1
|
Miao Z, Haider MS, Nazar M, Mansoor MK, Zhang H, Tang Z, Li Y. Potential molecular mechanism of ascites syndrome in broilers. WORLD POULTRY SCI J 2022. [DOI: 10.1080/00439339.2022.2075299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Zhenyan Miao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, GD, China
| | | | - Mudassar Nazar
- Veterinary Sciences, University of Agriculture Faisalabad, Sub-Campus Burewala, Burewala, Pakistan
| | - Muhammad Khalid Mansoor
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Hui Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, GD, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, GD, China
| | - Ying Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, GD, China
| |
Collapse
|
2
|
Wang Y, Li M, Tell LA, Baynes RE, Davis JL, Vickroy TW, Riviere JE, Lin Z. Physiological parameter values for physiologically based pharmacokinetic models in food-producing animals. Part II: Chicken and turkey. J Vet Pharmacol Ther 2020; 44:423-455. [PMID: 33289178 PMCID: PMC8359335 DOI: 10.1111/jvp.12931] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 10/29/2020] [Accepted: 11/05/2020] [Indexed: 12/12/2022]
Abstract
Physiologically based pharmacokinetic (PBPK) models are growing in popularity due to human food safety concerns and for estimating drug residue distribution and estimating withdrawal intervals for veterinary products originating from livestock species. This paper focuses on the physiological and anatomical data, including cardiac output, organ weight, and blood flow values, needed for PBPK modeling applications for avian species commonly consumed in the poultry market. Experimental and field studies from 1940 to 2019 for broiler chickens (1-70 days old, 40 g - 3.2 kg), laying hens (4-15 months old, 1.1-2.0 kg), and turkeys (1 day-14 months old, 60 g -12.7 kg) were searched systematically using PubMed, Google Scholar, ProQuest, and ScienceDirect for data collection in 2019 and 2020. Relevant data were extracted from the literature with mean and standard deviation (SD) being calculated and compiled in tables of relative organ weights (% of body weight) and relative blood flows (% of cardiac output). Trends of organ or tissue weight growth during different life stages were calculated when sufficient data were available. These compiled data sets facilitate future PBPK model development and applications, especially in estimating chemical residue concentrations in edible tissues to calculate food safety withdrawal intervals for poultry.
Collapse
Affiliation(s)
- Yu‐Shin Wang
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| | - Miao Li
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| | - Lisa A. Tell
- Department of Medicine and Epidemiology, School of Veterinary MedicineUniversity of California‐DavisDavisCAUSA
| | - Ronald E. Baynes
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - Jennifer L. Davis
- Department of Biomedical Sciences and PathobiologyVirginia‐Maryland College of Veterinary MedicineBlacksburgVAUSA
| | - Thomas W. Vickroy
- Department of Physiological Sciences, College of Veterinary MedicineUniversity of FloridaGainesvilleFLUSA
| | - Jim E. Riviere
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
- Center for Chemical Toxicology Research and Pharmacokinetics, Department of Population Health and Pathobiology, College of Veterinary MedicineNorth Carolina State UniversityRaleighNCUSA
| | - Zhoumeng Lin
- Institute of Computational Comparative Medicine (ICCM), Department of Anatomy and Physiology, College of Veterinary MedicineKansas State UniversityManhattanKSUSA
| |
Collapse
|
3
|
Bautista-Ortega J, Stallone JN, Ruiz-Feria CA. Effects of arginine and antioxidant vitamins on pulmonary artery reactivity to phenylephrine in the broiler chicken. Poult Sci 2013; 92:1062-72. [PMID: 23472029 DOI: 10.3382/ps.2012-02472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effects of supplemental l-arginine (Arg), vitamin E (VE), and vitamin C (VC) on vascular reactivity to phenylephrine (PE) were examined in clinically healthy hypoxemic male broiler chickens. One-day-old chicks were housed in wire cages and randomly allocated to 1 of 3 dietary treatments: control (CTL; n = 80; 3,200 kcal of ME/kg, 23% CP, 1.55% Arg and 40 IU of VE/kg of feed), high-Arg (HA; n = 40; CTL + 0.8% Arg), or high-Arg and high antioxidant-vitamin diet (AEC; n = 40; HA + 200 IU of VE/kg of feed and 500 mg of VC/kg of feed). At d 14, 40 CTL birds and all the HA and AEC birds had a primary pulmonary bronchus surgically occluded (PBO). Forty CTL broilers underwent surgery without occluding the bronchus (SHAM). Pulmonary artery (PA) rings were mounted for isometric tension recordings 14 to 21 d postsurgery. The HA-PBO and AEC-PBO PA were immersed in Krebs-Henseleit buffer plus a vehicle (VehCtl) or Krebs-Henseleit buffer plus supplemental Arg, or Arg, VE, and VC (A-E-C). Maximal contractile response to PE of the CTL-SHAM PA (16 ± 14 mg/mg of dry tissue) was one-tenth compared with that of the CTL-PBO PA (159 ± 13 mg/mg), whereas the PA contractility in the supplemented groups was one-ninth compared with those of the CTL-PBO (17.9 ± 13.0 mg/mg, 17.90 ± 13.0 mg/mg for the HA-PBO+Arg and AEC-PBO+A-E-C treatments, respectively). Supplementing the bath with Arg did not change the maximal response to PE compared with the vehicle control (16.7 ± 12.2 mg/mg for HA-PBO-VehCtl). However, supplementing the bath with A-E-C produced a one-fourth reactivity compared with that of the vehicle control (80.7 ± 13.0 mg/mg for AEC-PBO-VehCtl). The PBO increased PA reactivity to PE, but supplemental Arg plus VE and VC significantly reduced it. Differential reactivity responses to PE may have been the result of protective effects of Arg, VE, and VC, implicating oxidative stress in endothelial dysfunction as well as in the upregulation of smooth muscle contractility.
Collapse
Affiliation(s)
- J Bautista-Ortega
- Department of Poultry Science, Texas A&M University, College Station, TX, USA
| | | | | |
Collapse
|
4
|
Wideman RF, Rhoads DD, Erf GF, Anthony NB. Pulmonary arterial hypertension (ascites syndrome) in broilers: a review. Poult Sci 2013; 92:64-83. [PMID: 23243232 DOI: 10.3382/ps.2012-02745] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) syndrome in broilers (also known as ascites syndrome and pulmonary hypertension syndrome) can be attributed to imbalances between cardiac output and the anatomical capacity of the pulmonary vasculature to accommodate ever-increasing rates of blood flow, as well as to an inappropriately elevated tone (degree of constriction) maintained by the pulmonary arterioles. Comparisons of PAH-susceptible and PAH-resistant broilers do not consistently reveal differences in cardiac output, but PAH-susceptible broilers consistently have higher pulmonary arterial pressures and pulmonary vascular resistances compared with PAH-resistant broilers. Efforts clarify the causes of excessive pulmonary vascular resistance have focused on evaluating the roles of chemical mediators of vasoconstriction and vasodilation, as well as on pathological (structural) changes occurring within the pulmonary arterioles (e.g., vascular remodeling and pathology) during the pathogenesis of PAH. The objectives of this review are to (1) summarize the pathophysiological progression initiated by the onset of pulmonary hypertension and culminating in terminal ascites; (2) review recent information regarding the factors contributing to excessively elevated resistance to blood flow through the lungs; (3) assess the role of the immune system during the pathogenesis of PAH; and (4) present new insights into the genetic basis of PAH. The cumulative evidence attributes the elevated pulmonary vascular resistance in PAH-susceptible broilers to an anatomically inadequate pulmonary vascular capacity, to excessive vascular tone reflecting the dominance of pulmonary vasoconstrictors over vasodilators, and to vascular pathology elicited by excessive hemodynamic stress. Emerging evidence also demonstrates that the pathogenesis of PAH includes characteristics of an inflammatory/autoimmune disease involving multifactorial genetic, environmental, and immune system components. Pulmonary arterial hypertension susceptibility appears to be multigenic and may be manifested in aberrant stress sensitivity, function, and regulation of pulmonary vascular tissue components, as well as aberrant activities of innate and adaptive immune system components. Major genetic influences and high heritabilities for PAH susceptibility have been demonstrated by numerous investigators. Selection pressures rigorously focused to challenge the pulmonary vascular capacity readily expose the genetic basis for spontaneous PAH in broilers. Chromosomal mapping continues to identify regions associated with ascites susceptibility, and candidate genes have been identified. Ongoing immunological and genomic investigations are likely to continue generating important new knowledge regarding the fundamental biological bases for the PAH/ascites syndrome.
Collapse
Affiliation(s)
- R F Wideman
- Department of Poultry Science, University of Arkansas, FAyetteville 72701, USA.
| | | | | | | |
Collapse
|
5
|
Alvarez-Medina DI, Hernandez A, Orozco C. Endothelial hyperpolarizing factor increases acetylcholine-induced vasodilatation in pulmonary hypertensive broilers arterial rings. Res Vet Sci 2012; 92:1-6. [DOI: 10.1016/j.rvsc.2011.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 01/15/2011] [Accepted: 02/05/2011] [Indexed: 12/15/2022]
|
6
|
Khajali F, Liyanage R, Wideman R. Methylglyoxal and pulmonary hypertension in broiler chickens. Poult Sci 2011; 90:1287-94. [DOI: 10.3382/ps.2010-01120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
7
|
MacLachlan D. Physiologically based pharmacokinetic (PBPK) model for residues of lipophilic pesticides in poultry. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2010; 27:302-14. [DOI: 10.1080/19440040903296683] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
8
|
Hamal KR, Wideman RF, Anthony NB, Erf GF. Differential expression of vasoactive mediators in microparticle-challenged lungs of chickens that differ in susceptibility to pulmonary arterial hypertension. Am J Physiol Regul Integr Comp Physiol 2009; 298:R235-42. [PMID: 19907003 DOI: 10.1152/ajpregu.00451.2009] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary hypertension syndrome (PHS; ascites) in fast growing meat-type chickens (broilers) is characterized by the onset of idiopathic pulmonary arterial hypertension (IPAH) leading to right-sided congestive heart failure and terminal ascites. Intravenous microparticle (MP) injection is a tool used by poultry geneticists to screen for the broilers that are resistant (RES) or susceptible (SUS) to IPAH in a breeding population. MPs occlude pulmonary arterioles and initiate focal inflammation, causing local tissues and responding leukocytes to release vasoactive mediators such as serotonin (5-HT), endothelin-1 (ET-1), and nitric oxide (NO). RT-PCR was used to examine the differences between RES and SUS broilers in terms of gene expression of ET-1, ET receptor types A and B (ET(A) and ET(B)), the serotonin transporter (SERT), serotonin receptors (5-HT(1A), 5-HT(2A), 5-HT(1B), 5-HT(2B)), endothelial NO synthase (eNOS), and inducible NOS (iNOS) in the lungs of these broilers before (0 h) and after (2, 6, 12, 24, and 48 h) MP injection. In SUS broilers MP injection elicited higher (P < 0.05) pulmonary expression of 5-HT(1A), 5-HT(2B), and ET-1, which promote vasoconstriction and proliferation of pulmonary arterial smooth muscle cells (PASMC). In RES broilers the MP injection elicited higher expression of eNOS, iNOS, and ET(B), which promote vasodilation and inhibit PASMC proliferation. These observations support the hypothesis that the resistance of broiler chickens to IPAH may be due to the higher expression of vasoactive mediators that favor enhanced vasodilation and attenuated vasoconstriction during MP injection challenges to the pulmonary vasculature.
Collapse
Affiliation(s)
- Krishna R Hamal
- Dept. of Poultry Science, Univ. of Arkansas, POSC-420, 1260 W. Maple, Fayetteville, AR 72701, USA.
| | | | | | | |
Collapse
|
9
|
Wideman RF, Bowen OT, Erf GF. Broiler pulmonary hypertensive responses during lipopolysaccharide-induced tolerance and cyclooxygenase inhibition. Poult Sci 2009; 88:72-85. [PMID: 19096060 DOI: 10.3382/ps.2008-00314] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial lipopolysaccharide (LPS, endotoxin) triggers pulmonary hypertension (PH) characterized by an increase in pulmonary arterial pressure (PAP) that reaches a peak value within 20 to 25 min and then gradually subsides within 60 min. As the PAP subsides PH cannot be reinitiated, signifying the onset of a period of tolerance (refractoriness) to repeated LPS exposure. The present study was conducted to determine the duration of this tolerance, and to evaluate key mediators thought to contribute to LPS-mediated PH in broilers. Tolerance was shown to persist for 4 to 5 d after the initial exposure to LPS. In tolerant broilers supramaximal i.v. injections of LPS did not reinitiate PH, nor was a significant modulatory role for nitric oxide demonstrated. The pulmonary vasculature of tolerant broilers remains responsive to the thromboxane A(2) (TxA(2)) mimetic U44069, 5-hydroxytryptamine (5-HT, serotonin), and constitutive nitric oxide. Meclofenamate successfully blocked the conversion of arachidonic acid to vasoconstrictive eicosanoids such as TxA(2); nevertheless, meclofenamate failed to inhibit PH in response to LPS. Therefore, TxA(2) does not appear to be the primary vasoconstrictor involved in the PH response to LPS and neither does 5-HT. Broilers emerging from tolerance 5 d after the initial exposure to LPS exhibited interindividual variation in their PH responsiveness to a second LPS injection, ranging from zero response (individuals that remain fully tolerant) to large increases in PAP (post-tolerant individuals). Tolerance might be an important compensatory or protective mechanism for broilers whose pulmonary vascular capacity is marginally adequate under optimal conditions, and whose respiratory systems are chronically challenged with LPS in commercial production facilities. The key vasoconstrictors responsible for the PH elicited by LPS remain to be determined.
Collapse
Affiliation(s)
- R F Wideman
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA.
| | | | | |
Collapse
|
10
|
Stebel S, Wideman R. Pulmonary Hemodynamic Responses to Intravenous Prostaglandin E2 in Broiler Chickens. Poult Sci 2008; 87:138-45. [DOI: 10.3382/ps.2007-00334] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
11
|
Wideman RF, Chapman ME, Hamal KR, Bowen OT, Lorenzoni AG, Erf GF, Anthony NB. An inadequate pulmonary vascular capacity and susceptibility to pulmonary arterial hypertension in broilers. Poult Sci 2007; 86:984-98. [PMID: 17435037 DOI: 10.1093/ps/86.5.984] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Broilers are susceptible to pulmonary hypertension syndrome (PHS; ascites syndrome) when their pulmonary vascular capacity is anatomically or functionally inadequate to accommodate the requisite cardiac output without an excessive elevation in pulmonary arterial pressure. The consequences of an inadequate pulmonary vascular capacity have been demonstrated experimentally and include elevated pulmonary vascular resistance (PVR) attributable to noncompliant, fully engorged vascular channels; sustained pulmonary arterial hypertension (PAH); systemic hypoxemia and hypercapnia; specific right ventricular hypertrophy, and right atrioventricular valve failure (regurgitation), leading to central venous hypertension and hepatic cirrhosis. Pulmonary vascular capacity is broadly defined to encompass anatomical constraints related to the compliance and effective volume of blood vessels, as well as functional limitations related to the tone (degree of constriction) maintained by the primary resistance vessels (arterioles) within the lungs. Surgical occlusion of 1 pulmonary artery halves the anatomical pulmonary vascular capacity, doubles the PVR, triggers PAH, eliminates PHS-susceptible broilers, and reveals PHS-resistant survivors whose lungs are innately capable of handling sustained increases in pulmonary arterial pressure and cardiac output. We currently are using i.v. microparticle injections to increase the PVR and trigger PAH sufficient in magnitude to eliminate PHS-susceptible individuals while allowing PHS-resistant individuals to survive as progenitors of robust broiler lines. The microparticles obstruct pulmonary arterioles and cause local tissues and responding leukocytes to release vasoactive substances, including the vasodilator NO and the highly effective vasoconstrictors thromboxane A(2) and serotonin [5-hydroxytryptamine (5-HT)]. Nitric oxide is the principal vasodilator responsible for modulating (attenuating) the PAH response and ensuing mortality triggered by i.v. microparticle injections, whereas microparticle-induced increases in PVR can be attributed principally to 5-HT. Our observations support the hypothesis that susceptibility to PHS is a consequence of anatomically inadequate pulmonary vascular capacity combined with the functional predominance of the vasoconstrictor 5-HT over the vasodilator NO. The contribution of TxA(2) remains to be determined. Selecting broiler lines for resistance to PHS depends upon improving both anatomical and functional components of pulmonary vascular capacity.
Collapse
Affiliation(s)
- R F Wideman
- Department of Poultry Science, University of Arkansas, Fayetteville 72701, USA.
| | | | | | | | | | | | | |
Collapse
|
12
|
Bowen OT, Erf GF, Anthony NB, Wideman RF. Pulmonary hypertension triggered by lipopolysaccharide in ascites-susceptible and -resistant broilers is not amplified by aminoguanidine, a specific inhibitor of inducible nitric oxide synthase. Poult Sci 2006; 85:528-36. [PMID: 16553285 DOI: 10.1093/ps/85.3.528] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) is a potent pulmonary vasodilator that modulates the pulmonary vasoconstriction and pulmonary hypertension (PH) triggered by bacterial lipopolysaccharide (LPS) in broilers. The amplitude and duration of the LPS-induced PH are markedly enhanced following pretreatment with N(omega)-nitro-L-arginine methyl ester (L-NAME), which inhibits NO synthesis by both the constitutive (endothelial) and inducible (inflammatory) forms of nitric oxide synthase (eNOS and iNOS, respectively). In the present study L-NAME and the selective iNOS inhibitor aminoguanidine (AG) were administered to differentiate between iNOS and eNOS as the primary source of NO that attenuates the pulmonary vascular response to LPS. Clinically healthy male progeny from ascites-susceptible and ascites-resistant lines were anesthetized, and their pulmonary artery was cannulated. The initial pulmonary arterial pressure (PAP) was recorded, then the broilers either remained untreated (control group) or were injected i.v. with AG. Ten minutes later all birds received an i.v. injection of LPS, followed 40 min later by an i.v. injection of L-NAME. When compared with untreated controls, AG neither increased the baseline PAP nor did it increase or prolong the PH response to LPS. The ascites-susceptible broilers maintained a higher PAP than the ascites-resistant broilers throughout the experiment, and the ascites-resistant broilers exhibited greater relative increases in PAP in response to LPS than did the ascites-susceptible broilers. Within 40 min after the LPS injection, PAP subsided to a level that did not differ from the respective preinjection value for each line. Injecting L-NAME reversed the decline in PAP, and within 5 min PAP returned to hypertensive levels approaching the maximum peak PH response to LPS. The absence of any impact of AG coupled with the profound response to L-NAME indicates that NO synthesized by eNOS rather than iNOS likely modulated the acute (within 1 h) PH elicited by LPS. Evidently eNOS is activated by the increased shear stress exerted on the endothelium during the PH response to LPS, whereas LPS-mediated up-regulation of iNOS expression may take longer than 1 h before biologically effective quantities of NO are produced.
Collapse
Affiliation(s)
- O T Bowen
- Department of Poultry Science, University of Arkansas, Fayetteville 72701, USA
| | | | | | | |
Collapse
|
13
|
Wideman RF, Bowen OT, Erf GF, Chapman ME. Influence of aminoguanidine, an inhibitor of inducible nitric oxide synthase, on the pulmonary hypertensive response to microparticle injections in broilers. Poult Sci 2006; 85:511-27. [PMID: 16553284 DOI: 10.1093/ps/85.3.511] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pulmonary hypertensive response to pulmonary vascular obstruction caused by intravenously injected microparticles is amplified by pretreatment with N(omega)nitro-L-arginine methyl ester (L-NAME). The L-NAME prevents the synthesis of the potent vasodilator nitric oxide (NO) by inhibiting both the constitutive [endothelial NO synthase (eNOS or NOS-3)] and inducible [inducible NO synthase (iNOS or NOS-2)] forms of NO synthase. In the present study we used the selective iNOS inhibitor aminoguanidine (AG) to evaluate the role of iNOS in modulating the pulmonary hypertension (PH) triggered by microparticle injections. Experiment 1 was conducted to confirm the ability of AG to inhibit NO synthesis by iNOS in broiler peripheral blood mononuclear cells exposed to bacterial lipopolysaccharide (LPS, endotoxin). Mononuclear leukocytes treated with LPS produced 10-fold more NO than untreated (control) cells. The LPS-stimulated production of NO was partially inhibited by L-NAME and was fully inhibited by AG, thereby confirming that AG inhibits LPS-mediated iNOS activation in broilers. In Experiment 2 we evaluated the responses of male progeny from a base population (MP Base) and from a derivative line selected for one generation from the survivors of an LD50 microparticle injection (MP Select). The pulmonary arterial pressure (PAP) was lower in MP Select than in MP Base broilers. Both lines exhibited similar percentage increases in PAP after microparticles were injected, and AG modestly amplified the PH triggered by microparticles in both lines. In Experiment 3 we evaluated the responses of male progeny from a second base population (PAC Base) and from a derivative line selected for 3 generations using the unilateral pulmonary artery clamp technique (PAC Select). The PAP was lower in PAC Select than in PAC Base broilers, and both lines exhibited similar percentage increases in PAP in response to the microparticles. The PH triggered by microparticles was not amplified by AG but was doubled by L-NAME. These experiments demonstrate that during the 30 min following pulmonary vascular entrapment of microparticles, iNOS modulated the PH elicited in broilers derived from the MP pedigree line, but not in broilers from the PAC pedigree line. Different NOS-mediated responses among broiler populations may affect pulmonary hemodynamic characteristics of broiler lines selected using i.v. microparticle injections.
Collapse
Affiliation(s)
- R F Wideman
- Department of Poultry Science, University of Arkansas, Fayetteville 72701, USA.
| | | | | | | |
Collapse
|
14
|
Chapman ME, Wideman RF. Evaluation of Total Plasma Nitric Oxide Concentrations in Broilers Infused Intravenously with Sodium Nitrite, Lipopolysaccharide, Aminoguanidine, and Sodium Nitroprusside. Poult Sci 2006; 85:312-20. [PMID: 16523632 DOI: 10.1093/ps/85.2.312] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Nitric oxide (NO) is a potent vasodilator that is synthesized by constitutive and inducible isoforms of the enzyme NO synthase (eNOS and iNOS, respectively). The half-life of NO averages only 3 to 4 s in biological fluids, where it is rapidly converted to the stable oxidation products nitrite (NO2-) and nitrate (NO3-). Our objectives were to use 2 commercial kits to measure total plasma NO, as NO2- + NO3-, and to assess plasma NO values during experimental protocols designed to influence NO accumulation in the plasma. One kit employed copper-coated cadmium as a catalyst for reducing NO3- to NO2-; the second kit employed the enzyme NO3- reductase for the same purpose. Both then employed Griess reagent for the colorimetric determination of NO2- as a measure of total plasma NO. Broilers in Experiment 1 were infused i.v. with solutions containing increasing concentrations of sodium NO2-. Broilers in Experiment 2 were injected with 1 mg of lipopolysaccharide (LPS), which is known to stimulate iNOS activity. Both commercial kits successfully detected increases in total plasma NO attributable to ongoing i.v. NO2- infusion or to increased iNOS expression at 5 h after the LPS injection. In Experiment 3, we compared the total plasma NO responses to LPS in the presence and absence of aminoguanidine (AG), a selective inhibitor of iNOS. The AG significantly attenuated the LPS-mediated increase in total plasma NO at 5 h post-injection. In Experiment 4, broilers were infused with sodium nitroprusside (SNP), an exogenous NO donor molecule that previously had been shown to lower the pulmonary arterial pressure in broilers. The SNP infusion did substantially reduce the pulmonary arterial pressure, but an increase in total plasma NO was not detected during the SNP infusion. Overall, NO accumulation in the plasma was successfully detected after sustained infusion of NaNO2 and administration of LPS for 5 h, but biologically effective levels of NO released from SNP were not detected. Therefore, total plasma NO concentrations (assayed as NO2- + NO3-) qualitatively reflect whole-body NO synthesis, but biologically relevant quantities of NO may be produced at levels that cannot be detected by colorimetric assays.
Collapse
Affiliation(s)
- M E Chapman
- Department of Poultry Science, University of Arkansas, Fayetteville 72701, USA.
| | | |
Collapse
|
15
|
Wideman RF, Erf GF, Chapman ME. Nω-nitro-L-arginine methyl ester (L-NAME) amplifies the pulmonary hypertensive response to microparticle injections in broilers. Poult Sci 2005; 84:1077-91. [PMID: 16050125 DOI: 10.1093/ps/84.7.1077] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We tested the hypothesis that microparticles entrapped within the pulmonary vasculature elicit the production of nitric oxide (NO) in quantities sufficient to modulate the combined impact of physical occlusion plus contemporaneously released vasoconstrictors. In experiment 1, male broilers were given an injection of the NO synthase (NOS) inhibitor Nomega-nitro-L-arginine methyl ester (L-NAME), followed by an intravenous injection of cellulose microparticles while the pulmonary arterial pressure (PAP) and cardiac output (CO) were recorded. When L-NAME was used to block NO synthesis induced by the microparticles, an early peak of pulmonary hypertension was revealed that rarely developed in the absence of L-NAME. The subsequent more prolonged increases in PAP and pulmonary vascular resistance (PVR) were greater in amplitude and duration in broilers pretreated with L-NAME than in broilers in the control group. These amplified responses occurred in spite of a simultaneous reduction in CO, thereby conclusively demonstrating that inhibiting NOS permitted the development of a much more profound increase in the PVR. In experiment 2 the mortality triggered within 48 h after injecting microparticles was evaluated in the presence and absence of L-NAME. The 48 h postinjection mortality more than doubled when L-NAME was combined with microparticle injection doses that otherwise caused relatively low mortality in the absence of L-NAME. Experiment 3 was conducted to determine whether NO contributes to the systemic hypoxemia that develops after microparticles are injected. L-NAME administration had no impact on the magnitude and duration of the microparticle induced decline in the percentage saturation of hemoglobin with oxygen (%HbO2). Evidently hypoxemia per se contributes relatively little to the amplified pulmonary vasoconstriction and 48 h postinjection mortality triggered by microparticle injections in broilers pretreated with L-NAME. These observations indicate that NO modulates the responses to vasoconstrictors released when microparticles become entrapped in the pulmonary vasculature. Inhibition of NOS by L-NAME exposed a more dramatic increase in PVR and pulmonary hypertension leading to enhanced mortality in response to microparticle injections.
Collapse
Affiliation(s)
- R F Wideman
- Department of Poultry Science, University of Arkansas, Fayetteville, Arkansas 72701, USA.
| | | | | |
Collapse
|