for clearance of the latent reservoir.
Collapse
Affiliation(s)
- Nathan L Board
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhe Yuan
- The Wistar Institute, Philadelphia, PA, USA
| | - Fengting Wu
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Milica Moskovljevic
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Meghana Ravi
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Srona Sengupta
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sung Soo Mun
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Francesco R Simonetti
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jun Lai
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Pablo Tebas
- Presbyterian Hospital-University of Pennsylvania Hospital, Philadelphia, PA, USA
| | - Kenneth Lynn
- Presbyterian Hospital-University of Pennsylvania Hospital, Philadelphia, PA, USA
| | - Rebecca Hoh
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Steven G Deeks
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Janet D Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | | | - Robert F Siliciano
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Howard Hughes Medical Institute, Baltimore, MD, USA.
| |
Collapse
|
4
|
Muguruma K, Fukuda A, Shida H, Taguchi A, Takayama K, Taniguchi A, Ito Y, Hayashi Y. Structure Derivatization of IgG-Binding Peptides and Analysis of Their Secondary Structure by Circular Dichroism Spectroscopy. Chem Pharm Bull (Tokyo) 2024; 72:831-837. [PMID: 39313388 DOI: 10.1248/cpb.c24-00430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Mid-sized cyclic peptides are a promising modality for modern drug discovery. Their larger interaction area coupled with an appropriate secondary structure is more suitable than small molecules for binding to the target protein. In this study, we conducted a structure derivatization of an immunoglobulin G (IgG)-binding peptide (15-IgBP), a β-hairpin-like cyclic peptide with a twisted β-strand and assessed the effect of the secondary structure on IgG-binding activity using circular dichroism (CD) spectra analysis. As a result, derivatization at the Ala5 and Gly9 positions affected the secondary structure of 15-IgBP, in particular the appearance of a small positive peak in the 220-240 nm region characteristic of 15-IgBP in the CD spectrum. Maintaining this peak at a moderate level may be important for the expression of IgG binding activity. We found the small methyl group at Ala5 to be crucial for retaining the preferred secondary structure; we also found Gly9 could be replaced by D-amino acids. By integrating these findings with previous results of the structure-activity relationship, we obtained four potent affinity peptides for IgG binding (Kd = 4.24-5.85 nM). Furthermore, we found the Gly9 position can be substituted for D-Lys. This is a new potential site for attaching functional units for conjugation with IgG for the preparation of homogeneous antibody-drug conjugates.
Collapse
Affiliation(s)
- Kyohei Muguruma
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| | - Akane Fukuda
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| | - Hayate Shida
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| | - Akihiro Taguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| | - Kentaro Takayama
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| | - Yuji Ito
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University
| | - Yoshio Hayashi
- Department of Medicinal Chemistry, Tokyo University of Pharmacy and Life Sciences
| |
Collapse
|
5
|
Pillay TS, Muyldermans S. Application of Single-Domain Antibodies ("Nanobodies") to Laboratory Diagnosis. Ann Lab Med 2021; 41:549-558. [PMID: 34108282 PMCID: PMC8203438 DOI: 10.3343/alm.2021.41.6.549] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 05/24/2021] [Indexed: 12/15/2022] Open
Abstract
Antibodies have proven to be central in the development of diagnostic methods over decades, moving from polyclonal antibodies to the milestone development of monoclonal antibodies. Although monoclonal antibodies play a valuable role in diagnosis, their production is technically demanding and can be expensive. The large size of monoclonal antibodies (150 kDa) makes their re-engineering using recombinant methods a challenge. Single-domain antibodies, such as “nanobodies,” are a relatively new class of diagnostic probes that originated serendipitously during the assay of camel serum. The immune system of the camelid family (camels, llamas, and alpacas) has evolved uniquely to produce heavy-chain antibodies that contain a single monomeric variable antibody domain in a smaller functional unit of 12–15 kDa. Interestingly, the same biological phenomenon is observed in sharks. Since a single-domain antibody molecule is smaller than a conventional mammalian antibody, recombinant engineering and protein expression in vitro using bacterial production systems are much simpler. The entire gene encoding such an antibody can be cloned and expressed in vitro. Single-domain antibodies are very stable and heat-resistant, and hence do not require cold storage, especially when incorporated into a diagnostic kit. Their simple genetic structure allows easy re-engineering of the protein to introduce new antigen-binding characteristics or attach labels. Here, we review the applications of single-domain antibodies in laboratory diagnosis and discuss the future potential in this area.
Collapse
Affiliation(s)
- Tahir S Pillay
- Department of Chemical Pathology and NHLS- Tshwane Academic Division, University of Pretoria, Pretoria, South Africa.,Division of Chemical Pathology, University of Cape Town, Cape Town, South Africa.,Department of Chemical Pathology, University of Pretoria, Prinshof Campus, Pretoria, South Africa
| | - Serge Muyldermans
- Cellular and Molecular Immunology, Vrije Universiteit Brussel, Brussels, Belgium.,Liaoning Key Laboratory of Molecular Recognition and Imaging, School of Bioengineering, Dalian University of Technology, Dalian, China
| |
Collapse
|
6
|
van Dorsten RT, Wagh K, Moore PL, Morris L. Combinations of Single Chain Variable Fragments From HIV Broadly Neutralizing Antibodies Demonstrate High Potency and Breadth. Front Immunol 2021; 12:734110. [PMID: 34603312 PMCID: PMC8481832 DOI: 10.3389/fimmu.2021.734110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/31/2021] [Indexed: 11/13/2022] Open
Abstract
Broadly neutralizing antibodies (bNAbs) are currently being assessed in clinical trials for their ability to prevent HIV infection. Single chain variable fragments (scFv) of bNAbs have advantages over full antibodies as their smaller size permits improved diffusion into mucosal tissues and facilitates vector-driven gene expression. We have previously shown that scFv of bNAbs individually retain significant breadth and potency. Here we tested combinations of five scFv derived from bNAbs CAP256-VRC26.25 (V2-apex), PGT121 (N332-supersite), 3BNC117 (CD4bs), 8ANC195 (gp120-gp41 interface) and 10E8v4 (MPER). Either two or three scFv were combined in equimolar amounts and tested in the TZM-bl neutralization assay against a multiclade panel of 17 viruses. Experimental IC50 and IC80 data were compared to predicted neutralization titers based on single scFv titers using the Loewe additive and the Bliss-Hill model. Like full-sized antibodies, combinations of scFv showed significantly improved potency and breadth compared to single scFv. Combinations of two or three scFv generally followed an independent action model for breadth and potency with no significant synergy or antagonism observed overall although some exceptions were noted. The Loewe model underestimated potency for some dual and triple combinations while the Bliss-Hill model was better at predicting IC80 titers of triple combinations. Given this, we used the Bliss-Hill model to predict the coverage of scFv against a 45-virus panel at concentrations that correlated with protection in the AMP trials. Using IC80 titers and concentrations of 1μg/mL, there was 93% coverage for one dual scFv combination (3BNC117+10E8v4), and 96% coverage for two of the triple combinations (CAP256.25+3BNC117+10E8v4 and PGT121+3BNC117+10E8v4). Combinations of scFv, therefore, show significantly improved breadth and potency over individual scFv and given their size advantage, have potential for use in passive immunization.
Collapse
Affiliation(s)
- Rebecca T. van Dorsten
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Kshitij Wagh
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Penny L. Moore
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| | - Lynn Morris
- Center for HIV and STIs, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
- Medical Research Council (MRC) Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Center for the AIDS Programme of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
7
|
Abstract
Site-selective chemical bioconjugation reactions are enabling tools for the chemical biologist. Guided by a careful study of the selenomethionine (SeM) benzylation, we have refined the reaction to meet the requirements of practical protein bioconjugation. SeM is readily introduced through auxotrophic expression and exhibits unique nucleophilic properties that allow it to be selectively modified even in the presence of cysteine. The resulting benzylselenonium adduct is stable at physiological pH, is selectively labile to glutathione, and embodies a broadly tunable cleavage profile. Specifically, a 4-bromomethylphenylacetyl (BrMePAA) linker has been applied for efficient conjugation of complex organic molecules to SeM-containing proteins. This expansion of the bioconjugation toolkit has broad potential in the development of chemically enhanced proteins.
Collapse
|
8
|
Muguruma K, Ito M, Fukuda A, Kishimoto S, Taguchi A, Takayama K, Taniguchi A, Ito Y, Hayashi Y. Synthesis and structure-activity relationship studies of IgG-binding peptides focused on the C-terminal histidine residue. MEDCHEMCOMM 2019; 10:1789-1795. [PMID: 31762965 PMCID: PMC6855313 DOI: 10.1039/c9md00294d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/31/2019] [Indexed: 11/21/2022]
Abstract
Currently, IgG-binding peptides are widely utilized as a research tool, as molecules that guide substrates to the Fc site for site-selective antibody modification, leading to preparation of a homogeneous antibody-drug conjugate. In this study, a structure-activity relationship study of an IgG-binding peptide, 15-IgBP, that is focused on its C-terminal His residue was performed in an attempt to create more potent peptides. A peptide with a substitution of His17 by 2-pyridylalanine (2-Pya) showed a good binding affinity (15-His17(2-Pya), K d = 75.7 nM). In combination with a previous result, we obtained 15-Lys8Leu/His17(2-Pya)-OH that showed a potent binding affinity (K d = 2.48 nM) and avoided three synthetic problems concerning the p-hydroxybenzyl amidation at the C-terminus, the difficulty associated with coupling at the His7 position and the racemization of 2-Pya.
Collapse
Affiliation(s)
- Kyohei Muguruma
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , Hachioji , Tokyo , 192-0392 , Japan .
| | - Mayu Ito
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , Hachioji , Tokyo , 192-0392 , Japan .
| | - Akane Fukuda
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , Hachioji , Tokyo , 192-0392 , Japan .
| | - Satoshi Kishimoto
- Department of Chemistry and Bioscience , Graduate School of Science and Engineering , Kagoshima University , Korimoto , Kagoshima , 890-0065 , Japan
| | - Akihiro Taguchi
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , Hachioji , Tokyo , 192-0392 , Japan .
| | - Kentaro Takayama
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , Hachioji , Tokyo , 192-0392 , Japan .
| | - Atsuhiko Taniguchi
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , Hachioji , Tokyo , 192-0392 , Japan .
| | - Yuji Ito
- Department of Chemistry and Bioscience , Graduate School of Science and Engineering , Kagoshima University , Korimoto , Kagoshima , 890-0065 , Japan
| | - Yoshio Hayashi
- Department of Medicinal Chemistry , Tokyo University of Pharmacy and Life Sciences , Hachioji , Tokyo , 192-0392 , Japan .
| |
Collapse
|
9
|
Muguruma K, Fujita K, Fukuda A, Kishimoto S, Sakamoto S, Arima R, Ito M, Kawasaki M, Nakano S, Ito S, Shimizu K, Taguchi A, Takayama K, Taniguchi A, Ito Y, Hayashi Y. Kinetics-Based Structural Requirements of Human Immunoglobulin G Binding Peptides. ACS OMEGA 2019; 4:14390-14397. [PMID: 31528791 PMCID: PMC6740044 DOI: 10.1021/acsomega.9b01104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Currently, antibodies are widely used not only in research but also in therapy. Hence, peptides that selectively bind to the fragment crystallizable site of an antibody have been extensively utilized in various research efforts such as the preparation of antibody-drug conjugates (ADC). Consequently, appropriate peptides that bind to immunoglobulin G (IgG) with a specific K d value and also k on and k off values will be useful in different applications, and these kinetic parameters have been perhaps overlooked but are key to development of peptide ligands with advantageous binding properties. We prepared structural derivatives of IgG-binding peptide 1 and evaluated the binding affinity and kinetic rates of the products by surface plasmon resonance assay and isothermal titration calorimetry to obtain novel peptides with beneficial antibody binding properties. In this way, 15-Lys8Leu with fast-binding and slow-release features was obtained through a shortened peptide 15-IgBP. On the other hand, we successfully obtained distinctive peptide, 15-Lys8Tle, with a similar K d value but with k on and k off values that were as much as six-fold different from those of 15-IgBP. These new peptides are useful for the elucidation of kinetic effects on the function of IgG-binding peptides and various applications of antibody or antibody-drug interactions, such as immunoliposome, ADC, or half-life extension strategy, by using a peptide with the appropriate kinetic features.
Collapse
Affiliation(s)
- Kyohei Muguruma
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Konomi Fujita
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Akane Fukuda
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Satoshi Kishimoto
- Department
of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Soichiro Sakamoto
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Risako Arima
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mayu Ito
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Mayu Kawasaki
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Shogo Nakano
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Sohei Ito
- Graduate
Division of Nutritional and Environmental Sciences, University of Shizuoka, 52-1 Yada, Suruga-ku, Shizuoka 422-8526, Japan
| | - Kanade Shimizu
- Department
of Chemistry, Faculty of Science, Rikkyo
University, 3-34-1 Nishiikebukuro, Toshima, Tokyo 171-8501, Japan
| | - Akihiro Taguchi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Kentaro Takayama
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Atsuhiko Taniguchi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Yuji Ito
- Department
of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| | - Yoshio Hayashi
- Department
of Medicinal Chemistry, Tokyo University
of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| |
Collapse
|
10
|
Gamage DG, Gunaratne A, Periyannan GR, Russell TG. Applicability of Instability Index for In vitro Protein Stability Prediction. Protein Pept Lett 2019; 26:339-347. [DOI: 10.2174/0929866526666190228144219] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 01/22/2019] [Accepted: 02/06/2019] [Indexed: 11/22/2022]
Abstract
Background:
The dipeptide composition-based Instability Index (II) is one of the protein
primary structure-dependent methods available for in vivo protein stability predictions. As per this
method, proteins with II value below 40 are stable proteins. Intracellular protein stability principles
guided the original development of the II method. However, the use of the II method for in vitro
protein stability predictions raises questions about the validity of applying the II method under
experimental conditions that are different from the in vivo setting.
Objective:
The aim of this study is to experimentally test the validity of the use of II as an in vitro
protein stability predictor.
Methods:
A representative protein CCM (CCM - Caulobacter crescentus metalloprotein) that
rapidly degrades under in vitro conditions was used to probe the dipeptide sequence-dependent
degradation properties of CCM by generating CCM mutants to represent stable and unstable II
values. A comparative degradation analysis was carried out under in vitro conditions using wildtype
CCM, CCM mutants and two other candidate proteins: metallo-β-lactamase L1 and α -S1-
casein representing stable, borderline stable/unstable, and unstable proteins as per the II predictions.
The effect of temperature and a protein stabilizing agent on CCM degradation was also tested.
Results:
Data support the dipeptide composition-dependent protein stability/instability in wt-CCM
and mutants as predicted by the II method under in vitro conditions. However, the II failed to
accurately represent the stability of other tested proteins. Data indicate the influence of protein
environmental factors on the autoproteolysis of proteins.
Conclusion:
Broader application of the II method for the prediction of protein stability under in
vitro conditions is questionable as the stability of the protein may be dependent not only on the
intrinsic nature of the protein but also on the conditions of the protein milieu.
Collapse
Affiliation(s)
- Dilani G. Gamage
- Department of Chemistry and Biochemistry, Eastern Illinois University, Charleston, IL, United States
| | - Ajith Gunaratne
- Department of Mathematics, Florida Agricultural and Mechanical University, Tallahassee, FL, United States
| | - Gopal R. Periyannan
- Department of Chemistry and Biochemistry, Eastern Illinois University, Charleston, IL, United States
| | - Timothy G. Russell
- Department of Chemistry and Biochemistry, Eastern Illinois University, Charleston, IL, United States
| |
Collapse
|
11
|
Leconet W, Liu H, Guo M, Le Lamer-Déchamps S, Molinier C, Kim S, Vrlinic T, Oster M, Liu F, Navarro V, Batra JS, Noriega AL, Grizot S, Bander NH. Anti-PSMA/CD3 Bispecific Antibody Delivery and Antitumor Activity Using a Polymeric Depot Formulation. Mol Cancer Ther 2018; 17:1927-1940. [DOI: 10.1158/1535-7163.mct-17-1138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 04/05/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
|
12
|
|
13
|
INCREASING OF THE EXPRESSION OF RECOMBINANT scFv-ANTIBODIES EFFICIENCY. BIOTECHNOLOGIA ACTA 2017. [DOI: 10.15407/biotech10.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
14
|
Muguruma K, Yakushiji F, Kawamata R, Akiyama D, Arima R, Shirasaka T, Kikkawa Y, Taguchi A, Takayama K, Fukuhara T, Watabe T, Ito Y, Hayashi Y. Novel Hybrid Compound of a Plinabulin Prodrug with an IgG Binding Peptide for Generating a Tumor Selective Noncovalent-Type Antibody-Drug Conjugate. Bioconjug Chem 2016; 27:1606-13. [PMID: 27304609 DOI: 10.1021/acs.bioconjchem.6b00149] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although several approaches for making antibody-drug conjugates (ADC) have been developed, it has yet to be reported that an antibody binding peptide such as Z33 from protein A is utilized as the pivotal unit to generate the noncovalent-type ADC (NC-ADC). Herein we aim to establish a novel probe for NC-ADC by synthesizing the Z33-conjugated antitumor agent, plinabulin. Due to the different solubility of two components, including hydrophobic plinabulin and hydrophilic Z33, an innovative method with a solid-supported disulfide coupling reagent is required for the synthesis of the target compounds with prominent efficiency (29% isolated yield). We demonstrate that the synthesized hybrid exhibits a binding affinity against the anti-HER2 antibody (Herceptin) and the anti-CD71 antibody (6E1) (Kd = 46.6 ± 0.5 nM and 4.5 ± 0.56 μM, respectively) in the surface plasmon resonance (SPR) assay. In the cell-based assays, the hybrid provides a significant cytotoxicity in the presence of Herceptin against HER2 overexpressing SKBR-3 cells, but not against HER2 low-expressing MCF-7 cells. Further, it is noteworthy that the hybrid in combination with Herceptin induces cytotoxicity against Herceptin-resistant SKBR-3 (SKBR-3HR) cells. Similar results are obtained with the 6E1 antibody, suggesting that the synthesized hybrid can be widely applicable for NC-ADC using the antibody of interest. In summary, a series of evidence presented here strongly indicate that NC-ADCs have high potential for the next generation of antitumor agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yuji Ito
- Department of Chemistry and Bioscience, Graduate School of Science and Engineering, Kagoshima University , Korimoto, Kagoshima, 890-0065, Japan
| | | |
Collapse
|
15
|
Abstract
INTRODUCTION Many of the biotherapeutics approved or under development suffer from a short half-life necessitating frequent applications in order to maintain a therapeutic concentration over an extended period of time. The implementation of half-life extension strategies allows the generation of long-lasting therapeutics with improved pharmacokinetic and pharmacodynamic properties. AREAS COVERED This review gives an overview of the different half-life extension strategies developed over the past years and their application to generate next-generation biotherapeutics. It focuses on srategies already used in approved drugs and drugs that are in clinical development. These strategies include those aimed at increasing the hydrodynamic radius of the biotherapeutic and strategies which further implement recycling by the neonatal Fc receptor (FcRn). EXPERT OPINION Half-life extension strategies have become an integral part of development for many biotherapeutics. A diverse set of these strategies is available for the fine-tuning of half-life and adaption to the intended treatment modality and disease. Currently, half-life extension is dominated by strategies utilizing albumin binding or fusion, fusion to an immunoglobulin Fc region and PEGylation. However, a variety of alternative strategies, such as fusion of flexible polypeptide chains as PEG mimetic substitute, have reached advanced stages and offer further alternatives for half-life extension.
Collapse
Affiliation(s)
- Roland E Kontermann
- a Institute of Cell Biology and Immunology , University of Stuttgart , Stuttgart , Germany
| |
Collapse
|
16
|
Steinmetz A, Vallée F, Beil C, Lange C, Baurin N, Beninga J, Capdevila C, Corvey C, Dupuy A, Ferrari P, Rak A, Wonerow P, Kruip J, Mikol V, Rao E. CODV-Ig, a universal bispecific tetravalent and multifunctional immunoglobulin format for medical applications. MAbs 2016; 8:867-78. [PMID: 26984268 DOI: 10.1080/19420862.2016.1162932] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Bispecific immunoglobulins (Igs) typically contain at least two distinct variable domains (Fv) that bind to two different target proteins. They are conceived to facilitate clinical development of biotherapeutic agents for diseases where improved clinical outcome is obtained or expected by combination therapy compared to treatment by single agents. Almost all existing formats are linear in their concept and differ widely in drug-like and manufacture-related properties. To overcome their major limitations, we designed cross-over dual variable Ig-like proteins (CODV-Ig). Their design is akin to the design of circularly closed repeat architectures. Indeed, initial results showed that the traditional approach of utilizing (G4S)x linkers for biotherapeutics design does not identify functional CODV-Igs. Therefore, we applied an unprecedented molecular modeling strategy for linker design that consistently results in CODV-Igs with excellent biochemical and biophysical properties. CODV architecture results in a circular self-contained structure functioning as a self-supporting truss that maintains the parental antibody affinities for both antigens without positional effects. The format is universally suitable for therapeutic applications targeting both circulating and membrane-localized proteins. Due to the full functionality of the Fc domains, serum half-life extension as well as antibody- or complement-dependent cytotoxicity may support biological efficiency of CODV-Igs. We show that judicious choice in combination of epitopes and paratope orientations of bispecific biotherapeutics is anticipated to be critical for clinical outcome. Uniting the major advantages of alternative bispecific biotherapeutics, CODV-Igs are applicable in a wide range of disease areas for fast-track multi-parametric drug optimization.
Collapse
Affiliation(s)
- Anke Steinmetz
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - François Vallée
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Christian Beil
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Christian Lange
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Nicolas Baurin
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Jochen Beninga
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Cécile Capdevila
- b Sanofi R&D, Global Biotherapeutics, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Carsten Corvey
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Alain Dupuy
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Paul Ferrari
- b Sanofi R&D, Global Biotherapeutics, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Alexey Rak
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Peter Wonerow
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Jochen Kruip
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| | - Vincent Mikol
- c Sanofi R&D, LGCR, Center de Recherche Vitry-sur-Seine , Vitry-sur-Seine Cedex , France
| | - Ercole Rao
- a Sanofi-Aventis Deutschland GmbH, R&D, Global Biotherapeutics, Industriepark Hoechst , Frankfurt am Main , Germany
| |
Collapse
|
17
|
Unverdorben F, Hutt M, Seifert O, Kontermann RE. A Fab-Selective Immunoglobulin-Binding Domain from Streptococcal Protein G with Improved Half-Life Extension Properties. PLoS One 2015; 10:e0139838. [PMID: 26430884 PMCID: PMC4592230 DOI: 10.1371/journal.pone.0139838] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/17/2015] [Indexed: 12/02/2022] Open
Abstract
Background Half-life extension strategies have gained increasing interest to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. Recently, we established an immunoglobulin-binding domain (IgBD) from streptococcal protein G (SpGC3) as module for half-life extension. SpGC3 is capable of binding to the Fc region as well as the CH1 domain of Fab arms under neutral and acidic conditions. Methodology/Principal Findings Using site-directed mutagenesis, we generated a Fab-selective mutant (SpGC3Fab) to avoid possible interference with the FcRn-mediated recycling process and improved its affinity for mouse and human IgG by site-directed mutagenesis and phage display selections. In mice, this affinity-improved mutant (SpGC3FabRR) conferred prolonged plasma half-lives compared with SpGC3Fab when fused to small recombinant antibody fragments, such as single-chain Fv (scFv) and bispecific single-chain diabody (scDb). Hence, the SpGC3FabRR domain seems to be a suitable fusion partner for the half-life extension of small recombinant therapeutics. Conclusions/Significance The half-life extension properties of SpGC3 can be retained by restricting binding to the Fab fragment of serum immunoglobulins and can be improved by increasing binding activity. The modified SpGC3 module should be suitable to extend the half-life of therapeutic proteins and, thus to improve therapeutic activity.
Collapse
Affiliation(s)
- Felix Unverdorben
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Meike Hutt
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- * E-mail:
| |
Collapse
|
18
|
|
19
|
Nilvebrant J, Åstrand M, Löfblom J, Hober S. Development and characterization of small bispecific albumin-binding domains with high affinity for ErbB3. Cell Mol Life Sci 2013; 70:3973-85. [PMID: 23728098 PMCID: PMC11113916 DOI: 10.1007/s00018-013-1370-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/17/2013] [Accepted: 05/13/2013] [Indexed: 11/27/2022]
Abstract
Affinity proteins based on small scaffolds are currently emerging as alternatives to antibodies for therapy. Similarly to antibodies, they can be engineered to have high affinity for specific proteins. A potential problem with small proteins and peptides is their short in vivo circulation time, which might limit the therapeutic efficacy. To circumvent this issue, we have engineered bispecificity into an albumin-binding domain (ABD) derived from streptococcal Protein G. The inherent albumin binding was preserved while the opposite side of the molecule was randomized for selection of high-affinity binders. Here we present novel ABD variants with the ability to bind to the epidermal growth factor receptor 3 (ErbB3). Isolated candidates were shown to have an extraordinary thermal stability and affinity for ErbB3 in the nanomolar range. Importantly, they were also shown to retain their affinity to albumin, hence demonstrating that the intended strategy to engineer bispecific single-domain proteins against a tumor-associated receptor was successful. Moreover, competition assays revealed that the new binders could block the natural ligand Neuregulin-1 from binding to ErbB3, indicating a potential anti-proliferative effect. These new binders thus represent promising candidates for further development into ErbB3-signaling inhibitors, where the albumin interaction could result in prolonged in vivo half-life.
Collapse
Affiliation(s)
- Johan Nilvebrant
- Division of Protein Technology, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Mikael Åstrand
- Division of Protein Technology, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - John Löfblom
- Division of Protein Technology, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Sophia Hober
- Division of Protein Technology, KTH Royal Institute of Technology, AlbaNova University Center, 106 91 Stockholm, Sweden
| |
Collapse
|
20
|
Hoffmann E, Konkar A, Dziadek S, Josel HP, Conde-Knape K, Kropp H, Kling L, Stubenrauch K, Thorey I, Dengl S, Brinkmann U. PK modulation of haptenylated peptides via non-covalent antibody complexation. J Control Release 2013; 171:48-56. [PMID: 23800420 DOI: 10.1016/j.jconrel.2013.06.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 06/11/2013] [Accepted: 06/15/2013] [Indexed: 11/15/2022]
Abstract
We applied noncovalent complexes of digoxigenin (Dig) binding antibodies with digoxigeninylated peptide derivatives to modulate their pharmacokinetic properties. A peptide derivative which activates the Y2R receptor was selectively mono-digoxigeninylated by reacting a NHS-Dig derivative with an ε-amino group of lysine 2. This position tolerates modifications without destroying receptor binding and functionality of the peptide. Dig-peptide derivatives can be loaded onto Dig-binding IgGs in a simple and robust reaction, thereby generating peptide-IgG complexes in a defined two to one molar ratio. This indicates that each antibody arm becomes occupied by one haptenylated peptide. In vitro receptor binding and signaling assays showed that Dig-peptides as well as the peptide-antibody complexes retain better potency than the corresponding pegylated peptides. In vivo analyses revealed prolonged serum half-life of antibody-complexed peptides compared to unmodified peptides. Thus, complexes are of sufficient stability for PK modulation. We observed more prolonged weight reduction in a murine diet-induced obesity (DIO) model with antibody-complexed peptides compared to unmodified peptides. We conclude that antibody-hapten complexation can be applied to modulate the PK of haptenylated peptides and in consequence improve the therapeutic efficacy of therapeutic peptides.
Collapse
Affiliation(s)
- Eike Hoffmann
- Roche Pharma Research & Early Development pRED, Large Molecule Research, Nonnenwald 2, D-82372 Penzberg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Hutt M, Färber-Schwarz A, Unverdorben F, Richter F, Kontermann RE. Plasma half-life extension of small recombinant antibodies by fusion to immunoglobulin-binding domains. J Biol Chem 2012; 287:4462-9. [PMID: 22147690 PMCID: PMC3281650 DOI: 10.1074/jbc.m111.311522] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 11/23/2011] [Indexed: 12/22/2022] Open
Abstract
Many therapeutic proteins possessing a small size are rapidly cleared from circulation. Half-life extension strategies have therefore become increasingly important to improve the pharmacokinetic and pharmacodynamic properties of protein therapeutics. Here, we performed a comparative analysis of the half-life extension properties of various bacterial immunoglobulin-binding domains (IgBDs) derived from Staphylococcus protein A (SpA), Streptococcus protein G (SpG), and Finegoldia (formerly Peptostreptococcus) protein L (PpL). These domains, composed of 50-60 amino acid residues, were fused to the C terminus of a single-chain Fv and a bispecific single-chain diabody, respectively. All fusion proteins were produced in mammalian cells and retained their antigen-binding properties. The half-lives of the antibody molecules were prolonged to varying extents for the different IgBDs. The strongest effects in mice were observed for domain C3 of SpG (SpG(C3)) followed by domains B and D of SpA, suggesting that SpG(C3) is particularly useful to extend the plasma half-life of small proteins.
Collapse
Affiliation(s)
- Meike Hutt
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Aline Färber-Schwarz
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Felix Unverdorben
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Fabian Richter
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| | - Roland E. Kontermann
- From the Institut für Zellbiologie und Immunologie, Universität Stuttgart, Allmandring 31, 70569 Stuttgart, Germany
| |
Collapse
|