1
|
Velez-Irizarry D, Cheng H, Hearn C. scRNA seq of an F1 cross of Marek's disease resistant and susceptible chickens identifies allele specific expression signatures enriched in transcription modulators. Sci Rep 2025; 15:3689. [PMID: 39880866 PMCID: PMC11779831 DOI: 10.1038/s41598-025-86174-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/08/2025] [Indexed: 01/31/2025] Open
Abstract
Marek's disease (MD), a T cell lymphoma disease in chickens, is caused by the Marek's disease virus (MDV) found ubiquitously in the poultry industry. Genetically resistant Line 63 (L6) and susceptible Line 72 (L7) chickens have been instrumental to research on avian immune system response to MDV infection. In this study we characterized molecular signatures unique to splenic immune cell types across different genetic backgrounds 6 days after infection. Using three populations, L6, L7, and an F1 cross between L6xL7, we evaluated the immune cell transcriptome of responding cell types using single cell RNA sequencing. Several MDV genes were found expressed mainly in cytotoxic T cells while ICP4 and MEQ MDV genes were expressed across infected cell types. Using the F1 we quantified allele specific expression (ASE) of biallelic SNPs and found biased expression of parental alleles specific to immune cell subtypes. We identified 22 SNPs with ASE in response to MDV infection mapped to gene rich regions surrounding 59 genes of critical importance for chromatin remodeling and transcriptional regulation. Histone deacetylase genes (HDAC1 and HDAC8) had increased expression of L6 alleles, while small nuclear RNA genes (SNORA68 and SNORA72) expressed higher levels of L7 alleles with infection in T cell subsets. SNPs with ASE also mapped genes important for an adequate immune response including GNLY (cytotoxic activity) and PDIA3 (component of MHC class I peptide loading complex), and genes known to promote viral replication (MCM5 and EIF3M). These results show that functional variants associated with susceptibility to MD may have a bigger impact in subsets of immune cell types, and by characterizing the transcriptomes of these subtypes we can unravel molecular signatures specific to MD genomic resistance.
Collapse
Affiliation(s)
- Deborah Velez-Irizarry
- USDA, Agricultural Research Service, US National Poultry Research Center, 934 College Station Road, Athens, GA, 30605, USA
| | - Hans Cheng
- USDA, Agricultural Research Service, US National Poultry Research Center, 934 College Station Road, Athens, GA, 30605, USA
| | - Cari Hearn
- USDA, Agricultural Research Service, US National Poultry Research Center, 934 College Station Road, Athens, GA, 30605, USA.
| |
Collapse
|
2
|
Lipkin E, Smith J, Soller M, Burt DW, Fulton JE. Sex Differences in Response to Marek's Disease: Mapping Quantitative Trait Loci Regions (QTLRs) to the Z Chromosome. Genes (Basel) 2022; 14:genes14010020. [PMID: 36672761 PMCID: PMC9859034 DOI: 10.3390/genes14010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Marek's Disease (MD) has a significant impact on both the global poultry economy and animal welfare. The disease pathology can include neurological damage and tumour formation. Sexual dimorphism in immunity and known higher susceptibility of females to MD makes the chicken Z chromosome (GGZ) a particularly attractive target to study the chicken MD response. Previously, we used a Hy-Line F6 population from a full-sib advanced intercross line to map MD QTL regions (QTLRs) on all chicken autosomes. Here, we mapped MD QTLRs on GGZ in the previously utilized F6 population with individual genotypes and phenotypes, and in eight elite commercial egg production lines with daughter-tested sires and selective DNA pooling (SDP). Four MD QTLRs were found from each analysis. Some of these QTLRs overlap regions from previous reports. All QTLRs were tested by individuals from the same eight lines used in the SDP and genotyped with markers located within and around the QTLRs. All QTLRs were confirmed. The results exemplify the complexity of MD resistance in chickens and the complex distribution of p-values and Linkage Disequilibrium (LD) pattern and their effect on localization of the causative elements. Considering the fragments and interdigitated LD blocks while using LD to aid localization of causative elements, one must look beyond the non-significant markers, for possible distant markers and blocks in high LD with the significant block. The QTLRs found here may explain at least part of the gender differences in MD tolerance, and provide targets for mitigating the effects of MD.
Collapse
Affiliation(s)
- Ehud Lipkin
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
- Correspondence: (E.L.); (J.S.)
| | - Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
- Correspondence: (E.L.); (J.S.)
| | - Morris Soller
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - David W. Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Janet E. Fulton
- Hy-Line International, P.O. Box 310, 2583 240th St., Dallas Center, IA 50063, USA
| |
Collapse
|
3
|
Hu G, Do DN, Gray J, Miar Y. Selection for Favorable Health Traits: A Potential Approach to Cope with Diseases in Farm Animals. Animals (Basel) 2020; 10:E1717. [PMID: 32971980 PMCID: PMC7552752 DOI: 10.3390/ani10091717] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/21/2020] [Indexed: 12/17/2022] Open
Abstract
Disease is a global problem for animal farming industries causing tremendous economic losses (>USD 220 billion over the last decade) and serious animal welfare issues. The limitations and deficiencies of current non-selection disease control methods (e.g., vaccination, treatment, eradication strategy, genome editing, and probiotics) make it difficult to effectively, economically, and permanently eliminate the adverse influences of disease in the farm animals. These limitations and deficiencies drive animal breeders to be more concerned and committed to dealing with health problems in farm animals by selecting animals with favorable health traits. Both genetic selection and genomic selection contribute to improving the health of farm animals by selecting certain health traits (e.g., disease tolerance, disease resistance, and immune response), although both of them face some challenges. The objective of this review was to comprehensively review the potential of selecting health traits in coping with issues caused by diseases in farm animals. Within this review, we highlighted that selecting health traits can be applied as a method of disease control to help animal agriculture industries to cope with the adverse influences caused by diseases in farm animals. Certainly, the genetic/genomic selection solution cannot solve all the disease problems in farm animals. Therefore, management, vaccination, culling, medical treatment, and other measures must accompany selection solution to reduce the adverse impact of farm animal diseases on profitability and animal welfare.
Collapse
Affiliation(s)
| | | | | | - Younes Miar
- Department of Animal Science and Aquaculture, Dalhousie University, Truro, NS B2N 5E3, Canada; (G.H.); (D.N.D.); (J.G.)
| |
Collapse
|
4
|
Smith J, Lipkin E, Soller M, Fulton JE, Burt DW. Mapping QTL Associated with Resistance to Avian Oncogenic Marek's Disease Virus (MDV) Reveals Major Candidate Genes and Variants. Genes (Basel) 2020; 11:genes11091019. [PMID: 32872585 PMCID: PMC7564597 DOI: 10.3390/genes11091019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/20/2020] [Accepted: 08/26/2020] [Indexed: 01/13/2023] Open
Abstract
Marek’s disease (MD) represents a significant global economic and animal welfare issue. Marek’s disease virus (MDV) is a highly contagious oncogenic and highly immune-suppressive α-herpes virus, which infects chickens, causing neurological effects and tumour formation. Though partially controlled by vaccination, MD continues to have a profound impact on animal health and on the poultry industry. Genetic selection provides an alternative and complementary method to vaccination. However, even after years of study, the genetic mechanisms underlying resistance to MDV remain poorly understood. The Major Histocompatability Complex (MHC) is known to play a role in disease resistance, along with a handful of other non-MHC genes. In this study, one of the largest to date, we used a multi-facetted approach to identify quantitative trait locus regions (QTLR) influencing resistance to MDV, including an F6 population from a full-sib advanced intercross line (FSIL) between two elite commercial layer lines differing in resistance to MDV, RNA-seq information from virus challenged chicks, and genome wide association study (GWAS) from multiple commercial lines. Candidate genomic elements residing in the QTLR were further tested for association with offspring mortality in the face of MDV challenge in eight pure lines of elite egg-layer birds. Thirty-eight QTLR were found on 19 chicken chromosomes. Candidate genes, microRNAs, long non-coding RNAs and potentially functional mutations were identified in these regions. Association tests were carried out in 26 of the QTLR, using eight pure lines of elite egg-layer birds. Numerous candidate genomic elements were strongly associated with MD resistance. Genomic regions significantly associated with resistance to MDV were mapped and candidate genes identified. Various QTLR elements were shown to have a strong genetic association with resistance. These results provide a large number of significant targets for mitigating the effects of MDV infection on both poultry health and the economy, whether by means of selective breeding, improved vaccine design, or gene-editing technologies.
Collapse
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| | - Ehud Lipkin
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Morris Soller
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | - Janet E Fulton
- Hy-Line International, P.O. Box 310, 2583 240th St., Dallas Center, IA 50063, USA
| | - David W Burt
- The Roslin Institute and Royal (Dick) School of Veterinary Studies R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK
| |
Collapse
|
5
|
Potts ND, Bichet C, Merat L, Guitton E, Krupa AP, Burke TA, Kennedy LJ, Sorci G, Kaufman J. Development and optimization of a hybridization technique to type the classical class I and class II B genes of the chicken MHC. Immunogenetics 2019; 71:647-663. [PMID: 31761978 PMCID: PMC6900278 DOI: 10.1007/s00251-019-01149-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 11/17/2019] [Indexed: 01/02/2023]
Abstract
The classical class I and class II molecules of the major histocompatibility complex (MHC) play crucial roles in immune responses to infectious pathogens and vaccines as well as being important for autoimmunity, allergy, cancer and reproduction. These classical MHC genes are the most polymorphic known, with roughly 10,000 alleles in humans. In chickens, the MHC (also known as the BF-BL region) determines decisive resistance and susceptibility to infectious pathogens, but relatively few MHC alleles and haplotypes have been described in any detail. We describe a typing protocol for classical chicken class I (BF) and class II B (BLB) genes based on a hybridization method called reference strand-mediated conformational analysis (RSCA). We optimize the various steps, validate the analysis using well-characterized chicken MHC haplotypes, apply the system to type some experimental lines and discover a new chicken class I allele. This work establishes a basis for typing the MHC genes of chickens worldwide and provides an opportunity to correlate with microsatellite and with single nucleotide polymorphism (SNP) typing for approaches involving imputation.
Collapse
Affiliation(s)
- Nicola D Potts
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,LGC Ltd., Newmarket Road, Fordham, Ely, CB7 5WW, UK
| | - Coraline Bichet
- BioGéoSciences, CNRS UMR 5561, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France.,Institute of Avian Research, An der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| | - Laurence Merat
- Plate-Forme d'Infectiologie Expérimentale (PFIE), UE-1277, INRA Centre Val de Loire, 37380, Nouzilly, France
| | - Edouard Guitton
- Plate-Forme d'Infectiologie Expérimentale (PFIE), UE-1277, INRA Centre Val de Loire, 37380, Nouzilly, France
| | - Andrew P Krupa
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, S10 2TN, Sheffield, UK
| | - Terry A Burke
- Department of Animal and Plant Sciences, University of Sheffield, Western Bank, S10 2TN, Sheffield, UK
| | - Lorna J Kennedy
- Division of Population Health, Health Services Research & Primary Care, University of Manchester, Oxford Road, M13 9PL, Manchester, UK
| | - Gabriele Sorci
- BioGéoSciences, CNRS UMR 5561, Université de Bourgogne Franche-Comté, 6 Boulevard Gabriel, 21000, Dijon, France
| | - Jim Kaufman
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.
| |
Collapse
|
6
|
Chakraborty P, Kuo R, Vervelde L, Dutia BM, Kaiser P, Smith J. Macrophages from Susceptible and Resistant Chicken Lines have Different Transcriptomes following Marek's Disease Virus Infection. Genes (Basel) 2019; 10:genes10020074. [PMID: 30678299 PMCID: PMC6409778 DOI: 10.3390/genes10020074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/10/2019] [Accepted: 01/21/2019] [Indexed: 12/12/2022] Open
Abstract
Despite successful control by vaccination, Marek’s disease (MD) has continued evolving to greater virulence over recent years. To control MD, selection and breeding of MD-resistant chickens might be a suitable option. MHC-congenic inbred chicken lines, 61 and 72, are highly resistant and susceptible to MD, respectively, but the cellular and genetic basis for these phenotypes is unknown. Marek’s disease virus (MDV) infects macrophages, B-cells, and activated T-cells in vivo. This study investigates the cellular basis of resistance to MD in vitro with the hypothesis that resistance is determined by cells active during the innate immune response. Chicken bone marrow-derived macrophages from lines 61 and 72 were infected with MDV in vitro. Flow cytometry showed that a higher percentage of macrophages were infected in line 72 than in line 61. A transcriptomic study followed by in silico functional analysis of differentially expressed genes was then carried out between the two lines pre- and post-infection. Analysis supports the hypothesis that macrophages from susceptible and resistant chicken lines display a marked difference in their transcriptome following MDV infection. Resistance to infection, differential activation of biological pathways, and suppression of oncogenic potential are among host defense strategies identified in macrophages from resistant chickens.
Collapse
Affiliation(s)
- Pankaj Chakraborty
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (P.C.); (R.K.); (L.V.); (B.M.D.)
- Chittagong Veterinary and Animal Sciences University, Khulshi, Chittagong 4225, Bangladesh
| | - Richard Kuo
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (P.C.); (R.K.); (L.V.); (B.M.D.)
| | - Lonneke Vervelde
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (P.C.); (R.K.); (L.V.); (B.M.D.)
| | - Bernadette M. Dutia
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (P.C.); (R.K.); (L.V.); (B.M.D.)
| | - Pete Kaiser
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (P.C.); (R.K.); (L.V.); (B.M.D.)
| | - Jacqueline Smith
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, UK; (P.C.); (R.K.); (L.V.); (B.M.D.)
- Correspondence: ; Tel.: +44-(0)131-6519155
| |
Collapse
|
7
|
Tohidi R, Javanmard A, Idris I. Immunogenetics applied to control salmonellosis in chicken: a review. JOURNAL OF APPLIED ANIMAL RESEARCH 2018. [DOI: 10.1080/09712119.2017.1301256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Reza Tohidi
- Department of Animal Science, Torbat-e Jam University of Agriculture, Torbat-e Jam, Iran
| | - Arash Javanmard
- Department of Animal Science, University of Tabriz, Tabriz, Iran
| | - Ismail Idris
- Department of Animal Science, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
8
|
Yan Y, Yang N, Cheng HH, Song J, Qu L. Genome-wide identification of copy number variations between two chicken lines that differ in genetic resistance to Marek's disease. BMC Genomics 2015; 16:843. [PMID: 26492869 PMCID: PMC4619206 DOI: 10.1186/s12864-015-2080-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 10/13/2015] [Indexed: 11/10/2022] Open
Abstract
Background Copy number variation (CNV) is a major source of genome polymorphism that directly contributes to phenotypic variation such as resistance to infectious diseases. Lines 63 and 72 are two highly inbred experimental chicken lines that differ greatly in susceptibility to Marek’s disease (MD), and have been used extensively in efforts to identify the genetic and molecular basis for genetic resistance to MD. Using next generation sequencing, we present a genome-wide assessment of CNVs that are potentially associated with genetic resistance to MD. Methods Three chickens randomly selected from each line were sequenced to an average depth of 20×. Two popular software, CNVnator and Pindel, were used to call genomic CNVs separately. The results were combined to obtain a union set of genomic CNVs in the two chicken lines. Results A total of 5,680 CNV regions (CNVRs) were identified after merging the two datasets, of which 1,546 and 1,866 were specific to the MD resistant or susceptible line, respectively. Over half of the line-specific CNVRs were shared by 2 or more chickens, reflecting the reduced diversity in both inbred lines. The CNVRs fixed in the susceptible lines were significantly enriched in genes involved in MAPK signaling pathway. We also found 67 CNVRs overlapping with 62 genes previously shown to be strong candidates of the underlying genes responsible for the susceptibility to MD. Conclusions Our findings provide new insights into the genetic architecture of the two chicken lines and additional evidence that MAPK signaling pathway may play an important role in host response to MD virus infection. The rich source of line-specific CNVs is valuable for future disease-related association studies in the two chicken lines. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2080-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yiyuan Yan
- Department of Animal Genetics and Breeding, College of Animal Science, China Agricultural University, Beijing, 100193, China.
| | - Ning Yang
- Department of Animal Genetics and Breeding, College of Animal Science, China Agricultural University, Beijing, 100193, China.
| | - Hans H Cheng
- USDA, ARS, Avian Disease and Oncology Laboratory, East Lansing, MI, 48823, USA.
| | - Jiuzhou Song
- Department of Animal and Avian Sciences, University of Maryland, College Park, MD, 20742, USA.
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, College of Animal Science, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
9
|
Chakrabarty U, Dutta S, Mallik A, Mondal D, Mandal N. Identification and characterisation of microsatellite DNA markers in order to recognise the WSSV susceptible populations of marine giant black tiger shrimp, Penaeus monodon. Vet Res 2015; 46:110. [PMID: 26407974 PMCID: PMC4582847 DOI: 10.1186/s13567-015-0248-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 08/21/2015] [Indexed: 11/10/2022] Open
Abstract
White spot disease (WSD) which is caused by white spot syndrome virus (WSSV) creates severe epizootics in captured and cultured black tiger shrimp, resulting a huge loss in the economic output of the aquaculture industry worldwide. Performing selective breeding using DNA markers would prove to be a potential cost effective strategy for long term disease control in shrimps. In the present investigation, microsatellite DNA fingerprints were compared between naturally occurring WSSV resistant and susceptible populations of Penaeus monodon. After PCR with a set of shrimp specific primers three reproducible DNA fragments of varying sizes were found, among which 442 bp and 236 bp fragments were present in considerably higher frequencies in the WSSV susceptible shrimp population (p ≤ 0.0001). After WSSV challenge experiment the copy no. of WSSV was determined using real-time PCR, where it was found to be almost 4 × 10(3) fold higher in WSSV susceptible shrimps than in the resistant ones. Thus, these microsatellite DNA markers will be useful to distinguish between WSSV susceptible and resistant brood stocks of P. monodon. Sequencing studies revealed that these DNA markers were novel in P. monodon. Highest WSSV resistance using these DNA markers, was observed in the shrimp populations of Andaman Island and Chennai among the different coastal areas of India, suggesting these places as safe for specific pathogen resistant brood stock shrimp collection. This study will be a very effective platform towards understanding the molecular pathogenesis of WSD for generation of disease free shrimp aquaculture industry.
Collapse
Affiliation(s)
- Usri Chakrabarty
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata, 700054, India.
| | - Sourav Dutta
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata, 700054, India.
| | - Ajoy Mallik
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata, 700054, India.
| | - Debabrata Mondal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata, 700054, India.
| | - Nripendranath Mandal
- Division of Molecular Medicine, Bose Institute, P-1/12 CIT Scheme VII-M, Kolkata, 700054, India.
| |
Collapse
|
10
|
Transcriptional profiling of mEq-dependent genes in Marek's disease resistant and susceptible inbred chicken lines. PLoS One 2013; 8:e78171. [PMID: 24205146 PMCID: PMC3804455 DOI: 10.1371/journal.pone.0078171] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 09/17/2013] [Indexed: 12/18/2022] Open
Abstract
Marek’s disease (MD) is an economically significant disease in chickens caused by the highly oncogenic Marek’s disease virus (MDV). Understanding the genes and biological pathways that confer MD genetic resistance should lead towards the development of more disease resistant commercial poultry flocks or improved MD vaccines. MDV mEq, a bZIP transcription factor, is largely attributed to viral oncogenicity though only a few host target genes have been described, which has impeded our understanding of MDV-induced tumorigenesis. Given the importance of mEq in MDV-induced pathogenesis, we explored the role of mEq in genetic resistance to MDV. Using global transcriptome analysis and cells from MD resistant or susceptible birds, we compared the response to infection with either wild type MDV or a nononcogenic recombinant lacking mEq. As a result, we identified a number of specific genes and pathways associated with either MD resistance or susceptibility. Additionally, integrating prior information from ChIP-seq, microarray analysis, and SNPs exhibiting allele-specific expression (ASE) in response to MDV infection, we were able to provide evidence for 24 genes that are polymorphic within mEq binding sites are likely to account for gene expression in an allele-specific manner and potentially for the underlying genetic differences in MD incidence.
Collapse
|
11
|
Wolc A, Arango J, Jankowski T, Settar P, Fulton JE, O'Sullivan NP, Fernando R, Garrick DJ, Dekkers JCM. Genome-wide association study for Marek's disease mortality in layer chickens. Avian Dis 2013; 57:395-400. [PMID: 23901752 DOI: 10.1637/10409-100312-reg.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A genome-wide association study (GWAS) using Bayesian variable selection was performed to determine genomic regions associated with mortality due to Marek's disease virus (MDV) infection in layers. Mortality (%) under experimental disease challenge (500 plaque-forming units of a very virulent plus MDV strain) was recorded for progeny groups (average 15.5 birds; range 3 to 30) of 253 genotyped sires from four generations of a brown-egg layer line. An additional generation of 43 sires with progeny data was used to validate results. Sires were genotyped with a 42K Illumina single-nucleotide polymorphism (SNP) chip. Methods BayesB (pi = 0.995) and BayesCpi, with or without weighting residuals by the size of progeny groups were applied. The proportion of genetic variance contributed by SNPs within each 1-megabase (Mb) genomic region was quantified. Average mortality was 33% but differed significantly between generations. Genetic markers explained about 11% of phenotypic variation in mortality. Correlations between genomic estimated breeding values and percentage of progeny mortality for the validation generation (sons of individuals in training) were 0.12, 0.17, 0.02, and 0.16 for BayesB, weighted BayesB, BayesCpi, and weighted BayesCpi, respectively, when using the whole genome, and 0.03, 0.20, -0.06, and 0.14, when using only SNP from the 10, 1-Mb regions, explaining the largest proportion of genetic variance according to each method. Results suggest that regions on chromosomes 2, 3, 4, 9, 15, 18, and 21 are associated with Marek's disease resistance and can be used for selection and that accounting for the size of progeny groups has a large impact on correct localization of such genomic regions.
Collapse
Affiliation(s)
- Anna Wolc
- Department of Genetic and Animal Breeding, Poznan University of Life Sciences, Wolynska Street 33, 60-637 Poznan, Poland.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Dutta S, Chakrabarty U, Mallik A, Mandal N. Experimental evidence for white spot syndrome virus (WSSV) susceptibility linked to a microsatellite DNA marker in giant black tiger shrimp, Penaeus monodon (Fabricius). JOURNAL OF FISH DISEASES 2013; 36:593-597. [PMID: 23298366 DOI: 10.1111/jfd.12006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 07/26/2012] [Accepted: 07/26/2012] [Indexed: 06/01/2023]
Affiliation(s)
- S Dutta
- Division of Molecular Medicine, Bose Institute, Kolkata, India
| | | | | | | |
Collapse
|
13
|
Expression pattern of genes of RLR-mediated antiviral pathway in different-breed chicken response to Marek's disease virus infection. BIOMED RESEARCH INTERNATIONAL 2013; 2013:419256. [PMID: 23710447 PMCID: PMC3654640 DOI: 10.1155/2013/419256] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 03/03/2013] [Indexed: 12/24/2022]
Abstract
It has been known that the chicken's resistance to disease was affected by chicken's genetic background. And RLR-mediated antiviral pathway plays an important role in detection of viral RNA. However, little is known about the interaction of genetic background with RLR-mediated antiviral pathway in chicken against MDV infection. In this study, we adopted economic line-AA broilers and native Erlang mountainous chickens for being infected with MDV. Upon infection with MDV, the expression of MDA-5 was upregulated in two-breed chickens at 4, 7, and 21 d.p.i. It is indicated that MDA-5 might be involved in detecting MDV in chicken. Interestingly, the expression of IRF-3 and IFN-β genes was decreased in spleen and thymus of broilers at 21 d.p.i, but it was upregulated in immune tissues of Erlang mountainous chickens. And the genome load of MDV in spleen of broiler is significantly higher than that in Erlang mountainous chickens. Meanwhile, we observed that the death of broiler mainly also occurred in this phase. Collectively, these present results demonstrated that the expression patters of IRF-3 and IFN-β genes in chicken against MDV infection might be affected by the genetic background which sequently influence the resistance of chicken response to MDV.
Collapse
|
14
|
Cheng HH, Kaiser P, Lamont SJ. Integrated Genomic Approaches to Enhance Genetic Resistance in Chickens. Annu Rev Anim Biosci 2013; 1:239-60. [DOI: 10.1146/annurev-animal-031412-103701] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hans H. Cheng
- Avian Disease and Oncology Laboratory, USDA, ARS, East Lansing, Michigan 48823;
| | - Pete Kaiser
- The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom;
| | - Susan J. Lamont
- Department of Animal Science, Iowa State University, Ames, Iowa 50011;
| |
Collapse
|
15
|
Maceachern S, Muir WM, Crosby SD, Cheng HH. Genome-Wide Identification and Quantification of cis- and trans-Regulated Genes Responding to Marek's Disease Virus Infection via Analysis of Allele-Specific Expression. Front Genet 2012; 2:113. [PMID: 22303407 PMCID: PMC3268648 DOI: 10.3389/fgene.2011.00113] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/29/2011] [Indexed: 11/17/2022] Open
Abstract
Marek’s disease (MD) is a commercially important neoplastic disease of chickens caused by Marek’s disease virus (MDV), a naturally occurring oncogenic alphaherpesvirus. Selecting for increased genetic resistance to MD is a control strategy that can augment vaccinal control measures. To identify high-confidence candidate MD resistance genes, we conducted a genome-wide screen for allele-specific expression (ASE) amongst F1 progeny of two inbred chicken lines that differ substantially in MD resistance. High throughput sequencing was initially used to profile transcriptomes from pools of uninfected and infected individuals at 4 days post-infection to identify any genes showing ASE in response to MDV infection. RNA sequencing identified 22,655 single nucleotide polymorphisms (SNPs) of which 5,360 in 3,773 genes exhibited significant allelic imbalance. Illumina GoldenGate assays were subsequently used to quantify regulatory variation controlled at the gene (cis) and elsewhere in the genome (trans) by examining differences in expression between F1 individuals and artificial F1 RNA pools over six time periods in 1,536 of the most significant SNPs identified by RNA sequencing. Allelic imbalance as a result of cis-regulatory changes was confirmed in 861 of the 1,233 GoldenGate assays successfully examined. Furthermore we have identified seven genes that display trans-regulation only in infected animals and ∼500 SNP that show a complex interaction between cis- and trans-regulatory changes. Our results indicate ASE analyses are a powerful approach to identify regulatory variation responsible for differences in transcript abundance in genes underlying complex traits. And the genes with SNPs exhibiting ASE provide a strong foundation to further investigate the causative polymorphisms and genetic mechanisms for MD resistance. Finally, the methods used here for identifying specific genes and SNPs have practical implications for applying marker-assisted selection to complex traits that are difficult to measure in agricultural species, when expression differences are expected to control a portion of the phenotypic variance.
Collapse
Affiliation(s)
- Sean Maceachern
- Avian Disease and Oncology Laboratory, Agricultural Research Service, United States Department of Agriculture East Lansing, MI, USA
| | | | | | | |
Collapse
|
16
|
Smith J, Sadeyen JR, Paton IR, Hocking PM, Salmon N, Fife M, Nair V, Burt DW, Kaiser P. Systems analysis of immune responses in Marek's disease virus-infected chickens identifies a gene involved in susceptibility and highlights a possible novel pathogenicity mechanism. J Virol 2011; 85:11146-58. [PMID: 21865384 PMCID: PMC3194948 DOI: 10.1128/jvi.05499-11] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2011] [Accepted: 08/15/2011] [Indexed: 02/04/2023] Open
Abstract
Marek's disease virus (MDV) is a highly contagious oncogenic alphaherpesvirus that causes disease that is both a cancer model and a continuing threat to the world's poultry industry. This comprehensive gene expression study analyzes the host response to infection in both resistant and susceptible lines of chickens and inherent expression differences between the two lines following the infection of the host. A novel pathogenicity mechanism, involving the downregulation of genes containing HIC1 transcription factor binding sites as early as 4 days postinfection, was suggested from this analysis. HIC1 drives antitumor mechanisms, suggesting that MDV infection switches off genes involved in antitumor regulation several days before the expression of the MDV oncogene meq. The comparison of the gene expression data to previous QTL data identified several genes as candidates for involvement in resistance to MD. One of these genes, IRG1, was confirmed by single nucleotide polymorphism analysis to be involved in susceptibility. Its precise mechanism remains to be elucidated, although the analysis of gene expression data suggests it has a role in apoptosis. Understanding which genes are involved in susceptibility/resistance to MD and defining the pathological mechanisms of the disease gives us a much greater ability to try to reduce the incidence of this virus, which is costly to the poultry industry in terms of both animal welfare and economics.
Collapse
Affiliation(s)
- Jacqueline Smith
- The Roslin Institute and R(D)SVS, University of Edinburgh, Easter Bush, Midlothian EH25 9RG, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
It is more than a century since Marek's disease (MD) was first reported in chickens and since then there have been concerted efforts to better understand this disease, its causative agent and various approaches for control of this disease. Recently, there have been several outbreaks of the disease in various regions, due to the evolving nature of MD virus (MDV), which necessitates the implementation of improved prophylactic approaches. It is therefore essential to better understand the interactions between chickens and the virus. The chicken immune system is directly involved in controlling the entry and the spread of the virus. It employs two distinct but interrelated mechanisms to tackle viral invasion. Innate defense mechanisms comprise secretion of soluble factors as well as cells such as macrophages and natural killer cells as the first line of defense. These innate responses provide the adaptive arm of the immune system including antibody- and cell-mediated immune responses to be tailored more specifically against MDV. In addition to the immune system, genetic and epigenetic mechanisms contribute to the outcome of MDV infection in chickens. This review discusses our current understanding of immune responses elicited against MDV and genetic factors that contribute to the nature of the response.
Collapse
|
18
|
|
19
|
Yao Y, Zhao Y, Xu H, Smith LP, Lawrie CH, Watson M, Nair V. MicroRNA profile of Marek's disease virus-transformed T-cell line MSB-1: predominance of virus-encoded microRNAs. J Virol 2008; 82:4007-15. [PMID: 18256158 PMCID: PMC2293013 DOI: 10.1128/jvi.02659-07] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 01/25/2008] [Indexed: 12/30/2022] Open
Abstract
Research over the last few years has demonstrated the increasing role of microRNAs (miRNAs) as major regulators of gene expression in diverse cellular processes and diseases. Several viruses, particularly herpesviruses, also use the miRNA pathway of gene regulation by encoding their own miRNAs. Marek's disease (MD) is a widespread lymphomatous neoplastic disease of poultry caused by the highly contagious Marek's disease virus type 1 (MDV-1). Recent studies using virus-infected chicken embryo fibroblasts have identified at least eight miRNAs that map to the R(L)/R(S) region of the MDV genome. Since MDV is a lymphotropic virus that induces T-cell lymphomas, analysis of the miRNA profile in T-cell lymphoma would be more relevant for examining their role in oncogenesis. We determined the viral and host miRNAs expressed in MSB-1, a lymphoblastoid cell line established from an MDV-induced lymphoma of the spleen. In this paper, we report the identification of 13 MDV-1-encoded miRNAs (12 by direct cloning and 1 by Northern blotting) from MSB-1 cells. These miRNAs, five of which are novel MDV-1 miRNAs, map to the Meq and latency-associated transcript regions of the MDV genome. Furthermore, we show that miRNAs encoded by MDV-1 and the coinfected MDV-2 accounted for >60% of the 5,099 sequences of the MSB-1 "miRNAome." Several chicken miRNAs, some of which are known to be associated with cancer, were also cloned from MSB-1 cells. High levels of expression of MDV-1-encoded miRNAs and potentially oncogenic host miRNAs suggest that miRNAs may have major roles in MDV pathogenesis and neoplastic transformation.
Collapse
Affiliation(s)
- Yongxiu Yao
- Division of Microbiology, Institute for Animal Health, Compton, Berkshire, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
20
|
Mapping quantitative trait loci affecting susceptibility to Marek's disease virus in a backcross population of layer chickens. Genetics 2008; 177:2417-31. [PMID: 18073438 DOI: 10.1534/genetics.107.080002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Marek's disease (MD), caused by the oncogenic MD avian herpes virus (MDV), is a major source of economic losses to the poultry industry. A reciprocal backcross (BC) population (total 2052 individuals) was generated by crossing two partially inbred commercial Leghorn layer lines known to differ in MDV resistance, measured as survival time after challenge with a (vv+) MDV. QTL affecting resistance were identified by selective DNA pooling using a panel of 198 microsatellite markers covering two-thirds of the chicken genome. Data for each BC were analyzed separately, and as a combined data set. Markers showing significant association with resistance generally appeared in blocks of two or three, separated by blocks of nonsignificant markers. Defined this way, 15 chromosomal regions (QTLR) affecting MDV resistance, distributed among 10 chromosomes (GGA 1, 2, 3, 4, 5, 7, 8, 9, 15, and Z), were identified. The identified QTLR include one gene and three QTL associated with resistance in previous studies of other lines, and three additional QTL associated with resistance in previous studies of the present lines. These QTL could be used in marker-assisted selection (MAS) programs for MDV resistance and as a platform for high-resolution mapping and positional cloning of the resistance genes.
Collapse
|
21
|
Tsudzuki M, Onitsuka S, Akiyama R, Iwamizu M, Goto N, Nishibori M, Takahashi H, Ishikawa A. Identification of quantitative trait loci affecting shank length, body weight and carcass weight from the Japanese cockfighting chicken breed, Oh-Shamo (Japanese Large Game). Cytogenet Genome Res 2007; 117:288-95. [PMID: 17675870 DOI: 10.1159/000103190] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2006] [Accepted: 09/11/2006] [Indexed: 11/19/2022] Open
Abstract
We performed a quantitative trait locus (QTL) analysis to map QTLs controlling shank length, body weight, and carcass weight in a resource family of 245 F(2) birds developed from a cross of the large-sized, native, Japanese cockfighting breed, Oh-Shamo (Japanese Large Game), and the White Leghorn breed of chickens. Interval mapping revealed three significant QTLs for shank length on chromosomes 1, 4 and 24 at the experiment-wise 5% level, and a suggestive shank length QTL on chromosome 27 at the experiment-wise 10% level. For body weight two QTLs, one significant and the other suggestive, were identified on chromosomes 4 and 24, respectively. As expected, QTLs for carcass weight, which was highly correlated with body weight (r = 0.95), were detected at the same chromosomal locations as the detected body weight QTLs. Interestingly, the chromosomal locations containing these body weight and carcass weight QTLs coincided with those of two of the four shank length QTLs detected. No QTL with an epistatic interaction effect was discovered for any trait. The total contribution of all detected QTLs to genetic variance was 98.4%, 27.0% and 25.9% for shank length, body weight and carcass weight, respectively, indicating that most shank length QTLs have been identified but many body weight and carcass weight QTLs have been overlooked by the present analysis because of a low coverage rate of the 88 microsatellite markers used here (approximately 46% of the whole genome).
Collapse
Affiliation(s)
- M Tsudzuki
- Laboratory of Animal Breeding and Genetics, Graduate School of Biosphere Science, Hiroshima University, Higashi-Hiroshima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Minozzi G, Parmentier HK, Nieuwland MGB, Bed'hom B, Minvielle F, Gourichon D, Pinard-van der Laan MH. Antibody Responses to Keyhole Limpet Hemocyanin, Lipopolysaccharide, and Newcastle Disease Virus Vaccine in F2 and Backcrosses of White Leghorn Lines Selected for Two Different Immune Response Traits. Poult Sci 2007; 86:1316-22. [PMID: 17575177 DOI: 10.1093/ps/86.7.1316] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Planned crosses were designed to produce an F(2) and 2 backcross populations from 2 lines of White Leghorn chickens previously selected over 10 generations for 2 different in vivo immune responses. The selection criteria applied on the 2 grandparental lines were as follows: high antibody response to Newcastle disease virus vaccine 3 wk after vaccination (ND3) and high cell-mediated immune response [response to phytohemagglutinin]. Furthermore a control line was kept by random breeding. The objective of the study was to estimate if the 2 selection criteria applied on the pure lines had changed the level of and type of immune (humoral) response to a new antigen, keyhole limpet hemocyanin (KLH), in the various second-generation progeny groups. In addition, correlations between parameters of acquired and innate immunity were tested. Primary total (IgT) and isotype-specific (IgG and IgM) antibody response to KLH 1 wk after immunization and levels of natural antibodies (NAB) binding to Salmonella enteriditis-derived lipopolysaccharide (LPS) were measured. Although no differences were present between IgM and IgG antibodies to KLH and the phytohemagglutinin skin-swelling response, significant differences were present between all the progeny groups for IgT to KLH and ND3 and NAB binding to LPS. The mean values for IgT to ND3 and KLH were significantly different between the crosses using the selected lines compared with the control line, indicating a contribution of the previous selection. In addition, a sex effect was found for IgM to KLH and NAB to LPS, for which females had a higher response than males in both cases. No interaction between progeny type and sex was found. Furthermore, significant positive correlations were found between NAB to LPS and specific antibody titers to KLH. Finally, the results of the present study demonstrated an interaction between innate and acquired immunity under this strategy of selection and crossbreeding and confirmed the effect of selection on general immune response to a new antigen in second-generation crosses.
Collapse
Affiliation(s)
- G Minozzi
- UMR1236 Génétique et Diversité Animales, Institut National de la Recherche Agronomique/AgroParisTech, F-78352 Jouy en Josas, France.
| | | | | | | | | | | | | |
Collapse
|
23
|
Abasht B, Dekkers JCM, Lamont SJ. Review of Quantitative Trait Loci Identified in the Chicken. Poult Sci 2006; 85:2079-96. [PMID: 17135661 DOI: 10.1093/ps/85.12.2079] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Methods for mapping QTL are actively used in the chicken to identify chromosomal regions contributing to variation in traits related to growth, disease resistance, egg production, behavior, and metabolic parameters. However, higher-resolution mapping and better knowledge of the genetic architecture underlying QTL are needed for successful application of this information into breeding programs. Therefore, this paper summarizes and integrates original, primary QTL studies in the chicken to identify basic information on the genetic architecture of quantitative traits in chickens. The results of this review show several instances of consensus of QTL locations for similar traits from independent studies. Furthermore, the consensus of QTL location for different traits and evidence for QTL with parent-of-origin effect, transgressive alleles, epistatic QTL, and QTL x sex interaction in chicken are presented and discussed. This information can be helpful in identifying genes or mutations underlying the QTL and in the application of genomic information in marker-assisted breeding programs.
Collapse
Affiliation(s)
- B Abasht
- Department of Animal Science, Iowa State University, Ames 50011, USA
| | | | | |
Collapse
|
24
|
McElroy JP, Zhang W, Koehler KJ, Lamont SJ, Dekkers JC. Comparison of methods for analysis of selective genotyping survival data. Genet Sel Evol 2006. [DOI: 10.1051/gse:200626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
25
|
Kim ES, Hong YH, Min W, Lillehoj HS. Fine-Mapping of Coccidia-Resistant Quantitative Trait Loci in Chickens. Poult Sci 2006; 85:2028-30. [PMID: 17032840 DOI: 10.1093/ps/85.11.2028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Two commercial, pure broiler lines with different susceptibility to coccidiosis were used to fine-map QTL associated with the previously identified marker LEI0101, located at 259 cM on chromosome 1 and shown to be significantly associated with disease resistance. Eight additional microsatellite markers linked to LEI0101 were used for genotyping of F(1) parents and F(2) offspring (n = 314), and their associations with oocyst shedding, as a marker of disease resistance, were determined in birds experimentally infected with Eimeria maxima. Single-point analysis of 4 families showed that logarithm of odds (LOD) scores at all marker loci were > 0.5, with the exception of marker LEI0071, located at 242 cM (LOD score = 2.45). Multipoint analysis showed a maximum LOD score between LEI0071 and LEI0101 at 254 cM (LOD score = 3.74). Although the LEI0071 marker was mapped near LEI0101 by linkage analysis, the physical location of LEI0071 was not identified. Further studies to determine the physical locations of these and other markers will allow additional application association mapping techniques using single nucleotide polymorphism markers.
Collapse
Affiliation(s)
- E-S Kim
- Department of Animal Sciences, University of Wisconsin-Madison, 53706, USA
| | | | | | | |
Collapse
|